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Abstract

In this paper, we introduce a novel algorithm to solve projected model counting
(PMC). PMC asks to count solutions of a Boolean formula with respect to
a given set of projection variables, where multiple solutions that are identical
when restricted to the projection variables count as only one solution. Inspired
by the observation that the so-called “treewidth” is one of the most prominent
structural parameters, our algorithm utilizes small treewidth of the primal graph
of the input instance. More precisely, it runs in time (’)(22k+4n2) where £ is the
treewidth and n is the input size of the instance. In other words, we obtain that
the problem PMC is fixed-parameter tractable when parameterized by treewidth.
Further, we take the exponential time hypothesis (ETH) into consideration and
establish lower bounds of bounded treewidth algorithms for PMC, yielding
asymptotically tight runtime bounds of our algorithm.

While the algorithm above serves as a first theoretical upper bound and
although it might be quite appealing for small values of k, unsurprisingly a naive
implementation adhering to this runtime bound suffers already from instances
of relatively small width. Therefore, we turn our attention to several measures
in order to resolve this issue towards exploiting treewidth in practice: We
present a technique called nested dynamic programming, where different levels of
abstractions of the primal graph are used to (recursively) compute and refine tree
decompositions of a given instance. Further, we integrate the concept of hybrid
solving, where subproblems hidden by the abstraction are solved by classical
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search-based solvers, which leads to an interleaving of parameterized and classical
solving. Finally, we provide a nested dynamic programming algorithm and an
implementation that relies on database technology for PMC and a prominent
special case of PMC, namely model counting (#SAT). Experiments indicate
that the advancements are promising, allowing us to solve instances of treewidth
upper bounds beyond 200.
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1. Introduction

A problem that has been used to solve a large variety of real-world questions is
the model counting problem (#SaT) 1,12, 3, 4L 5L [6] 7, [8,[9]. It asks to compute the
number of solutions of a Boolean formula [10] and is theoretically of high worst-
case complexity (#- P-complete [T1,[12]). Lately, both #£SAT and its approximate
version have received renewed attention in theory and practice [I3] 4, [14] [15].
A concept that allows very natural abstractions of data and query results is
projection. Projection has wide applications in databases [16] and declarative
problem modeling. The problem projected model counting (PMC) asks to
count solutions of a Boolean formula with respect to a given set of projection
variables, where multiple solutions that are identical when restricted to the
projection variables count as only one solution. If all variables of the formula
are projection variables, then PMC is the #SAT problem and if there are no
projection variables then it is simply the SAT problem. Projected variables
allow for solving problems where one needs to introduce auxiliary variables,
in particular, if these variables are functionally independent of the variables
of interest, in the problem encoding, e.g., [I7, I8]. Projected model counting
is a fundamental problem in artificial intelligence and was also subject to a
dedicated track in the first model counting competition [19]. It turns out that
there are plenty of use cases and applications for PMC, ranging from a variety
of real-world questions in modern society, artificial intelligence [20], reliability
estimation [4] and combinatorics [2I]. Variants of this problem are relevant to
problems in probabilistic and quantitative reasoning, e.g., [2, [3, [0] and Bayesian
reasoning [§]. This work also inspired follow-up work, as extensions of projected
model counting as well as generalizations for logic programming and quantified
Boolean formulas have been presented recently, e.g., [22] 23] 24].

When we consider the computational complexity of PMC it turns out that
under standard assumptions the problem is even harder than #SAT, more pre-
cisely, complete for the class #- NP [25]. Even though there is a PMC solver [21]
and an ASP solver that implements projected enumeration [26], PMC has



received very little attention in parameterized algorithmics so far. Parameterized
algorithms [27], 28] 29] [30] tackle computationally hard problems by directly
exploiting certain structural properties (parameter) of the input instance to solve
the problem faster, preferably in polynomial-time for a fixed parameter value. In
this paper, we consider the treewidth of graphs associated with the given input
formula as parameter, namely the primal graph [31]. Roughly speaking, small
treewidth of a graph measures its tree-likeness and sparsity. Treewidth is defined
in terms of tree decompositions (TDs), which are arrangements of graphs into
trees. When we take advantage of small treewidth, we usually take a TD and
evaluate the considered problem in parts, via dynamic programming (DP) on the
TD. This dynamic programming technique utilizes tree decompositions, where
a tree decomposition is traversed in post-order, i.e., from the leaves towards
the root, and thereby for each node of the TD tables are computed such that a
problem is solved by cracking smaller (partial) problems.

In this work we apply tree decompositions for projected model counting and
study precise runtime dependency on treewidth. While there are also related
works on properties for efficient counting algorithms, e.g., [32], B3], B4], even for
treewidth, precise runtime dependency for projected model counting has been
left open. We design a novel algorithm that runs in double exponential tz'meﬂ in
the treewidth, but it is quadratic in the number of variables of a given formula.
Later, we also establish a conditional lower bound showing that under reasonable
assumptions it is quite unlikely that one can significantly improve this algorithm.

Naturally, it is expected that our proposed PMC algorithm can be only
competitive for instances where the treewidth is very low. Still, despite our
new theoretical result, it turns out that in practice there is a way to efficiently
implement dynamic programming and tree decompositions for solving PMC.
However, most of the existing systems based on dynamic programming guided
along a tree decomposition are suffering from maintaining large tables, since the
size of these tables (and thus the computational efforts required) are bounded by
a function in the treewidth of the instance. Although dedicated competitions [35]
for treewidth advanced the state-of-the-art for efficiently computing treewidth
and TDs [36] [37], these systems and approaches reach their limits when instances
have higher treewidth. Indeed, such approaches based on dynamic programming
reach their limits when instances have higher treewidth; a situation which can
even occur in structured real-world instances [38]. Nevertheless in the area
of Boolean satisfiability, this approach proved to be successful for counting
problems, such as, e.g., (weighted) model counting [39, 40, 31].

To further increase the practical applicability of dynamic programming for
PMC, novel techniques are required, where we rely on certain simplifications
of a graph, which we call abstmctionﬂ Thereby, we (a) rely on different levels

lRuntimes that are double exponential in the treewidth indicates expressions of the
ok
form 22" -poly(n), where n indicates the number of variables of a given formula and k refers
to the treewidth of its primal graph.
2A formal account on these abstractions will be given in Definition



of abstraction of the instance at hand; (b) treat subproblems orginating in
the abstraction by standard solvers whenever widths appear too high; and (c)
use highly sophisticated data management in order to store and process tables
obtained by dynamic programming,.

Contributions. In more details, we provide the following contributions.

1. We introduce a novel algorithm to solve projected model counting in
time O(22""n2) where k is the treewidth of the primal graph of the
instance and n is the size of the input instance. Similar to recent DP algo-
rithms for problems on the second level of the polynomial hierarchy [41],
our algorithm traverses the given tree decomposition multiple times (multi-
pass). In the first traversal, we run a dynamic programming algorithm on
tree decompositions to solve SAT [3I]. In a second traversal, we construct
equivalence classes on top of the previous computation to obtain model
counts with respect to the projection variables by exploiting combinatorial
properties of intersections.

2. Then, we establish that our runtime bounds are asymptotically tight under
the exponential time hypothesis (ETH) [42] using a recent result by Lampis
and Mitsou [43], who established lower bounds for the problem IV-SAT
assuming ETH. Intuitively, ETH states a complexity theoretical lower
bound on how fast satisfiability problems can be solved. More precisely,
one cannot solve 3-SAT in time 25" - n®M for some s > 0 and number n
of variables.

3. Finally, we also provide an implementation for PMC that efficiently utilizes
treewidth and is highly competitive with state-of-the-art solvers. In more
details, we treat above aspects (a), (b), and (c) as follows.

(a) To tame the beast of high treewidth, we propose nested dynamic
programming, where only parts of some abstraction of a graph are
decomposed. Then, each TD node also needs to solve a subproblem
residing in the graph, but may involve vertices outside the abstraction.
In turn, for solving such subproblems, the idea of nested DP is to
subsequently repeat decomposing and solving more fine-grained graph
abstractions in a nested fashion.While candidates for obtaining such
abstractions often naturally originate from the problem PMC, nested
DP may require computing those during nesting, for which we even
present a generic solution.

(b) To further improve the capability of handling high treewidth, we
show how to apply nested DP in the context of hybrid solving, where
established, standard solvers (e.g., SAT solvers) and caching are
incorporated in nested DP such that the best of two worlds are
combined. Thereby, we solve counting problems like PMC, where
we apply DP to parts of the problem instance that are subject to
counting, while depending on the existence of a solution for certain
subproblems. Those subproblems that are subject to searching for the



existence of a solution reside in the abstraction only and are solved
via standard solvers.

(c) We implemented a system based on a recently published tool [39)] for
using database management systems (DBMS) to efficiently perform
table manipulation operations needed during DP. Our system is called
nestH DBEI and uses and significantly extends this tool in order to
perform hybrid solving, thereby combining nested DP and standard
solvers. As a result, we use DBMS for efficiently implementing the
handling of tables needed by nested DP. Preliminary experiments
indicate that nested DP with hybrid solving can be fruitful, where
we are capable of solving instances, whose treewidth upper bounds
are beyond 200.

This paper combines research of work that is published at the 21st Inter-
national Conference on Satisfiability (SAT 2018) [44] and research that was
presented at the 23rd International Conference on Satisfiability (SAT 2020) [45].
In addition to these conference versions, we added detailed proofs, further
examples, and significantly improved the presentation throughout the document.

2. Preliminaries

We assume familiarity with basic notions from set theory and on sequences.
We write a sequence consisting of ¢ elements e; for 1 < ¢ < ¢ in angular
brackets, i.e., {e1,e3...,ep). For aset X, let 2% be the power set of X consisting
of all subsets Y with ) C Y C X. Recall the well-known combinatorial inclusion-
exclusion principle [46], which states that for two finite sets A and B it is
true that |AU B| = |A| + |B| — |AN B|. Later, we need a generalized version
for arbitrary many sets. Given for some integer n a family of finite sets X,
Xo, ..., X, the number of elements in the union over all sets is | U;L=1 Xl =

Zlg{l,..qn},[;ﬁ@(71)|I|71| MNier Xil-

Satisfiability. A literal is a (Boolean) variable x or its negation —x. A clause
is a finite set of literals, interpreted as the disjunction of these literals. A
(CNF) formula is a finite set of clauses, interpreted as the conjunction of its
clauses. A 3-CNF has clauses of length at most 3. Let F be a formula. A
sub-formula S of F is a subset S C F of F. For a clause ¢ € F, we let
var(c) consist of all variables that occur in ¢ and var(F') := (J,cp var(c). An
assignment is a mapping « : V — {0,1} for a set V' C var(F) of variables. For
x € V, we define a(—z) := 1 — a(z). The formula F under an assignment «
is the formula F[a] obtained from F' by removing all clauses ¢ containing a
literal set to 1 by a and removing from the remaining clauses all literals set
to 0 by a. An assignment « is satisfying if Fla] = 0, denoted by a F F.
Then, F' is satisfiable if there is such a satisfying assignment «, otherwise we

3nestHDB is open-source and available at |github.com/hmarkus/dp_on_dbs/tree/nesthdb.
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say F' is unsatisfiable. Let V be a set of variables. An interpretation is a
set J C V and its induced assignment «;y of J with respect to V' is defined as
follows ayy =={v—1|veJNV}U{v—0]|veV\J}. Wesimply write
ay for ayy if V.=var(F). An interpretation J is a model of F if its induced
assignment v is satisfying, i.e., ay F F. Given a formula F'; the problem SAT
asks whether F' is satisfiable and the problem #SAT asks to output the number
of models of F, i.e., |S| where S is the set of all models of F.

Projected Model Counting. An instance of the projected model counting problem
is a pair (F, P) where F' is a (CNF) formula and P is a set of Boolean variables
such that P C var(F'). We call the set P projection variables of the instance.
The projected model count of a formula F with respect to P is the number of
total assignments « to variables in P such that the formula F[a] under « is
satisfiable. The projected model counting problem (PMC) |2]] asks to output
the projected model count of F, i.e., {M NP | M € S}| where S is the set of
all models of F'.

c1 c2 c3 [

Example 1. Consider formula F' := {=aV bV p1,aV =bV —p1,aV ps,aV —pa}
and set P := {p1,p2} of projection variables. The models of formula F are {a, b},
{a,p1}, {a,b,p1},{a,b,p2}, {a,p1,p2}, and {a,b,p1,p2}. However, projected to
the set P, we only have models 0, {p1}, {p2}, and {p1,p2}. Hence, the model
count of F is 6 whereas the projected model count of instance (F, P) is 4.

Quantified Boolean Formulas (QBFs). A (prenex) quantified Boolean formula Q
is of the form Q1V1.Q2Va. ... QnVy . F where Q; € {V,3}, V; are disjoint sets of
Boolean variables, and F' is a Boolean formula that contains only the variables in
U™, Vi. The truth (evaluation) of quantified Boolean formulas is defined in the
standard way, where for @) above if Q1 = 3, then ) evaluates to true if and only
if there exists an assignment « : V; — {0,1} such that Q2V5....Qn Vi . Fla]
evaluates to true. If Q1 =V, then @ evaluates to true if for any assignment « :
Vi — {0,1}, we have that Q2Va....Qm Vi .Fla] evaluates to true. Given a
quantified Boolean formula @, the evaluation problem of quantified Boolean
formulas QSAT asks whether @ evaluates to true. The problem QSAT is PSPACE-
complete and is therefore believed to be computationally harder than SAT [47,
48, [49]. A well known fragment of QSAT is V3-SAT where the input is restricted
to quantified Boolean formulas of the form VV;.3V5.F where F' is a Boolean CNF
formula. The complexity class consisting of all problems that are polynomial-time
reducible to V3-SAT is denoted by IIY’, and its complement is denoted by 2.
For more detailed information on QBFs we refer to other sources, e.g., [50] 47].

Computational Complezxity. We assume familiarity with standard notions in
computational complexity [48] and use counting complexity classes as defined
by Hemaspaandra and Vollmer [51]. For parameterized complexity, we refer
to standard texts [27, 28] 29 B0]. Let 3 and X’ be some finite alphabets. We
call I € ¥* an instance and ||I|| denotes the size of I. Let L C ¥* x N and
L’ C ¥ x N be two parameterized problems. An fpt-reduction r from L to L’



is a many-to-one reduction from ¥* x N to ¥’ x N such that for all I € ¥*
we have (I, k) € L if and only if r(I,k) = (I', k') € L’ such that k¥’ < g(k) for
a fixed computable function g : N — N, and there is a computable function f
and a constant ¢ such that r is computable in time O(f(k)||I]|¢) [29]. A witness
function is a function W: £* — 2= that maps an instance I € X* to a finite
subset of ¥'*. We call the set W(I) the witnesses. A parameterized counting
problem L : ¥* x Ng — Ny is a function that maps a given instance I € ¥* and an
integer k € N to the cardinality of its witnesses W(I)|. We call k the parameter.
The exponential time hypothesis (ETH) states that the (decision) problem SAT
on 3-CNF formulas cannot be solved in time 25" - n®() for some s > 0 where n
is the number of variables [42].

Graph Theory. We recall some graph theoretical notations. For further basic
terminology on graphs and digraphs, we refer to standard texts [52 [53]. An
undirected graph or simply a graph is a pair G = (V, E) where V # () is a set of
vertices and E C {{u,v} CV | u# v} is a set of edges. A graph G' = (V' F’)
is a subgraph of G if V' C V and E’ C E and an induced subgraph if additionally
for any w,v € V' and {u,v} € E also {u,v} € E’. Let G = (V, E) be a graph
and A C V be a set of vertices. We define the subgraph G — A, which is the graph
obtained from G by removing vertices A, by G—A := (V\A, {e | e € E,enA = 0}.
Graph G is complete if for any two vertices u,v € V there is an edge uv € E. G
contains a cliqgue on V' C V if the induced subgraph (V', E’) of G is a complete
graph. A (connected) component C C V of G is a C-largest set such that for
any two vertices u,v € C there is a path from u to v in G.

Tree Decompositions and Treewidth. For basic terminology on graphs, we refer
to standard texts [52 [53]. For a (rooted) tree T = (N, A) with root node root(T)
and a node t € N, we let children(t) be the sequence of all nodes ¢’ in arbitrarily
but fixed order, which have an edge (¢,t') € A. Let G = (V, E) be a graph. A
tree decomposition (TD) of graph G is a pair T = (T, x) where T'= (N, A) is a
rooted tree and x a mapping that assigns to each node t € N a set x(t) CV,
called a bag, such that the following conditions hold: (i) V' = [J,c x(t) and
E C Uen{uv | u,v € x(t)}; (ii) for each 7, 5,2 € N such that s lies on the path
from r to ¢, we have x(r) N x(t) C x(s). Then, width(7") := max¢en |x(¢)] — 1.
The treewidth tw(G) of G is the minimum width(7") over all tree decompositions
T of G. For arbitrary but fixed w > 1, it is feasible in linear time to decide if a
graph has treewidth at most w and, if so, to compute a tree decomposition of
width w [54]. In order to simplify case distinctions in the algorithms, we always
use so-called nice tree decompositions, which can be computed in linear time
without increasing the width [55] and are defined as follows. For a node ¢ € N,
we say that type(t) is leaf if children(t) = (); join if children(¢) = (¢, ") where
x(t) = x(@) = x(t") # 0; int (“introduce”) if children(t) = (¢'), x(¢') C x(¢)
and |x(t)| = |x(t")] + 1; rem (“removal”) if children(t) = (¢'), x(¢') 2 x(t) and
Ix(")] = |x(t)| + 1. If for every node t € N, type(t) € {leaf, join, int, rem} and
bags of leaf nodes and the root are empty, then the TD is called nice.
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Figure 1: Primal graph G of F from Example (left) with a TD T of graph G (right).
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Figure 2: The DP approach, where table algorithm A modifies tables. [50]

3. Dynamic Programming on TDs for SAT

Before we introduce our algorithm, we need some notations for dynamic
programming on tree decompositions and recall how to solve the decision prob-
lem SAT by exploiting small treewidth. To this end, we present in Section |3.1
basic notation and a simple algorithm for solving SAT and #SAT via utilizing
treewidth. The simple algorithm is inspired by related work [31I], which is
extended by the capability of actually computing some (projected) models in
Section [3.2] The algorithm and the definitions of the whole section will then
serve as a basis for solving projected model counting in Section

8.1. Dynamic Programming for SAT

Graph Representation of SAT Formulas. In order to use tree decompositions
for satisfiability problems, we need a dedicated graph representation of the
given formula F'. The primal graph G of F has as vertices the variables of F'
and two variables are joined by an edge if they occur together in a clause
of F. Further, we define some auxiliary notation. For a given node t of a tree
decomposition (T, x) of the primal graph, we let the bag formula F; :={c|c €
F,var(c) C x(t)}, i.e., clauses entirely covered by x(¢). The set F<, denotes the
union over Fy for all descendant nodes s of t. In the following, we sometimes
simply write tree decomposition of formula F or treewidth of F' and omit the
actual graph representation of F'.

Example 2. Consider formula F from Ezample[]. The primal graph Gg of
formula F and a tree decomposition T of G are depicted in Figure[l Intuitively,
T allows to evaluate formula F' in parts. When evaluating F<:,, we split into
F<y, ={c1,c2} and F<y, = {c3,ca}, respectively.

Algorithms that solve SAT or #SAT [31] in linear time for input formulas of
bounded treewidth proceed by dynamic programming along the tree decomposi-
tion (in post-order) where at each node ¢ of the tree information is gathered [57]
in a table 7;. A table 7 is a set of rows, where a row 4 € T is a sequence of fixed



Listing 1: Algorithm DP4((F, P), T, PP-Tabs) for DP on TD T.

In: Table algorithm A, and instance (F, P) of PMC, a TD T = (T, x) of the
primal graph Gr of F', and tables PP-Tabs.
Out: Table mapping A-Comp, which maps each TD node ¢t of T' to some
computed table 7.
A-Comp <+ {} /* empty mapping */
for iterate t in post-order(7") do
Child-Tabs + (A-Complt1], ..., A-Complt¢]) where children(t) = (¢1,...,ts)
4 L A-Complt] < A(¢, x(t), Ft, P N x(t), Child-Tabs, PP-Tabs)
5 return A-Comp

N o=

w

length, which is denoted by angle brackets. Tables are derived by an algorithm,
which we therefore call table algorithm A. The actual length, content, and
meaning of the rows depend on the algorithm A that derives tables. Therefore,
we often explicitly state A-row if rows of this type are syntactically used for
table algorithm A and similar A-table for tables. For sake of comprehension, we
specify the rows before presenting the actual table algorithm for manipulating
tables. The rows used by a table algorithm SAT have in common that the first
position of these rows manipulated by SAT consists of an interpretation. The
remaining positions of the row depend on the considered table algorithm. For
each sequence 4 € 7, we write I(%) to address the interpretation (first) part of
the sequence . Further, for a given positive integer i, we denote by ;) the i-th
element of row # and define 7(;) as 7(;) := {uy | ¥ € 7}.

Then, the dynamic programming approach for Boolean satisfiability works
as outlined in Figure [2| and performs the following steps:

1. Construct the primal graph Gg of F.

2. Compute a tree decomposition (T, x) of G, obtainable via heuristics.

3. Run DPg,t, as presented in Listing which executes a table algorithm SAT
for every node t in post-order of the nodes of T', and returns SAT-Comp
mapping every node t to its table. SAT takes as inputﬁ bag x(t), sub-
formula F}, and tables Child-Tabs previously computed at children of ¢
and outputs a table 7.

4. Print a positive result whenever the table for node root(T") is not empty.

The basic steps of the approach are briefly summarized by Listing [2]

Listing [3] presents table algorithm SAT that uses the primal graph representation.
We provide only brief intuition, for details we refer to the original source [31].
The main idea is to store in table 7; only interpretations restricted to bag x(t)
that can be extended to a model of sub-formula F<;. Table algorithm SAT
transforms at node ¢ certain row combinations of the tables (Child-Tabs) of child

4Actually, SAT takes in addition as input PP-Tabs, which contains a mapping of nodes of
the tree decomposition to tables, i.e., tables of the previous pass. Later, we use this for a second
traversal to pass results (SAT-Comp) from the first traversal to the table algorithm PROJ for
projected model counting in the second traversal.



Listing 2: Algorithm for solving SAT via dynamic programming.
In: A Boolean formula F' in CNF.
Out: Satisfiability of F'.
1 7 = (T, x) < Decompose_via_Heuristics(G'r) /* Decompose */
2 SAT-Comp < DPsar((F, P), T, () /* DP via table algorithm SAT */
3 return PROJ-Comp[root(T)] # 0 /* true iff root table is not empty */

Listing 3: Table algorithm SAT(¢, x¢, F%, -, Child-Tabs, -) [31].

In: Node ¢, bag x:, clauses F, and sequence Child-Tabs = (7, ..., 7¢) of child
SAT-tables of t.
Out: SAT-Table 7.

1 if type(t) = leaf then 7 + {{0)}

2 else if type(t) = int and a € x¢ is introduced then

3 | 7+ {(K) | (Jy e, K € {J,JU{a}}, K E F;}
4 else if type(t) = rem and a € x: is removed then

5| me {0\l () en)

6 else if type(t) = join then

7| o {() | (J) € N1}

8 return 7

nodes of ¢ into rows of table 7;. The transformation depends on a case where
variable a is added or not added to an interpretation (int), removed from an
interpretation (rem), or where coinciding interpretations are required (join). In
the end, an interpretation I(@) from a row # of the table 7, at the root n proves
that there is a superset J D I(u) that is a model of F' = F<,,, and hence that
the formula is satisfiable.

Example 3| lists selected tables when running algorithm DPgst on a nice tree
decomposition. Note that illustration along the lines of a nice TD allows us to
visualize the basic cases separately. If one was to implement such an algorithm
on general TDs, one still obtains the same basic cases, but interleaved.

Example 3. Consider formula F from Example[d Figure[3 illustrates a nice
TD T' = (-, x) of the primal graph of F and tables 71, ..., T12 that are obtained
during the execution of DPsar((F,-),T',-). We assume that each row in a table
7 1s identified by a number, i.e., row i corresponds to ug; = (Jy.;).

Table 1 = {(0)}, due to type(t1) = leaf. Since type(ta) = int, we construct
table 7o from 1 by taking Jy; and Jy; U {a} for each (J1;) € 71. Then, t3
introduces py and ty introduces b. Fy, = Fy, = Fy; =0, but since x(t4) C var(cy)
we have Fy, = {c1,ca} for ty. In consequence, for each Jy; of table T4, we have
ayg,, E{c1,ca} since SAT enforces satisfiability of Fy in node t. Since type(ts) =
rem, we remove variable p1 from all elements in 74 to construct 5. Note that
we have already seen all rules where p1 occurs and hence p1 can no longer
affect interpretations during the remaining traversal. We similarly create 1¢ =
{(0),{a)} and 1190 = {{a)}. Since type(t11) = join, we build table T11 by taking the
intersection of 7¢ and T19. Intuitively, this combines interpretations agreeing on a.
By definition (primal graph and TDs), for every ¢ € F, variables var(c) occur

10
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Figure 3: Selected tables obtained by algorithm DPgyr on tree decomposition 7.

together in at least one common bag. Hence, F = F<,, and since T12 = {{0)},
we can reconstruct for example model {a,b,p2} = Ji1.1 U J5.4 U Jg2 of F using
highlighted (yellow) rows in Figure @ On the other hand, if F' was unsatisfiable,
T12 would be empty (V).

Interestingly, the above table algorithm SAT can be easily extended to also
count models. Such a table algorithm for solving #SAT works similarly to SAT,
but additionally also maintains a counter [31]. There, intuitively, rows of tables
for leaf nodes set this counter to 1 and introduce nodes basically just copy the
counter value of child rows. Then, upon removing a certain variable, one has
to add (sum up) counters accordingly, and for join nodes counters need to be
multiplied. Finally, the counters of the table for the root node can be summed
up to obtain the solution to the #SAT problem.

3.2. (Re-)constructing Interpretations and Models

Even further, with the help of the obtained tables during dynamic program-
ming, one can actually construct (projected) models by combining suitable
predecessor rows. The idea is to combine those obtained rows that contain parts
of models that fit together. To this end, we require the following definition,
which we will also use later. At a node ¢t and for a row % of the computed table
SAT-Complt], it yields the originating rows in the tables of the children of ¢
that were involved in computing row « by algorithm SAT.

Definition 1 (Origins, cf., [41]). Let F be a formula, T = (T,x) be a tree
decomposition of F', t be a node of T with children(t) = (t1,...,ts), and 7, € SAT-
Complt1],..., 70 € SAT-Complft,] be the tables computed by DPgar.

For a given SAT-row @ in SAT-Complt], we define its originating SAT-rows
by Origins(t, @) :={5| §€ 7 x -+ - x 79,7 = SAT(t, x(¢), F},-, {5D, "), 4 € T}E| We
naturally extend this to a SAT-table o by Origins(t, o) := |J..  Origins(¢, @).

uco

5Given a sequence 5= (s1,...,s), we let {5 :=({s1},...,{s¢}), for technical reasons.
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Example [4] illustrates Definition [I] for our running example, where we briefly
show origins for some rows of selected tables.

Example 4. Consider formula F, tree decomposition T' = (T, ), and tables
Ti,...,T12 from Example @ We focus on ur1 = (J1.1) = (D) of table 71 of the
leaf t1. The row ui1 has no preceding row, since type(t;) = leaf. Hence, we
have Origins(t1,ur1) = {()}. The origins of row us1 of table 5 are given by
Origins(ts, us.1), which correspond to the preceding rows in table ty that lead
to row ugy of table 15 when running algorithm SAT, i.e., Origins(ts, us1) =
{(ug1),{usi4)}. Observe that Origins(t;, @) = @ for any row @ & ;. For node t11
of type join and row uii 1, we obtain Origins(t11,u11.1) = {{uge, uio1)} (see
Ezxample @ More general, when using algorithm SAT, at a node t of type join
with table T we have Origins(t, @) = {(@, u)} for row @ € 7.

Definition [I| refers to the predecessors of rows. In order to reconstruct models,
one needs to recursively combine these origins from a node ¢ down to the leafs.
This idea of combining suitable rows is formalized in the following definition,
which introduces the concept of extensions. Thereby, rows are extended such
that one can then reconstruct models from these extensions.

Definition 2 (Extensions). Let F be a formula, T = (T, x) be a tree decompo-
sition, t be a node of T, and @ be a row of SAT-Comp]t].

An extension below t is a set of pairs where a pair consists of a node t'
of T[t] and a row U of SAT-Compl[t'] and the cardinality of the set equals the
number of nodes in the sub-tree T[t]. We define the family of extensions below t
recursively as follows. If t is of type leaf, then Exts<,(@):={{(t,@)}}; other-
wise Exts<i (@) = Ugeorigins(t,2) {{t, @y U X1 U...UXy | X; € Exts<y, (7))}
for the £ children t1,...,ty of t. We lift this notation for a SAT-table o by
Exts<¢(0) :=Uzec, Exts<¢(1). Further, we let Exts :=Exts<, (SAT-Comp[n]).

Indeed, if we construct extensions below the root n, it allows us to also obtain
all models of a formula F'. Finally, we define notation that gives us a way to
reconstruct interpretations from such (families of) extensions.

Definition 3 (Interpretations of Extensions). Let (F, P) be an instance of PMC,
T = (T, x) be a tree decomposition of F, t be a node of T. Further, let E be a
family of extensions below t, and P be a set of projection variables. We define
the set I(E) of interpretations of E by I(E):={ Uraex 1(@) | X € E} and the
set Ip(E) of projected interpretations by Ip(E):={ Uiaex I(@NP| X € E}.

We briefly illustrate these concepts along the lines of our running example.

Example 5. Consider again formula F and tree decomposition T' with root n

of F' from Ezample @ Let X = {{t12, (D)), (t11, {a})), {ts, ({a})), {t5, {{a,b})),
(ta,({a,0})), (t3,{{a})), (t2,{({a})), (t1,(0)), (t10,{{a})), (to, ({a, p2})), (s, ({P21})),

(t7,(0))} be an extension below n. Observe that X € Exts and that Figure [3
highlights those rows of tables for nodes t12,t11,tg, ts5,t4 and t1 that also occur
in X (in yellow). Further, I({X}) = {a,b,p2} computes the corresponding model
of X, and Ip({X}) = {p2} derives the projected model of X. I(Exts) refers to
the set of models of F, whereas Ip(Exts) is the set of projected models of F.
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In order to only construct extensions that correspond to (parts of) models of
the formula, we simply need to access only those extensions that contain rows
that lead to models of the formula. As already observed in the previous example,
these rows are precisely the ones contained in Exts. The resulting extensions for
a node t are formalized in the following concept of satisfiable extensions, whereby
we take only those extensions of Exts<; that are also contained in Exts.

Definition 4 (Satisfiable Extension). Let F' be a formula, T = (T, x) be a tree de-
composition of F, t be a node of T, and o C SAT-Complt] be a set of rows. Then,
we define the satisfiable extensions below ¢ for o by SatExt<(c) :=Jzc,{X |
X € Exts<,(4),X CY,Y € Exts}.

uco

4. Counting Projected Models by Dynamic Programming

While the transition from deciding SAT to solving #SAT is quite simple by
adding an additional counter, it turns out that the problem PMC requires more
effort. We solve this problem PMC by providing an algorithm in Section [4.1] that
utilizes treewidth and adheres to multiple passes (rounds) of computation that
are guided along a tree decomposition. Then, we give detailed formal arguments
on correctness of this algorithm in Section Later, in Section we discuss
complexity results in the form of matching upper and lower bounds, where it
turns out that our algorithm cannot be significantly improved.

4.1. Solving PMC by means of Dynamic Programming

Next, we introduce the dynamic programming algorithm PCNTgaT to solve
the projected model counting problem (PMC) for Boolean formulas. From a
high-level perspective, our algorithm builds upon the table algorithm SAT from
the previous section; we assume again a formula F’ and a tree decomposition 7 =
(T, x) of F, and additionally a set P of projection variables. Thereby, the table for
each tree decomposition node t consists of a set o of assignments restricted to bag
variables x(¢) (as computed by SAT) that agree on their assignment of variables
in PN x(t), and a counter c. Intuitively, this counter ¢ counts those satisfying
assignments of F<; restricted to P N x(t) that are among satisfiable extensions
and extend any assignment in o. Then, for the (empty) tree decomposition
root n, there is only one single counter which is the projected model count of F
with respect to P. The challenge of our algorithm PCNTgat is to compute these
counts ¢ by only considering local information, i.e., previously computed tables
of child nodes of t. To this end, we utilize mathematical combinatorics, namely
the principle of inclusion-exclusion principle [46], which we need to apply in an
interleaved fashion.

Concretely, our algorithm PCNTsar traverses the tree decomposition twice
following a multi-pass dynamic programming paradigm [41]. Figure [4] illustrates
the steps of our algorithm PCNTsar, which are also presented in the form of
Listing [4] Similar to the previous section (cf., Figure , we construct a graph
representation and heuristically compute a tree decomposition of this graph.
Then, we run DPsar (see Listing [1)) in Step 3a as first pass. Step 3a can also
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Figure 4: Algorithm PCNTsst consists of DPgyt and DPproyj-

Listing 4: Algorithm PCNTsar(F, P) for solving PMC via dynamic programming.
In: An instance (F, P) of PMC.
Out: The projected model count of (F, P).
1 T = (T, x) < Decompose_via_Heuristics(Gr) /* Decompose */
SAT-Comp < DPsar((F, P), T, 0) /* DP via table algorithm SAT */
/* Purge non-solutions of SAT-Comp; ensured by using SatExt below. */
3 PROJ-Comp < DPproy((F, P),T,SAT-Comp) /* DP via algorithm PROJ */
4 return Z<%C>GPR@J_COmP[mot(T” c /* Return projected model count */

be seen as a preprocessing step for projected model counting, from which we
immediately know whether the formula has a model. However, we keep the
SAT-tables that have been computed in Step 3a. These tables form the basis for
the next step.

There, we remove all rows from the obtained SAT-tables which cannot be
extended to a model of the SAT problem ( “Purge non-solutions”). In other words,
we keep only rows @ in table SAT-Complt] at node ¢ if its interpretation I()
can be extended to a model of F. Thereby, we avoid redundancies and can
simplify the description and presentation of our next step, since we then only
consider rows that are (parts of) models. Intuitively, the rows involving non-
models contributes only non-relevant information, as also observed in related
works [37, [68]. Formally, this is achieved by utilizing satisfiable extensions as
defined in Definition {4} since these extensions precisely consider the rows that
contribute to models.

In Step 3b (DPproy), we perform the second pass, where we traverse the
tree decomposition a second time to count projections of interpretations of
rows in SAT-tables. Observe that the tree traversal in DPprgjy is the same as
before. Therefore, in the following, we describe the ingredients that lead to
table algorithm PRQJ. For PROJ, a row at a node ¢ is a pair (o, ¢) where o is a
SAT-table, in particular, a subset of SAT-Comp[t] computed by DPsat, and ¢ is
a non-negative integer. Below, we characterize o, which is based on grouping
rows in equivalence classes.

Equivalence Classes for SAT-Tables. The following definitions provide
central notions for grouping rows of tables according to the given projection of
variables, which yields an equivalence relation.

Definition 5. Let (F, P) be an instance of PMC and o be a SAT-table. We
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define the relation =p C o X o to consider equivalent rows with respect to the
projection of its interpretations by =p ={(4, V) | 4,V € o, I(@) N P = I(v) N P}.

Observation 1. The relation =p is an equivalence relation.
Based on this equivalence relation, we define corresponding equivalence classes.

Definition 6 (Equivalence Classes). Let 7 be a SAT-table and i@ be a row of T.
The relation =p induces equivalence classes [@]p on the SAT-table T in the usual
way, i.e., [Ulp ={U|0=pu,¥ € 7} [59]. We denote by EqClassesp(7) the set
of equivalence classes of T, i.e., EqClassesp(7):=(7/=p) ={[d]lp | € € T}.

These classes are briefly demonstrated on our running example.

Example 6. Consider again formula F' and set P of projection variables from
Ezample [1] and tree decomposition T' = (T, x) and SAT-table 74 from Figure[3
We have uz1 =p ui2 and ugy =p ugs. We obtain the set 74/ =p of equivalence
classes of 74 by EqClassesp(14) = {{us1,ulo,uss}, {uss, uss,use}}-

Indeed, the algorithm PRQOJ, stores at a node t pairs (o, ¢), where o is actually
a (non-empty) subset of the equivalence classes in EqClassesp(SAT-Complt]).
Next, we discuss how the integer ¢ aids in projected counting for such a subset o.

Counting for Equivalence Classes. In fact, we store in integer ¢ a count that
expresses the number of “intersection” projected models (ipme) that indicates
for ¢ the number of projected models up to node ¢ that the rows in ¢ haves in
common (intersection of models). In the end, we aim for the projected model
count (pmc), i.e., the combined number of projected models (union of models),
where o is involved. However, it turns out that the process of computing these
projected model counts will be heavily interleaved with the ipmc counts. In the
following, we define both counts for a node t of a tree decomposition by means
of the satisfying extensions below t.

Notably, the effort of directly computing these counts when strictly following
the definition below would not result in an algorithm that is fixed-parameter
tractable. As a result, our approach is then subsequently developed thereafter,
without explicitly involving every descendant node below ¢ in order to fulfill the
desired runtime claims.

Definition 7. Let (F, P) be an instance of PMC, T = (T, x) be a tree decom-
position of F, t be a node of T, and o C SAT-Compl[t] be a set of SAT-rows for
node t. Then, the intersection projected model count ipmc, (o) of o below t
is the size of the intersection over projected interpretations of the satisfiable
extensions of o below t, i.e., ipmc<,(0) =[Nz, Ip(SatExt<;({1u}))].

The projected model count pmc., (o) of o below t is the size of the union
over projected interpretations of the satisfiable extensions of o below t, formally,

pmc<,(0) = Uge, Ip(SatExt < ({u}))]-

Note that this definition relies on satisfiable extensions as given in Definition [4]
Intuitively, the counts ipmc, represent for a set o of SAT-rows, the cardinality of
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those projected models of F<; that can be extended to models of F', where every
row in o is involved. Consequently, for the root n of a nice tree decomposition
of F we have that ipmc., ({(#)}) = pmc.,,({{0)}) coincides with the projected
model count of F. This is the case since_an = F', the bag of n is empty, and
therefore the SAT-table for n contains one row if and only if F' is satisfiable.

Observe that when computing these counts for a node t, we cannot directly
count models since this would not yield a fixed-parameter tractability algorithm.
Instead, in order to count, we may only utilize counters for sets o of rows in
tables of ¢t and direct child nodes of ¢, which is more involved than directly
counting models. This is established for pmc next by relying on combinatorial
counting principles like inclusion-exclusion [46].

Computing Projected Model Counts (pmc). Since PROJ stores in PROJ-
tables an SAT-table together with a counter, in the end we need to describe
how these counters are maintained. As the first step, we show how for a node ¢,
these counters (ipmc values) for child tables of ¢ can be used to compute pmec
values for ¢t. Intuitively, when we are at a node t in the Algorithm DPprgy we
already computed all tables SAT-Comp by DPsst according to Step 3a, purged
non-solutions, and computed PROJ-Complt] for all nodes ¢’ below ¢ and in
particular the PRQJ-tables Child-Tabs of the children of ¢. Then, we compute
the projected model count of a subset o of the SAT-rows in SAT-Complt|, which
we formalize by applying the generalized inclusion-exclusion principle to the
stored intersection projected model counts of origins.

The idea behind the following definition is that for every origin of o, we lift
the ipmc counts that are stored in the corresponding child tables. However, if
we sum up these counts, those models that two origins have in common are
over-counted, i.e., they need to be subtracted. But then, those models that three
origins have in common are under-counted, i.e., they need to be (re-)added again.
In turn, the inclusion-exclusion principle ensures that we obtain the correct pmc
value for o.

Definition 8. Let (F, P) be an instance of PMC, T = (T, x) be a tree decom-
position of F', and t be a node of T with ¢ children. Further, let Child-Tabs =
(PROJ-Complti],...,PROJ-Compl[t]) be the sequence of PROJ-tables computed
by DPproy((F, P), T,SAT-Comp), where children(t) = (t1,...,t¢) and o C SAT-
Complt] is a table. We define the (inductive) projected model count of o:

pmc(t, o, Child-Tabs) := Z (=197 . sipme( Child- Tabs, O), where
0COCOrigins(¢,0)

s-ipmc( Child-Tabs, O) := H ¢ s the stored ipmc from child tables.
1€{1,...,0},

<O(i) ,C) EPR@J-COmp[ti]

Vaguely speaking, pmc determines the origins of the set o of rows, goes
over all subsets of these origins and looks up the stored counts (s-ipmc) in the
PROJ-tables of the children of ¢{. There, we may simply have several child

16



nodes, i.e., nodes of type join, and hence in this case we need to multiply the
corresponding children’s (independent) ipmc values.

Example [7] provides an idea on how to compute the projected model count
of tables of our running example using pmec.

Example 7. The function defined in Definition [§ allows us to compute the
projected count for a given SAT-table. Therefore, consider again formula F and
tree decomposition T' from Ezample[d and Figure[3 Say we want to compute
the projected count pme(ts, {us.4}, Child-Tabs) where Child-Tabs:={({uzs},1),
({uze}, 1)} for row us4 of table 75. Note that t5 has € =1 child nodes (t4) and
therefore the product of Definition[§ consists of only one factor. Observe that
Origins(ts, us.4) = {{urs), (ure)}. Since the rows urs and uie do not occur in
the same SAT-table of Child-Tabs, only the value of s-ipmc for the two singleton
origin sets {{uy3)} and {{uie)} is non-zero; for the remaining set of origins we
have zero. Hence, we obtain pmc(ts, {us 4}, Child-Tabs) = 2.

Computing Intersection Projected Model Counts (ipmc). Before we
present algorithm PRQOJ (Listing , we give the the definition allowing us at a
certain node t to obtain the ipmc value for a given SAT-table ¢ by computing
the pmc (using stored ipmc values from PRQOJ-tables for children of ¢), and
subtracting and adding ipmc values for subsets () C p C o accordingly.

The intuition is that in order to obtain the number of those common projected
models, where every single row in o participates, we take all involved projected
models of o and subtract every single row’s projected model count (ipmc values).
There, we subtracted those models that two rows have in common more than
once. Again, these models need to be re-added. Then, the models that three
rows have in common are subtracted and so forth. In turn, we end up with the
intersection projected model count, i.e., those projected models, where every
row of o is involved.

Definition 9. Let T = (T, x) be a tree decomposition, t be a node of T, o
be a SAT-table, and Child-Tabs be a sequence of tables. Then, we define the
(recursive) ipmc of o as follows:

1, if type(t) = leaf,
ipme(t, o, Child-Tabs) := { | pmc(t, o, Child-Tabs) +
Z@cpcg(*l)lpl -ipmc(t, p, Child-Tabs) |, otherwise.

In other words, if a node is of type leaf the ipmc is one, since by definition of
a tree decomposition the bags of nodes of type leaf contain only one projected
interpretation (the empty set). Otherwise, using Definition [8] we are able to
compute the ipmc for a given SAT-table o, which is by construction the same as
ipmc, (o) (cf., proof of Theorem [Iflater). In more detail, we want to compute
for a SAT-table o its ipmc that represents “all-overlapping” counts of o with
respect to set P of projection variables, that is, ipmc., (o). Therefore, for ipmec,
we rearrange the inclusion-exclusion principle. To this end, we take pmc, which
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Listing 5: Table algorithm PROJ(¢, -, -, P, Child-Tabs, SAT-Comp).

In: Node t, set P of projection variables, Child-Tabs, and SAT-Comp.
Out: Table ¢; consisting of pairs (o, ¢), where ¢ C SAT-Complt] and ¢ € N.
1w + {(o,ipmc(t, o, Child-Tabs))| C € EqClasses p (SAT-Complt]),0 C o C C'}

2 return ¢

computes the “non-overlapping” count of ¢ with respect to P, by once more
exploiting the inclusion-exclusion principle on origins of o (as already discussed)
such that we count every projected model only once. Then we have to alternately
subtract and add ipmc values for strict subsets p of o, accordingly.

We provide an example on how this definition is carried out below.

The Table Algorithm PRQOJ. Finally, Listing[f] presents table algorithm PROJ,
which stores for given node ¢t a PRQJ-table consisting of every non-empty subset
of equivalence classes for the given table SAT-Comp][t] together with its ipmc
(as presented above).

Example 8. Recall instance (F, P) of PMC, tree decomposition T', and ta-
bles 11, ..., T12 from Example[1, [3 and Figure[3 Figure[5 depicts selected tables
of t1,...t12 obtained after running DPproy for counting projected interpretations.
We assume numbered rows, i.e., row i in table 1y corresponds to vi; = (044, Cq)-
Note that for some nodes t, there are rows among different SAT-tables that occur
in Exts<;, but not in SatExt<;. These rows are removed during purging. In
fact, rows uy1,uso, and uys do not occur in table t4. Observe that purging
is a crucial trick here that avoids to correct stored counters c by backtracking
whenever a certain row of a table has no succeeding row in the parent table.
Next, we discuss selected rows obtained by DPproy((F, P),T',SAT-Comp).
Tables vy, ..., t12 that are computed at the respective nodes of the tree decom-
position are shown in Figure[5 Since type(t1) = leaf, we have 1, = ({{0)},1).
Intuitively, up to node t1 the SAT-row ((}) belongs to 1 equivalence class. Node to
introduces variable a, which results in table vo:={({({a})},1)}. Note that the
SAT-row (@) is subject to purging. Node t3 introduces p; and node t4 intro-
duces b. Node ts removes projection variable p;. The row vso of PRQOJ-
table 15 has already been discussed in Example [ and row vy works simi-
lar. For row vs3 we compute the count ipmc(ts, {uso,us 4}, (ta)) by means
of pmec. Therefore, take for p the sets {uza}, {usa}, and {usa,us4}. For the
singleton sets, we simply have pmc(ts, {us2}, (ta)) = ipme(ts, {uza}, (ta)) =
cs1 = 1 and pme(ts, {usa}, (ta)) = ipme(ts, {usa}, (ta)) = 52 = 2. To com-
pute pme(ts, {us 2, us 4}, (ta)) following Definition @ take for O the sets {uis},
{ugs}, and {uie} into account, since all other non-empty subsets of origins
of us.a and us 4 in tq4 do not occur in tq. Then, we take the sum over the values
s-ipme({ea), {{uss)}) = 1, s-ipme((q), {(uss)}) = 1, and s-ipme((ea), {{ure)})
= 1; and subtract s-ipme({t4), {{(uss), (ule)}) = 1. Hence, pmc(ts, {us 2, uz4},
(t4)) = 2. In order to compute ipme(ts, {us2,us 4}, (ta)) = | pme(ts, {us2, us 4},
{14)) — ipme(ts, (w52}, (t4)) — ipme(ty, {us 4}, ()] = 2= 1 -2 = |~ 1] = 1.
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Figure 5: Selected tables obtained by DPprgy on TD 7' using DPgar (cf., Figure [3).

Hence, c5.3 = 1 represents the number of projected models, both rows us o and us 4
have in common. We then use it for table tg.

For node t11 of type join one simply in addition multiplies stored s-ipmc
values for SAT-rows in the two children of t11 accordingly (see Definition @) In
the end, the projected model count of F corresponds to Z< c=cyo1 = 4.

o,c)ELi2

4.2. Correctness of the Algorithm

In the following, we state definitions required for the correctness proofs of our
algorithm PRQOJ. In the end, we only store rows that are restricted to the bag
content to maintain runtime bounds. In related work [31], it was shown that this
suffices for table algorithm SAT, i.e., SAT is both sound and complete. Similar
to related work [56] B1], we proceed in two steps. First, we define properties of
so-called PRQJ-solutions up to t, and then restrict these to PROJ-row solutions
at t.

Assumptions. For the following statements, we assume that we have given
an arbitrary instance (F, P) of PMC and a tree decomposition 7 = (T, )
of formula F, where T' = (N, A), node n = root(T') is the root and T is of
width k. Moreover, for every t € N of tree decomposition 7, we let SAT-
Complt] be the tables that have been computed by running algorithm DPgar for
the dedicated input. Analogously, let PROJ-Complt] be the tables computed by
running DPproyj-.
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Definition 10. Let ) C o C SAT-Comp[t] be a table with o C C for some
C € EqClassesp(SAT-Complt]). We define a PROJ-solution up to ¢ to be the
sequence () = (SatExt<,(c)).

Next, we recall that we can reconstruct all models from the tables.
Proposition 1. I(SatExt<,(SAT-Comp[n))) = I(Exts) = {J € 2**(F)|a; E F}.

Proof (Sketch). In fact, we can use the construction by Samer and Szeider [3I] of
the tables. Then, the extensions simply collect the corresponding, preceding rows.
By taking the interpretation parts I(- - - ) of these collected rows we obtain the set
of all models of the formula. A similar construction is used by Pichler, Riimmele,
and Woltran [60, Fig. 1], which they use in a general algorithm to enumerate
solutions by means of tables obtained during dynamic programming. O

Before we present equivalence results between ipmc,(...) and the recursive
version ipmc(t, . ..) (Definition E[) used during the computation of DPpggy, recall
that ipmc., and pmec, (Definition [7)) are key to compute the projected model
count. The following corollary states that computing ipmc.,, at the root n
actually suffices to compute the projected model count pmc.,, of the formula.

Corollary 1. ipmc_, (SAT-Comp[n]) = pmc.,,(SAT-Comp[n]) =
|Ip(SatExt<, (SAT-Comp[n]))| =|Ip(Exts)| = [{JNP | J €2 a; E F}|

Proof. The corollary immediately follows from Proposition [If and the observation
that [SAT-Comp|n]| < 1 by properties of algorithm SAT and since x(n) = 0. O

The following lemma establishes that the PROJ-solutions up to root n of a
given tree decomposition solve the PMC problem.

Lemma 1. The value 3 4 is o pROJ-solution up to n |1P(0)] corresponds to the
projected model count ¢ of F' with respect to the set P of projection variables.

Proof. (“=="): Assume that ¢ = 3" 5\ i . PROJ-solution up to n |[LP(F)]. Observe
that there can be at most one projected solution up to n, since x(n) = 0. If ¢ =0,
then SAT-Comp[n] contains no rows. Hence, F' has no models, cf., Proposition |1}
and obviously also no models projected to P. Consequently, ¢ is the projected
model count of F. If ¢ > 0 we have by Corollary [I| that ¢ is equivalent to the
projected model count of F' with respect to P.

(“<="): We proceed similar in the if direction. Assume that c is the projected
model count of F' and P. If ¢ = 0, we have by Proposition that SatExt<, (SAT-
Comp[n]) = § and therefore SAT-Comp|[n] = 0. As a result for ¢ = 0, there does
not exist any PRQOJ-solution up to n. Otherwise, i.e., if ¢ > 0, the result follows
immediately by Corollary [} O

In the following, we provide for a given node ¢ and a given PROJ-solution
up to t, the definition of a PRQJ-row solution at t.

20



Definition 11. Let t,t' € N be nodes of a given tree decomposition T, and
6 be a PROJ-solution up to t. Then, we define the local table for ' as
local(t’, &) :={(u)| (t',u) € 6}, and if t = t/, the PROJ-row solution at ¢t by
(local(t, &), |Ip(5)]).

Observation 2. Let (5) be a PROJ-solution up to a node t € N. There is
exactly one corresponding PROJ-row solution (local(t, &), |Ip(5)|) at t.

Vice versa, let (o,c) be a PROJ-row solution at t for some integer c. Then,
there is exactly one corresponding PROJ-solution (SatExt<.(c)) up to t.

We need to ensure that storing PROJ-row solutions at a node suffices to
solve the PMC problem, which is necessary to obtain runtime bounds (cf.,
Corollary [3)).

Lemma 2. Lett € N be a node of the tree decomposition T . There is a PROJ-
row solution at root n if and only if the projected model count of F' with respect
to the set P of projection variables is larger than 0.

Proof. (“="): Let (o, c) be a PROJ-row solution at root n where o is a SAT-
table and ¢ is a positive integer. Then, by Definition there also exists
a corresponding PRQOJ-solution (6) up to n such that ¢ = local(n,5) and
¢ = |Ip(d)|. Moreover, since x(n) = (), we have |[SAT-Comp[n]| = 1. Then,
by Definition & = SAT-Compln]. By Corollary |1} we have ¢ = |[Ip(SAT-
Compln])|. Finally, the claim follows.

(“<=="): Assume that the projected model count of F' with respect to P is
larger than zero. Then, by Lemma [I] there is at least one PROJ-solution & up
to the root n. As a result, by Definition there is also a PROJ-row solution
at t, which is precisely (local(n, &), |Ip(6)|). O

Observation 3. Let Xy, ..., X, be finite sets. The number |[;cx Xi| is given
by [ Miex Xil = [IUj=; X1 + Z@g[gx(_l)m‘ Nier Xill.

Nx=Us - X insi+ Y N

iex 0CICX |T|=1 i€l 0CICX|T|=2 i€l
I
+ > (=DM x|
0CICX,|I|=n—1 icl

Lemma 3. Let t € N be a node of the tree decomposition T with children(t) =

(t1,...,te) and let (o,-) be a PROJ-row solution at t. Then,
L. ipmc(t, o, (PROJ-Complti], ..., PROJ-Complt,])) = ipmc, (o)

2. Iftype(t) # leaf: pmc(t, o, (PROJ-Complti], ..., PROJ-Compl[t])) =pmc, (o).

Proof. We prove the statement by simultaneous induction.
(“Induction Hypothesis”): Lemma [3| holds for the nodes in children(¢) and
also for node ¢, but on strict subsets p C o.
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(“Base Cases”): Towards showing the base case of the first claim, let
type(t) = leaf. By definition, ipmc(¢,0,()) = ipmc,(0) = 1. Next, we es-
tablish the base case for the second claim. Since type(t) # leaf, let ¢t be a node
that has a node t' € N with type(t') = leaf as child node. Observe that by defi-
nition of T, ¢ has exactly one child. Then, we have pmc(¢, o, (PROJ-Complt'])) =
ZQQOQOrigins(t,a)(_1)(‘0‘_1)'S_ime«SAT_Comp[t/D? O) = | Uﬂeg IP(SatEXtSt(
{i@}))] = pme,(0) =1 for PROJ-row solution (o, -) at t.

(“Induction Step”): We distinguish two cases.

Case (i): Assume that £ = 1. Let (o, ¢) be a PROJ-row solution at ¢ for some
integer ¢, and t' = t;.

First, we show the second claim on pmc values. By Definition [ we
have pmc(t, o, (PROJ-Comp|t'])) = Z@gOgOrigins(t,o)(71)(‘0‘71) ~s—ipmc(IP"I;RTDJ;

~1

Comp][t'], O), which by definition of s-ipmc results in ngogongins(t,a) (—1)¢
ipme(t’, O, PROJ-Complt']). By the induction hypothesis, this evaluates to
Z@gogongins(t,a)(_1)(|O|_1) -ipmc<;, (O). Then, by the construction based on
the inclusion-exclusion principle (cf., Observation [3)), this expression further
simplifies to pmc, (Origins(t,0)). By Definition |7, pmc, (Origins(t,0)) =

| Uzeorigins(t,0) 1P (SatExt<y ({@}))|. However, since by construction of PROJ,

| EqClassesp(o)| = 1, i.e., o is contained in one equivalence class, we have

| Usconginto 1 (SatExtr (7)] = |Uge, Ir(SatExt<,({7}))]. This corre-
sponds to pmc., (o) and, consequently, pmc.,, (Origins(¢, 0))=pmc., (o). This
concludes the proof for the second claim on pmec values. -

The induction step for ipmc works similar. By Definition [0 we have
ipme(t, o, PROJ-Compl[t']) = | pme(t, o, PR@J—Comp[t’])|+ngpg0(—1)\l)\~ipmc(
t, p, PROJ-Complt']). By the proof on the second claim above, | pmc(¢, o, PROJ-
Complt'])] = pmecc,(0). Then, by the induction hypothesis on p, we have
ipme(t, o, PROJ-Comp[t']) = pmc, (o) + Z@CPCU(—l)W -ipmc<,(p). Further,
we follow by Definition [7] that ipmc(t, o, PROJ-Comp][t']) corresponds to the ex-
pression | Uge, Ip(SatExt<e({@}) [+ gc pc o (—1)-[ Mg, Ip(SatExt<({a}))]-
Finally, by Observation this yields | (¢, Ip(SatExt<¢({u}))|, which simplifies
to ipmec., (o). This concludes the proof for the first claim on ipmc values.

Case (ii): Assume that ¢ = 2.

First, we show the induction step on the second claim over pmc. By Defini-
tion we have pme(t, o, (PROJ-Complt:], PROJ-Complts])) = > pc ocorigins(t,o)
(—1)U91=D . s ipmc((PROJ-Complt; ], PROJ-Complts]), O). This then results in
Z@gOgOrigins(t,o’)(71)(‘0‘71).ipmc(t17 O(1), PROJ-Compl|t1])-ipmc(ta, O(a), PROJ-
Comp]ts]). By the induction hypothesis, this then evaluates to ngogoﬂgms(tm
(=1)UC=Y - ipme, (Oq)) - ipmeoy, (O(2)). By expansion via Definition |7| and
applying Observation [3] i.e., the inclusion-exclusion principle, this corresponds to
| U@, ) cOnigins(t.o) TP (SatExt<y, ({i1})) - Ip(SatExt<y, ({ui2}))]. Since we have
that | EqClassesp(o)| = 1, i.e., o is contained in one equivalence class and by
Definition |4| of SatExt, this expression simplifies to || Jzc, Ip(SatExt<:({u}))|.
This corresponds to pmc, (o), which concludes the proof for pmc of Case (ii).

The induction step for ipmc also works analogously to the proof for ipmec
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of Case (i), since it does not need to directly consider origins in multiple child
nodes. This concludes the proof. O

Lemma 4 (Soundness). Lett € N be a node of the tree decomposition T with
children(t) = (t1,...,t¢). Then, each row (t,c) at node t obtained by PROJ is
a PROJ-row solution for t.

Proof. Observe that Listing 5] computes a row for each subset o with § C o C C
for some C € EqClassesp(SAT-Complt]). The resulting row (o, c) obtained
by ipme is indeed a PROJ-row solution for ¢ according to Lemma [3] O

Lemma 5 (Completeness). Let t € N be a node of tree decomposition T
where children(t) = (t1,...,t;) and type(t) # leaf. Given a PROJ-row solu-
tion (o,c) at t. Then, there is (C1,...,Cy) where each C; is a set of PROJ-row
solutions at t; with 0 = PROJ(t, -, -, P,{(C4,...,C¢),SAT-Comp).

Proof. Since (o, c) is a PROJ-row solution for ¢, there is by Definition a
corresponding PROJ-solution () up to t such that local(t,5) = 0. Then we
define o :={(t",p) | (t", ) € 0,1 # t} and proceed again by case distinction.

Case (i): Assume that £ =1 and ¢/ = t;. For each subset () C p C local(t, '),
we define (p, |[Ip(SatExt<.(p))|) in accordance with Definition By Observa-
tion [2] we have that (p, |Ip(SatExt<;(p))|) is a SAT-row solution at ¢'. Since we
defined PROJ-row solutions for ¢’ for all respective PRQJ-solutions up to ¢, we
encountered every PROJ-row solution for ¢’ required for deriving (o, ¢) via PROJ
(cf., Definitions [8 and E[)

Case (ii): Assume that ¢ = 2, i.e., ¢ is a join node. Similarly to above,
we define PROJ-row solutions at t; and t3. Analogously, we define for each
subset § C p C local(ty,a’), a PROJ-row solution (p, |Ip(SatExt<y, (p))|) at t;.
Additionally, for each subset § C p C local(ts, o’ ), we construct a PROJ-row
solution (p, [Ip(SatExt<,(p))|) at t2 in accordance with Definition By
Observation [2 we have that these constructed rows are indeed a SAT-row
solution at ¢; and a SAT-row solution at ¢, respectively. Since also for this case
we defined PROJ-row solutions for ¢, and ty for all respective PRQJ-solutions
up to t, we encountered every PROJ-row solution for ¢; and ¢y required for
deriving (o, c) via PROJ. This concludes the proof. O

Theorem 1. The algorithm DPprey is correct. More precisely, DPproy((F, P), T,
SAT-Comp) returns tables PROJ-Comp such that p = Z<U ¢)ESAT-Compln] € 15
the projected model count of F' with respect to the set P of projection variables.

Proof. By Lemma[d] we have soundness for every node t € N and hence only valid
rows as output of table algorithm PRQOJ when traversing the tree decomposition
in post-order up to the root n. By Lemma [2] we know that the projected model
count p of F' is larger than zero if and only if there exists a certain PROJ-row
solution for n. This PROJ-row solution at node n is of the form ({(0,...)},p).
If there is no PRQJ-row solution at node n, then SAT-Comp[n] = ) since the
table algorithm SAT is correct (cf., Proposition . Consequently, we have p = 0.
Therefore, p = Z(U,c}ESAT—Comp[n] ¢ is the pmc of F' w.r.t. P in both cases.
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Next, we establish completeness by induction starting from root n. Let
therefore, () be the PROJ-solution up to n, where for each row in @ € &, I()
corresponds to a model of F. By Definition we know that for n we can
construct a PROJ-row solution at n of the form ({(@,...)},p) for 6. We already
established the induction step in Lemma 5] Hence, we obtain some row for every
node t. Finally, we stop at the leaves. O

Corollary 2. The algorithm PCNTsaT is correct, i.e., PCNTsar solves PMC.

Proof. The result follows, since PCNTsaT consists of pass DPgat, a purging step
and DPprgy. For correctness of DPgar we refer to other sources [56, B1]. By
Proposition [I} “purging” neither destroys soundness nor completeness of DPgat.

O

4.8. Runtime Analysis (Upper and Lower Bounds)

In this section, we first present asymptotic upper bounds on the runtime of our
Algorithm DPpgrgy. For the analysis, we assume 7(2) to be the costs for multiplying
two i-bit integers, which can be achieved in time i - log(i) - log(log(¢)) [61L [62].
Recently, an even faster algorithm was published [62].

Then, we present a lower bound that establishes that there cannot be an
algorithm that solves PMC in time that is only single exponential in the treewidth
and polynomial in the size of the formula unless the exponential time hypothesis
(ETH) fails. This result establishes that there cannot be an algorithm exploiting
treewidth that is asymptotically better than our presented algorithm, although
one can likely improve on the analysis and give a better algorithm. One could for
example cache pmc values, which, however, overcomplicates worst-case analysis.

Theorem 2. Given a PMC instance (F, P) and a tree decomposition T = (T, x)
of F' of width k with g nodes. Algorithm DPproy runs in time (’)(22k+4 AUIF)-9)-

Proof. Let d = k 4+ 1 be maximum bag size of 7. For each node t of T', we
consider table 7 = SAT-Comp][t] which has been computed by DPsar [31]. The
table 7 has at most 2¢ rows. In the worst case we store in © = PROJ-Complt]
each subset o C 7 together with exactly one counter. Hence, we have 22" many
rows in ¢. In order to compute ipmc for o, we consider every subset p C o and
compute pme. Since |o| < 29, we have at most 22 many subsets p of . For
computing pmc, there could be each subset of the origins of p for each child
table, which are less than 227 - 22°"" (join and remove case). In total, we obtain
a runtime bound of (’)(22d L2t 92" g2 ~(IFI)) € (’)(22(1+3 -(||F])) since
we also need multiplication of counters. Then, we apply this to every node ¢ of
the tree decomposition, which results in running time (’)(22dJr3 ~(I|F)-g9). O

Corollary 3. Given an instance (F,P) of PMC where F has treewidth k.
Algorithm PCNTsyr runs in time 022" - ~(|F|) - | F|])-
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Proof. We compute in time 20(k*) . |[V| a tree decomposition 7' of width at
most k [54] of primal graph Gr. Then, we run a decision version of the algo-
rithm DPgy7 by Samer and Szeider [31] in time O(2% - y(||F||) - | F||). Then, we
again traverse the decomposition, thereby keeping rows that have a satisfying
extension (“purging”), in time O(2* - ||F||). Finally, we run DPprgy and obtain
the claim by Theorem [2] and since 7" has linearly many nodes [54]. O

The next results also establish the lower bounds for our worst-cases.

Theorem 3. Unless ETH fails, PMC cannot be solved in time 22" . (| F||ot)
for a given instance (F, P) where k is the treewidth of the primal graph of F.

Proof. Assume for a proof by contradiction that there is such an algorithm. We
show that this contradicts a recent result [63, Theorem 13], which states that
one cannot decide the validity of a quantified Boolean formula @ = VV;.3V5. FE
in time 22" . | E||°*) under ETH. A version of this result for formulas in
disjunctive normal form appeared earlier [43]. Given an instance (@, k) of V3-
SAT when parameterized by the treewidth k of E, we provide a reduction to
an instance ((F, P,n), k) of decision version PMC-exactly-n of PMC such that
F = E, P =V, and the number n of solutions is exactly 2/V1I. The reduction is
in fact an fpt-reduction, since the treewidth of F is exactly k. It is easy to see
that the reduction gives a yes instance ((F, P,n), k) of PMC-exactly-n if and only
if (VV1.3V4.E, k) is a yes instance of V3-SAT. Assume towards a contradiction
that ((F, P,n), k) is a yes-instance of PMC-exactly-n, but VV;.3V5.E evaluates
to false. Then, there is an assignment « : V4 — {0, 1} such that E[«a] evaluates
to false, which contradicts that the projected model count of F' with respect
to P is 2/V1l. In the other direction, assume that VV;.3V5.E evaluates to true,
but the projected model count of F' and P is < n. This, however, contradicts
that VV;.3V5. E evalutes to true, which concludes the proof. O

Corollary 4. Given any instance (F,P) of PMC where F has treewidth k.
Then, under ETH, PMC requires runtime 22°" -poly (|| F|]).

5. Towards Efficiently Utilizing Treewidth for PMC

Although the tables obtained via table algorithms might be exponential in
size, the size is bounded by the width of the given TD of the primal graph G
of a formula F'. Still, practical results of such algorithms show competitive
behaviour [64, 40] up to a certain width. As a result, instances with high
(tree)width seem out of reach. Even further, as we have shown above, lifting
the table algorithm SAT in order to solve problem PMC results in an algorithm
that is double exponential in the treewidth.

To mitigate these issues and to enable practical implementations, we present
a novel approach to deal with high treewidth, by nesting of DP on grpah simpli-
fications (abstractions) of Gp. These abstractions are discussed in Section
and the basis for nested DP is presented in Section As we will see, nested
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dynamic programming not only works for #SAT, but also for PMC with adap-
tions. Finally, Section [5.3| concerns about hybrid dynamic programming, which
is a further extension of nested DP. More concretely, hybrid DP tries to combine
the best of the two worlds (i) dynamic programming and (i) applying stan-
dard, search-based solvers, where DP provides the basic structure guidance and
delegates hard subproblems that occur during solving to these standard solvers.

5.1. Abstractions are key

In the following, we discuss certain graph simplifications (called abstractions)
of the primal graph in the context of the Boolean satisfiability problem, namely
for the problem #SAT. Afterwards we generalize the usage of these abstraction
to nested dynamic programming for PMC.

To this end, let F' be a Boolean formula. Now, assume the situation that
a set U of variables of F, called nesting variables, appears uniquely in the bag
of exactly one TD node t of a tree decomposition of Gr. Then, observe that
one could do dynamic programming on the tree decomposition as explained
in Section [3.I] but no truth value for any variable in U requires to be stored.
Instead, clauses of F' over variables U could be evaluated within node ¢, since
variables U appear uniquely in the node t¢. Indeed, for dynamic programming
on the non-nesting variables, only the result of this evaluation is essential, as
variables U appear uniquely within x(¢).

Before we can apply nested DP, we require a formal account of abstractions
with room for choosing nesting variables between the empty set and the set of
all the variables. Let F' be a Boolean formula and recall the primal graph Gp =
(var(F), E) of F. Inspired by related work [65, [66] [67, [68], we define the nested
primal graph G4 for a given formula F and a given set A C var(F) of variables,
referred to by abstraction variables. To this end, we say a path P in primal
graph G is a nesting path (between u and v) using A, if P = w,v1,...,0p,0
(¢ > 0), and every vertex v; is a nesting variable, i.e., v; ¢ A for 1 < i < (. Note
that any path in G is nesting using A if A = ). Then, the vertices of nested
primal graph G4 correspond to A and there is an edge between two distinct
vertices u,v € A if there is a nesting path between u and v.

Definition 12. Let F' be a Boolean formula and A C var(F') be a set of variables.
Then, the nested primal graph G4 is defined by G4 :=(A, {{u,v} | u,v € A,u #
v, there is a nesting path in Gp between u and v}).

Observe that the nested primal graph only consists of abstraction variables
and, intuitively, “hides” nesting variables of nesting paths of primal graph Gp.
Even further, the connected components of Gg — A are hidden in the nested
primal graph G by means of cliques among A.

C1 Cc2 c3 C4q

—— —
Example 9. Recall formula F :={{-a,b,p1},{a,—b,—p1},{a,p2},{a, -p2}} and
primal graph Gg of Example ||, which is visualized in Figure @ (left). Given
abstraction variables A={a, b}, nesting paths of Gr are, e.g., Pi=a, Pa=a,pa,
Ps=ps,a, Py=a,b, Ps=a,p1,b. However, neither path Ps=b, a,ps, nor path P;=
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Figure 6: Primal graph G of F' from Example (left), nested primal graph G}a‘b} (middle),
as well as nested primal graph G}p 1.2} (right).

p2,a,b,p1 is nesting using A. Nested primal graph Gé is shown in Figure @
(middle) and it contains an edge {a,b} over the vertices in A due to, e.g.,
paths Py, Ps. Assume a different set A' = {p1,p2}. Observe that Gf}l as depicted
in Figure @ (right) consists of the vertices A’ and there is an edge between p;
and ps due to, e.g., nesting path P' = py,a,ps using A’.

The nested primal graph provides abstractions of needed flexibility for nested
DP. Indeed, if we set abstraction variables to A=var(F), we end up with full
dynamic programming and zero nesting, whereas setting A=0 results in full
nesting, i.e., nesting of all variables. Intuitively, the nested primal graph ensures
that clauses subject to nesting (containing nesting variables) can be safely
evaluated in exactly one node of a tree decomposition of the nested primal graph.

To formalize this, we assume a tree decomposition 7 = (T, x) of G and say
a set U C var(F') of variables is compatible with a node t of T', and vice versa, if

(I) U is a connected component of the graph G — A, which is obtained from
primal graph G by removing A and

(IT) all neighbor vertices of U that are in A are contained in x(t), i.e., {a | a €
A,u € U, there is a nesting path from a to u using A} C x(t).

If such a set U C var(F') of variables is compatible with a node of T, we
say that U is a compatible set. By construction of the nested primal graph, any
nesting variable is in at least one compatible set. However, a compatible set
could be compatible with several nodes of T'. Hence, to enable nested evaluation
in general, we need to ensure that each nesting variable is evaluated only in one
unique node t.

As a result, we formalize for every compatible set U, a unique node t
of T' that is compatible with U, denoted by compy 4 +(U):=t. We denote
the union of all compatible sets U with compg 4 +(U) = t, by nested bag
variables x{ = UU:compF,A,T(U):t U. Then, the nested bag formula F{* for a

node t of T equals FA:={c | ¢ € F,var(c) C x(t) U x}\ F;, where the bag
formula F; is defined as in the beginning of Section [3] Observe that the definition
of nested bag formulas ensures that any connected component U of Ggp — A
“appears” among nested bag variables of some unique node of T. Consequently,
each variable a € var(F)\ A appears only in one nested bag formula F/* of a
node t of T that is unique for a.

Example 10. Recall formula F, the tree decomposition T = (T, x) of G, as
depicted in Figure[] (left), and abstraction variables A = {a,b} of Ezample [4
Consider TD T':=(T, x’), where x'(t) :==x(t) N {a, b} for each node t of T, which
is given in Figure[] (right). Observe that T' is T, but restricted to A and that
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Figure 7: TD T (left) of the primal graph Gp of Figure @ and a TD T’ (right) of nested
primal graph Gg"b}.

Listing 6: Algorithm NestDPy(depth, (F,P), A, 7) for computing solutions

of (F, P) via nested DP on TD T.

In: Nested table algorithm N, nesting depth > 0, instance (F, P) of PMC,
abstraction variables A C var(F'), and a TD T = (T, x) of the nested primal
graph G3.

Out: Table mapping N-Comp, which maps each TD node ¢ of T' to some

computed table 7.
N-Comp « {} /* empty mapping */
for iterate t in post-order(T) do
Child-Tabs - (N-Complt1],...,N-Complt,]) where children(t) = (t1,...,ts)
L N-Complt] < N(depth, t, x(t), Ft, F*, P N var(F{*), Child-Tabs)

5 return N-Comp

w N =

'S

T' is a TD of G4 of width 1. There are two compatible sets, namely {p;}
and {p2}. Observe that only for compatible set U = {pa} we have two nodes
compatible with U, namely ta and t3. We assume that compp 4 7 (U) = ta,
i.e., we decide that to shall be the unique node for U. Consequently, nested bag
formulas are F{* = {c1,c2}, Ffs = {c3,c4}, and F{=0.

5.2. Nested Dynamic Programming on Abstractions

Now, we have established required notation in order to discuss nested dynamic
programming (nested DP). Listing |§| presents algorithm NestDP for solving a
given problem by means of nested dynamic programming. Observe that Listing|[]
is almost identical to algorithm DP as presented in Listing[Il The reason for this
is that nested dynamic programming can be seen as a refinement of dynamic
programming, cf. algorithm DP of Listing [I] Indeed, the difference of NestDP
compared to DP is that NestDP uses labeled tree decompositions of the nested
primal graph and that it gets as additional parameter a set A of abstraction
variables. Further, instead of a table algorithm A, algorithm NestDP relies on
a nested table algorithm N during dynamic programming, which is similar to
a table algorithm that gets as additional parameter an integer depth > 0 that
will be used later and a nested bag instance that needs to be evaluated. For
simplicity and generality, also the formula is passed as a parameter, which is,
however, used only for passing problem-specific information of the instance.
Indeed, most nested table algorithm do not require this parameter, which should
not be used for direct problem solving instead of utilizing the bag instance.
Consequently, nested dynamic programming still follows the basic concept of
dynamic programming as presented in Figure 2
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Listing 7: Nested table algorithm NSAT(-, ¢, x¢, Fs, F/, -, Child-Tabs) for solving
#SAT.

In: Node ¢, bag x¢, bag formula F}, nested bag formula F/, and sequence
Child-Tabs = (71, ... 7¢) of child tables of t.

Out: Table 7¢.

if type(t) = leaf then 1 < {((), 1)}

2 else if type(t) = int and a € x(t) is introduced then

© o N o w

T+ {{J,c ¢y | I,e)em,JelU{ar— v},ve{0,1},JF F,c>0,c'=
#SAT(FALI)}
else if type(t) = rem and a & x(t) is removed then
/* C(I) is the set that contains the rows in 7; for assignments J
that are equal to [/ after removing a */

C) « {(J,e) | (Jiey e, J\{a—0,a— 1} =T\ {a+— 0,a — 1}}
e {{I\{a—=0,a—=1} 37 comat (L) €n}
else if type(t) = join then
‘ Tt<_{<l7cl'62> |<[,C‘1>€T1,<],CQ>ET2}
return 7;

Similar to above, for the ease of presentation our presented nested table algo-
rithms use nice tree decompositions only. However, this is not a hard restriction.
Indeed, it is easy to see that for arbitrary TDs the clear case distinctions of
nice decompositions are still valid, but are in general just overlapping. Further,
without loss of generality we also assume that each compatible set U gets assigned
a unique node ¢ = compg 4 (U) that is an introduce node, i.e., type(t) = int.

Nested Dynamic Programming for #SAT. In order to design a nested table
algorithm for #SAT, assume a Boolean formula F' as well as a given labeled tree
decomposition T = (T, x) of G}? using any set A of abstraction variables. Recall
from the discussions above, that each variable a € var(F')\ A appears only in one
nested bag formula F/ of anode ¢ of T that is unique for a. These unique variable
appearances allow us to actually nest the evaluation of nested bag formula FA.
This evaluation is performed by a nested table algorithm NSAT in the context
of nested dynamic programming. Listing [7] shows this simple nested table
algorithm NSAT for solving problem #SAT by means of algorithm NestDPygaT.
For comparison, recall table algorithm SAT for solving problem #SAT by means
of dynamic programming, as given by Listing Observe that in contrast to
Listing we store here assignments (and not interpretations), which simplifies the
presentation of nesting. However, the main difference of NSAT compared to SAT
is that the nested table algorithm NSAT maintains a counter ¢ and that it gets
called on a nested primal graph, i.e., the algorithm gets additional parameters like
the nested bag formula. Then, the nested table algorithm evaluates this nested
bag formula in Line [3|via any procedure #SAT for solving problem #SAT(F/[J])
on the nested bag formula F;/* simplified by the current assignment J to variables
in the bag x(t). Note that this subproblem #SAT(F/[J]) itself can be solved by
again using nested dynamic programming with the help of algorithm NestDPygaT.

In the following, we briefly show the evaluation of nested dynamic program-
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Figure 8: Selected tables obtained by nested DP on TD T of Giﬁa’b} (left) and on TD T
of G}a} (right) for F of Examplevia NestDPNsAT-

ming for #SAT on an example.

Example 11. Recall formula F, set A of abstraction variables, and TD T’ of
nested primal graph G‘} given in Example . As already mentioned, Formula
F has six satisfying assignments, namely {a — 1,b — 0,p; — 1,p3 — 0},
{a—=1,b—=0,p1 = 1,ps = 1}, {a— 1,b—= 1,p1 — 0,ps —= 0}, {a— 1,0 —
1,p1 = 0,p2— 1}, {a— 10— 1,p1 = 1,p2 — 0}, and {a — 1,b— 1,p; —
l,pg — 1}

Figure@ (left) shows TD T' of G4 and tables obtained by NestDPnsat (0, (F),-),
A, T") for model counting (#SAT) on F. We briefly discuss erecuting NSAT
on T', resulting in tables 71, T2, and T3 as shown in Figure[§ (left). Intuitively,
table 11 is the result of introducing variables a and b. Recall from Example
that F[I‘ = {c1, ca} with ¢c; = {—a,b,p1} and ca = {a,—b,—p1}. Then, in Lin%
of algorithm NSAT, for each assignment I to {a,b} of each row r of 71, we
compute #SAT(F{?[I]), Consequently, for assignment I = {a — 0,b — 0},
we have that there are two satisfying assignments of F{*[I1], namely {p; — 0}
and {p1 — 1}. Indeed, this count of 2 is obtained for the first row of table
by Line [} Analogously, one can derive the remaining tables of 71 and one
obtains table 7o similarly, by using formula Ft‘;l. Then, table 5 is the result of
removing b in node t1 and combining agreeing assignments of rows accordingly.
Consequently, we obtain that there are sixz satisfying assignments of F, which
are all required to set a to 1 due to formula Ft‘;‘ that is evaluated in node to.

Figure@ (right) shows TD T" of G{Fa} and tables obtained by NestDPysat(0,
(F,),{a},T") using TD T". Since Ft{/,a} = F and F[{a — 0}] is unsatisfiable,
table Ty does not contain an entry corresponding to assignment {a — 0},
¢f. Condition “c'>0" in Line @ of Listing @ Thus, there are six satisfying
assignments of Ft{,,a}[{a > 1}] obtained by computing #SAT(Ft{,fl} [{a+—1]}).

While the overall concept of nested dynamic programming as given by
algorithm NestDP of Listing [f] is quite general, sometimes in practice it is
sufficient to further restrict the set of choices for abstraction vertices A when
constructing the nested primal graph.

Nested Table Algorithm for PMC. To this end, we show the approach of nested
dynamic programming for the problem PMC.

Example 12. Recall formula F as well as set A = {a, b} of abstraction variables
from Example . Then, we have that (F, A) is an instance of the projected model
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Listing 8: Nested table algorithm NPMC(-, t, x:, Ft, F{*, P, Child-Tabs) for solving
PMC.
In: Node ¢, bag x:, bag formula F;, nested bag formula F{*, projection variables
P C var(F{"), and sequence Child-Tabs = (r1,...7) of child tables of ¢.
Out: Table 7¢.
1 if type(t) = leaf then 7 <+ {(0,1)}
2 else if type(t) = int and a € x(t) is introduced then
T+ {(J,c - ¢c) | (I,c) e m,=TU{a—v}ve{0,1},JE F,c>0,c=
PMC(F;'[J], P)}

4 else if type(t) = rem and a & x(t) is removed then

5 | CU)«{(J,o)|(J,e)er,J\{a—0,a—1} =I\{a—0,a— 1}}
6 7 {{I\{a—0,a+— 1}, Z(J,c)é(?(I)C) | (I, em}

7 else if type(t) = join then

8 | 7t < {(I,c1 - ¢2) | (I,c1) € 11, {I,c2) € T2}
9 return 7

counting problem PMC. Restricted to projection set A, the Boolean formula F
has two satisfying assignments, namely {a — 1,b — 0} and {a — 1,0 — 1}.
Consequently, the solution to PMC on (F, A), i.e., PMC(F, A), is 2.

Indeed, for solving projected model counting we mainly focus on the case,
where for a given instance (F, P) with Boolean formula F of problem PMC,
the abstraction variables A that are used for constructing the nested primal
graph G% are among the projection variables, i.e., A C P. The approach of
nested DP can then be applied for solving projected model counting such that
the nested table algorithm naturally extends algorithm NSAT of Listing [7]

The nested table algorithm NPMC for solving projected model counting via
nested dynamic programming is presented in Listing [8] Observe that nested
table algorithm NPMC does not significantly differ from algorithm NSAT due
to A C P. Indeed, the main difference is only in Line [3| of Listing [7] where
instead of a procedure for model counting, a procedure PMC for solving a
projected model counting question is called.

5.3. Hybrid Dynamic Programming based on nested DP

Now, we have definitions at hand to further refine and discuss nested dynamic
programming in the context of hybrid dynamic programming (hybrid DP), which
combines using both standard solvers and parameterized solvers exploiting
treewidth in the form of nested dynamic programming. We illustrate these
ideas for the problem PMC next. Afterwards we discuss how to implement the
resulting algorithms in order to efficiently solve PMC and #SAT by means of
database management systems.

Listing |§| depicts our algorithm HybDPypyc for solving projeceted model
counting, i.e., problem PMC. This algorithm HybDPypc takes an instance (F, P)
of PMC consisting of Boolean formula F' and projection variables P. The
algorithm maintains a global, but simple cache mapping a formula to an integer,
and consists of the following four subsequent blocks of code, which are separated
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Listing 9: Algorithm HybDPyp,,-(depth, F, P) for hybrid DP of PMC based on
nested DP.
In: Nesting depth > 0 and an instance (F, P) of PMC.
Out: Number PMC(F, P) of assignments.
1 (F', P') = Preprocessing(F, P)
2 A« P
3 if I’ € dom(cache) /*Cache Hitx/ then return cache(F') - 2/7\F'|

4 if P’ = () then return Sat(F’) - 2!7!
5 T = (T, x) < Decompose_via_Heuristics(G%,) /* Decompose */
6 if width(7T) > thresholdnybria or depth > thresholdgepi, /* Standard Solver  */

then
7 | if var(F’) = P’ then cache < cache U{(F’, #SAT(F ))}
8 | else cache + cache U{(F", PMC(F", P'))}
9 | return cache(F’) - 2/"\Fl

10 if Wldth (T) > thresholdgpstr /* Abstract via Heuristics & Decompose*/ then
11 < Choose_Subset_via_Heuristics(A, F")
12 T (T, x) + Decompose_via_Heuristics(G)

13 N-Comp ¢« NestDPupuic(depth, (F’, P’), A,T) /* Nested Dynamic Programming */
14 cache < cache U{(F’,c) | (0, c) € N-Comp][root(T)]}
15 return cache(F’) - 2/P\F

by empty lines: (1) Preprocessing & Cache Consolidation, (2) Standard Solving,
(3) Abstraction & Decomposition, and (4) Nested Dynamic Programming, which
causes an indirect recursion through nested table algorithm HPMC, as discussed
later.

Block (1) spans Lines and performs simple preprocessing techniques [69)
like unit propagation, thereby obtaining a simplified instance (F’, P’), where
simplified formula F’ of F and projection variables P’ C P are obtained. Any
preprocessing simplifications are fine, as long as the solution of the resulting
PMC instance (F”, P’) is the same as solving PMC on (F, P). Then, in Line
we set the set A of abstraction variables to P’, and consolidate cache with the
updated formula F’. Note that the operations in Line [I| are required to return a
simplified instance that preserves satisfying assignments of the original formula
when restricted to P. If F’ is not cached, in Block (2), we do standard solving
if the width is out-of-reach for nested DP, which spans over Lines [4{9] More
precisely, if the updated formula F’ does not contain projection variables, in
Line [4| we employ a SAT solver returning integer 1 or 0. If F’ contains projection
variables and either the width obtained by heuristically decomposing G g is
above thresholdpybriq, or the nesting depth exceeds thresholdgeptn, we use a
standard #SAT or PMC solver depending on P’.

Block (3) spans Lines and is reached if no cache entry was found in
Block (1) and standard solving was skipped in Block (2). If the width of the
computed decomposition is above threshold,pst,, Wwe need to use an abstraction
in form of the nested primal graph. This is achieved by choosing suitable
subsets E C A of abstraction variables and decomposing F/ heuristically.
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Listing 10: Nested table algorithm HPMC (depth, ¢, x:, F, FA P, Child-Tabs) for
solving PMC.

In: Nesting depth > 0, node t, bag x:, bag formula F;, nested bag formula FA,
projection variables P C var(F7), and sequence Child-Tabs = (71, ...7) of
child tables of ¢.

Out: Table 7¢.

1 if type(t) = leaf then 1 + {((), 1)}
2 else if type(t) = int and a € x(t) is introduced then

3| m+ {{J, 0 | I,c) e, J=1TU{a—v},ve{0,1},JE F,c >0,c=
HybDP . (depth +1, FA[J], P)}

4 else if type(t) = rem and a & x(t) is removed then

5 | CU)«{(J,o)|(J,e)er,J\{a—0,a— 1} =I\{a—0,a— 1}}

6 | < {(I\{a—=0a—=1} 3, cone) (L) €mn}

7 else if type(t) = join then

8 | 7t < {(I,c1 - ¢2) | (I,c1) € T1,{I,c2) € T2}

9 return 7

Finally, Block (4) concerns nested DP, cf. Lines This block relies
on nested table algorithm HPMC, which is given in Listing [10| that is almost
identical to nested table algorithm NPMC as already discussed above and given
in Listing |8} The only difference of HPMC compared to NPMC is that in Line
the nested table algorithm HPMC uses the parameter depth and recursively
executes algorithm HybDPypy- on the increased nesting depth of depth +1, and
the same formula as the one used in the generic PMC oracle call in Line [3| of
Listing [8]

As a result, our approch deals with high treewidth by recursively finding and
decomposing abstractions of the graph. If the treewidth is too high for some
parts, tree decompositions of abstractions are used to guide standard solvers.
Towards defining an actual implementation for practical solving, one still needs
to find values for the threshold constants thresholdnybria, thresholdgeptn, and
threshold,pst,. The actual values of these constants will be made more precisely
in the next section when discussing our implementation and experiments.

Example 13. Recall instance (F, A) of Example and set A of abstraction
variables as well as TD T' of nested primal graph G4 as given in Evample .
Further, recall that restricted to projection set A, formula F has two satis-
Jfying assignments. Figure @ (left) shows TD T' of G and tables obtained
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by NestDPypwic (0, (F, A), A, T") for solving projected model counting on (F, A).

Note that nested table algorithm HPMC of Listing works similar to
the nested table algorithm NPMC of Listing [8, but it calls HybDPypy- recur-
sively. We briefly discuss executing HPMC in the context of Line [13 of al-
gorithm HybDPypyc on node ty, resulting in table 71 as shown in Figure @
(left). Recall that F{* = {{-a,b,p1},{a,~b,~p1}}. Then, in Line @ of algo-
rithm HPMC, for each assignment J to {a,b} of each row of 11, we compute
HybDPyppc (depth —|—1,Fg‘f[J],@). Each of these recursive calls, however, is al-
ready solved by unit propagation (preprocessing), e.g., F{f[{a — 1,0 — 0}] of
Row 2 simplifies to {{p1}}.

Figurelg (right) shows TD T" of GE with E:={a}, and tables obtained by
algorithm NestDPypmc (0, (F, A), E,T"). Still, FE[J] for a given assignment J
to {a} of any row r € Ty can be simplified. Concretely, Ff[{a + 0}] evaluates to
0 and FE[{a > 1}] evaluates to clause {b,c}. Thus, restricted to {b} = A\ {a},
there are 2 satisfying assignments {b — 0}, {b+> 1} of FE[{a — 1}].

6. Hybrid Dynamic Programming in Practice

Below, in Section [6.1] we present an implementation of hybrid dynamic
programming in order to solve the problems #SAT as well as PMC. This is then
followed by an experimental evaluation and discussion of the results in Section [6.2]
where we also briefly elaborate on existing techniques of state-of-the-art solvers.

6.1. Implementing Hybrid Dynamic Programming

We implemented a solver nestH Dlﬂﬂ based on hybrid dynamic programming in
Python3 and using table manipulation techniques by means of structured query
language (SQL) and the database management system (DBMS) PostgreSQL. Our
solver builds upon the recently published prototype dpdb [39], which applied a
DBMS for the efficient implementation of plain dynamic programming algorithms.
This dpdb prototype provides a basic framework for implementing plain dynamic
programming algorithms, which can be specified in the form of a plain table
algorithm, e.g., the one of Listing [3] However, this system does not have
support for neither hybrid nor nested dynamic programming. In order to
compare plain dpdb and our solver nestHDB in a fair way, for both systems
we used the most-recent version 12 of PostgreSQL and we let it operate on a
tmpfs-ramdisk instead of disk space (HDD/SDD), i.e., within the main memory
(RAM) of a machine. In both dpdb as well as our solver nestHDB, the DBMS
serves the purpose of extremely efficient in-memory table manipulations and
query optimization required by nested DP, and therefore nestHDB benefits from
database technology. Those benefits are already available in the form of different
and efficient join manipulations that are selected based on several heuristics
that are invoked during SQL query optimizing. Note that especially efficient

SnestHDB is open-source and available at github.com/hmarkus/dp-on_dbs/tree/nesthdb.
Instances and detailed results are available online at: tinyurl.com/nesthdbl
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join operations have been already designed, implemented, combined, and tuned
for decades [70, [71} [72]. Therefore it seems more than natural to rely on this
technological advancement that database theory readily provides. We are certain
that one can easily replace PostgreSQL by any other state-of-the-art relational
database that uses standard SQL in order to express queries. In the following,
we briefly discuss implementation specifics that are crucial for a performant
system that is competitive with state-of-the-art solvers.

Nested DP & Choice of Standard Solvers. We implemented dedicated
nested DP algorithms for solving #SAT and PMC, where we do (nested) DP up
to thresholdgeptn = 2. Note that incrementing nesting depth results in getting
again exponentially many (in the largest bag size) rows for each row of tables of
the previous depth, i.e., a low nesting limit is highly expected. Currently, we
do not see a way to efficiently solve instances of higher nesting depth, which
might change in case of further advances allowing to decrease table sizes obtained
during dynamic programming. Further, we set thresholdpyiga = 1000 and
therefore we do not “fall back” to standard solvers based on the width (cf., Line [f]
of Listing @, but based on the nesting depth.

Also, the evaluation of the nested bag formula is “shifted” to the database if it
uses at most 40 abstraction variables, since PostgreSQL efficiently handles these
small-sized Boolean formulas. Thereby, further nesting is saved by executing
optimized SQL statements within the TD nodes. A value of 40 seems to be a
nice balance between the overhead caused by standard solvers for small formulas
and exponential growth counteracting the advantages of the DBMS. For hybrid
solving, we use #SAT solver SharpSAT [73] and for PMC we employ the recently
published PMC solver projMC [20], solver SharpSAT and SAT solver picosat [74].
Observe that our solver immediately benefits from better standard solvers and
further improvements of the solvers above.

Choosing Non-Nesting Variables & Compatible Nodes. TDs are com-
puted by means of heuristics via decomposition library htd [36]. We implement a
heuristic for finding practically sufficient abstractions, i.e., abstraction variables
for the nested primal graph, in reasonable using an external solver. Therefore,
we encode our heuristic into two logic programs (ASP) for solver clingo [75],
which includes techniques for fast solving reachability via nesting paths. The
encodings, which in total comprise 11 lines, are publicly available in the online
repository of nestHDB. Technically, our focus is on avoiding extremely large
abstractions at the cost of larger nested bag formulas. Still, nesting allows to
obtain refined abstractions again at higher depths. Thereby, we achieve a good
trade off between runtime and quality.

By the first encoding (“guess_min_degree.lp”), we compute a reasonably-sized
subset of vertices of smallest degree, more precisely, such that the number of
neighboring vertices not in the set is minimized. We take a subset of size at
most 95, which turned out to be practically useful. We run the ASP solver clingo
for up to 10 seconds. The solver might not return an optimum within 10 seconds,
but always returns a subset of vertices that can be used subsequently.

By the second encoding (“guess_increase.lp”), we guess among the thereby
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Figure 10: Cactus plot of instances for #SAT, where instances (x-axis) are ordered for each
solver individually by runtime[seconds] (y-axis). threshold,psty = 38.

obtained subset of vertices of preferably smallest degree, a preferably maximal
set A of at most 64 abstraction variables such the resulting graph G is reasonably
sparse, which is achieved by minimizing the number of edges of Gé. To this end,
we also use built-in (cost) optimization, where we take the best results obtained
by clingo after running at most 35 seconds. For more details on ASP, we refer to
introductory texts [26], [75].

We expect that this approach, which driven mostly by practical considerations,
can be improved. Furthermore, it can also be extending by problem-specific
as well as domain-specific information, which might help in choosing promising
abstraction variables A.

As rows of tables during (nested) DP can be independently computed and
parallelized [40], hybrid solver nestHDB potentially calls standard solvers for
solving subproblems in parallel using a thread pool. Thereby, the uniquely
compatible node for relevant compatible sets U, as denoted in this paper by
means of comp(-), is decided during runtime among compatible nodes on a
first-come-first-serve basis.

6.2. Experimental Evaluation

In order to evaluate the concept of hybrid dynamic programming, we con-
ducted a series of experiments considering a variety of solvers and benchmarks,
both for model counting (#SAT) as well as projected model counting (PMC). Dur-
ing the evaluation we thereby compared the performance of algorithm HybDPypnc
of Listing[9] We benchmarked this algorithm both for the projected model count-
ing problem, but also for the special case of model counting, where all variables
are projection variables.

Benchmarked Solvers € Instances. We benchmarked nestHDB and 16 other
publicly available #SAT solvers on 1,494 instances recently considered [39]. Most
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of the existing solvers of other approaches are single-core solvers, which adhere
to three different techniques, namely knowledge-compilation based, caching based,
and approximate. Among the knowledge-compilation based solvers, which aim
to obtain compact representations of the formulas that are concise and easier to
solve, are miniC2D [76], d4 [14], c2d [77], sdd [78], dsharp [79], cnf2eadt [80], and
bdd_minisat [81]. These solvers use different variants and flavors of knowledge-
compilation, thereby finding decent trade-offs between the time needed to obtain
those representations and their succinctness. We also considered the caching-
based solvers cachet [82], sharpSAT [73], and ganak [83], which employ exist-
ing SAT-based solvers by sophisticated caching techniques. Finally, among
the approximate counters, we focused on sts [84], sharpCDCL [85], and ap-
proxmc3 [86], which employ sampling-based techniques to approximately obtain
the model counts. Our comparison also included the multi-core solvers dpdb [39],
gpusat2 [40], which is also based on dynamic programming and uses massively
parallel graphics processing units (GPUs), as well as countAntom [87], which
relies on sophisticated techniques for work-balancing. For a more ample de-
scription of the used techniques, we refer to the model counting competition
report [I9]. Note that we excluded distributed solvers such as dCountAntom [8§]
and DMC [89] from our experimental setup. Both solvers require a cluster with
access to the OpenMPI framework [90] and fast physical interconnections. Un-
fortunately, we do not have access to OpenMPI on our cluster. Nonetheless,
our focus are shared-memory systems and since dpdb might well be used in a
distributed setting, it leaves an experimental comparison between distributed
solvers that also include dpdb as subsolver to future work. While nestHDB itself
is a multi-core solver, we additionally included in our comparison nestHDB(sc),
which is nestHDB, but restricted to a single core only. The instances [39] we took
are already preprocessed by pmc [69] using recommended options -vivification
-eliminatelit -litImplied -iterate=10 -equiv -orGate -affine, which
guarantee that the model counts are preserved. However, nestHDB still uses pmc
with these options in Line [I] of Listing [0} which is used in the light of nested bag
formulas that appear due to nesting.

Further, we considered the problem PMC, where we compare solvers pro-
JMC [20], clingo [75], ganak [83], nestHDBE, and nestHDB(sc) on 610 publicly
available instancesﬂ from projMC (consisting of 15 planning, 60 circuit, and 100
random instances) and Fremont, with 170 symbolic-markov applications, and
265 misc instances. For simplifying nested bag formulas under assignments
encountered due to nesting in Line [I] of Listing [} nestHDB uses pmc as before,
but without options —equiv -orGate -affine to ensure preservation of models
(equivalence).

Benchmark Setup. Solvers ran on a cluster of 12 nodes. Each node of the cluster
is equipped with two Intel Xeon E5-2650 CPUs consisting of 12 physical cores
each at 2.2 GHz clock speed, 256 GB RAM. For dpdb and nestHDB, we used

"Sources: tinyurl.com/projmec; tinyurl.com/pmec-fremont-01-2020.
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bench- ! tw upper bound time
mark set | SOV max 0-30 31-50 >50 by [h]
planning | nestHDB 30 7 0 0 7 2.88
nestHDB(sc) 30 7 0 0 7 3.31

projMC 26 6 0 0 6 3.01

ganak 19 5 0 0 5 3.36

clingo 4 1 0 0 1 4.00

circ | nestHDB 99 34 10 16 60 2.10
nestHDB(sc) 99 34 4 14 52 4.60

projMC 91 28 10 11 49 6.23

ganak 99 34 10 16 60 1.21

clingo 99 31 10 16 57 4.44

random | nestHDB 79 30 20 17 67 | 10.91
nestHDB(sc) 79 30 20 15 65 11.29

projMC 84 30 20 15 65 11.09

ganak 19 19 0 0 19 23.18

clingo 24 25 0 0 25 21.38

markov | nestHDB 23 62 0 0 62 31.98
nestHDB(sc) 23 61 0 0 61 | 32.54

projMC 8 54 0 0 54 33.65

ganak 59 64 0 4 68 30.32

clingo 3 38 0 0 38 37.54

misc | nestHDB 47 38 17 0 55 46.12
nestHDB(sc) 47 38 13 0 51 48.20

projMC 47 38 13 0 51 45.90

ganak 44 38 15 0 53 45.72

clingo 63 38 15 1 54 44.79

¥ | nestHDB 99 171 47 33 251 93.99
nestHDB(sc) 99 170 37 29 236 99.95

projMC 91 156 43 26 225 99.88

ganak 99 160 25 20 205 | 103.78

clingo 99 133 25 17 175 | 112.15

Figure 11: Number of solved PMC instances, grouped by upper bound intervals of treewidth.
timel[h] is cumulated wall clock time, timeouts count as 900s. threshold,pstr=8.

PostgreSQL 12 on a tmpfs-ramdisk (/tmp) that could grow up to at most 1 GB
per run. Results were gathered on Ubuntu 16.04.1 LTS machines with disabled
hyperthreading on kernel 4.4.0-139. We mainly compare total wall clock time
and number of timeouts. For parallel solvers (dpdb, countAntom, nestHDB) we
allow 12 physical cores. Timeout is 900 seconds and RAM is limited to 16 GB
per instance and solver. Results for gpusat2 are taken from [39], where a machine
equipped with a consumer GPU is used: Intel Core i3-3245 CPU operating
at 3.4 GHz, 16 GB RAM, and one Sapphire Pulse ITX Radeon RX 570 GPU
running at 1.24 GHz with 32 compute units, 2048 shader units, and 4GB VRAM
using driver amdgpu-pro-18.30-641594 and OpenCL 1.2. The system operated
on Ubuntu 18.04.1 LTS with kernel 4.15.0-34.

Benchmark Results. The results for #SAT showing the best 14 solvers are
summarized in the cactus plot of Figure Overall it shows nestHDB among the
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Figure 12: Cactus plot showing the number of solved PMC instances, where the x-axis shows
for each solver (configuration) individually, the number of instances ordered by increasing
runtime. time[h] is cumulated wall clock time, timeouts count as 900s. threshold,pst:=8.

best solvers, solving 1,273 instances. The reason for this is, compared to dpdb,
that nestHDB can solve instances using TDs of primal graphs of widths larger
than 44, up to width 266. This limit is even slightly larger than the width of
264 that SharpSAT on its own can handle. We also tried using minic2d instead
of SharpSAT as standard solver for solvers nestHDB and nestHDB(sc), but we
could only solve one instance more. Notably, nestHDB(sc) has about the same
performance as nestHDB, indicating that parallelism does not help much on
the instances. Further, we observed that the employed simple cache as used in
Listing [9] provides only a marginal improvement.

Figure [11] depicts a table of results on PMC, where we observe that nestHDB
does a good job on instances with low widths below thresholdapsty = 8 (containing
ideas of dpdb), but also on widths well above 8 (using nested DP). Notably,
nestHDB is also competitive on widths well above 50. Indeed, nestHDB and
nestHDB(sc) perform well on all benchmark sets, whereas on some sets the solvers
projMC, clingo and ganak are faster. Overall, parallelism provides a significant
improvement here, but still nestHDB(sc) shows competitive performance, which
is also visualized in the cactus plot of Figure [[2] Figure [I3]shows scatter plots
comparing nestHDB to projMC (left) and to ganak (right). Overall, both plots
show that nestHDB solves more instances, since in both cases the y-axis shows
more black dots at 900 seconds than the x-axis. Further, the bottom left of both
plots shows that there are plenty easy instances that can be solved by projMC
and ganak in well below 50 seconds, where nestHDB needs up to 200 seconds.
Similarly, the cactus plot given in Figure [[2] shows that nestHDB can have some
overhead compared to the three standard solvers, which is not surprising. This
indicates that there is still room for improvement if, e.g., easy instances are easily
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Figure 13: Scatter plot of instances for PMC, where the x-axis shows runtime in seconds
of nestHDB compared to the y-axis showing runtime of projMC (left) and of ganak (right).
threshold,psty = 8.

detected, and if standard solvers are used for those instances. Alternatively, one
could also just run a standard solver for at most 50 seconds and if not solved
within 50 seconds, the heavier machinery of nested dynamic programming is
invoked. Apart from these instances, Figure[I3]shows that nestHDB solves harder
instances faster, where standard solvers struggle.

7. Discussion and Conclusion

We introduced a dynamic programming algorithm to solve projected model
counting (PMC) by exploiting the structural parameter treewidth. Our algorithm
is asymptotically optimal under the exponential time hypothesis (ETH). Tts
runtime is double exponential in the treewidth of the primal graph of the instance
and polynomial in the size of the input instance. We believe that our results can
also be extended to another graph representation, namely the incidence graph.
Our approach is very general and might be applicable to a wide range of other
hard combinatorial problems, such as projection for ASP [56] and QBF [91].

Then, in order to still efficiently deal with projected model counting in
practice, we presented nested dynamic programming (nested DP) using different
levels of abstractions, which are subsequently refined and solved recursively.
This approach is complemented with hybrid solving, where (search-intense)
subproblems are solved by standard solvers. We provided nested DP algorithms
for problems related to Boolean satisfiability, but the idea can be easily applied for
other formalisms. We implemented some of these algorithms and our benchmark
results are promising.

In the light of related works on properties for efficient counting algorithms,
e.g., [32, 33, [34], we are curious to revisit some of those and potentially study
precise runtime dependencies. We expect interesting insights when focusing

40



on the search for properties of local instance parts that in combination with
treewidth allow algorithms that are significantly better than double-exponential
in the treewidth. As we demonstrated in the experimental results, we can solve
the problem PMC that theoretically requires double-exponential worst-case effort
in the treewidth, on instances of decent treewidth upper bounds (up to 99). On
plain model counting (#SAT), which is only single-exponential in the treewidth,
our solver even deals with instances of larger treewidth upper bounds (up to
260). This also opens the question of whether similar empirical observations can
be drawn in other areas and formalisms like constraint solving or database query
languages. Further, we plan on deeper studies of problem-specific abstractions,
in particular for quantified Boolean formulas. We want to further tune our solver
parameters (e.g., thresholds, timeouts, sizes), deepen interleaving with PMC
solvers like projMC, and to use incremental solving for obtaining abstractions and
evaluating nested bag formulas, where intermediate solver references are kept
during dynamic programming and formulas are iteratively added and (re-)solved.
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Appendix A. Omitted Proofs

Observation The relation =p is an equivalence relation.

Proof. One can easily see that =p (A4, B):=(ANP)=(BNP)is
e reflexive: AN P = AN P for any two sets A, P,

e symmetric: AN P = BN P if and only if BN P = AN P for given
sets A, B, P, and

e transitive: if ANP=BNPand BNP=CNP,then ANP=CnNP
holds as well for any sets A, B,C, P.

As a result, =p is an equivalence relation. O

Observation [3| Let n be a positive integer, X = {1,...,n}, and X1, Xo, ...,
X, subsets of X. The number of elements in the intersection over all sets A; is

|ﬂXi|=|©le - Y Nx+ > INXl--

i€X PCICX,|I|=1 i€l PCICX,|I|=2 i€l
I
D SR Ch LI
PCICX,|I|=n—1 el

It trivially works to count arbitrary sets.

Proof. We take the well-known inclusion-exclusion principle [46] and rearrange

o1



the equation.

Jxl= > 0" )X

Jj=1 0CICX iel
Jxl= > "=t X+ oA Xl
j=1 PCICX iel ieX
X|-1 _
(D) Xl = Jxii- > o= Xl
ieX j=1 0CICX iel

Iﬂ Xil—‘ IJQXJ'— > (—1)11|ﬂXil‘

0CICX i€l

|ﬂXi|=' Uxi- ¥ N

PCICX,|I|=1 i€l

+ Y N Xl
WCICX,|I|=2 i€l

+ >, DN x|

PCICX,|I|=n—1 il
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