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Abstract

We consider the classical problem of allocating indivisible resources among agents

in an envy-free (and, where applicable, proportional) way. Recently, the basic model

was enriched by introducing the concept of a social network which allows to capture

situations where agents might not have full information about the allocation of all re-

sources. We initiate the study of the parameterized complexity of these resource alloca-

tion problems by considering natural parameters which capture structural properties of

the network and similarities between agents and resources. In particular, we show that

even very general fragments of the considered problems become tractable as long as

the social network has constant treewidth or clique-width. We complement our results

with matching lower bounds which show that our algorithms cannot be substantially

improved.

Keywords: resource allocation, parameterized complexity, computational social

choice, treewidth, clique-width

1. Introduction

Envy-freeness ranks among the most important fairness requirements in the classi-

cal resource allocation problem of distributing resources (or items) among agents [10,

9]. There has also been an extensive line of works studying envy-free allocations of

indivisible resources in a more general setting where agents only directly compare

themselves to a subset of other agents [5, 2, 13]. For instance, employees in a com-

pany would only compare themselves and “envy” other employees that are at a com-

parable level to them in the company’s hierarchy. Similar ideas were also pursued

for the allocation of divisible resources, specifically the classic CAKE CUTTING prob-

lem [1, 3], where agents have preferences over different parts of a “cake” (representing
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some desired goods)—in many cases, agents may only have limited information about

the pieces of the cake distributed to other agents.

In line with the above, we consider the following problem: given a set R of re-

sources (or items), a set A of agents (each with their own numerical valuation for each

resource), and a directed social network G representing “envy-relations” between the

agents, find a full allocation of resources that is considered “envy-free” by each agent1.

More specifically we study two well-established notions of envy and resulting variants

of the problem:

(1) in GRAPH ENVY-FREE ALLOCATION (GEFA) each agent a is satisfied if it does

not envy any of its neighbors—this notion of graph envy-freeness models situations

where agents do not know or care about the total available number of resources. This

variant was studied, e.g., by Beynier et al. [5] and Bredereck et al. [13].

(2) in GRAPH PROPORTIONAL ENVY-FREE ALLOCATION (GPEFA) each agent must

not only be envy-free of its neighbors, but must also view its allocated resources as be-

ing “non-locally” proportional to the total number of available resources. This variant

is better suited to scenarios where an agent might not have access to full information

about which agent receives which resources, but knows what all the resources are and

expects to receive a fair share. GPEFA was proposed and studied by Aziz et al. [2].

Contribution. Unsurprisingly, both GEFA and GPEFA are NP-complete, and in fact

remain NP-complete even on severely restricted instances [13]. For example, the well-

known PARTITION PROBLEM can be encoded by GEFA and GPEFA on a complete

bidirected social network with 2 agents using the same valuation. GEFA and GPEFA

generalize the classical envy-free resource allocation problems in the sense that the

envy-free resource allocation problem corresponds to the setting in which the social

network is complete. Similarly, GPEFA on the social network with an empty edge set

encodes the problem of proportional resource allocation.

In this work, we employ the parameterized complexity paradigm [19, 16, 33] to

obtain new algorithms and lower bounds for both of these problems. The core feature of

the parameterized paradigm is that instead of measuring the performance of algorithms

merely in terms of the size of the input (n), one links this to certain properties of the

input (captured by one or several numerical parameters, k). In turn, this gives rise to

two notions of tractability, both of which correspond to polynomial-time tractability in

the classical setting:

• the class FPT contains all problems that can be solved in time f(k) · nO(1) (for

some computable function f ), while

• the (asymptotically less efficient) class XP contains all problems that can be

solved in time nf(k).

The fundamental question one must ask at this point is what a reasonable parame-

terization for GEFA and GPEFA would be. First of all, since both problems remain

NP-complete even on very simple social networks (e.g., edgeless graphs for GPEFA;

1A formal definition of the problem is provided in Subsection 2.4.
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– paraNP-h paraNP NP-h

|A| paraNP-h ([29]) paraNP-h paraNP-h

|R| FPT (Cor. 7) XP XP (brute force), W[1]-h ([13])

|TA| paraNP-h (Thm. 11) paraNP-h paraNP-h

|TR| XP (Thm. 1), W[1]-h W[1]-h paraNP-h

|A|+ |R| P P P (brute force)

|A|+ |TR| XP XP XP

|TA|+ |R| FPT FPT (Cor. 18) XP

|TA|+ |TR| XP, W[1]-h (Thm. 9) XP (Thm. 12), W[1]-h paraNP-h (Cor. 10)

Table 1: Overview of the parameterized complexity of GPEFA and GEFA under combinations of the struc-

tural parameters treewidth and cliquewidth of the social network, and the number of agents and resources

and their types as parameters respectively. NP-h, paraNP-h and W[1]-h abbreviate hardness for the classes

NP, paraNP and W[1] respectively. All stated results can easily be derived from the underlined ones using

the relationships between the considered parameters. Note that there are several natural cases of parameter

combinations left open. Specifically, it would be interesting to determine whether the XP-results for the pa-

rameter |A|+ |TR| can be improved to FPT-results. The same is also left open for the parameter |TA|+ |R|
on arbitrary graphs, and the parameter |R| on graphs of bounded clique-width. Maybe even more interest-

ing from an algorithmic point of view, is the question whether there is an XP-algorithm parameterized by

|TR|+ cw(G).

see Theorem 11) and both problems are well-known to be NP-complete on complete

social networks, restricting the structure of G is not sufficient to obtain tractability on

its own. Second, we believe that there are practical settings, in which one needs to deal

with instances consisting of many agents and resources, and so we would like to avoid

parameterizing by |A| or |R|.
A well-established and intuitive assumption about instances of GEFA and GPEFA

is that many resources or agents behave “homogeneously” in terms of their valuations—

indeed, for resources homogeneity arises naturally when dealing with copies of the

same resource, while for agents homogeneity may be caused by inherent limitations

of how preferences are collected. This homogeneity can be mathematically captured

through the notion of resource- and agent-types, which contain resources and agents

that are indistinguishable from each other based on any valuation. Indeed, the numbers

of resource- and agent-types (hereby denoted |TR| and |TA|, respectively) have been

studied and used as parameters in various settings across the whole field of computa-

tional social choice [11, 23, 12, 32, 36].

Results. Our first result focuses on tree-like social networks, specifically social net-

works of constant treewidth tw [35, 19]. Specifically, we show that GEFA and GPEFA

are in XP parameterized by tw(G) + |TR| (Theorem 1). As with virtually all such re-

sults using treewidth, the core of the algorithm is a dynamic programming procedure,

which constructs a partial solution using so called records—however, the edge orienta-

tions in combination with the distinct valuations of agents required the use of unusually
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involved records.

Next, we turn to the question whether the above result can be improved to FPT.

We provide a reduction (Theorem 9) which not only answers this negatively, but also

shows that the problem does not become FPT even with additional parameters (such

as |TA|). Two additional hardness results (Corollary 10 and Theorem 11) show that it

is not possible to strengthen Theorem 1 by dropping any of the two parameters either.

For our third result, we look at another way of extending Theorem 1 towards a

richer graph class. In particular, while treewidth is a well-motivated graph parameter

(see, for instance, the survey by Marx [30] and the result of Thorup linking treewidth

and control flow graphs [37]), restricting the treewidth of instances means that our

results do not immediately generalize the original non-graph setting and cannot be

used for dense networks. To this end, we turn to clique-width (cw)—a well-established

generalization of treewidth towards dense graphs—and show that GEFA and GPEFA

are both in XP parameterized by cw(G)+ |TA|+ |TR| (Theorem 12). It is worth noting

that this result immediately implies that envy-free resource allocation (in the non-graph

setting) is in XP parameterized by |TA|+|TR|—a result which, while forming a special

case for us, is not trivial to prove on its own.

An overview of the parameterized complexity classification of GPEFA and GEFA

with respect to all combinations of the most important parameters in our work, i.e.,

tw(G), cw(G), |A|, |R|, |TA| and |TR|, is given in Table 1. While in terms of these pa-

rameters our new reduction in Theorem 11 is not strictly speaking necessary to obtain

this classification, the reduced instance satisfies other additional properties. Specifi-

cally, while the reduction from PARTITIONING described earlier also implies the NP-

hardness of GPEFA and GEFA for a constant number of agent-types, Theorem 11

shows this, even for unary encodings of the valuations.

As our final result, we tackle the question of whether one can strengthen the

polynomial-time result of Theorem 1 to fixed-parameter tractability for the problem

by using a stronger2 restriction on the structure of G. We answer this positively, but

with a caveat: we also need to restrict the bundle-size (i.e., the maximum number of

resources assigned to any agent). Specifically, we combine integer linear programming

with exhaustive branching to show that both GEFA and GPEFA are FPT when pa-

rameterized by the size of a minimum vertex cover of G, |TR|, and the bundle-size

(Theorem 19).

2. Preliminaries

For an integer i, we let [i] = {1, 2, . . . , i} and [i]0 = [i] ∪ {0}. We denote by N

the set of natural numbers, by N0 the set N ∪ {0}. For a set S, we denote by 2S the

set of all subsets of S. For functions two f, g : X → N from a set X to the set of

natural numbers, we consider their sum, as defined in the natural way for each entry,

2A parameter A is stronger than a parameter B, if for every instance the value of the parameter B is

bounded by (a function of) the value of the parameter A; i.e., treewidth is a stronger parameter than clique-

width, because every graph with constant treewidth has also constant clique-width. In the literature, one

sometimes also uses the equivalent phrase “treewidth is dominated by clique-width”.
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i.e., f + g : X → N is given by (f + g)(x) = f(x) + g(x) for x ∈ X . Similarly,

we define f ≤ g to be true, whenever f(x) ≤ g(x) for all x ∈ X , and f = g to be

true, whenever f(x) = g(x) for all x ∈ X . We refer to the handbook by Diestel [18]

for standard graph terminology. For a directed graph G and a vertex v, we denote by

N+
G (v) the open out-neighborhood of v in G.

2.1. Parameterized Complexity

In parameterized algorithmics [19, 16, 33] the running-time of an algorithm is stud-

ied with respect to a parameter k ∈ N0 and input size n. The basic idea is to find a

parameter that describes the structure of the instance such that the combinatorial explo-

sion can be confined to this parameter. In this respect, the most favorable complexity

class is FPT (fixed-parameter tractable) which contains all problems that can be de-

cided by an algorithm running in time f(k) · nO(1), where f is a computable function.

Algorithms with this running-time are called fixed-parameter algorithms. A less fa-

vorable outcome is an XP algorithm, which is an algorithm running in time O(nf(k));
problems admitting such algorithms belong to the class XP.

To obtain our lower bounds, we will need the notion of a parameterized reduction

and the complexity class W[1]. A parameterized reduction is a variant of the standard

polynomial-time reduction which retains bounds on the parameter, and W[1]-hardness

rules out the existence of fixed-parameter algorithms under the Exponential Time Hy-

pothesis [25]. The class W[1] captures parameterized intractability and contains all

problems that are FPT-reducible to INDEPENDENT SET (parameterized by solution

size). Parameterized problems which remain NP-hard even when the parameter is set

to a specific constant are said to be paraNP-hard.

2.2. Treewidth

A tree-decomposition T of a (directed or undirected) graph G is a pair (T, χ),
where T is a tree and χ is a function that assigns each tree node t a set χ(t) ⊆ V (G)
of vertices such that the following conditions hold:

(P1) For every (directed) edge uv ∈ E(G) there is a tree node t such that u, v ∈ χ(t).

(P2) For every vertex v ∈ V (G), the set of tree nodes t with v ∈ χ(t) induces a

non-empty subtree of T .

The sets χ(t) are called bags of the decomposition T and χ(t) is the bag associated

with the tree node t. The width of a tree-decomposition (T, χ) is the size of a largest

bag minus 1. The treewidth of a graph G, denoted by tw(G), is the minimum width

over all tree-decompositions of G.

For presenting our dynamic programming algorithms, it is convenient to consider

tree-decompositions in the following normal form [27]: A tree-decomposition (T, χ)
is a nice tree-decomposition of a graph G if the tree T is rooted at node r, χ(r) = ∅,

and each node of T is of one of the following four types:

1. a leaf node: a node t having no children and |χ(t)| = 1;

2. an introduce node: a node t having exactly one child t′, and χ(t) = χ(t′) ∪ {v}
for a node v of G;
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a

b

dc e 11 2

1(v) 2(v)

⊕

η1,2 η2,1 p2→1 2(v)

⊕

η1,2 η2,1 p2→1 2(v)

⊕

η2,1 p2→1 2(v)

⊕

η2,1 p2→1

Figure 1: Top left: A directed graph G with cw(G) = 2. Bottom: Depiction of an expression tree

that witnesses that cw(G) = 2. The expression tree corresponds to the expression p2→1(η2,1(2(v) ⊕
p2→1(η2,1(2(v)⊕ p2→1(η2,1(η1,2(2(v)⊕ p2→1(η2,1(η1,2(2(v)⊕ 1(v))))))))))) which uses the two

initial 2-graphs 1(v) and 2(v) as basis. Top right: Directed graph resulting from the evaluation of the given

expression tree up to and including the step η1,2 with double borders. Here labels are drawn into the vertices.

3. a forget node: a node t having exactly one child t′, and χ(t) = χ(t′) \ {v} for a

node v of G;

4. a join node: a node t having exactly two children t1, t2, and χ(t) = χ(t1) =
χ(t2).

For t ∈ V (T ) we denote by Tt the subtree of T rooted at t and we write χ(Tt) for

the set
⋃

t′∈V (Tt)
χ(t′).

Computing a nice tree-decomposition of a graph with O(tw(G) · |V (G)|) many

nodes and optimal width is fixed-parameter tractable, and FPT-approximation algo-

rithms with better running times are also available [27, 7, 8].

2.3. Clique-width

To define clique-width, a prominent graph parameter which will be relevant for our

results, we first need to introduce some basic terminology. For a positive integer k,

we let a k-graph be a graph whose vertices are labeled by [k]. For convenience, we
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consider a directed graph to be a k-graph with all vertices labeled by 1. We call the

k-graph consisting of exactly one vertex v (say, labeled by i) an initial k-graph and

denote it by i(v).
The (directed) clique-width of a graph G is the smallest integer k such that G can

be constructed from initial k-graphs by means of iterative application of the following

three operations:

1. Disjoint union (denoted by ⊕);

2. Relabeling: changing all labels i to j (denoted by pi→j);

3. Edge insertion: adding a directed edge (arc) from each vertex labeled by i to

each vertex labeled by j (i 6= j; denoted by ηi,j).

Many graph classes are known to have constant clique-width; examples include all

graph classes of constant treewidth [15] and co-graphs [15].

A k-expression tree [14] is a rooted tree representation of how the three operations

are used to construct a given graph; specifically, the k-expression tree represents each

i(v) as a leaf, each ⊕ operator as an ⊕ node with two children, and each pi→j or

ηj,i operator by a corresponding node with a single child. An example is provided in

Figure 1.

2.4. Problem Statement

Let A be a set of agents, R be a set of resources, and G be a directed graph with

vertex set A. A preference function (or valuation function) for an agent a ∈ A is a

function τa : 2R → N. Throughout the paper we will assume that preference functions

are additive, i.e., τa(R
′) =

∑

r∈R′ τa(r) for every R′ ⊆ R.

An allocation is a mapping π : A → 2R such that π(a) and π(a′) are disjoint for

every two distinct agents a and a′ in A and
⋃

a∈A π(a) = R. With a slight abuse of

notation, we set π(A′) =
⋃

a∈A′ π(a) for a subset A′ of A. We say that π(a), or more

generally any set of resources, is a bundle. An allocation is:

• (non-locally) proportional if τa(π(a)) ≥
τa(π(A\N+

G
(a)))

|A\N+

G
(a)|

for every a ∈ A.

• graph envy-free if τa(π(a)) ≥ τa(π(a
′)) for every a, a′ ∈ A with a′ ∈ N+

G (a).

• graph proportional envy-free if it is both proportional and graph envy-free.

For brevity and ease of presentation, the term “proportionality” will always refer to

the non-local notion of proportionality defined above. Note that this notion is different

from the notion of “local proportionality” studied in some works [4]. We can now

formalize our problems of interest:

GRAPH PROPORTIONAL ENVY-FREE ALLOCATION (GPEFA)

Input: A set A of agents, a set R of resources, preference func-

tions τa : 2R → N for every agent a ∈ A, and a directed

graph G with vertex set A.

Question: Is there a graph proportional envy-free allocation?
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g a

g b

g dg c g e

11 12 �1 �2 �1 �2

τa 0 0 1 1 2 2

τb 0 0 0 0 0 0

τc 5 5 5 5 2 2

τd 0 0 1 1 2 2

τe 5 5 5 5 2 2

Figure 2: An instance of GEFA with agents A = {ga,gb,gc,gd,ge}, resources R =
{11,12,�1,�2,�1,�2}, preference functions as given in the table on the right and G as depicted

on the left. Note that 11 and 12, as well as �1 and �2, and �1 and �2 have the same resource-type.

Similarly ga and gd, as well as gc and ge have the same agent-type.

In this example tw(G) = 4 (a tree decomposition witnessing this is a single bag containing all vertices,

moreover as all vertices are pairwise connected they must occur in a bag together), and cw(G) = 2 (as G

can be constructed from the two initial 2-graphs 1(v) and 2(v) as described in Figure 1).

GRAPH ENVY-FREE ALLOCATION (GEFA) is defined analogously, with the sole

distinction that we ask for a graph envy-free allocation. We note that while both prob-

lems are stated as decision problems, all our algorithms are constructive and can also

output an allocation with the desired properties as a witness.

2.5. Parameterizations and Properties of Instances

We say that two agents a and a′ have the same agent-type if their preference func-

tions τa and τa′ are identical. We say two resources r and r′ have the same resource-

type if they are equally valued by any agent, i.e., if τa(r) = τa(r
′) for every a ∈ A.

Key notions that were introduced so far are illustrated in Figure 2.

Let I = (A,R, (τa)a∈A, G) be an instance of GRAPH (PROPORTIONAL) ENVY-

FREE ALLOCATION. We denote by TA and TR the set of agent-types and resource-

types of I, respectively, and define the preference function τa in the natural manner for

agent-types and resource-types, i.e., for an agent-type ta ∈ TA and an resource-type

tr ∈ TR, we denote by τta
(tr), the valuation of any agent of type ta of any resource of

type tr.
We also call sets of resources R′ ⊆ R bundles. In the context of resource-types,

we will also represent bundles by bundle functions bfun : TR → N, where bfun(tr) is

equal to the number of resources of resource-type tr in the bundle represented by the

function, for every tr ∈ TR. We use BFUN(R′) to denote the bundle function repre-

senting the bundleR′ and conversely we denote by BUN(bfun) a bundle corresponding

to the bundle function bfun. Moreover, we denote by B = {BFUN(R′) | R′ ⊆ R },

the set of all possible bundle functions.

Our results will mainly be concerned with establishing the tractability of GPEFA

and GEFA under the combination of (1) a graph parameter that restricts the structure of

the network and (2) the number of agent-types or resource-types which, in turn, restrict

the complexity of the preference function. Both types of restrictions are necessary in

order to achieve tractability. For (1), we will consider the treewidth, clique-width, and
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vertex cover number (vcn(G)—the size of a minimum vertex cover) of the network G.

Our last result uses the maximum size of a bundle as an additional parameter.

Lastly, while our interest in the considered graph parameters is partly motivated by

their fundamental nature, we also illustrate some natural examples where these param-

eters may be small:

• Consider a situation where we modify the basic envy-free allocation problem

(in which all agents could envy each other) by partitioning agents into disjoint

“families” whereas members of the same family will not envy each other. This

results in an instance of GEFA where the graph is obtained by taking a bidirec-

tional clique and then complementing all arcs between vertices in each family.

It is a simple exercise to show that such graphs have clique-width at most 2
(one can adapt the standard clique construction by introducing whole families

together instead of adding vertices one by one). In particular, suppose we want

to build the 2-expression tree for an instance with 3 families A, B, and C whose

sets of members are given by {a1, . . . , a|A|}, {b1, . . . , b|B|}, and {c1, . . . , c|C|},

respectively. Then, the 3-expression tree is given by:

p2→1(η1,2(η2,1((p2→1(η1,2(η2,1(1(A))⊕ (2(B)))))⊕ (2(C)))))

Here, the expression i(A) (and similarily the expressions i(B) and i(C)) intro-

duce all members of the family A using label i, i.e., i(A) is a shortcut for the

expression i(a1)⊕ i(a2)⊕ · · · ⊕ i(a|A|).

• Imagine that agents represent employees in a company who are organized in a hi-

erarchical manner, and agents can only envy agents on the same or lower levels of

the company hierarchy (it is common that superiors receive more resources than

subordinates). This situation is captured by instances of GEFA where agents are

partitioned into hierarchical “levels” 1, . . . , q and agents on level i ∈ [q] envy all

agents on level j where i ≤ j ≤ q. Again, it is not difficult to see that the re-

sulting directed graphs have clique-width at most 2 (one can construct each level

individually as a bidirectional clique, and then introduce the cliques iteratively

from the lowest to the highest level). This construction can also be extended to

tree-like hierarchies. In particular, suppose we want to construct an instance with

three levels A = {a1, . . . , a|A|}, B = {b1, . . . , b|B|}, and C = {c1, . . . , c|C|}
with A being the highest level in the hierarchy. Then, our first step is to build a

2-expression that introduces all members of a level and the edges between. This

is done by the expression L(Q, i) (given below), where Q is a set containing all

members of the levelQ and i is a label. The expression, which is given below for

the case that Q = {q1, q2, q3}, introduces the qi’s and the edges between them

and ensures that all qi’s have label i at the end of the expression.

p1→i(p2→1(η2,1(η1,2(p2→1(η2,1(η1,2(1(q1)⊕ 2(q2))))⊕ 2(q3)))))

We are now ready to give our 2-expression for our instance with 3 levels.

p2→1(η1,2(p2→1(η1,2(L(C, 1)⊕ L(B, 2)))⊕ L(A, 2)))
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• It is known that in many cases, real-world networks are structurally sparse and

often have, e.g., bounded expansion [17], which is a general (more general

than treewidth) and powerful measure of graph sparsity. While it is not known

whether more general measures of sparsity can be algorithmically exploited for

GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION, the notion of treewidth

studied here can be seen as a more restrictive measure of graph sparsity [31].

• Finally, consider a situation where employees on the same position in a company

receive certain benefits, but the benefits each employee receives is hidden (this is

often the case, e.g., for employee salaries). However, the benefits of k employ-

ees were accidentally revealed to everyone, and hence all employees could now

hypothetically envy any of the k employees whose benefits are known. This can

be modeled as an instance of GRAPH (PROPORTIONAL) ENVY-FREE ALLOCA-

TION where the graph has a vertex cover of size k (in particular, the k agents

whose resources were revealed would form the vertex cover).

3. Allocating Resources on Tree-Like Networks

As our first result, we show that instances with a constant number of resource-types

can be solved in polynomial time on tree-like networks. We note that, as will be shown

in the next section, both conditions are necessary for tractability.

Theorem 1. GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION is in XP parame-

terized by the treewidth of the social network and number of resource-types.

For the remainder of this section, let I = (A,R, (τa)a∈A, G) be an in-

stance of GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION. Since a nice tree-

decomposition of a graph can be computed efficiently [27, 7, 8], it suffices to solve the

problem when a minimum-width nice tree-decomposition of G is provided as part of

the input.

Lemma 2. GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION can be solved in

time at most |R|O(|TR|·tw(G))|A| if a minimum-width nice tree-decomposition of G is

provided as part of the input.

Informally, the algorithm behind the above theorem works as follows. Let T =
(T, χ) be a minimum-width nice tree-decomposition of G. The algorithm uses a

bottom-up dynamic programming approach on the nodes of T to compute a compact

representation, in the following represented by a set of valid records, of all graph pro-

portional envy-free assignments of I restricted to the agents in χ(Tt) for every node

t ∈ V (T ).
A record for a node t ∈ V (T ) is a triple (α, ũ, β), where:

• α : χ(t) → B is a function that encodes an allocation for every agent in χ(t) via

the corresponding bundle functions,

• ũ ∈ B corresponds to the bundle function of the bundle containing all resources

already assigned to the agents in χ(Tt),
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• β : χ(t) → B is a function that for each agent a ∈ χ(t), provides the bundle

function of the bundle containing all resources assigned to all out-neighbors of

a in χ(Tt). β is only required to ensure proportionality (i.e., it can be omitted

from the records when solving GEFA).

The semantics of a record are as follows. We say that a record (α, ũ, β) for a node

t ∈ V (T ) is valid if there is an allocation π : χ(Tt) → 2R satisfying:

(R1) α(a) = BFUN(π(a)) for every a ∈ χ(t),

(R2) ũ = BFUN(π(χ(Tt))),

(R3) β(a) = BFUN(π(N+
G (a) ∩ χ(Tt))) for every a ∈ χ(t),

(R4) π is graph envy-free on the instance induced by the agents in χ(Tt), i.e., for all

a ∈ χ(Tt), it holds that τa(π(a)) ≥ τa(π(a
′)) for every a′ ∈ N+

G (a) ∩ χ(Tt)

(R5) (Only for GPEFA) π is proportional for all a ∈ χ(Tt) \ χ(t), i.e., for every

a ∈ χ(Tt) \ χ(t), it holds that τa(π(a)) ≥
τa(R\π(N+

G
(a)))

|A\N+

G
(a)|

.

For a node t ∈ V (T ) we denote by R(t) the set of all valid records for t. Note that

I has a graph proportional envy-free allocation if and only if R(r), for the root r of

T , contains a record (α, ũ, β) such that ũ = BFUN(R); note that because χ(r) = ∅
the functions α and β are empty functions and moreover (R5) is satisfied for all agents

in the instance. Moreover, once we have computed the set of records for all nodes, a

straightforward application of standard techniques [19] can be used to obtain a graph

proportional envy-free allocation using a second top-to-bottom run through the tree-

decomposition.

We will show next that R(t) can be computed via a dynamic programming algo-

rithm on T in a bottom-up manner. The algorithm starts by computing the set of all

valid records for the leaves of T and then proceeds by computing the set of all valid

records for the other three types of nodes of a nice tree-decomposition (always select-

ing nodes all of whose children have been processed). The following four lemmas

show how this is achieved.

Lemma 3. Let l ∈ V (T ) be a leaf node. Then R(l) can be computed in time O(|B|).

Proof. Let χ(t) = {a}. Then R(l) contains all records (α, ũ, β) such that:

• α(a) ∈ B,

• ũ = α(a), and

• β(a) = BFUN(∅),

The correctness of this construction of R(l) follows immediately from the definition

of the records and the running-time is dominated by the number of possible choices for

α(a), i.e., |B|.

Lemma 4. Let t ∈ V (T ) be an introduce node with child t′. Then R(t) can be

computed from R(t′) in time O(|R(t′)||B||TR|tw(G)).
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Proof. Let a be the unique agent in χ(t) \ χ(t′). Informally, the records in R(t) are

obtained by extending a record in R(t′) with an allocation αa ∈ B for a. We say that

a record (α′, ũ′, β′) ∈ R(t′) and a bundle function bfuna : TR → N are compatible if

they satisfy the following properties:

• there are still sufficiently many resources available for agent a, i.e., ũ′+bfuna ≤
BFUN(R),

• no agent in χ(t′) envies the agent a, i.e., for every a′ ∈ χ(t′) with a ∈ N+
G (a′),

it holds that τa′(BUN(α′(a′))) ≥ τa′(BUN(bfuna)),

• agent a does not envy any of its neighbors in χ(t′), i.e.,

τa(BUN(bfuna)) ≥ τa(BUN(α(a′)))

for every a′ ∈ χ(t′) ∩N+
G (a);

Then, for every record (α′, ũ′, β′) ∈ R(t′) and compatible bundle function bfuna ∈ B,

we construct R(t) to contain the record (α, ũ, β) such that:

• α is the extension of α′ that allocates bfuna to a, i.e., α(a) = bfuna and α(a′) =
α′(a′) for every a′ ∈ χ(t′),

• ũ = ũ′ + bfuna,

• β(a) is assigned to the sum of allocations assigned to all out-neighbors of a in

χ(Tt) (which must be contained in χ(t′)), i.e., β(a) =
∑

a′∈N+

G
(a)∩χ(t′) α

′(a′),

• for every a′ ∈ χ(t′) we need to add bfuna to β′(a′) if a is an out-neighbor of a′.
That is, we define β(a′) by setting either:

– β(a′) = β′(a′), if a /∈ N+
G (a′), or

– β(a′) = β′(a′) + bfuna, otherwise;

Note that all neighbors of a in χ(Tt) are inside of χ(t′). This is because by the proper-

ties of tree decompositions, both a and any of its out-neigbors u in χ(Tt) have to occur

in χ(s) together for some s ∈ V (T ). If s is not a node of Tt, then u ∈ χ(t) must hold,

as u ∈ χ(Tt) and otherwise {s′ ∈ V (T ) | u ∈ χ(s′)} is not connected contradicting

the properties of tree decompositions. If this s is in Tt, then it can only be equal to t,
as t is the only node of Tt whose associated bag contains a. In both cases u ∈ χ(t).

Informally, the correctness of this construction of R(t) follows from this simple

fact and the definition of the records.

More formally, we have to show that (α, ũ, β) ∈ R(t) if and only if there is a record

(α′, ũ′, β′) ∈ R(t′) and a bundle function bfuna : TR → N that are compatible with

each other and (α, ũ, β) is obtained from (α′, ũ′, β′) and bfuna as described above.

So suppose that (α, ũ, β) ∈ R(t). Because (α, ũ, β) ∈ R(t) there is an allocation

π : χ(Tt) → 2R satisfying (R1)–(R5). Let (α′, ũ′, β′) be the record defined by setting:

• α′(a′) = α(a′) for every a′ ∈ χ(t′),
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• ũ′ = ũ− α(a), and

• β′(a′) = β(a′) for every a′ ∈ χ(t′) with a /∈ N+
G (a′) and β′(a′) = β(a′)−α(a),

otherwise.

Then, (α, ũ, β) can be obtained from (α′, ũ′, β′) and bfuna = α(a) using the above

construction and because (α, ũ, β) is valid, (α′, ũ′, β′) and bfuna = α(a) are com-

patible. Finally, the restriction π′ : χ(Tt′) → 2R of π to χ(Tt′) witnesses that

(α′, ũ′, β′) ∈ R(t′).
Towards showing the reverse direction, suppose that there is a record (α′, ũ′, β′) ∈

R(t′) and a bundle function bfuna : TR → N that are compatible with each other

and let (α, ũ, β) be the record obtained from (α′, ũ′, β′) and bfuna as described above.

Because (α′, ũ′, β′) ∈ R(t′) there is an allocation π′ : χ(Tt′) → 2R satisfying (R1)–

(R5). But then because (α′, ũ′, β′) and bfuna are compatible and all out-neighbors of

a in χ(Tt) are in χ(t′), we obtain that the allocation π : χ(Tt) → 2R obtained from π′

and bfuna by setting π(a′) = π(a′) for every a′ ∈ χ(Tt′) and π(a) = bfuna witnesses

that (α, ũ, β) ∈ R(t).
Finally, the running-time of the procedure follows because there are |R(t′)||B|

compatible pairs of records in R(t′) and bundle functions bfuna, and checking the

above properties for each of them takes time O(|TR|tw(G)).

Lemma 5. Let t ∈ V (T ) be a forget node with child t′. Then R(t) can be computed

from R(t′) in time O(|R(t′)||R|).

Proof. Let a be the unique agent in χ(t′)\χ(t). Informally, a record in R(t) is obtained

from the restriction of a record r′ in R(t′) to χ(t)—whereas in case of GPEFA one

also checks that the record r′ satisfies (R5), i.e., proportionality, for the agent a. More

formally, we say that a record (α′, ũ′, β′) ∈ R(t′) satisfies proportionality (for the

agent a) if:

τa(α
′(a)) ≥

τa(R \ BUN(β′(a)))

|A \N+
G (a)|

Moreover, we define the restriction (α, ũ, β) of a record (α′, ũ′, β′) ∈ R(t′) to χ(t)
by setting: α(a) = α′(a), ũ = ũ′, and β(a) = β′(a) for every a ∈ χ(t). Then, the set

R(t) contains the restriction of every record in R(t′) that satisfies proportionality. The

correctness follows immediately from the definition of the records together with the

fact that the forgotten agent a has no neighbors in G \χ(Tt). Finally, the running-time

follows because we can check whether a record in R(t′) satisfies proportionality in

time O(|R|).

Lemma 6. Let t ∈ V (T ) be a join node with children t1 and t2. Then R(t) can be

computed from R(t1) and R(t2) in time O(|R(t1)||R(t2)||TR|tw(G)).

Proof. We say that two records (α1, ũ1, β1) ∈ R(t1) and (α2, ũ2, β2) ∈ R(t2) are

compatible if they satisfy the following properties:

• α1 = α2, i.e., all agents in the bag χ(t) are assigned the equivalent bundles in

terms of resource types,
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• ũ1 + ũ2 −
∑

a∈χ(t) α1(a) ≤ BFUN(R) , i.e., there are sufficient resources of

every type available;

Then, for every two compatible records (α1, ũ1, β1) ∈ R(t1) and (α2, ũ2, β2) ∈
R(t2), the set R(t) contains the record (α, ũ, β) satisfying:

(J1) α = α1 = α2,

(J2) ũ = ũ1 + ũ2 −
∑

a∈χ(t) α(a),

(J3) β(a) = β1(a) + β2(a)− (
∑

a′∈N+

G
(a)∩χ(t) α(a

′)) for every a ∈ χ(t);

Informally, the correctness of the construction follows from the definition of the records

and the fact that there are no edges between agents in χ(Tt1) \ χ(t) and agents in

χ(Tt2) \ χ(t).
More formally, we need to show that a record (α, ũ, β) ∈ R(t) if and only if there

are two compatible records (αi, ũi, βi) ∈ R(ti) satisfying (J1)–(J3).

So suppose that (α, ũ, β) ∈ R(t) and let π : χ(Tt) → 2R be an allocation witness-

ing this. Let πi : χ(Tti) → 2R be the restriction of π to χ(Tti) for every i ∈ {1, 2}.

Then, πi witnesses that the record (αi, ũi, βi) is in R(ti), where αi(a) = πi(a),
βi(a) = π(N+

G (a) ∩ χ(Tti)) for every a ∈ χ(ti) and ũi = πi(χ(Tti). Moreover,

(α1, ũ1, β1) and (α2, ũ2, β2) are compatible because π1 and π2 are restrictions of π
only overlapping in χ(t). Finally, it is straightforward to verify that (α, ũ, β) and the

records (αi, ũi, βi) satisfy (J1)–(J3).

Towards showing the reverse direction, let (αi, ũi, βi) ∈ R(ti) for i ∈ {1, 2} be

two compatible records and let (α, ũ, β) be the record obtained from them that satisfies

(J1)–(J3). Let πi : χ(Tti) → 2R be an allocation witnessing that (αi, ũi, βi) ∈ R(ti).
Then, because (α1, ũ1, β1) and (α2, ũ2, β2) are compatible, the function π : χ(Tt) →
2R defined by setting π(a) = π1(a) = π2(a) for every a ∈ χ(t) and π(a) = π1(a) for

every a ∈ χ(Tti) \ χ(ti) is a well-defined allocation. Moreover, because there are no

edges between χ(Tt1)\χ(t) and χ(Tt2)\χ(t) and because (α, ũ, β) satisfies (J1)–(J3),

we obtain that π witnesses that (α, ũ, β) ∈ R(t).
Finally, the running-time can be obtained by observing that there are at most

|R(t1)||R(t2)| compatible pairs of records and for each of them, we require time at

most O(|TR|tw(G)).

We are now ready to establish our main theorem.

Proof of Lemma 2. The algorithm computes the set of all valid records R(t) for ev-

ery node t of T using a bottom-up dynamic programming algorithm starting in the

leaves of T . It then solves I by checking whether R(r) contains a record (α, ũ, β)
such that ũ = BFUN(R). Note that the correctness of the algorithm follows from

Lemmas 3, 4, 5, and 6. The running-time of the algorithm is at most the num-

ber of nodes of T , which can be assumed to be upper-bounded by tw(G) · |A| [16,

Lemma 7.4], times the maximum time required to compute R(t) for any of the four

node types of a nice tree-decomposition, which because of lemmas 3, 4, 5, and 6

is at most O(|R(t)|2|TR|tw(G)). Because |R(t)| ≤ |R||TR|(2tw(G)+1), we obtain

O(|R|2|TR|(2tw(G)+1)(tw(G))2|TR||A|) as the total running-time of the algorithm.
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From the running time of Theorem 1 and the fact that |TR| ≤ |R|, we also obtain

an FPT result when we parameterize by the number of resources instead of the number

of resource-types.

Corollary 7. GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION is in FPT pa-

rameterized by the treewidth of the social network and number of resources.

4. Algorithmic Lower Bounds

The aim of this section is to show that Theorem 1 is essentially tight—i.e., one can

strengthen it neither by dropping one of the two parameters, nor by obtaining a fixed-

parameter algorithm for the same parameterization. To obtain the latter result, we give

a parameterized reduction which establishes that both GEFA and GPEFA are W[1]-

under this parameterization.

In the following we denote edges in an undirected graph as sets of their two end-

points. This mean an undirected edge between vertices u and v of G is denoted by

{u, v}.

The problem we reduce from is defined as follows.

EQUITABLE COLORING

Input: A graph G, an integer q ∈ N.

Question: Is there an equitable coloring of G, i.e. a function ψ : V (G) → [q]
such that for every {u, v} ∈ E(G) it holds ψ(u) 6= ψ(v) and for all

i, j ∈ [q] it holds |ψ−1(i)| − |ψ−1(j)| ≤ 1?

Fact 8 ([20]). EQUITABLE COLORING is W[1]-hard parameterized by tw(G)+q, even

when restricted to cases where |V (G)| is divisible by q.

Theorem 9. GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION is W[1]-hard pa-

rameterized by treewidth, number of resource-types, and number of agent-types, and

bundle-size.

Proof. The proof is very similar for both GPEFA and GEFA.

Given an instance (G, q) of EQUITABLE COLORING in which |V (G)| is a multiple

of q, we will construct an instance of I = (A,R, (τa)a∈A, G
′) of GRAPH (PROPOR-

TIONAL) ENVY-FREE ALLOCATION as follows:

Agents. The set A is the union of the following sets:

• A set AV containing an agent av for every v ∈ V (G),

• for every edge e = {u, v} ∈ E(G):

– a set Aue = { aie,u | i ∈ [q] },

– a set Ave = { aie,v | i ∈ [q] },

– a set Ae = { ai,je | i, j ∈ [q], i 6= j },

• a set Ad of 10q2(|V (G)|+ |E(G)|) agents, and

• a single agent ad.
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Figure 3: Social network in proof of Theorem 9; specifically for an edge e = {u, v}. Double lines denote

complete connectivity and edges exist between vertices of the middle and right rectangle if they share a

same-color (upper) index.

Graph. The graph G′ is bidirectional, and whenever we say that G′ contains edge

{a1, a2} we mean that it contains both arcs (a1, a2) and (a2, a1). The graph G′ con-

tains the following edges:

• An edge {av, a
i
e,v} for every i ∈ [q], v ∈ V (G), and e = {u, v} ∈ E(G),

• an edge {aie,v, a
i,j
e } for every i 6= j ∈ [q], v ∈ V (G), and e = {u, v} ∈ E(G),

• an edge {aie,v, a
j,i
e } for every i 6= j ∈ [q], v ∈ V (G), and e = {u, v} ∈ E(G),

and

• an edge between ad and every other agent.

An illustration of the graph is given in Figure 3. Note that Ad is an independent set.

Resources. The set R is the union of the following sets.

• For each color c ∈ [q] a set Rc of
|V (G)|
q

resources,

• a set R� of 2 · |E(G)| resources,

• a set RE of 2(q − 1) · |E(G)| resources,

• a set D of (q2 − q − 1) · |E(G)| resources,

• a set U of |E(G)| resources,

• a set Rd of 10q2(|V (G)|+ |E(G)|) resources, and

• a single resource rd.

Note that the number of resources is the same as the number of agents, so in any

graph proportional envy-free solution, every agent is assigned at least 1 object.

Preferences. We have the following types of agents (see also Table 2):

1. For a ∈ AV :

• If r ∈ {rd} ∪
⋃

c∈[q]Rc, we let τa(r) = 1.

• If r ∈ R \
⋃

c∈[q]Rc, we let τa(r) = 0.
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Resource Type

A
g

en
t

T
y

p
e

Rc Rc′ R� RE D U Rd rd

AV 1 1 0 0 0 0 0 1

ace,u 2 0 3 1 0 0 0 1

Ae 0 0 0 2 3 1 0 1

Ad 0 0 0 0 0 0 1 1

ad 0 0 0 0 0 0 0 1

Table 2: The table of preferences of agents for resources depending on the agent and resource-type. The

agent type ace,u represents an agent in Au
e associated with the color c ∈ [q]. The resource-type Rc represent

the resource-type associated with the color that matches the color of ace,u, Rc′ represent the resource type

associated with any other color that is c′ ∈ ([q] \ {c}). Note that only agents ace,u in some of the sets Au
e ,

for some edge e ∈ E(G) and some vertex u ∈ e have a different preference for Rc and Rc′ .

2. For each c ∈ [q], v ∈ V (G), e = {u, v} ∈ E(G) and a = ace,v:

• If r ∈ R�, we let τa(r) = 3.

• If r ∈ Rc, we let τa(r) = 2.

• If r ∈ {rd} ∪RE , we let τa(r) = 1.

• Else we let τa(r) = 0. Note that this includes r ∈ Rc′ for c′ 6= c.

3. For a ∈ Ae for some e ∈ E(G):

• If r ∈ D, we let τa((r)) = 3.

• If r ∈ RE , c ∈ [r], we let τa(r) = 2.

• If r ∈ {rd} ∪ U , we let τa(r) = 1.

• Else we let τa(r) = 0.

4. for a ∈ Ad:

• If r ∈ {rd} ∪Rd, we let τa((r)) = 1.

• Else we let τa(r) = 0.

5. for a = ad:

• If r = rd, we let τa((r)) = 1.

• Else we let τa(r) = 0.

This concludes the construction. We will now show that (G, q) is a YES-instance

of EQUITABLE COLORING if and only if I = (A,R, (τa)a∈A, G
′) is a YES-instance

of GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION.

For simplicity, in the rest of the proof we will use π(a) ∈ S as a shorthand for

π(a) = {r} for an arbitrary resource r ∈ S. Now, let ψ : V (G) → [q] be an equitable

coloring of G. We define an graph proportional envy-free allocation π : A → 2R as

follows:
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• For v ∈ V (G), we let π(av) ∈ Rψ(v). This is possible as in an equitable coloring

of an instance in which |V (G)| is divisible by q, at most
|V (G)|
q

vertices in V (G)
that share the same color, and by construction each Rψ(v) contains sufficiently

many resources.

• For v ∈ V (G), e = {u, v} ∈ E(G) and i ∈ [q], we let π(aie,v) ∈

RE if i 6= ψ(v) and π(aie,v) ∈ R� otherwise. This is possible as
∑

v ∈ V (G)
∑

e={u,v}∈E(G) 1 =
∑

v ∈ V (G) degG(v) = 2|E(G)| and there

is exactly one i ∈ [q] with i = ψ(v). By construction both RE and R� are

appropriately sized.

• For e = {u, v} ∈ E(G) and i, j ∈ [q] with i 6= j, we let π(ai,je ) ∈ U if

i = ψ(u) and j = ψ(v) and we let π(ai,je ) ∈ D otherwise. This is possible

as
∑

e = {u, v} ∈ E(G)
∑

i 6=j∈[q] 1 = |E(G)|(q2 − q) and for each edge e =

{u, v} ∈ E(G) there is exactly one combination of i and j such that ψ(u) = i
and ψ(v))j. By construction both U and D are appropriately sized.

• For a ∈ Ad, we let π(a) ∈ Rd. This is trivially possible as by construction

|Ad| = |Rd|.

• We let π(ad) = {rd}.

The graph envy-freeness of the allocation π is straightforward to verify. For

the proportionality, note that every agent a values her assigned resource at least

1. Moreover, τa(A) ≤ max{3 · |R \ Rd|, |Rd|} ≤ 10q2(|V (G)| + |E(G)|) and

|A \N+
G (a)| ≥ |Ad| = 10q2(|V (G)|+ |E(G)|). Hence, the allocation is proportional.

For the backward direction, let π be a graph envy-free allocation (note that every

graph proportional envy-free allocation is also graph envy-free). We will show that the

agents in AV are assigned precisely the resources in
⋃

c∈[q]Rc such that the coloring

ψ defined as

ψ(v) = c if and only if π(av) ∈ Rc

is an equitable coloring of G by q colors. Note that ad is adjacent to every other agent

and and she desires only rd. Hence, ad is assigned the resource rd by graph envy-

freeness of π. Moreover, every other agent values rd with value 1, hence every agent

has to be assigned an resource in R \ {rd} that she values at least 1. Since the number

of resources is the same as the number of agents, it is easy to see that every agent is

assigned precisely one resource.

Now observe that agents in AV value only the resources in
⋃

c∈[q]Rc. Similarly,

every agent in Ad is assigned in resource in Rd. Now let v ∈ V (G), e ∈ E(G) be

an edge incident with v, and let c ∈ [q] be such that π(av) ∈ Rc. It follows from

graph envy-freeness that ace,v ∈ R�, because all resources in Rc are already assigned

to agents in AV and if we assigned to ace,v anything else, she would envy the agent ac
for an resource in Rc. As there are precisely 2|E(G)| resources in R� and agents in

Ave value only resources in R� ∪ RE ∪
⋃

c∈[q]Rc it follows that all the other agents

in Ave are assigned resources in RE and agents in Ae are assigned resources either in

D or in U . Furthermore, as argued above, there is exactly one pair i, j ∈ [q] for each

e = {u, v} such that both π(aie,u) and π(aje,v) contain an resource in R� and it is
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Figure 4: Illustration for the construction of a tree decomposition T ′ (right) of G′ from a tree decomposition

T (left) of G in the proof of Theorem 9 witnessing the desired treewidth bound. In this snippet, the construc-

tion is indicated for φ(e) = φ(f) as the top depicted bag. Note that it is also valid to choose φ(e) to be the

bottom depicted bag. The dotted pattern indicates parts of the bags which are in a one-to-one correspondence

within the two tree decompositions.

precisely when π(au) ∈ Ri and π(av) ∈ Rj . In all other cases at least one neighbor of

ai,je is assigned an resource inRE and by graph envy-freeness π(ai,je ) ∈ D. Therefore,

in order to assign all resources in U , we have to assign precisely one resource from U
to an agent in Ae for each e. Moreover, it has to be the agent ai,je such that π(au) ∈ Ri
and π(av) ∈ Rj . Note, that it follows that i 6= j and assigning to v ∈ V (G) color c if

π(av) ∈ Rc is a proper coloring of G. Finally, it is also an equitable coloring, because

the sizes of Rc for all c ∈ [q] are precisely
|V (G)|
q

.

It remains to show that the parameters are small. Clearly, the number of resource-

types is q + 6, the number of agent-types is q + 4, and the maximum bundle-size is 1.

To show that treewidth remains small let T = (T, χ) be a tree-decomposition of G of

width tw(G).
Now we construct tree-decomposition T ′ = (T ′, χ′) of G′ as follows (see Figure 4

for a schematic illustration). We let T ′ = T . Now let φ : E(G) → T be an arbitrary

function such that for every edge e ∈ E(G′), e ⊆ χ(φ(e)); that is, φ assigns an edge e a

node t ∈ T such that u, v ∈ χ(t). For each t ∈ V (T ), we let χ′(t) = { ad }∪{ av | v ∈
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χ(t) } ∪ { a | ∃e = {u, v} ∈ φ−1(t) a ∈ Ae ∪A
u
e ∪A

v
e }. In this way

|χ′(t)| = 1 + |{ av | v ∈ χ(t) }|+ |{ a | a ∈ Ae ∪A
u
e ∪A

v
e ; e = {u, v} ∈ φ−1(t) }|

= 1 + |χ(t)|+
∑

e∈φ−1(t)

(|Ae|+ |Aue |+ |Ave |)

= 1 + |χ(t)|+
∑

e∈φ−1(t)

(q(q − 1) + 2q)

= 1 + |χ(t)|+
∑

e∈φ−1(t)

(q(q − 1) + 2q)

= 1 + |χ(t)|+ |φ−1(t)|(q(q − 1) + 2q)

≤ 2 + tw(G) +

(

tw(G) + 1

2

)

(q2 + 2q).

Hence the size of each bag of the decomposition T ′ is bounded by a function of the

parameter. Finally we show that T ′ satisfies the properties of a tree-decomposition.

First note that all edges in G′ are between vertices in {au, av} ∪ Ae ∪ Aue ∪ Ave
for some e = {u, v} ∈ E(G). And by the construction of T ′ there is a node t such

that {au, av} ∪Ae ∪A
u
e ∪A

v
e ⊆ χ′(t) and the property (P1) is satisfied. Furthermore,

only the vertices in AV are in more that one bag and for every v ∈ V (G) it holds that

av ∈ χ′(t) if and only if v ∈ χ(t). Since T is a tree-decomposition, the property (P2)

holds as well.

Note that in the proof of Theorem 9, the number of resource-types and number of

agent-types is bounded by a function of the number of colors q and is independent of

treewidth of G. Moreover, the bundle-size is 1. Furthermore, EQUITABLE COLORING

is NP-hard already for 3 colors (this can be easily shown by adding an independent set

of size 2n to an instance of 3-COLORING, so any 3-coloring of the original graph can

be extended to a coloring where every color set contains precisely n colors). There-

fore, starting from an instance of EQUITABLE COLORING with 3 colors and using the

reduction given in the proof of Theorem 9, we get the following theorem:

Corollary 10. GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION is NP-hard

even when restricted to instances with a constant number of resource-types, number

of agent-types, and bundle-size.

Our last lower-bound result is a counterpart to Corollary 10 showing that Theorem 1

cannot be strengthened by omitting the number of resource-types from the parameter-

ization. Indeed, we even show that a structural restriction stronger than treewidth,

namely parameterizing by the vertex cover number is insufficient to obtain tractability.

Theorem 11. GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION is NP-hard even

for treewidth and vertex cover number 0 (resp. 1 for GEFA) and one agent-type.

Proof. The reduction is nearly identical to the one given in a previous work by Bliem,

Bredereck and Niedermeier [6, Theorem 3]. Their result showed that a modification

of GPEFA on complete graphs is W[1]-hard parameterized by the number of agents,

20



even when there is only one agent-type. We will now give the reduction and point out

the differences. The reduction is from the following NP -hard problem.

UNARY BIN PACKING

Input: Positive integers w1, . . . , wm, b, C encoded in unary.

Question: Is there an assignment of m resources with weights w1, . . . , wm to at

most b bins such that none of the bins exceeds weight capacity C

As in the reduction by Bliem, Bredereck and Niedermeier [6], we use the set of

resourcesR = {r1, . . . , rm}∪{d1, . . . , dq}, where q = b ·C−
∑

1≤i≤m wi is the total

amount of “unused capacity” and the set of agents A = {a1, . . . , ab} such that each

agent ai has a preference function τai(dj) = 1, j ∈ [q], and τai(rj) = wj , j ∈ [m].
Our choice of the social network depends on whether we consider GPEFA or GEFA.

We start with the reduction for GPEFA. In this case we set the social network G to

be edgeless.

The forward direction is exactly the same as in [6]. We assign the resources accord-

ing to the bin packing and fill the assignment for each agent with enough resources in

D = {d1, . . . , dq} such that τai(π(ai)) = C for all i ∈ [b]. It is easy to see that the

assignment is graph proportional envy-free.

For the backward direction, we will show that in any graph proportional envy-free

allocation π it holds τai(π(ai)) = C. From completeness of π (i.e., because every

resource is mapped to an agent) it is then straightforward to assign the resource j to bin

i if and only if rj ∈ π(ai). As the graph is edgeless it follows from proportionality for

every agent a that τa(π(a)) ≥
∑

r∈R τa(r)

b
. As the preference function is the same for

all agents and since for each agent a ∈ A we have
∑

r∈R τa(r) = b ·C, this is possible

only if all agents are assigned resources of total value C.

For GEFA we consider as social networkG a star with center a1 in which all edges

are bidirected.

The forward direction is again exactly same as in the previous related reduction [6].

We assign the resources according to the bin packing and fill the assignment for each

agent with enough resources in D = {d1, . . . , dq} such that τai(π(ai)) = C for all

i ∈ [b]. It is easy to see that the assignment is graph envy-free.

For the backward direction, note that for any S ⊆ R and i, j ∈ [b] it holds τai(S) =
τaj (S). Therefore from graph envy-freeness it follows that a1 values the assignments

of all agents the same. From completeness of π it follows that every agent is assigned

resources of total value C.

5. Dealing with Dense Networks

A limitation of Theorem 1 is that it requires the social network to be sparse. In

this section, we will show that the graph parameter clique-width can be used instead of

treewidth as long as the number of agent-types is also bounded. Since complete bidi-

rected graphs have a clique-width of 2, this setting also generalizes the (well-studied)

problem of allocating resources to agents without a network.
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Theorem 12. GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION is in XP param-

eterized by clique-width of the social network, number of resource-types, and number

of agent-types.

For the remainder of this subsection, let I = (A,R, (τa)a∈A, G) be the given

instance of GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION. It is known that

an approximate k-expression tree can be computed in fixed-parameter time even for

digraphs [34, 26, 22], and so it suffices to solve the problem when a k-expression tree

for G is provided in the input.

Lemma 13. GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION can be solved in

time at most O(|R||TR|(2k|TA|+1)k2|A|) when a k-expression tree T of G is provided

as part of the input.

Let t be a node of T , and recall that t could be one of the following four types of

nodes: i(v), ⊕, ηi,j or pi→j . Let Tt be the subtree of T rooted at t, and let Gt be the

k-graph defined by the k-expression tree Tt; furthermore, let Ωt denote the set of labels

used in Gt, At denote the set of agents in Gt, and let Aωt denote the set of all agents in

Gt with label ω. For instance, if r is the root of T then Gr = G, and for each leaf t in

T it holds that Gt is a graph with a single labeled agent.

The high-level idea of the algorithm is similar to the idea behind our algorithm for

treewidth, i.e., the aim is to compute a set of records for every node t ∈ V (T ) (in

a leaf-to-root fashion), where each record represents a set of partial solutions for Gt.
However, the records and computations required here are significantly more complex

than those used for treewidth—and this is especially the case for GPEFA.

A record for a node t ∈ V (T ) is a tuple (αmin, αmax, ũ, β), where:

• αmin : Ωt × TA → B is a function that for every ω ∈ Ωt and every ta ∈ TA
provides the bundle function of a bundle with minimum value w.r.t. τta

allocated

to any agent of type ta and label ω in Gt.

• αmax : Ωt × TA → B is a function that for every ω ∈ Ωt and every ta ∈ TA
provides the bundle function of a bundle with maximum value w.r.t. τta

allocated

to any agent with label ω in Gt.

• ũ : Ωt → B is a function that for every label ω ∈ Ωt provides the bundle

containing all resources already assigned to all agents with label ω in Gt. Note

that the distinction between different labels is only necessary when considering

proportionality—for GEFA, it suffices to merely remember the bundle function

of all resources assigned so far.

• (can be omitted for GEFA) β is a function that maps every tuple (ω ∈ Ωt, ta ∈
TA) to (a, bfun, bfun+), where:

– a is an agent of type ta with label ω in Gt that maximizes:

τta
(R)− τta

(π(a))|A \N+
G (a)| − τta

(π(N+
G (a) ∩At))

for an allocation π of Gt.
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– bfun is equal to the bundle function of agent a, and

– bfun+ is equal to the bundle function of the bundle containing all resources

already assigned to all out-neighbors of a in Gt.

The semantics of a record are as follows. We say that a record (αmin, αmax, ũ, β) for a

node t ∈ V (T ) is valid if there is an allocation π : At → 2R satisfying:

(R1) For every ω ∈ Ωt and ta ∈ TA, it holds that αmin(ω, ta) = BFUN(π(a)), where

a is an agent of type ta with label ω minimizing τa(π(a)) among all agents in Gt
of type ta and label ω.

(R2) For every ω ∈ Ωt, ta ∈ TA, it holds that αmax(ω, ta) = BFUN(π(a)), where a
is an agent with label ω in Gt maximizing τa(π(a)) among all agents with label

ω in Gt.

(R3) For every ω ∈ Ωt, it holds that ũ(ω) = BFUN(π(Aωt )).

(R4) π is graph envy-free on the instance induced by the agents in At, i.e., for all

a ∈ At, it holds that τa(π(a)) ≥ τa(π(a
′)) for every a′ ∈ N+

G (a) ∩At,

(R5) This condition only applies for GPEFA, and is also the most involved. For every

ω ∈ Ωt, ta ∈ TA, it holds that β(ω, ta) = (a, bfuna, bfun
+
a ), where a is an agent

of type ta with label ω in Gt that maximizes:

τta
(R)− τta

((π(a)))|A \N+
G (a)| − τta

(π(N+
Gt

(a)))

Note that in R5, the value of the equation equals the value that is still required, i.e., still

needs to be distributed among the out-neighbors of any agent a to satisfy proportion-

ality. Since a maximizes the required value (among all agents with label ω and type

ta), this implies that once we added sufficient value among the out-neighbors of a to

satisfy proportionality for a, all agents with label ω and type ta satisfy proportionality.

Also note that it would be sufficient to only store the required value for a (instead of

the triple (a, bfuna, bfun
+
a )), however, then our algorithm would only be efficient for

instances with a unary encoding of the valuations.

For a node t ∈ V (T ) we denote by R(t) the set of all valid records for t. Then I
is a YES-instance if and only if the root r of T satisfies the following: R(r) contains

a record (αmin, αmax, ũ, β) such that
∑

ω∈Ωr
ũ(ω) = BFUN(R) and, for the case of

GPEFA, additionally:

τta
(R)− τta

(bfuna)|A \N+
G (a)| ≤ τta

(bfun+a )

for every ω ∈ Ωr and every ta ∈ TA, where β(ω, ta) = (a, bfuna, bfun
+
a ).

We note that, using the same standard techniques as for treewidth, one can always

reconstruct an allocation from the records. Hence, to conclude the proof it suffices

to compute R(t) via leaf-to-root dynamic programming. The following four lemmas

show how this can be achieved for all of the four types of nodes in a k-expression tree.

Lemma 14. Let ℓ ∈ V (T ) be a leaf node of the form ω(a). Then R(ℓ) can be computed

in time O(|B|).
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Proof. Let ta be the agent-type of a. Then, for every bundle function (corresponding to

an allocation of resources to a) bfuna ∈ B, R(ℓ) contains a record (αmin, αmax, ũ, β)
such that:

• αmin(ω, ta) = bfuna,

• αmax(ω, ta) = bfuna,

• ũ(ω) = bfuna,

• β(ω, ta) = (a, bfuna,BFUN(∅)).

The correctness follows immediately from the semantics of the records and the

running-time is dominated by the number of possible choices for bfuna, which is

|B|.

Lemma 15. Let t ∈ V (T ) be a disjoint union node with children t1 and t2. Then R(t)
can be computed from R(t1) and R(t2) in time O(|R(t1)||R(t2)|k|TA||TR|).

Proof. We say that two records (α1
min, α

1
max, ũ

1, β1) ∈ R(t1) and

(α2
min, α

2
max, ũ

2, β2) ∈ R(t2) are compatible if
∑

ω∈Ωt
ũ1(ω) + ũ2(ω) ≤ BFUN(R).

Then, for every two compatible records (α1
min, α

1
max, ũ

1, β1) ∈ R(t1) and

(α2
min, α

2
max, ũ

2, β2) ∈ R(t2), R(t) contains the record (αmin, αmax, ũ, β) such

that:

• For every ω ∈ Ωt and ta ∈ TA either: αmin(ω, ta) = α1
min(ω, ta), if τta

(α1
min(ω,

ta)) ≤ τta
(α2

min(ω, ta)), or αmin(ω, ta) = α2
min(ω, ta), otherwise. Note that if

the functions αimin are undefined for particular values of ω and ta, we assume

that their value is equal to BFUN(R).

• For every ω ∈ Ωt and ta ∈ TA either: αmax(ω, ta) = α1
max(ω, ta), if τta

(α1
max(ω, ta)) ≥ τta

(α2
max(ω, ta)), or αmax(ω, ta) = α2

max(ω, ta), otherwise.

Note that if the functions αimax are undefined for particular values of ω and ta,

we assume that their value is equal to BFUN(∅).

• ũ(ω) = ũ1(ω) + ũ2(ω) for every ω ∈ Ωt,

• For every ω ∈ Ωt and ta ∈ TA, we distinguish two cases: We set β(ω, ta) =
β1(ω, ta), if

τta
(R)− τta

(bfuna1)|A \N+
G (a1)| − τta

(bfun+a1) ≥

τta
(R)− τta

(bfuna2)|A \N+
G (a2)| − τta

(bfun+a2)

where β1 = (a1, bfuna1 , bfun
+
a1) and β2 = (a2, bfuna2 , bfun

+
a2). Otherwise,

we set β(ω, ta) = β2(ω, ta).
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The correctness of the construction is rather obvious because Gt is obtained as the

disjoint union of Gt1 and Gt2 and therefore there are no interactions between agents in

the two parts. For instance, the definition of αmin(ω, ta) for every ω ∈ Ωt and ta ∈ TA
follows because the agent a in At of type ta and label ω that minimizes τa(π(a)) is

either in At1 , in which case we set αmin(ω, ta) = α1
min(ω, ta), or in At2 , in which case

we set αmin(ω, ta) = α2
min(ω, ta).

Finally, the running-time follows because there are at most |R(t1)||R(t2)| pairs of

such records and for every such pair the time required is at most O(k|TA||TR|).

Lemma 16. Let t ∈ V (T ) be a relabeling node of the form pi→j with child t′. Then

R(t) can be computed from R(t′) in time O(|R(t′)|k|TA||TR|).

Proof. For every record (α′
min, α

′
max, ũ

′, β′) ∈ R(t′), R(t) contains the record (αmin,
αmax, ũ, β) such that:

• For every ω ∈ Ωt and ta ∈ TA either:

– αmin(ω, ta) = α′
min(ω, ta), if ω /∈ {i, j},

– αmin(ω, ta) = BFUN(R), if ω = i, or

– if ω = j, then either αmin(ω, ta) = α′
min(j, ta), if τta

(α′
min(i, ta)) ≥

τta
(α′

min(j, ta)), or αmin(ω, ta) = α′
min(i, ta) , otherwise.

Note that if the function α′
min is undefined for particular values of ω (only pos-

sible for ω = j), we assume that its value is equal to BFUN(R).

• For every ω ∈ Ωt and ta ∈ TA either:

– αmax(ω, ta) = α′
max(ω, ta), if ω /∈ {i, j},

– αmax(ω, ta) = BFUN(∅), if ω = i, or

– if ω = j, then either αmax(ω, ta) = α′
max(j, ta), if τta

(α′
min(i, ta)) ≤

τta
(α′

min(j, ta)), or αmax(ω, ta) = α′
max(i, ta), otherwise. Note that if the

function α′
max is undefined for particular values of ω (only possible for

ω = j), we assume that its value is equal to BFUN(∅).

• ũ(ω) = ũ′(ω) for every ω ∈ Ωt,

• For every ω ∈ Ωt and ta ∈ TA either:

– β(ω, ta) = β′(ω, ta), if ω /∈ {i, j},

– β(ω, ta) = undef, if ω = i, or

– if ω = j, then we distinguish two cases:

We set β(ω, ta) = β′(i, ta), if

τta
(R)− τta

(bfuna1)|A \N+
G (a1)| − τta

(bfun+a1) ≥

τta
(R)− τta

(bfuna2)|A \N+
G (a2)| − τta

(bfun+a2)

where β(i, ta) = (a1, bfuna1 , bfun
+
a1) and β(j, ta) =

(a2, bfuna2 , bfun
+
a2). Otherwise, we set β(ω, ta) = β′(j, ta).
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The correctness of the construction follows using very similar arguments as for

the disjoint union node in Lemma 15. In essence, relabeling the label i to j means

that Ajt is obtained as the disjoint union of Ait′ and Ajt . Furthermore, it means that

Ait is empty and that nothing changes for the agents with any label other than i or

j. Therefore, αmin(ω, ta), αmax(ω, ta), and β(ω, ta) remain unchanged whenever ω /∈
{i, j}. Moreover, if ω = i, then αmin(ω, ta), αmax(ω, ta), and β(ω, ta) are reset to their

respective undefined value, i.e., BFUN(R), BFUN(∅), or undef, respectively. Finally,

if ω = j then αmin(ω, ta), αmax(ω, ta), and β(ω, ta) are obtained as in Lemma 15

by considering the disjoint union of the labels i and j. For instance, the definition

of αmin(j, ta) for every ta ∈ TA follows because the agent a in Ajt of type ta that

minimizes τa(π(a)) is either in Ait′ , in which case we set αmin(j, ta) = α′
min(i, ta), or

in Ajt′ , in which case we set αmin(j, ta) = α′
min(j, ta).

Finally, the running-time follows because there are at most |R(t′)| records in R(t′)
and for every such record the time required is at most O(k|TA||TR|).

Lemma 17. Let t ∈ V (T ) be an add-edge node with child t′ of the form ηi,j . Then

R(t) can be computed from R(t′) in time O(|R(t′)|k|TA||TR|).

Proof. Consider a record R = (α′
min, α

′
max, ũ

′, β′) ∈ R(t′). We say that R is extend-

able if:

τta
(α′

min(i, ta)) ≥ τta
(α′

max(j, ta))

for every ta ∈ TA. Informally, R is extendable if no agent of label i envies an agent

with label j, which implies that R still satisfies condition (R4) for a valid record after

all edges from agents with label i to agents with label j are added.

Then, for every extendable record R′ = (α′
min, α

′
max, ũ

′, β′) ∈ R(t′), R(t) con-

tains the record R = (αmin, αmax, ũ, β) such that:

• αmin = α′
min, αmax = α′

max, ũ = ũ′,

• For every ω ∈ Ωt and ta ∈ TA, either: β(ω, ta) = β′(ω, ta), if ω 6= i, or

β(ω, ta) = (a, bfuna, bfun
+
a +ũ′(j)), where β′(ω, ta) = (a, bfuna, bfun

+
a ),

otherwise.

The correctness of the construction can be seen as follows. First the condition

that R′ is extendable ensures that R satisfies condition (R4). Moreover, since no new

agents are added and we do not change the bundles (or equivalently bundle functions)

for any agents, it holds that αmin = α′
min, αmax = α′

max, and ũ = ũ′. Moreover,

β(ω, ta) = β′(ω, ta) for every label ω ∈ Ωt \{i} and ta ∈ TA because nothing changes

for the corresponding agents. Finally, if ω = i we need to update β(ω, ta) to take into

account that all agents with label j are now additional out-neighbors of all agents with

label i. That is, we need to add the bundle function ũ′(j) for the bundle of resources

assigned to all agents of label j to the bundle function bfun+a for the bundle of resources

assigned to the out-neighbors of agent a, where β′(ω, ta) = (a, bfuna, bfun
+
a ).

Finally, the running-time follows because there are at most |R(t′)| records in R(t′)
and for every such record the time required is at most O(|TA||TR|).

We are now ready to prove our main theorem.

26



Proof of Lemma 13. The algorithm computes the set of all valid records R(t) for every

node t of T using a bottom-up dynamic programming algorithm starting in the leaves

of T . It then solves I by checking whether R(r) 6= ∅. Note that the correctness

of the algorithm follows from Lemmas 14, 15, 16, and 17. The running-time of the

algorithm is at most the number of nodes of T , i.e., at most k2|A|, times the maximum

time required to compute R(t) for any of the four node types of a k-expression tree,

which because of lemmas 14, 15, 16, and 17 is at most O(|R(t)|2k|TA||TR|). Because

|R(t)| ≤ |R||TR|(4|TA|+1), we obtain an upper bound of O(|R||TR|(2k|TA|+1)(k2|A|)
for the total running-time of the algorithm.

From the running time of Theorem 12 and the fact that |TR| ≤ |R|, we also obtain

an FPT result when we parameterize by the number of resources instead of the number

of resource-types.

Corollary 18. GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION is in FPT pa-

rameterized by clique-width of the social network, number of resources, and number

of agent-types.

Towards Fixed Parameter Tractability. Theorem 9 excludes the existence of a

fixed-parameter algorithm for GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION

parameterized by the treewidth and a number of additional parameters of the instance

under standard complexity assumptions. Hence it is natural to consider more restrictive

parameterizations of the social network. Here we consider, as has been done for other

difficult problems [21], the vertex cover number as a stronger structural restriction.

By using the vertex cover number as our network (graph) parameter, we obtain a

fixed-parameter algorithm for GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION.

Recall that, based on Theorem 11, it is not possible to achieve tractability by restricting

the structure of the graph alone, at least not in any natural way—and to achieve our

result, we parameterize by the number of resource-types (analogously as in Theorem 1)

and additionally by the bundle-size; here, the use of a stronger structural restriction

allows us to circumvent the lower bound given by Theorem 9.

Theorem 19. GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION is in FPT pa-

rameterized by vertex cover number of the social network, number of resource-types,

and bundle-size.

Proof. Let I = (A,R, (τa)a∈A, G) be an instance of GRAPH (PROPORTIONAL)

ENVY-FREE ALLOCATION. It is well known that we can compute a minimum-size

vertex cover X ⊆ A of G, i.e., |X| = vcn(G), in FPT time w.r.t. the size of the vertex

cover [16]. Note that becauseX is a vertex cover ofG, for any a ∈ A\X ,N+
G (a) ⊆ X

and N−
G (a) ⊆ X .

Obviously we can branch on disjoint assignments (up to resource-types) of at most

k resources to agents in X in time at most |TR|
k·vcn(G). Denote this partial assignment

by π. In every branch we attempt to extend π to A \X and make sure π is a solution

to GRAPH (PROPORTIONAL) ENVY-FREE ALLOCATION for I.

Because for any a ∈ A \ X , N+
G (a) ⊆ X , graph envy-freeness at a only speaks

about a and its preference of resources assigned to vertices in X . These are already
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fixed by π. We compute (up to resource-type) for each a ∈ A \X all bundles Ra of at

most k elements such that
∑

tr∈TR
τa(tr)BFUN(Ra)[tr] ≥ τa(π(x)) for all x ∈ N+

G (a)

in time |TR|
k · |X|. Denote these bundles by Ba. By construction, the conditions for

graph envy-freeness will be satisfied by π for a ∈ A \X , if and only if π(a) ∈ Ba.

For each a ∈ X we can check graph envy-freeness of π in the current branch w.r.t to

some other a′ ∈ X explicitly in time |X|. (If it is violated, we abandon the current

branch.) Moreover for a ∈ A \ X we can remove bundles Ra from Ba whenever

τa(Ra) <
τa(R\π(N+

G
(a)))

|A\N+

G
(a)|

. In this way we ensure that the graph envy-freeness condi-

tion will be satisfied by π for all of A, if and only if for all a ∈ A \X , π(a) ∈ Ba.

If required, in a second similar step, we restrict the Ba to ensure proportionality:

For a ∈ A \X , N+
G (a) ⊆ X and thus π(N+

G (a)) is already defined by π. We restrict

Ba to all bundles R′ ∈ Ba with τa(R
′) ≥

τa(R\π(N+

G
(a)))

|A\N+

G
(a)|

in time |TR|
k · |X|. By

construction, the conditions for graph proportional envy-freeness will be satisfied by π
for a ∈ A \X , if and only if π(a) ∈ Ba.

Note that proportionality for agents in X is not ensured by this.

It remains to find assignments for each a ∈ A \ X to bundles R′ ∈ Ba in a way

that they are pairwise disjoint and also disjoint to the fixed assignment of π on X , as

well as guaranteeing proportionality for X under this assignment, in the case we are

considering (non-locally) GRAPH PROPORTIONAL ENVY-FREE ALLOCATION.

We do so by considering an integer linear program with a number of variables that

we can bound in terms of vcn(G), |TR| and k. For this we group the agents a ∈ A \X
according to their respective Ba. That is, we say a, a′ ∈ A \X are in the same group

if Ba = Ba′ . Because there are (up to resource-type) at most |TR|
k bundles of k

resources and each Ba is a set of such bundles, the number of groups can be bounded

by 2|TR|·k. Let G1, . . .Gz with z ≤ 2|TR|·k be an enumeration of all the groups of agents

in A \ X . We denote by BG the union
⋃

a∈G Ba. Now for each group G, each of its

bundles RG ∈ BG and each X ′ ⊆ X , we introduce an integer variable xG,RG ,X′ that

will encode how many agents a ∈ G in group G with N−
G (a) = X ′ will be assigned

bundle RG up to equivalent resource-types. On these variables we solve the integer

linear program with the following constraints:

Integrality constraints:

For G ∈ {G1, . . . ,Gz}, RG ∈ BG and X ′ ⊆ X , xG,R,X′ ∈ N0;

These integrality constraints ensure that the number of agents in each group are as-

signed a specific bundle are natural numbers.

Network conformity constraints:

For X ′ ⊆ X and G ∈ {G1, . . . ,Gz},
∑

RG∈BG
xG,RG ,X′ = |{a ∈ A | N−

G (a) =

X ′} ∩ G|;
These network conformity constraints do not ensure any property of an allocation cor-

responding to the solution of the ILP, but rather ensure that the variables of the ILP

encode the desired information. Recall that we want the variable xG,RG ,X′ to encode

how many agents a ∈ G in group G with N−
G (a) = X ′ will be assigned bundle RG .

This means we need to ensure that each agent a ∈ G in group G with N−
G (a) = X ′ is

counted exactly once in
∑

RG∈BG
xG,RG ,X′ . The number of such agents is obviously

|{a ∈ A | N−
G (a) = X ′} ∩ G|.
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Resource constraints:

For tr ∈ TR,
∑

X′⊆X

∑

G∈{G1,...,Gz}

∑

RG∈BG

BFUN(RG)[tr] · xG,RG ,X′ +

BFUN(π(X))[tr] = BFUN(R)[tr];
These resource constraints ensure that all resources are assigned to agents and also that

the given resources of each resource-type are not exceeded.

Proportionality constraints:

For a ∈ X ,
∑

G∈{G1,...,Gz}

∑

RG∈BG

∑

X′⊆X\{a}

τa(RG) · xG,RG ,X′ ≤ |A \ N+
G (a)| ·

τa(π(a))−
∑

a′∈X\N+

G
(a)

τa(π(a
′)).

These proportionality constraints ensure that a solution of the ILP corresponds to a

proportional allocation.

A graph proportional envy-free allocation π∗ for I infers a solution to this ILP in

the branch where π coincides with π∗ restricted to X: This can be seen by setting

xG,RG ,X′ = |{a ∈ G | N−
G (a) = X ′ ∧ BFUN(π∗(a)) = BFUN(RG)}| and verifying

the constraints of the ILP.

Conversely, given a solution to the ILP, i.e., the xG,RG ,X′ are assigned values that

satisfy all constraints, the network conformity constraints guarantee that we find a bi-

jection ϕ between A and {(G, RG , X
′, ℓ) | G ∈ {G1, . . . ,Gz} ∧ RG ∈ BG ∧ X ′ ⊆

X ∧ ℓ ∈ [xG,RG ,X′ ]} such that ϕ maps an agent a to a tuple with this agent’s group

at the first and N−
G (a) at the third component of ϕ(a). In turn the resource constraints

guarantee that we find disjoint bundles that realize for all groups G of agents and all

X ′ ⊂ X , xG,RG ,X′ -many bundles that are equivalent to RG up to resource-types. In

combination this implies we find disjoint bundles for each agent that conform to the

group of that agent. By previous considerations this implies a graph envy-free al-

location, that is also proportional for A \ X . It is straightforward to check that the

proportionality constraints encode exactly proportionality on X in our ILP.

Lenstra’s celebrated result [28] states that an ILP can be solved in FPT time pa-

rameterized by the number of its variables which is in our case 2|TR|·k|TR|
k · 2vcn(G).

This concludes the proof.

6. Concluding Remarks

We initiated the study of resource allocation problems with social networks un-

der natural restrictions to the networks and valuation functions. Our main results

are polynomial-time algorithms for instances whose social networks have constant

treewidth or clique-width in combination with a constant number of resource-types

or a constant number of resource- and agent-types respectively. In this sense this work

shows the potential of exploiting structural properties of the social network for re-

source allocation with social networks, for example in some of the situations presented

in Subsection 2.5.

On the other hand, if one wishes to lift these algorithms to fixed-parameter ones,

our results rule this out for any parameterization by a combination of our main parame-

ters whenever both |A| and |R| are large. This situation is likely to happen for resource

allocation problems that may arise in, e.g., food banks [38]. In this way our work
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points to the necessity of identifying additional parameters that allow us to tackle re-

source allocation in these situations. The fixed-parameter algorithm from Theorem 19

which additionally uses bundle-size can be understood as a very preliminary step in

this direction. More work in this direction is desirable, but is likely to depend more

strongly on the context of and restrictions given in specific applications of GPEFA and

GEFA.

Of course, another immediate direction for theoretical future work would target the

gaps in the parameterized complexity classification of GPEFA and GEFA that are left

open by our work (see Table 1 for an overview with respect to tw(G), cw(G), |A|,
|TA|, |R| and |TR|). Here, a question we find particularly interesting is the following:

Q1: Are there XP algorithms for GPEFA and GEFA parameterized by |TR|+cw(G)?
It would also be natural to study classic resource allocation problems without social

networks parameterized by the number of resource-types and agent-types. A question

which we would like to emphasize here is:

Q2: Are the envy-free/proportional versions of resource allocation without a social

network FPT when parameterized by the number of resource-types?

Note that this is the same as asking for a fixed-parameter algorithm for GEFA on

cliques or GPEFA on edgeless graphs parameterized by the number of resource-types.

Hence Q2 might be a first step toward resolving Q1. This is closely connected to sim-

ilar questions about BIN PACKING. Specifically, when in Q2 we restrict ourselves to

instances with one agent type, we essentially arrive at the question whether BIN PACK-

ING3 is in FPT parameterized by the number of different values of integers in the input.

This problem is known to be in XP [24], but the existence of a fixed-parameter algo-

rithm remains an open question. Note also that if the number of agents is considered

as an additional parameter, then the problem becomes FPT [12].
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