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Abstract

Many security and other real-world situations are dynamic in nature and can be
modelled as strictly competitive (or zero-sum) dynamic games. In these domains,
agents perform actions to affect the environment and receive observations –
possibly imperfect – about the situation and the effects of the opponent’s actions.
Moreover, there is no limitation on the total number of actions an agent can
perform — that is, there is no fixed horizon. These settings can be modelled as
partially observable stochastic games (POSGs). However, solving general POSGs
is computationally intractable, so we focus on a broad subclass of POSGs called
one-sided POSGs. In these games, only one agent has imperfect information
while their opponent has full knowledge of the current situation. We provide
a full picture for solving one-sided POSGs: we (1) give a theoretical analysis
of one-sided POSGs and their value functions, (2) show that a variant of a
value-iteration algorithm converges in this setting, (3) adapt the heuristic search
value-iteration algorithm for solving one-sided POSGs, (4) describe how to use
approximate value functions to derive strategies in the game, and (5) demonstrate
that our algorithm can solve one-sided POSGs of non-trivial sizes and analyze
the scalability of our algorithm in three different domains: pursuit-evasion,
patrolling, and search games.

Keywords: zero-sum partially observable stochastic games, one-sided
information, value iteration, heuristic search value iteration

1. Introduction

Non-cooperative game theory models the interaction of multiple agents in a
joint environment. Rational agents perform actions in the environment to achieve
their own, often conflicting goals. The interaction of agents is typically very
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complex in real-world dynamic scenarios — the agents can perform sequences
of multiple actions while only having partial information about the actions of
others and the events in the environment.

Finding out (approximate) optimal strategies for agents in dynamic environ-
ment with imperfect information is a long-standing problem in Artificial Intelli-
gence. Its applications range from recreational games, such as poker [32, 11], to
uses in security such as patrolling [4, 50, 5] and pursuit-evasion games [25, 24, 1].

For tackling this problem, game theory can provide appropriate mathematical
models and algorithms for computing (approximate) optimal strategies according
to some game-theoretic solution concept. Among all existing game-theoretic
models suitable for modelling dynamic interaction with imperfect information,
partially observable stochastic games (POSGs) are one of the most general ones.
POSGs model situations where all players have only partial information about
the state of the environment, agents perform actions and receive observations,
and the length of the interaction among agents is not a priori bounded. As such,
the expressive possibilities of POSGs are broad. In particular, they can model
all considered security scenarios as well as recreational games.

Despite having high expressive power, POSGs have limited applications due
to the complexity of computing (approximate) optimal strategies. There are two
main reasons for this. First, the imperfect information provides challenges for
sequential decision-making even in the single-agent case – partially observable
Markov decision processes (POMDPs). Theoretical results show that various
exact and approximate problems in POMDPs are undecidable [31]. Focused
research effort has yielded several approximate algorithms with convergence
guarantees [39, 27] scalable even to large POMDPs [37]. The main step when
solving a POMDP is to reason about belief states – probability distributions
over possible states. Note that an agent can easily deduce a belief state in a
POMDP since the environment changes only as a result of the agent’s actions
or because of the environment’s stochasticity (which is known). In POSGs,
however, the presence of another agent(s) changing the environment generates
another level of complexity. Suppose all players have partial information about
the environment. In that case, each player needs to reason not only about their
belief over environment states, but also about opponents’ beliefs, their beliefs
over beliefs, and so on. This issue is called the problem with nested beliefs [30]
and cannot be avoided in general unless we pose additional assumptions on the
game model. This is primarily because, in general POSGs, the choice of the
optimal action (strategy) of a player depends on these nested beliefs. To avoid
this issue, we will focus on a subclass of POSGs that does not suffer from the
problem of nested beliefs while still being expressive enough to contain many
existing real-world games and scenarios.

One such sub-class of POSGs are two-player concurrent-move games where
one player is assumed to have full knowledge about the environment and only one
player has partial information. In this case, the player with partial information
(player 1 from now on) does not have to reconstruct the belief of the opponent
(player 2) since player 2 always has full information about the true state of the
environment. Similarly, player 2 can always reconstruct the belief of player 1 by
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using the full information about the environment, which includes information
about the action-history of player 1. The game is played over stages where
both players independently choose their next action (i.e., albeit player 2 has
full knowledge about the current history and state, he does not know the action
player 1 is about to play in the current stage). The state of the game with the
joint action of the players determines the next state and the next observation
generated for player 1. We term this class of games as one-sided POSG. While
this class of games has appeared before in the literature (e.g., in [44] as Level-1
stochastic games, or in [13] as semiperfect-information stochastic games1) we are
the first to focus on designing a practical algorithm for computing (approximately)
optimal strategies.

Despite the seemingly-strong assumption on the perfect information for
player 2, the studied class of one-sided POSG has broad application possibilities,
especially in security. In particular, this model subsumes patrolling games [4, 50,
5] or pursuit-evasion games [25, 24, 1]. In many security-related problems, the
defender is protecting an area (or a computer network) against the attacker that
wants to attack it (e.g., by intruding into the area or infiltrating the network).
The defender does not have full information about the environment since he
does not know which actions the attacker performed (e.g., which hosts in the
computer network have been compromised by the attacker). At the same time,
it is difficult for the defender to exactly know what information the attacker has
since the attacker can infiltrate the system or use insider information, and can
thus have substantial knowledge about the environment. Hence, as the worst-
case assumption, the defender can assume that the attacker has full knowledge
about the environment. From this perspective, one-sided POSG can be used to
compute robust defense strategies. We restrict to the strictly competitive (or
zero-sum) setting. In this case, the defender has guaranteed expected outcome
when using such robust strategies even against attackers with less information.
Finally, we use the standard assumption that payoffs are computed as discounted
sums of immediate rewards. However, our approach could be generalized to the
non-discounted version to some extent (by proceeding similarly to [21]).

Our main contribution is the description of the first practical algorithm
for computing (approximate) optimal solution for two-player zero-sum one-
sided POSG with discounted rewards.2 The contribution is threefold: (1) the
theoretical contribution proving that our proposed algorithm has guarantees for

1In this work, however, the authors assumed that the game is turn-taking. In contrast, we
consider a more general case where at each timestep, both players choose simultaneously next
action to be played.

2Parts of this work appeared in conference publications [20]. This submission is significantly
extended from the published works by (1) containing all the proofs and all the technical details
regarding the algorithm, (2) full description of the procedure for extracting strategies computed
by the algorithm, and (3) new experiments with improved implementation of the algorithm.
Finally, we acknowledge that a modification of presented algorithm has been provided in
[22, 23] where a compact representation of belief space was proposed for a specific cybersecurity
domain and demonstrate that proposed algorithm can scale even beyond experiments however
at the cost of losing theoretical guarantees.
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approximating the value of any one-sided POSG, (2) showing how to extract
strategies from our algorithm and use them to play the game, (3) implementation
of the algorithm and experimental evaluation on a set of games. The theoretical
work is a direct extension of the theory behind the single-player case (i.e.,
POMDPs). In POMDPs, an optimal strategy in every step depends on the
player’s belief over environment states and on the outcomes achievable in each
state. In other words, we have a value function which takes a belief b and returns
the optimal expected value that can be achieved under b (by following an optimal
strategy in both the current decision point and those encountered afterwards).

Figure 1 visualizes the outline and key results provided in each section of
the paper. After reviewing related work (Section 2) we state relevant technical
background for POMDPs (Section 3). We then formally define one-sided POSG
(Section 4) and restate some known results [44] regarding the characteristics
of the value function (convexity) and show that the value function can be
computed using a recursive formula (Section 5). We then observe that each
strategy can be decomposed into the distribution that determines the very next
action and the strategy for the remainder of the game and that this structure is
mirrored on the level of value functions (Section 6). With these tools, we derive
a Bellman equation for one-sided POSG a prove that the iterative application of
the corresponding operator H is guaranteed to converge to the optimal value
function V ∗ (Section 7). To get a baseline method of computing V ∗, we show
that the operator H can be computed using a linear program (Section 8). To get
a method with better scaling properties, we design novel approximate algorithms
that aim at approximating V ∗ (Section 9). Namely, we follow the heuristic search
value iteration algorithm (HSVI) [39, 40] that uses two functions to approximate
the value function, an upper bound function and a lower bound function. By
decreasing the gap between these approximations, the algorithm approximates
the optimal expected value for relevant belief points. We show that a similar
approach can also work in one-sided POSG and that, while the overall idea
remains, most of the technical parts of the algorithm have to be adapted for
one-sided POSG. We identify and address these technical challenges in order
to formally prove that our HSVI algorithm for one-sided POSG converges to
optimal strategies. As defined, the HSVI algorithm primarily approximates
optimal value for a given game. To extract strategies that reach computed values
in expectation, we provide an additional online algorithm (based on ideas from
online game-playing algorithms with imperfect information but finite horizon [32])
that generates actions from (approximate) optimal strategies according to the
computed approximated value functions (Section 10). Finally, we experimentally
evaluate the proposed algorithm on a set of different games, show scalability for
these games, and provide deep insights into the performance for each specific
part of the algorithm (Section 11). We demonstrate that our implementation
of the algorithm is capable of solving non-trivial games with as much as 4 500
states and 120 000 transitions.
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Algorithms 2 & 3:
HSVI (for POMDPs) Intuitions for Sections 8–10

Basic concepts

Lipschitz-continuity

Convex and PWLC functions

Properties of strategy compositions

Properties of value compositions

Max-composition operator H

Properties of H

Practical use of H

V ∗ is convex and Lipschitz

Theorem 1 (Bellman equation)

H is well-defined

Theorem 2 (Value iteration)
V ∗ is unique fixpoint of H

Linear programs (27) and (28)
Solving stage games in OS-POSGs

Upper/Lower bounds on V ∗

(and their representation)

Point based updates of boundsTheorem 3: HSVI worksAlgorithm 4: HSVI for OS-POSGs
(approximating V ∗ efficiently)

Min- and Max- justified values

Max-justification yields
utility guarantees for player 1

Min-justification yields
utility guarantees for player 2

Updates preserve justification

Theorem 4: Continual resolving
produces ε-Nash equilibrium

Algorithm 5
Continual resolving algorithms

Algorithm 6
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Figure 1: Outline of the theoretical results presented in the paper.
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2. Related Work

General, domain-independent algorithms for solving3 (subclasses of) partially
observable stochastic games with infinite horizon are not commonly studied. As
argued in the introduction, the problem of nested beliefs is one of the reasons. One
way of tackling this issue is by using history-dependent strategies. One of the few
such approaches is the bottom-up dynamic programming for constructing relevant
finite-horizon policy trees for individual players while pruning-out dominated
strategies [18, 26]. However, while the history-dependent policies can cope with
the necessity of considering the nested beliefs, the number of the strategies is
doubly exponential in the horizon of the game (i.e., the number of turns in the
game), which greatly limits the scalability and applicability of the algorithm.

We take another approach and restrict to subclasses of POSGs, where the
problem of nested beliefs does not appear. Besides the works focused directly
on one-sided POSGs, there are other works that consider specific subclasses of
POSGs. For example, Ghosh et al. 2004 study zero-sum POSGs with public
actions and observations. The authors show that the game has a well-defined
value and present an algorithm that exploits the transformation of such a model
into a game with complete information. In one-sided POSG, however, the
actions are not publicly observable since the imperfectly-informed player lacks
the information about their opponent’s action. Compared to existing works
studying one-sided POSG [44, 13], our work is the first to provide a practical
algorithm that can be directly used to solve games of non-trivial sizes.

Our algorithm focuses on the offline problem of (approximately) solving a
given one-sided POSG. However, a part of our contribution is the extraction of the
strategy that reaches the computed value. On the other hand, online algorithms
focus on computing strategies that will be used while playing the game. For a long
time, no online algorithms for dynamic imperfect-information games provided
guarantees on the (near-)optimality of the resulting strategies. While several
new algorithms with theoretical guarantees emerged [28, 32, 46] in recent years,
they only considered limited-horizon games and produced history-dependent
strategies. Using such online algorithms for POSGs is thus only possible with
very limited lookahead or when using a heuristic evaluation function. Our
approach is fully domain-independent and avoids considering complete histories
and the use of evaluation functions while nevertheless being able to consider
strategies with horizon of 100 turns or more. Finally, note that the recent work
[47] has shown that online algorithms which seem to be consistent with some
Nash equilibrium strategy might fail to be “sound” (i.e., there will be a way to
exploit them). Fortunately, our algorithm is provably ε-sound in this sense, since
(the proof of) Theorem 4 shows that it is always guaranteed to get at least the
equilibrium value minus ε.

3Or even approximating an optimal solution to a given error.
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3. Partially Observable MDPs

Partially observable Markov decision processes (POMDPs) [2, 43, 35, 39,
40, 45, 7, 41] are a standard tool for single-agent decision making in stochastic
environment under uncertainty about the states. From the perspective of partially
observable stochastic games, POMDPs can be seen as a variant of POSG that is
only played by a single player.

Definition 3.1 (Partially observable Markov decision process). A partially
observable Markov decision process is a tuple (S,A,O, T,R) where

• S is a finite set of states,
• A is a finite set of actions the agent can use,
• O is a finite set of observations the agent can observe,
• T (o, s′ | s, a) is a probability to transition to s′ while generating observation
o when the current state is s and agent uses action a,

• R(s, a) is the immediate reward of the agent when using action a in state
s.

In POMDPs, the agent starts with a known belief binit ∈ ∆(S) that char-
acterizes the probability binit(s) that s is the initial state. The play proceeds
similarly as in POSGs, except that there is only one decision-maker involved:
The initial state s(1) is sampled from the distribution binit. Then, in every
stage t, the agent decides about the current action a(t) and receives reward
R(s(t), a(t)) based on the current state of the environment s(t). With probability
T (o(t), s(t+1) | s(t), a(t)) the system transitions to s(t+1) and the agent receives
observation o(t). The decision process is then repeated. Although many object-
ives have been studied in POMDPs, in this section we discuss only discounted
POMDPs with infinite-horizon, i.e., the objective is to optimize

∑∞
t=1 γ

t−1rt for
a discount factor γ ∈ (0, 1).

A strategy σ : (A1O)∗ → A1 in POMDPs is traditionally called a policy
and assigns a deterministic action to each observed history ω ∈ (A1O)∗ of the
agent.4 Since the agent is the only decision-maker within the environment, and
the probabilistic characterization of the environment is known, the player is
able to infer his belief Pbinit [s(t+1) | (a(i)o(i))ti=1] (i.e., how likely it is to be in
a particular state after a sequence of actions and observations (a(i)o(i))ti=1 has
been used and observed). This belief can be defined recursively

τ(b, a, o)(s′) = η
∑
s∈S

b(s) · T (o, s′ | s, a) (1)

where η is a normalizing term, and τ(b, a, o) ∈ ∆(S) is the updated belief of the
agent when his current belief was b and he played and observed (a, o). [42] has

4As usual, we take X∗ to denote the set of all finite sequences over X. For a set Y of
sequences, Y Z denotes the set of sequences obtained by concatenating a single element of Z to
some sequence from Y . (Combining this notation yields, e.g., axbyc ∈ (AX)∗A for a, b, c ∈ A
and x, y ∈ X.)
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shown that the belief of the agent is a sufficient statistic, and POMDPs can
therefore be translated into belief-space MDP. In theory, standard methods for
solving MDPs can be applied, and POMDPs can be solved, e.g., by iterating

V t+1(b) = [HV t](b) = max
a∈A

[∑
s∈S

b(s) ·R(s, a) + γ
∑
o∈O

Pb[o | a] · V t(τ(b, a, o))
]

.

(2)
Since H is a contraction, the repeated application of Equation (2) converges
to a unique convex value function V ∗ : ∆(S) → R of the POMDP. However,
since the number of beliefs is infinite, it is impossible to apply this formula to
approximate V ∗ directly.

Exact value iteration. The value iteration can be, however, rewritten in terms
of operations with so-called α-vectors [43]. An α-vector can be seen as a linear
function α : ∆(S)→ R characterized by its values α(s) in the vertices s ∈ S of
the belief simplex ∆(S). We thus have α(b) =

∑
s∈S b(s) · α(s).

Assume that V t is a piecewise-linear and convex function where V t(b) =
maxα∈Γt α(b) for a finite set of α-vectors Γt. We can then form a new (finite)
set Γt+1 of α-vectors to represent V t+1 from Equation (2) by considering all
possible combinations of α-vectors from the set Γt:

Γt+1 =
{
α : ∆(S)→ R

∣∣∣ α(s) = R(s, a) + γ
∑

(o,s′)∈O×S

T (o, s′ | s, a)αo(s′)

for some a ∈ A and αo ∈ Γt, o ∈ O
}
. (3)

As |Γt+1| = |A| · |Γt||O|, this exact approach suffers from poor scalability. Several
techniques have been proposed to reduce the size of sets Γt [29, 51], however,
this still does not translate to an efficient algorithm.

In the remainder of this section, we present two scalable algorithms for solving
POMDPs that are relevant to this thesis. First, we present RTDP-Bel that uses
discretized value function and applies Equation (2) directly. Second, we present
heuristic search value iteration (HSVI) [39, 40] that inspires our methods for
solving POSGs.

RTDP-Bel. The RTDP-Bel algorithm [6] is based on RTDP [3] and has been
originally framed in the context of Goal-POMDPs. Goal-POMDPs do not
discount rewards (i.e., they set γ = 1 in Equation (2)). However, the agent is
incentivized to reach the goal state g as his reward for every transition before
reaching the goal is negative (i.e., it represents the cost). The RTDP-Bel also
applies to discounted POMDPs as discounting can be modelled within the Goal-
POMDP framework as a fixed probability 1− γ of reaching the goal state during
every transition [7].

RTDP-Bel adapts RTDP to partially observable domains by using a grid-
based approximation of V ∗ and using a hash-table to store the values, where
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V ∗ V̂

(a) RTDP-Bel

V ∗ (VLB, VUB)

(b) HSVI (PWLC)

V ∗ (VLB, VUB)

(c) HSVI2 (sawtooth)

Figure 2: Comparison of value function approximation schemes

V ∗(b) ∼ V̂ (bK · bc) for some fixed parameter K ∈ N. This approximation,
however, loses the theoretical properties of RTDP. The algorithm need not
converge as the values of the discretized value function may oscillate. Moreover,
there is no guarantee that the values stored in the hash-table will provide a
bound on the values of V ∗ [7, p. 3, last paragraph of Section 3]. Despite the lack
of theoretical properties, RTDP-Bel has been shown to perform well in practice.
The RTDP-Bel algorithm performs a sequence of trials (see Algorithm 1) that
updates the discretized value function V̂ .

Algorithm 1: A single trial of the RTDP-Bel algorithm.
1 b← binit; s ∼ b
2 while b(g) < 1 do
3 Q(b, a)←

∑
s∈S b(s)R(s, a) +

∑
o∈O Pb[o | a] · V̂ (bK · τ(b, a, o)c)

4 a∗ ← arg maxa∈AQ(b, a)
5 V̂ (bK · bc)← Q(b, a∗)
6 (o, s′) ∼ T (o, s′ | s, a∗); b← τ(b, a∗, o); s← s′

Heuristic search value iteration (HSVI). Heuristic search value iteration [39, 40]
is a representative of a class of point-based methods for solving POMDPs. Unlike
RTDP-Bel, it approximates V ∗ using piecewise-linear functions. We illustrate
the difference between a grid-based approximation used in RTDP-Bel and a
piecewise-linear approximation in Figures 2a and 2b. Observe that unlike the
grid-based approximation, a piecewise-linear approximation can yield a close
approximation of V ∗ even in regions with a rapid change of value.

In the original version of the heuristic-search value iteration algorithm
(HSVI) [39], the algorithm keeps two piecewise-linear and convex (PWLC)
functions V Γ

LB and V Υ
UB to approximate V ∗ (see Figure 2b) and refines them over

time. The lower bound on the value is represented in the vector-set representa-
tion using a finite set of α-vectors Γ, while the upper bound is formed as a lower
convex hull of a set of points Υ = {(bi, yi) | i = 1, . . . ,m} where bi ∈ ∆(S) and
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yi ∈ R. We then have

V Γ
LB(b) = max

α∈Γ

∑
s∈S

b(s) · α(s) (4a)

V Υ
UB(b) = min{

∑m
i=1 λiyi | λ ∈ Rm≥0 :

∑m
i=1 λibi = b} . (4b)

Computing V Υ
UB(b) according to Equation (4b) requires solving a linear

program. In the second version of the algorithm (HSVI2, [40]), the PWLC
representation of upper bound has been replaced by a sawtooth-shaped approx-
imation [19] (see Figure 2c). While the sawtooth approximation is less tight
with the same set of points, the computation of V Υ

UB(b) does not rely on the use
of linear programming and can be done in linear time in the size of Υ.

HSVI2 initializes the value function V Γ
LB by considering policies ‘always play

the action a’ and construct one α-vector for each action a ∈ A corresponding
to the expected cost for playing such policy. For the initialization of the upper
bound, the fast-informed bound is used [19].

The refinement of V Γ
LB and V Υ

UB is done by adding new elements to the sets Γ
and Υ. Since the goal of each update is to improve the approximation quality in
the selected belief b as much as possible, we refer to them as point-based updates
(see Algorithm 2).

Algorithm 2: Point-based update(b) procedure of (V Γ
LB, V

Υ
UB).

1 αa,o ← arg maxα∈Γ
∑

s′∈S τ(b, a, o)(s′) · α(s′) for all a ∈ A, o ∈ O
2 αa(s)← R(s, a) + γ

∑
o,s′ T (o, s′ | s, a) · αa,o(s′) for all s ∈ S, a ∈ A

3 Γ← Γ ∪ {arg maxαa
∑

s∈S b(s) · α
a(s)}

4 Υ← Υ ∪ {(b,maxa∈A
[∑

s∈S b(s)R(s, a) + γ
∑

o∈O Pb[o | a] · V Υ
UB(τ(b, a, o))

]
)}

Algorithm 3: HSVI2 for discounted POMDPs. The pseudocode
follows the ZMDP implementation and includes update on line 6.

1 Initialize V Γ
LB and V Υ

UB

2 while V Υ
UB(binit)− V Γ

LB(binit) > ε do explore(binit, ε, 0)
3 procedure explore(b, ε, t)
4 if V Υ

UB(b)− V Γ
LB(b) ≤ εγ−t then return

5 a∗ ← arg maxa∈A
[∑

s
b(s) ·R(s, a) + γ

∑
o∈O Pb[o | a]V Υ

UB(τ(b, a, o))
]

6 update(b)
7 o∗ ← arg maxo∈O Pb[o | a] · excesst+1(τ(b, a∗, o))
8 explore(τ(b, a∗, o∗), ε, t+ 1)
9 update(b)

Similarly to RTDP-Bel, HSVI2 selects beliefs where the update should be
performed based on the simulated play (selecting actions according to V Υ

UB).
Unlike RTDP-Bel, however, observations are not selected randomly. Instead,
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HSVI2 selects an observation with the highest weighted excess gap, i.e. the excess
approximation error

excesst+1(τ(b, a∗, o)) = V Υ
UB(τ(b, a∗, o))− V Γ

LB(τ(b, a∗, o))− εγ−(t+1) (5)

in τ(b, a∗, o) weighted by the probability Pb[o | a∗]. This heuristic choice attempts
to target beliefs where the update will have the most significant impact on
V Υ

UB(binit)− V Γ
LB(binit).

The HSVI2 algorithm for discounted-sum POMDPs (γ ∈ (0, 1)) is shown
in Algorithm 3. This algorithm provably converges to an ε-approximation of
V ∗(binit) using values V Γ

LB(binit) and V Υ
UB(binit), see [39].

4. Game Model: One-Sided Partially Observable Stochastic Games
(OS-POSGs)

We now define the model of one-sided POSGs and describe strategies for this
class of games.

Definition 4.1 (one-sided POSGs). A one-sided POSG (or OS-POSG) is a
tuple G = (S,A1, A2, O, T,R, γ) where

• S is a finite set of of game states,
• A1 and A2 are finite sets of actions of player 1 and player 2, respectively,
• O is a finite set of observations
• for every (s, a1, a2) ∈ S × A1 × A2, T (· | s, a1, a2) ∈ ∆(O × S) represents

probabilistic transition function,
• R : S ×A1 ×A2 → R is a reward function of player 1,
• γ ∈ (0, 1) is a discount factor.

The game starts by sampling the initial state s(1) ∼ binit from the initial belief
binit. Then the game proceeds for an infinite number of stages where the players
choose their actions simultaneously and receive feedback from the environment.
At the beginning of i-th stage, the current state s(i) is revealed to player 2, but
not to player 1. Then player 1 selects action a(i)

1 ∈ A1 and player 2 selects action
a

(i)
2 ∈ A2. Based on the current state of the game s(i) and the actions (a(i)

1 , a
(i)
2 )

taken by the players, an unobservable reward R(s(i), a
(i)
1 , a

(i)
2 ) is assigned5 to

player 1, and the game transitions to a state s(i+1) while generating observation
o(i) with probability T (o(i), s(i+1) | s(i), a

(i)
1 , a

(i)
2 ). After committing to action

a
(i)
2 , player 2 observes the entire outcome of the current stage, including the

action a(i)
1 taken by player 1 and the observation o(i). player 1, on the other

hand, knows only his own action a(i)
1 and the observation o(i), while the action

5Note that we consider a zero-sum setting, hence the reward of player 2 is −R(s(i), a(i)
1 , a

(i)
2 ).

We do however consider that player 2 focuses on minimizing the reward of player 1 instead of
reasoning about the rewards of player 2 directly.
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a
(i)
2 of player 2 and both the past and new states of the system s(i) and s(i+1)

remain unknown to him.
The information asymmetry in the game means that while player 2 can

observe entire course of the game (s(i)a
(i)
1 a

(i)
2 o(i))ti=1s

(t+1) ∈ (SA1A2O)∗S up to
the current decision point at time t+ 1, player 1 only knows his own actions and
observations (a(i)

1 o
(i)
i=1)t ∈ (A1O)∗.6 The players make decisions solely based on

this information - formally, this is captured by the following definition:

Definition 4.2 (Behavioral strategy). Let G be a one-sided POSG. Mappings
σ1 : (A1O)∗ → ∆(A1) and σ2 : (SA1A2O)∗S → ∆(A2) are behavioral strategies
of imperfectly informed player 1 and perfectly informed player 2, respectively.
The sets of all behavioral strategies of player 1 and player 2 are denoted Σ1 and
Σ2, respectively.

Plays in OS-POSGs. Players use their behavioral strategies (σ1, σ2) to play the
game. A play is an infinite word (s(i)a

(i)
1 a

(i)
2 o(i))∞i=1, while finite prefixes of plays

w = (s(i)a
(i)
1 a

(i)
2 o(i))Ti=1s

(T+1) are called histories of length T , and plays having
w as a prefix are denoted Cone(w). Formally, a cone of w is a set of all plays
extending w,

Cone(w) :={
(s(i)a

(i)
1 a

(i)
2 o(i))∞i=1 ∈ (SA1A2O)∗ | (s(i)a

(i)
1 a

(i)
2 o(i))∞i=1 extends w

}
. (6)

At a decision point at time t, players extend a history (s(i)a
(i)
1 a

(i)
2 o(i))ti=1s

(t+1)

of length t by sampling actions from their strategies a(t+1)
1 ∼ σ1((a(i)

1 o(i))ti=1)
and a

(t+1)
2 ∼ σ2((s(i)a

(i)
1 a

(i)
2 o(i))ti=1s

(t+1)). We consider a discounted-sum ob-
jective with discount factor γ ∈ (0, 1). The payoff associated with a play
(s(i)a

(i)
1 a

(i)
2 o(i))∞i=1 is thus Discγ :=

∑∞
i=1 γ

i−1R(s(i), a
(i)
1 , a

(i)
2 ). Player 1 is aim-

ing to maximize this quantity while player 2 is minimizing it.

Apart from reasoning about decision rules of the players for the entire game
(i.e., their behavioural strategies σ1 and σ2), we also consider the strategies they
use for a single decision point—or stage—of the game only (i.e., assuming that
the course of the previous stages (s(i)a

(i)
1 a

(i)
2 o(i))ti=1 is fixed and considered a

parameter of the given stage).

Definition 4.3 (Stage strategy). Let G be a one-sided POSG. A stage strategy
of player 1 is a distribution π1 ∈ ∆(A1) over the actions player 1 can use at
the current stage. A stage strategy of player 2 is a mapping π2 : S → ∆(A2)
from the possible current states of the game (player 2 observes the true state
at the beginning of the current stage) to a distribution over actions of player 2.

6Recall that we use the standard notation where X∗ := all finite sequences over X (and,
if Y is a set of sequences, Y Z denotes the set of sequences obtained by appending a single
element of Z at the end of some y ∈ Y ).
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The sets of all stage strategies of player 1 and player 2 are denoted Π1 and Π2,
respectively.

Note that a stage strategy of player 2 is essentially a conditional probability
distribution given the current state of the game. For the reasons of notational
convenience, we use notation π2(a2 | s) instead of π2(s)(a2) wherever applicable.

4.1. Subgames
Recall that both players know past actions of player 1 and all observations

player 1 has received. The action-observation history is thus public knowledge.
This allows us to define a notion of subgames. A subgame induced by an action-
observation history ω (or ω-subgame) is formed by histories h such that the
action-observation history ω(h) of player 1 in h is a suffix of ω, i.e., ω(h) w ω.

Later in the text, we will specifically reason about subgames that follow
directly after the first stage of the game—these correspond to (a1, o)-subgames
for some action a1 and observation o. Observe that, once (a1, o) is played and
observed, both players know exactly which (a1, o)-subgame they are currently in.
Consequently, reasoning about (a1, o)-subgame can be done without considering
any other (a′1, o′)-subgame.

4.2. Probability measures
We now proceed by defining a probability measure on the space of infinite plays

in one-sided POSGs. Assuming that b ∈ ∆(S) is the initial belief characterizing
the distribution over possible initial states, and players use strategies (σ1, σ2)
to play the game from the current situation, we can define the probability
distribution over histories (i.e., prefixes of plays) recursively as follows.

Pb,σ1,σ2 [s(1)] = b(s(1)) (7a)

Pb,σ1,σ2 [(s(i)a
(i)
1 a

(i)
2 o(i))ti=1s

(t+1)] = Pb,σ1,σ2 [(s(i)a
(i)
1 a

(i)
2 o(i))t−1

i=1s
(t)] · (7b)

· σ1((a(i)
1 o(i))t−1

i=1, a
(t)
1 ) · σ2((s(i)a

(i)
1 a

(i)
2 o(i))t−1

i=1s
(t), a

(t)
2 ) ·

· T (o(t), s(t+1) | s(t), a
(t)
1 , a

(t)
2 )

This probability distribution also coincide with a measure µ defined over the
cones, i.e. plays having w as a prefix.

µ(Cone(w)) = Pb,σ1,σ2 [w] (8)

The measure µ uniquely extends to the probability measure Pb,σ1,σ2 [·] over infinite
plays of the game, which allows us to define the expected utility Eb,σ1,σ2 [Discγ ]
of the game when the initial belief of the game is b and strategies σ1 ∈ Σ1 and
σ2 ∈ Σ2 are played by player 1 and player 2, respectively.

In a similar manner, we can define a probability measure Pb,π1,π2 [s, a1, a2, o, s
′]

that predicts events only one step into the future (for stage strategies π1 ∈ Π1,
π2 ∈ Π2). For belief b and stage strategies π1, π2, we consider the probability
that a stage starts in state s ∈ S (sampled from b), players select actions a1 ∼ π1

13



and a2 ∼ π2, and that this results into a transition to a new state s′ ∈ S while
generating an observation o ∈ O:

Pb,π1,π2 [s, a1, a2, o, s
′] = b(s)π1(a1)π2(a2 | s)T (o, s′ | s, a1, a2) . (9)

The probability distribution in Equation (9) can be marginalized to obtain, e.g.,
the probability that player 1 plays action a1 ∈ A1 and observes o ∈ O,

Pb,π1,π2 [a1, o] =
∑

(s,a2,s′)∈S×A2×S

Pb,π1,π2 [s, a1, a2, o, s
′]

=
∑

(s,a2,s′)∈S×A2×S

b(s)π1(a1)π2(a2 | s)T (o, s′ | s, a1, a2) . (10)

At the beginning of each stage, the imperfectly informed player 1 selects
their action based on their belief about the current state of the game. For a
fixed current stage-strategy π2 of player 2, player 1 can derive the distribution
over possible states at the beginning of the next stage. If player 1 starts with
a belief b, takes an action a1 ∈ A1, and observes o ∈ O, his updated belief
b′ = τ(b, a1, π2, o) over states s′ ∈ S is going to be τ(b, a1, π2, o)(s′) =

= Pb,π1,π2 [s′ | a1, o] =
∑

(s,a2)∈S×A2

Pb,π1,π2 [s, a2, s
′ | a1, o] (11a)

= 1
Pb,π1,π2 [a1, o]

∑
(s,a2)∈S×A2

Pb,π1,π2 [s, a1, a2, o, s
′] (11b)

= 1
Pb,π1,π2 [a1, o]

∑
(s,a2)∈S×A2

b(s)π1(a1)π2(a2 | s)T (o, s′ | s, a1, a2) . (11c)

In Section 7, this expression will prove useful for describing the Bellman equation
in one-sided POSGs.

5. Value of One-Sided POSGs

We now proceed by establishing the value function of one-sided POSGs. The
value function represents the utility player 1 can achieve in each possible initial
belief of the game. First, we define the value of a strategy σ1 ∈ Σ1 of player 1,
which assigns a payoff player 1 is guaranteed to get by playing σ1 in the game
(parameterized by the initial belief of the game). Based on the value of strategies,
we define the optimal value function of the game where player 1 chooses the best
strategy for the given initial belief.

Definition 5.1 (Value of strategy). Let G be a one-sided POSG and σ1 ∈ Σ1
be a behavioral strategy of the imperfectly informed player 1. The value of
strategy σ1, denoted valσ1 , is a function mapping each belief b ∈ ∆(S) to the
expected utility that σ1 guarantees against a best-responding player 2 given that
the initial belief is b:

valσ1(b) = inf
σ2∈Σ2

Eb,σ1,σ2 [Discγ ] . (12)
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When given an instance of a one-sided POSG with initial belief b, player 1
aims for a strategy that yields the best possible expected utility valσ1(b). The
value player 1 can guarantee in belief b is characterized by the optimal value
function V ∗ of the game.

Definition 5.2 (Optimal value function). Let G be a one-sided POSG. The
optimal value function V ∗ : ∆(S)→ R of G represents the supinf value of player 1
for each of the beliefs, i.e.

V ∗(b) = sup
σ1∈Σ1

valσ1(b) . (13)

Note that according to von Neumann’s minimax theorem [49] (resp. its
generalization [38]), every zero-sum POSG with discounted-sum objective Discγ
is determined in the sense that the lower values (in the sup inf sense) and the
upper values (in the inf sup sense) of the game coincide and represent the value
of the game. Therefore, V ∗(b) also represents the value of the game when the
initial belief of the game is b ∈ ∆(S).

Since the Discγ objective is considered (for 0 < γ < 1), the infinite discounted
sum of rewards of player 1 converge. As a result, the values of strategies valσ1(b)
and the value of the game V ∗(b) can be bounded.

Proposition 5.3. Let G be a one-sided POSG. Then the payoff Discγ of an
arbitrary play in G is bounded by values

L = min
(s,a1,a2)

R(s, a1, a2)/(1− γ) U = max
(s,a1,a2)

R(s, a1, a2)/(1− γ) . (14)

It also follows that L ≤ V ∗(b) ≤ U and L ≤ valσ1(b) ≤ U holds for every belief
b ∈ ∆(S) and strategy σ1 ∈ Σ1 of the imperfectly informed player 1.

Since the values L and U are uniquely determined by the given one-sided
POSG, we will use these symbols in the remainder of the text. We now focus
on the discussion of structural properties of solutions of OS-POSGs. First, we
show that the value of an arbitrary strategy σ1 ∈ Σ1 of player 1 is linear in
b ∈ ∆(S) — that is, it can be represented as a convex combination of its values
in the vertices of the simplex ∆(S).

In accordance with the notation used in the POMDP literature, we refer
to linear functions defined over the ∆(S) simplex as α-vectors. For s ∈ S, we
overload the notation as α(s) := the value of α in the vertex corresponding to s.
This allows us to write the following for every b ∈ ∆(S)

α(b) =
∑
s∈S

α(s) · b(s) where α(s) = α(1s), 1s(s′) =
{

1 s = s′

0 otherwise
. (15)

The following lemma shows the result we promised earlier:

Lemma 5.4. Let G be a one-sided POSG and σ1 ∈ Σ1 be an arbitrary behavioral
strategy of player 1. Then the value valσ1 of strategy σ1 is a linear function in
the belief space ∆(S).
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Proof. According to the Definition 5.1, the value valσ1 of strategy σ1 is defined
as the expected utility of σ1 against the best-response strategy σ2 of player 2.
However, before having to act, player 2 observes the true initial state s ∼ b.
Therefore, he will play a best-response strategy σ2 against σ1 (with expected
utility valσ1(s)) given that the initial state is s. Since the probability that the
initial state is s is b(s), we have

valσ1(b) =
∑
s∈S

b(s)valσ1(s) . (16)

This shows that valσ1 is a linear function in the belief b ∈ ∆(S).

Since a point-wise supremum of a set of linear functions is convex, Lemma 5.4
implies that the optimal value function V ∗ is convex:

Lemma 5.5. Optimal value function V ∗ of a one-sided POSG is convex.

Unless otherwise specified, we endow any space ∆(X) over a finite set X
with the ‖ · ‖1 metric. To prepare the ground for the later proof of correctness of
our main algorithm (presented in Section 9), we now show that both the value of
strategies and the optimal value function V ∗ are Lipschitz continuous. (Recall
that for k > 0 a function f : ∆(X) → R is k-Lipschitz continuous if for every
p, q ∈ ∆(X) it holds |f(p)− f(q)| ≤ k · ‖p− q‖1.)

Lemma 5.6. Let X be a finite set and let f : ∆(X)→ [ymin, ymax] be a linear
function. Then f is k-Lipschitz continuous for k = (ymax − ymin)/2.

Lemma 5.6 directly implies that both values valσ1 of strategies σ1 of the
imperfectly informed player 1, as well as the optimal value function V ∗ are
Lipschitz continuous.

Lemma 5.7. Let σ1 ∈ Σ1 be an arbitrary strategy of the imperfectly informed
player 1. Then valσ1 is (U − L)/2-Lipschitz continuous.7

Proof. Value valσ1 of strategy σ1 is linear (Lemma 5.4) and its values are bounded
by L and U (Proposition 5.3). Therefore, according to Lemma 5.6, the function
valσ1 is (U − L)/2-Lipschitz.

For notational convenience, we denote this constant as δ := (U −L)/2 in the
remainder of the text.

Proposition 5.8. Value function V ∗ of one-sided POSGs is δ-Lipschitz con-
tinuous.

Remark. In the remainder of the text, we will use term value function to refer
to an arbitrary function V : ∆(S)→ R that assigns numbers V (b) (estimates of
the value achieved under optimal play) to beliefs b ∈ ∆(S) of player 1.

7Recall that L and U , introduced in Proposition 5.3, are the minimum and maximum
possible utilities in the game.
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5.1. Elementary Properties of Convex Functions
In 16 5.5, we have shown that the optimal value function V ∗ of one-sided

POSGs is convex. In this section, we will explicitly state some of the import-
ant properties of convex functions that motivate our approach and are used
throughout the rest of the text.

Proposition 5.9. Let f : ∆(S) → R be a point-wise supremum of linear
functions, i.e.,

f(b) = sup
α∈Γ

α(b) , Γ ⊆ {α : ∆(S)→ R | α is linear} . (17)

Then f is convex and continuous. Furthermore, if every α ∈ Γ is k-Lipschitz
continuous, f is k-Lipschitz continuous as well.

Proof. Let b, b′ ∈ ∆(S) and λ ∈ [0, 1] be arbitrary. We have

λf(b) + (1− λ)f(b′) = λ sup
α∈Γ

α(b) + (1− λ) sup
α∈Γ

α(b′)

= sup
α∈Γ

λα(b) + sup
α∈Γ

(1− λ)α(b′)

≥ sup
α∈Γ

[λα(b) + (1− λ)α(b′)]

= sup
α∈Γ

α(λb+ (1− λ)b′)

= f(λb+ (1− λ)b′),

which shows that f is convex.
We now prove the continuity of f . Since every convex function is continuous

on the interior of its domain, it remains to show that f is continuous on the
boundary of ∆(S). Assume to the contradiction that it is not continuous,
i.e., there exists b0 on the boundary such that for all b from its neighborhood
f(b0) > f(b) + C for some C > 0. Since f is a pointwise supremum of linear
functions, there exists α ∈ Γ such that α(b0) > f(b0) − C/2. However, at the
same time, we have α(b) ≤ f(b0)−C. This is in contradiction with the fact that
all α ∈ Γ are linear, and hence continuous.

Furthermore, suppose that every α ∈ Γ is k-Lipschitz continuous and let
b, b′ ∈ ∆(S). We have

f(b) = sup
α∈Γ

α(b)

≤ sup
α∈Γ

[α(b′) + k‖b− b′‖1] (since every α ∈ Γ is k-Lipschitz)

=
[
sup
α∈Γ

α(b′)
]

+ k‖b− b′‖1

= f(b′) + k‖b− b′‖1.

Since the identical argument proves the inequality f(b′) ≤ f(b) + k‖b− b′‖1, this
shows that f is k-Lipschitz continuous.
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Recall that we aim to emulate the HSVI algorithm from POMDPs, where
the optimal value function V ∗ is approximated by a series of piecewise linear
and convex functions. One of the common ways to represent these functions
is as a point-wise maximum of a finite set of linear functions (typically called
α-vectors in the POMDP context):

Definition 5.10 (Piecewise linear and convex function on ∆(S)). A function
f : ∆(S) → R is said to be piecewise linear and convex (PWLC) if it is of
the form f(b) = maxα∈Γ α(b) (for each b ∈ ∆(S)) for some finite set Γ ⊂ {α :
∆(S)→ R | α is linear}.

We immediately see that the preceding Proposition 5.9 applies to any function
of this type. The next result shows that PWLC functions remain unchanged if
we replace the set Γ by its convex hull:

Proposition 5.11. Let Γ ⊂ {α : ∆(S) → R | α is linear} be a set of linear
functions. Then for every b ∈ ∆(S) we have

sup
α∈Γ

α(b) = sup
α∈Conv(Γ)

α(b) . (18)

In the opposite direction, every convex function can be represented as a
supremum over some set of linear functions. The following proposition shows
this using the largest possible set, i.e. {α ≤ f | α linear}:

Proposition 5.12. Let f : ∆(S)→ R be a convex continuous function. Then
there exists a set Γ of linear functions such that α ≤ f for every α ∈ Γ and
f(b) = supα∈Γ α(b) for every b ∈ ∆(S).

6. Composing Strategies

Every behavioural strategy of the imperfectly informed player 1 can be split
into the stage strategy π1 player 1 uses in the first stage of the game, and
behavioural strategies he uses in the rest of the game after he reaches an (a1, o)-
subgame. We can also use the inverse principle, called strategy composition, to
form new strategies by choosing the stage strategy π1 for the first stage and then
selecting a separate behavioral strategy ζ = (ζa1,o)(a1,o)∈A1×O for each subgame
(see Figure 3 for illustration).

Definition 6.1 (Strategy composition). LetG be a one-sided POSG and π1 ∈ Π1
a stage strategy of player 1. Furthermore, let ζ ∈ (Σ1)A1×O be a vector
representing behavioral strategies of player 1 for each (a1, o)-subgame where
a1 ∈ A1 and o ∈ O. The strategy composition comp(π1, ζ) is a behavioral strategy
of player 1 such that

comp(π1, ζ)(ω) =
{
π1 ω = ∅
ζa1,o(ω′) ω = a1oω

′ for each ω ∈ (A1O)∗ . (19)
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a1 a′1

o o′

ζa1,o ζa1,o′

o o′

ζa′
1,o

′ζa′
1,o

o o′

ζa1,o ζa1,o′

Player 1 decides action based on π1

Environment generates observation

Player 1 follows ζa1,o in the rest of
the game (if he played a1 and observed o)

Figure 3: Composition of strategies ζ using a stage strategy π1.

By composing strategies ζ using π1, we obtain a new strategy where the
probability of playing a1 in the first stage of the game is π1(a1), and strategy
ζa1,o is used after playing action a1 and receiving observation o in the first
stage of the game. Importantly, the newly formed strategy comp(π1, ζ) ∈ Σ1 is
also a behavioral strategy (of imperfectly informed player 1), and therefore the
properties of strategies presented in Section 5 apply also to comp(π1, ζ). As the
next result shows, the opposite property also holds — for each strategy σ1 ∈ Σ1
of player 1, we can find the appropriate π1 and ζ such that σ1 = comp(π1, ζ):

Proposition 6.2. Every behavioral strategy σ1 ∈ Σ1 of player 1 can be repres-
ented as a strategy composition of some stage strategy π1 ∈ Π1 and player 1
behavioral strategies ζa1,o.

Importantly, we can obtain values valcomp(π1,ζ) of composite strategies without
considering the entire strategy comp(π1, ζ). As the following lemma shows, it
suffices to consider only the first stage of the game and the values of the strategies
ζ ∈ (Σ1)A1×O.

Lemma 6.3. Let G be a one-sided POSG and comp(π1, ζ) a composite strategy.
Then the following holds:

valcomp(π1,ζ)(s) = min
a2∈A2

Ea1∼π1, (o,s′)∼T (· | s,a1,a2)

[
R(s, a1, a2) + γvalζa1,o(s′)

]
= min
a2∈A2

∑
a1∈A1

π1(a1)

R(s, a1, a2) + γ
∑

(o,s)∈O×S

T (o, s′ | s, a1, a2)valζa1,o(s′)

 .
(20)

The proof relies on the fact that when player 1 takes the action a1, observes o,
and ends up in s′, the strategy ζa1,o guarantees the player gets at least valζa1,o(s′)
utility (in expectation), no matter what player 2 does. Since the values in the
rest of the game are known, it suffices to focus on the best-response strategy of
player 2 in the first stage of the game.

6.1. Generalized Composition
Lemma 6.3 suggests that we can use composition of values of strategies

valζa1,o to form values of composite strategies valcomp(π1,ζ). In this section,
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still consider linear functions valζa1,o , but we relax the assumption that these
functions represent values of some specific behavioural strategy. This allows us to
derive a generalized principle of composition and approximate the value function
V ∗ by a supremum of arbitrary linear functions (as opposed to functions valσ1).
Throughout the text, we will use lin∆(S) to denote the set of linear functions on
∆(S) (i.e., α-vectors). We will also use the term ‘linear’ to refer to functions
that satisfy f(λb+ (1− λ)b′) = λf(b) + (1− λ)f(b′) on ∆(S).

Definition 6.4 (Value composition). Let π1 ∈ Π1 and α ∈ (lin∆(S))A1×O. Value
composition valcomp(π1, α) : ∆(S)→ R is a linear function defined by the values
in vertices of the ∆(S) simplex as follows:

valcomp(π1, α)(s) = min
a2∈A2

∑
a1∈A1

π1(a1)
[
R(s, a1, a2) + (21)

γ
∑

(o,s′)∈O×S

T (o, s′ | s, a1, a2)αa1,o(s′)
]
.

Observe that according to Lemma 6.3, valcomp(π1, α) = valcomp(π1,ζ) for
αa1,o = valζa1,o . The value composition valcomp(π1, α), however, admits ar-
bitrary linear function αa1,o and not only the value valζa1,o of some strategy
ζa1,o ∈ Σ1. Moreover, as long as linear functions αa1,o serve as lower bounds for
values of some strategies, so will the corresponding value composition serve as a
lower bound for the corresponding composite strategy:

Lemma 6.5. Let π1 ∈ Π1 be a stage strategy of player 1 and α ∈ (lin∆(S))A1×O

a vector of linear functions s.t. for each αa1,o there exists a strategy ζa1,o ∈ Σ1
with valζa1,o ≥ αa1,o. Then there exists a strategy σ1 ∈ Σ1 such that σ1(∅) = π1
and valσ1 ≥ valcomp(π1, α).

In case of value of composite strategies, we know that valcomp(π1,ζ) is a δ-
Lipschitz continuous linear function (since comp(π1, ζ) ∈ Σ1 is a behavioral
strategy of player 1 and Lemma 5.7 applies). Additionally, we prove that as
long as linear functions αa1,o are bounded by L ≤ αa1,o(b) ≤ U for every belief
b ∈ ∆(S), and are therefore δ-Lipschitz continuous, the value composition
valcomp(π1, α) is also δ-Lipschitz.

Lemma 6.6. Let π1 ∈ Π1 and α ∈ (lin∆(S))A1×O such that L ≤ αa1,o(b) ≤ U
for every b ∈ ∆(S). Then L ≤ valcomp(π1, α)(b) ≤ U for every b ∈ ∆(S) and
valcomp(π1, α) is a δ-Lipschitz continuous function.

7. Bellman Equation for One-Sided POSGs

In Section 5, we have defined the value function V ∗ as the supremum over
the strategies player 1 can achieve in each of the beliefs (see Definition 5.2).
However, while this correctly defines the value function, it does not provide a
straightforward recipe to obtaining value V ∗(b) for the given belief b ∈ ∆(S).
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Obtaining the value for the given belief according to Definition 5.2 is as hard as
solving the game itself.

In this section, we provide an alternative characterization of the optimal value
function V ∗ inspired by the value iteration methods, e.g., for Markov decision
processes (MDPs) and their partially observable variant (POMDPs). The high-
level idea behind these approaches is to start with a coarse approximation
V0 : ∆(S) → R of the value function V ∗, and then iteratively improve the
approximation by applying the Bellman’s operator H, i.e., generate a sequence
such that Vi+1 = HVi. In our case, the improvement is based on finding a
new, previously unknown, strategy that achieves higher values for each of the
beliefs by means of value composition principle (Definition 6.4). Throughout
this section, we will consider value functions that are represented as a point-wise
supremum over a (possibly infinite) set Γ of linear functions (called α-vectors),
i.e.,

V (b) = sup
α∈Γ

α(b) for Γ ⊂ {α : ∆(S)→ R | α is linear} . (22)

By Proposition 5.11, we can always assume that the set Γ is convex (since this
doesn’t come at the loss of generality). For more details on this representation
of value functions see Section 5.1.

Definition 7.1 (Max-composition). Let V : ∆(S) → R be a convex continu-
ous function and let Γ be a convex set of linear functions such that V (b) =
supα∈Γ α(b). The max-composition operator H is defined as

[HV ](b) = max
π1∈Π1

sup
α∈ΓA1×O

valcomp(π1, α)(b) . (23)

We will now prove several fundamental properties of the max-composition
operator H from Definition 7.1. First, we will show that this operator preserves
continuity and convexity, allowing us to apply the operator iteratively. Second,
we introduce equivalent formulations of the operator H, which represent the
solution of [HV ](b) in a more traditional form of finding a Nash equilibrium of
a stage-game. These formulations also allow us to show that the behaviour of H
is not sensitive to the choice of the set Γ used to represent the value function
V . Finally, we conclude by showing that the operator H can indeed be used
to approximate the optimal value function V ∗. Namely, we show that H is
a contraction mapping (and thus iterated application converges to a unique
fixpoint) and that its fixpoint is the optimal value function V ∗.

Proposition 7.2. Proposition Let V : ∆(S)→ R be a convex continuous func-
tion and let Γ be a convex set of linear functions such that V (b) = supα∈Γ α(b).
Then HV is also convex and continuous. Furthermore, if V is δ-Lipschitz
continuous, the function HV is δ-Lipschitz continuous as well.

The proof of this result goes by rewriting HV as a supremum over all value-
compositions and using our earlier observations about convexity and Lipschitz
continuity of such suprema.
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We will now prove that the max-composition operator H can be altern-
atively characterized using max-min and min-max optimization. Recall that
τ(b, a1, π2, o) denotes the Bayesian update of belief b given that player 1 played
a1 and observed o, and player 2 is assumed to follow stage strategy π2 in the
current round (see Equation (11)).

Theorem 1. Let V : ∆(S)→ R be a convex continuous function and let Γ be a
convex set of linear functions on ∆(S) such that V (b) = supα∈Γ α(b) for every
belief b ∈ ∆(S). Then the following definitions of operator H are equivalent:

[HV ](b) =
= max
π1∈∆(S)

sup
α∈ΓA1×O

valcomp(π1, α)(b) (24a)

= max
π1∈Π1

min
π2∈Π2

[
Eb,π1,π2 [R(s, a1, a2)] + γ

∑
a1,o

Pb,π1,π2 [a1, o] · V (τ(b, a1, π2, o))
]

(24b)

= min
π2∈Π2

max
π1∈Π2

[
Eb,π1,π2 [R(s, a1, a2)] + γ

∑
a1,o

Pb,π1,π2 [a1, o] · V (τ(b, a1, π2, o))
]

.

(24c)

The proof consists of verifying the assumptions of von Neumann’s minimax
theorem, which shows the equivalence of (24b) and (24c). The equivalence
of (24b) and (24a) can be then shown by reformulating each stage game as a
separate zero-sum game and verifying that it satisfies the assumptions of a Sion’s
generalization of the minimax theorem [38].

Corollary 7.3. Bellman’s operator H does not depend on the convex set Γ of
linear functions used to represent the convex value function V .

Since the maximin and minimax values of the game (from equations (24b)
and (24c)) coincide, the value [HV ](b) corresponds to the Nash equilibrium in
the stage game. We define the stage game formally.

Definition 7.4 (Stage game). A stage game with respect to a convex continuous
value function V : ∆(S)→ R and belief b ∈ ∆(S) is a two-player zero sum game
with strategy spaces Π1 for the maximizing player 1 and Π2 for the minimizing
player 2, and payoff function

uV,b(π1, π2) = Eb,π1,π2 [R(s, a1, a2)] + γ
∑
a1,o

Pb,π1,π2 [a1, o] · V (τ(b, a1, π2, o)) .

(25)
With a slight abuse of notation, we use [HV ](b) to refer both to the max-
composition operator (Definition 7.1) as well as to this stage game.

We will now show that the Bellman’s operator H is a contraction mapping.
Recall that the mapping H is a contraction, if there exists 0 ≤ k < 1 such
that ‖HV1 − HV2‖ ≤ k‖V1 − V2‖. We consider the metric ‖V1 − V2‖∞ =
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maxb∈∆(S) |V1(b)− V2(b)| corresponding to the l∞. First, we focus on a single
belief point and identify a criterion which ensures that |HV1(b) − HV2(b)| ≤
k|V1(b) − V2(b)|. While somewhat technical, this criterion will enable us to
demonstrate the contractivity of H. Moreover, it will also be useful in Section 9.3
to prove the correctness of the HSVI algorithm proposed therein.
Lemma 7.5. Let V,W : ∆(S)→ R be two convex continuous value functions
and b ∈ ∆(S) a belief such that [HV ](b) ≤ [HW ](b). Let (πV1 , πV2 ) and (πW1 , πW2 )
be Nash equilibrium strategy profiles in stage games [HV ](b) and [HW ](b), re-
spectively, and C ≥ 0. If W (τ(b, a1, o, π

V
2 )) − V (τ(b, a1, o, π

V
2 )) ≤ C for every

action a1 ∈ Supp(πW1 ) of player 1 and every observation o ∈ O such that
Pb,πW1 ,πV2

[o | a1] > 0, then [HW ](b)− [HV ](b) ≤ γC.
Lemma 7.6. Operator H is a contraction on the space of convex continuous
functions V : ∆(S)→ R (under the supremum norm), with contraction-factor γ.
Proof. Let V,W : ∆(S) → R be convex functions such that ‖V − W‖∞ =
maxb∈∆(S) |V (b) −W (b)| ≤ C. To prove the contractivity of H, it suffices to
show that ‖HV −HW‖∞ ≤ γC, i.e., |[HV ](b)− [HW ](b)| ≤ γC for every belief
b ∈ ∆(S). Since |V (b)−W (b)| ≤ C holds for every belief b, Lemma 7.5 yields
both HV (b)−HW (b) ≤ γC and HW (b)−HV (b) ≤ γC.

Next, we show that the optimal value function from Definition 5.2 is the
fixpoint of the Bellman’s operator H. Intuitively, this holds because V ∗ can be
represented as a supremum over all possible value functions valσ1 , which remains
unchanged as we apply the operator H (resp. the value-compositions it consists
of).
Lemma 7.7. Lemma The optimal value function V ∗ satisfies V ∗ = HV ∗.
Together, the two results ensure that H can be applied iteratively to obtain V ∗:
Theorem 2. V ∗ is a unique fixpoint of H. Moreover, for any convex function
V0, the sequence {Vi}∞i=0 such that Vi = HVi−1 converges to V ∗.
Proof. By Lemma 7.7, V ∗ is a fixpoint of H. By Lemma 7.6, H is a contraction
mapping on the space of convex value functions. Banach’s fixed point theorem [16]
then implies the uniqueness and the “moreover” part.

8. Exact Value Iteration

In Section 7, we have shown that the optimal value function can be ap-
proximated by means of composing strategies in the sense of max-composition
introduced in Definition 7.1. In this section, we provide a linear programming
formulation to perform such optimal composition for value functions that are
piecewise linear and convex, i.e., can be represented as a point-wise maximum
of a finite set Γ of linear functions. Furthermore, we show that as long as the
value function V is piecewise linear and convex, HV is also piecewise linear
and convex. This allows for using the same linear program (LP) iteratively to
approximate the optimal value function V ∗ by means of constructing a sequence
of piecewise linear and convex value functions {Vi}∞i=1 such that Vi = HVi−1.
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8.1. Computing Max-Compositions
In order to compute HV given a piecewise linear and convex (PWLC) value

function V , it is essential to solve Equation (23). Every PWLC value function
can be represented as a point-wise maximum over a finite set of linear functions
{α1, . . . , αk} (see Definition 5.10). Without loss of generality, we consider that
the set Γ used to represent the value function V is the convex hull of the
aforementioned set:

Γ := Conv ({α1, . . . , αk)} =
{

k∑
i=1

λiαi | λ ∈ Rk≥0, ‖λ‖1 = 1
}

. (26)

Recall that forming a convex hull of the set of linear functions used to represent
V does not affect the values V attains (by Proposition 5.11). We will now show
that when the set Γ is represented as in Equation (26), linear programming can
be used to compute HV (b):

Lemma 8.1. Let Γ = Conv ({α1, . . . , αk)} be a convex hull of a finite set of
α-vectors. Then [HV ](b) coincides with the solution of the following linear
program:

max
π1,λ,α,V

∑
s∈S

b(s) · V (s) (27a)

s.t. V (s) ≤
∑
a1∈A1

π1(a1)R(s, a1, a2) + γ
∑

(a1,o,s′)∈A1×O×S

T (o, s′ | s, a1, a2)α̂a1,o(s′)

∀(s, a2) ∈ S ×A2
(27b)

α̂a1,o(s′) =
k∑
i=1

λ̂a1,o
i · αi(s′) ∀(a1, o, s

′) ∈ A1 ×O × S (27c)

k∑
i=1

λ̂a1,o
i = π1(a1) ∀(a1, o) ∈ A1 ×O (27d)∑

a1∈A1

π1(a1) = 1 (27e)

π1(a1) ≥ 0 ∀a1 ∈ A1
(27f)

λ̂a1,o
i ≥ 0 ∀(a1, o) ∈ A1 ×O, 1 ≤ i ≤ k (27g)

In the latter text, we also use the following dual formulation of the linear
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program (27) (with some minor modifications to improve readability):

min
V,π2,τ̂

V (28a)

s.t. V ≥
∑

(s,a2)∈S×A2

π2(s ∧ a2)R(s, a1, a2) + γ
∑
o∈O

V̂ (a1, o) ∀a1

(28b)

V̂ (a1, o) ≥
∑
s′∈S

τ̂(b, a1, o, π2)(s′) · αi(s′) ∀(a1, o), 1 ≤ i ≤ k

(28c)

τ̂(b, a1, π2, o)(s′) =
∑

(s,a2)∈S×A2

T (o, s′ | s, a1, a2)π2(s ∧ a2) ∀(a1, o, s
′)

(28d)∑
a2∈A2

π2(s ∧ a2) = b(s) ∀s

(28e)
π2(s ∧ a2) ≥ 0 ∀(s, a2)

(28f)

Here, the stage strategy of player 2 is represented as a joint probability π2(s∧a2)
of playing action a2 ∈ A2 while being in state s ∈ S (i.e., π2(a2 | s) = π2(s ∧
a2)/b(s) where applicable). Player 1 then seeks the best response a1 ∈ A1
(constraint (28b)) that maximizes the sum of the expected immediate reward
and the γ-discounted utility in the (a1, o)-subgames. The beliefs τ(b, a1, π2, o) in
the subgames are multiplied by the probability of reaching the (a1, o)-subgame
(i.e., there is no division by Pb,a1,π2 [a1, o] in Equation (28d)), hence also the
values of subgames V (a1, o) need not be multiplied by Pb,a1,π2 [a1, o]. The value of
an (a1, o)-subgame V (a1, o) is expressed as a maximum maxα∈Γ α(τ(b, a1, π2, o))
expressed by constraints (28c).

8.2. Value Iteration
To run a value iteration algorithm that would apply the linear program (27)

repeatedly, we require that every Vi in the sequence {Vi}∞i=0, starting from an
arbitrary PWLC value function V0, is also piecewise linear and convex. By
Lemma 8.3 this is always the case.

Lemma 8.2. Let Q be the set of vertices of the polytope defined by constraints
(27b)-(27g), and let (πq1, α̂q) be the assignment of the variables π1 and α̂ corres-
ponding to the vertex q ∈ Q. Then8

[HV ](b) = max
q∈Q

valcomp(πq1, αq) for αq(a1, o) = α̂q(a1, o)/πq1(a1) . (29)

8Note that αq(a1, o) for a1 with πq1(a1) = 0 do not contribute to valcomp(πq1 , α
q). In parts

of the game that are not reached by player 1, we can thus define αq arbitrarily.
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Proof. Consider the LP (27) which computes the optimal value composition
valcomp(π1, α) in [HV ](b) (see Lemma 8.1). The polytope of feasible solutions
of the LP defined by the constraints (27b)–(27g) is independent of the belief b
(which only appears in the objective (27a)). Therefore, the set Q of vertices of
this polytope is also independent of belief b ∈ ∆(S). The optimal solution of
a linear programming problem (27) representing [HV ](b) can be found within
the vertices Q of the polytope of feasible solutions [48]. There is a finite number
of vertices q ∈ Q, and each vertex q ∈ Q corresponds to some assignment of
variables defining the value composition valcomp(πq1, αq). Since the set Q of
the vertices of the polytope is independent of the belief b, we get the desired
result.

Lemma 8.3. If V is a piecewise linear and convex function, then so is HV .

Proof. This lemma is a direct consequence of 25 8.2. Since the number of vertices
of the polytope of LP (27) is finite, the pointwise maximization in (29) defines a
PWLC function.

We can use the above-stated results to iteratively construct a sequence
of value functions {Vi}∞i=0 such that V0 is an arbitrary PWLC function and
Vi = HVi−1. Namely, we construct Vi by enumerating the vertices of the
polytope defined by the linear program (27) and constructing appropriate linear
functions valcomp(πq1, αq). By 25 8.2, these linear functions form the set of
α-vectors needed to represent a PWLC (Lemma 8.3) function Vi. According to
Theorem 2 this sequence converges to V ∗:

Corollary 8.4. Starting from an arbitrary PWLC value function V0, a repeated
application of the LP (27), as described in 25 8.2, converges to V ∗.

A more efficient algorithm can be devised based on, e.g., the linear support
algorithm for POMDPs [14]. Here, the set Γ′ of linear functions defining HV
is constructed incrementally, terminating once it is provably large enough to
represent the value function HV . Exact value iteration algorithms to solve
POMDPs are, however, generally considered to only be capable of solving very
small problems. We cannot, therefore, expect a decent performance of such
approaches when solving one-sided POSGs that are more general than POMDPs.
The next section remedies this issue by providing a point-based approach for
solving one-sided POSGs

9. Heuristic Search Value Iteration for OS-POSGs

In this section, we provide a scalable algorithm for solving one-sided POSGs,
inspired by the heuristic search value iteration (HSVI) algorithm [39, 40] for
approximating value function of POMDPs (summarized in Section 3). Our
algorithm approximates the convex optimal value function V ∗ using a pair
of piecewise linear and convex value functions V Γ

LB (lower bound on V ∗) and
V Υ

UB (upper bound on V ∗). These bounds are refined over time and, given the
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initial belief binit and the desired precision ε > 0, the algorithm is guaranteed
to approximate the value V ∗(binit) within ε. In Section 10, we show that this
process also generates value functions that allow us to extract ε-Nash equilibrium
strategies of the game.

We first show the approximation schemes used to represent V Γ
LB and V Υ

UB,
and the methods to initialize these bounds (Section 9.1). We then discuss the
so-called “point-based updates” which are used to refine the bounds induced by
V Γ

LB and V Υ
UB (Section 9.2). Finally, in Section 9.3, we describe the algorithm

and prove its correctness.

9.1. Value Function Representations
Following the results on POMDPs and the original HSVI algorithm [19, 39],

we use two distinct methods to represent upper and lower PWLC bounds on V ∗.

Lower bound V Γ
LB. Similarly as in the previous sections, the lower bound V Γ

LB :
∆(S)→ R is represented as a point-wise maximum over a finite set Γ of linear
functions called α-vectors, i.e., V Γ

LB(b) = maxα∈Γ α(b). Each α ∈ Γ is a linear
function α : ∆(S)→ R represented by its values α(s) in the vertices of the ∆(S)
simplex, i.e., α(b) =

∑
s∈S b(s) · α(s).

Upper bound V Υ
UB. Upper bound V Υ

UB : ∆(S) → R is represented as a lower
convex hull of a set of points Υ = {(bi, yi) | 1 ≤ i ≤ k}. Each point (bi, yi) ∈ Υ
provides an upper bound yi on the value V ∗(bi) in belief bi, i.e., yi ≥ V ∗(bi).
Since the value function V ∗ is convex, it holds that(
∀λ ∈ Rk≥0 s.t.

k∑
i=1

λi = 1
)

: V ∗

(
k∑
i=1

λibi

)
≤

k∑
i=1

λi · V ∗(bi) ≤
k∑
i=1

λi · yi.

(30)

This fact is used in the first variant of the HSVI algorithm (HSVI1 [39]) to
obtain the value of the upper bound V Υ

HSVI1(b) for belief b: A linear program
can be used to find coefficients λ ∈ Rk≥0 such that b =

∑k
i=1 λi · yi holds and∑k

i=1 λi · yi is minimal:

V Υ
HSVI1(b) = min

{
k∑
i=1

λiyi | λ ∈ Rk≥0 :
k∑
i=1

λi = 1 ∧
k∑
i=1

λibi = b

}
, (31)

In the latter proof of the Theorem 3 showing the correctness of the algorithm, we
require the bounds V Γ

LB and V Υ
UB to be δ-Lipschitz continuous. Since this needs

not hold for V Υ
HSVI1, we define V Υ

UB as a lower δ-Lipschitz envelope of V Υ
HSVI1:

V Υ
UB(b) = min

b′∈∆(S)

[
V Υ

HSVI1(b′) + δ‖b− b′‖1
]
. (32)
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This computation can be expressed as a linear programming problem

V Υ
UB(b) = min

λ,∆,b′

k∑
i=1

λiyi + δ
∑
s∈S

∆s (33a)

s.t.
k∑
i=1

λibi(s) = b′(s) ∀s ∈ S (33b)

∆s ≥ b′(s)− b(s) ∀s ∈ S (33c)
∆s ≥ b(s)− b′(s) ∀s ∈ S (33d)
k∑
i=1

λi = 1 (33e)

λi ≥ 0 ∀1 ≤ i ≤ k (33f)

Here, we have ∆s = |b′(s) − b(s)| (and hence
∑
s∈S ∆s = ‖b − b′‖1). Using

the definitions of V Υ
UB and V Υ

HSVI1 together with the fact that V ∗ is δ-Lipschitz
continuous and convex, we can prove that the function V Υ

UB represents an upper
bound on V ∗:

Lemma 9.1. Let Υ = {(bi, yi) | 1 ≤ i ≤ k} such that yi ≥ V ∗(bi) for every
1 ≤ i ≤ k. Then the value function V Υ

UB is δ-Lipschitz continuous and satisfies

V ∗ ≤ V Υ
UB ≤ V Υ

HSVI1.

The dichotomy in representation of value functions V Γ
LB and V Υ

UB allows for
easy refinement of the bounds. By adding new elements to the set Γ, the value
V Γ

LB(b) = maxα∈Γ α(b) can only increase—and hence the lower bound V Γ
LB gets

tighter. Similarly, by adding new elements to the set of points Υ, the solution of
linear program (33) can only decrease and hence the upper bound V Υ

UB tightens.

9.1.1. Initial Bounds
We now describe our approach to obtaining the initial bounds V Γ

LB and V Υ
UB

on the optimal value function V ∗ of the game:

Lower bound V Γ
LB. We initially set the lower bound to the value valσ

unif
1 of the

uniform strategy σunif
1 ∈ Σ1 of player 1 (i.e., the strategy that plays every action

with probability 1/|A1| in all stages of the game). Recall that the value valσ
unif
1

of the strategy σunif
1 is a linear function (see Lemma 5.4), and hence the initial

lower bound V Γ
LB is a piecewise linear and convex function represented as a

pointwise maximum of the set Γ = {valσ
unif
1 }.

Upper bound V Υ
UB. We use the solution of a perfect information variant of the

game (i.e., where player 1 is assumed to know the entire history of the game,
unlike in the original game). We form a modified game G′ which is identical
to the OS-POSG G (i.e., has the same states S, actions A1 and A2, dynamics
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T and rewards R), except that all information is revealed to player 1 in each
step. G′ is a perfect information stochastic game, and we can apply the value
iteration algorithm to solve G′ [9]. The additional information player 1 in G′
(compared to G) can only increase the utility he can achieve. Hence V ∗s of the
state s of game G′ forms an upper bound on the utility player 1 can achieve in
G if he knew that the initial state of the game is s (i.e., his belief is bs where
bs(s) = 1). We initially define Υ as the set that contains one point for each state
s ∈ S of the game (i.e., for each vertex of the ∆(S) simplex),

Υ = {(bs, V ∗s ) | s ∈ S} bs(s′) =
{

1 s = s′

0 otherwise .
(34)

9.2. Point-based Updates
Unlike the exact value iteration algorithm (Section 8) which constructs all

α-vectors needed to represent HV in each iteration, the HSVI algorithm focuses
on a single belief at a time. Performing a point-based update in belief b ∈ ∆(S)
corresponds to solving the stage-games [HV Γ

LB](b) and [HV Υ
UB](b) where the

values of subsequent stages are represented using value functions V Γ
LB and V Υ

UB,
respectively.

Update of lower bound V Γ
LB. First, the LP (27) is used to compute the optimal

value composition valcomp(πLB
1 , αLB) in [HV Γ

LB](b), i.e.,

(πLB
1 , αLB) = arg max

π1∈Π1
α∈Conv(Γ)A1×O

valcomp(π1, α)(b) . (35)

The valcomp(πLB
1 , αLB) function is a linear function corresponding to a new

α-vector that forms a lower bound on V ∗. This new α-vector is used to refine the
bound by setting Γ := Γ ∪ {valcomp(πLB

1 , αLB)}. As the following lemma shows,
refining the lower bound V Γ

LB via a point-based update preserves its desirable
properties:

Lemma 9.2. The lower bound V Γ
LB initially satisfies the following conditions,

which are subsequently preserved during point-based updates:
(1) V Γ

LB is δ-Lipschitz continuous.
(2) V Γ

LB is lower bound on V ∗.

Update of upper bound V Υ
UB. Similarly to the case of the point-based update

of the lower bound V Γ
LB, the update of upper bound is performed by solving

the stage game [HV Υ
UB](b). Since V Υ

UB is represented by a set of points Υ, it
is not necessary to compute the optimal value composition. Instead, we form
a refined upper bound V Υ′

UB (which corresponds to V Υ
UB after the point-based

update is made) by adding a new point (b, [HV Υ
UB](b)) to the set Υ′ representing

V Υ′
UB, i.e., Υ′ = Υ ∪ {(b, [HV Υ

UB](b))}. We now show that the upper bound V Υ
UB

has the desired properties, and these properties are retained when applying the
point-based update—and hence we can perform point-based updates of V Υ

UB
repeatedly.
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Lemma 9.3. The upper bound V Υ
UB initially satisfies the following conditions,

which are subsequently preserved during point-based updates:
(1) V Υ

UB is δ-Lipschitz continuous.
(2) V Υ

UB is an upper bound on V ∗.

The LPs (27) and (28) solve the stage game [HV ](b) when the value function
V is represented as a maximum over a set of linear functions (i.e., the way lower
bound V Γ

LB is). It is, however, possible to adapt constraints in (28) to solve the
[HV Υ

UB](b) problem. We replace constraint (28c) by constraints inspired by the
LP (33) used to solve V Υ

UB(b).

V̂ (a1, o) =
|Υ|∑
i=1

λa1,o
i yi + δ

∑
s′∈S

∆s′

a1,o ∀(a1, o) ∈ A1 ×O (36a)

|Υ|∑
i=1

λia1,obi(s
′) = b′a1,o(s

′) ∀(a1, o, s
′) ∈ A1 ×O × S (36b)

∆s′

a1,o ≥ b
′
a1,o(s

′)− τ̂(b, a1, π2, o)(s′) ∀(a1, o, s
′) ∈ A1 ×O × S (36c)

∆s′

a1,o ≥ τ̂(b, a1, π2, o)(s′)− b′a1,o(s
′) ∀(a1, o, s

′) ∈ A1 ×O × S (36d)
|Υ|∑
i=1

λa1,o
i =

∑
s′∈S

τ̂(b, a1, π2, o)(s′) ∀(a1, o) ∈ A1 ×O (36e)

λia1,o ≥ 0 ∀(a1, o) ∈ A1 ×O, 1 ≤ i ≤ |Υ| (36f)

9.3. The Algorithm
We are now ready to present the heuristic search value iteration (HSVI)

algorithm for one-sided POSGs (Algorithm 4) and prove its correctness. The
algorithm is similar to the HSVI algorithm for POMDPs [39, 40]. First, the
bounds V Γ

LB and V Υ
UB on the optimal value function V ∗ are initialized (as described

in Section 9.1) on line 1. Then, until the desired precision V Υ
UB(binit)−V Γ

LB(binit) ≤
ε is reached, the algorithm performs a sequence of trials using the Explore
procedure, starting from the initial belief binit (lines 2–3).

The recursive procedure Explore generates a sequence of beliefs {bi}ki=0 (for
some k ≥ 0) where b0 = binit and each belief bt reached at the recursion depth t
satisfied excesst(bt) > 0 on line 2 or 10. The algorithm tries to ensure that values
of beliefs bt reached at t-th level of recursion (i.e., t-th stage of the game) are
approximated with sufficient accuracy and the gap between V Υ

UB(b) and V Γ
LB(b)

is at most ρ(t), where ρ(t) is defined by

ρ(0) = ε ρ(t+ 1) = [ρ(t)− 2δD]/γ . (37)

To ensure that the sequence ρ is monotonically increasing and unbounded, we
need to select the parameter D from the interval (0, (1 − γ)ε/2δ). When the
approximation quality V Υ

UB(bt)−V Γ
LB(bt) of the value of a belief bt reached at the

t-th recursion level of Explore (i.e., at the (t+ 1)-th stage of the game) exceeds
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Algorithm 4: HSVI algorithm for one-sided POSGs
Data: Game G, initial belief binit, discount factor γ ∈ (0, 1), desired

precision ε > 0, neighborhood parameter D
Result: Approximate value functions V Γ

LB and V Υ
UB satisfying

V Υ
UB(b)− V Γ

LB(b) ≤ ε, sets Γ and Υ constructed by point-based
updates that represent V Γ

LB and V Υ
UB

1 Initialize V Γ
LB and V Υ

UB (see Section 9.1)
2 while excess0(binit) > 0 do
3 Explore(binit, 0)

4 return V Γ
LB and V Υ

UB, sets Γ and Υ that represent V Γ
LB and V Υ

UB

5 procedure Explore(bt, t)
6 (πLB

1 , πLB
2 )← equilibrium strategy profile in [HV Γ

LB](bt)
7 (πUB

1 , πUB
2 )← equilibrium strategy profile in [HV Υ

UB](bt)
8 Perform point-based updates of V Γ

LB and V Υ
UB at belief bt (see

Section 9.2)
9 (a∗1, o∗)← select according to forward exploration heuristic

10 if Pb,πUB
1 ,πLB

2
[a∗1, o∗] · excesst+1(τ(bt, a∗1, πLB

2 , o∗)) > 0 then
11 Explore(τ(bt, a∗1, πLB

2 , o∗), t+ 1)
12 Perform point-based updates of V Γ

LB and V Υ
UB at belief bt (see

Section 9.2)

the desired approximation quality ρ(t), it is said to have a positive excess gap
excesst(bt),

excesst(bt) = V Υ
UB(bt)− V Γ

LB(bt)− ρ(t) . (38)

Note that our definition of excess gap is more strict compared to the original
HSVI algorithm for POMDPs, where the −2δD term from Equation (37) is
absent (see Equation (5)). Unlike in POMDPs, which are single-agent, the belief
transitions τ(b, a1, π2, o) in one-sided POSGs depend on player 2 as well (resp.,
on her strategy π2). The tighter bounds on the approximation quality allow us
to prove the correctness of the proposed algorithm in Theorem 3.

Forward exploration heuristic. The algorithm uses a heuristic approach to
select which belief τ(b, a1, π

LB
2 , o) will be considered in the next recursion

level of the Explore procedure, i.e., what action-observation pair (a1, o) ∈
A1 × O will be chosen by player 1, on line 9. This selection is motivated
by Lemma 7.5—in order to ensure that excesst(bt) ≤ 0 (or more precisely
excesst(bt) ≤ −2δD) at the currently considered belief bt in t-th recursion level,
all beliefs τ(bt, a1, π

LB
2 , o) reached with positive probability when playing πUB

1
have to satisfy excesst+1(τ(bt, a1, π

LB
2 , o)) ≤ 0. Specifically, we focus on a be-

lief that has the highest weighted excess gap. Inspired by the original HSVI
algorithm for POMDPs [39, 40]), we define the weighted excess gap as the excess
gap excesst+1(τ(bt, a1, π

LB
2 , o)) multiplied by the probability that the action-
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observation pair (a1, o) that leads to the belief τ(bt, a1, π
LB
2 , o) occurs. As a

result, the next action-observation pair (a∗1, o∗) for further exploration is selected
according to the formula

(a∗1, o∗) = arg max
(a1,o)∈A1×O

Pb,πUB
1 ,πLB

2
[a1, o] · excesst+1(τ(bt, a1, π

LB
2 , o)) . (39)

We now show formally that if the weighted excess gap of the optimal (a∗1, o∗)
satisfies Pb,πUB

1 ,πLB
2

[a∗1, o∗] ·excesst+1(τ(bt, a∗1, πLB
2 , o∗)) ≤ 0, performing the point

based update at bt ensures that excesst(bt) ≤ −2δD.

Lemma 9.4. Let bt be a belief encountered at t-th recursion level of Explore
procedure and assume that the corresponding action-observation pair (a∗1, o∗)
(from line 9 of Algorithm 4) satisfies

Pb,πUB
1 ,πLB

2
[a∗1, o∗] · excesst+1(τ(bt, a∗1, πLB

2 , o∗)) ≤ 0 . (40)

Then excesst(bt) ≤ −2δD after performing a point-based update at bt. Further-
more, all beliefs b′t ∈ ∆(S) such that ‖bt − b′t‖1 ≤ D satisfy excesst(b′t) ≤ 0.

The proof goes by verifying the assumptions of Lemma 7.5 (“a criterion for
contractivity”), which allows us to bound the difference between V Υ

UB and V Γ
LB

by ρ(t+ 1). The “furthermore” part then follows from δ-Lipschitz continuity of
the bounds.

We now use Lemma 9.4 (especially its second part) to prove that Algorithm 4
terminates with V Υ

UB(binit)−V Γ
LB(binit) ≤ ε. As we mentioned earlier, we can also

use value functions V Γ
LB and V Υ

UB to play the game and obtain ε-Nash equilibrium
of the game (see Section 10).

Theorem 3. For any ε > 0 and 0 < D < (1− γ)ε/2δ, Algorithm 4 terminates
with V Υ

UB(binit)− V Γ
LB(binit) ≤ ε.

Proof. By the choice of parameter D, the sequence ρ(t) (for ρ(0) = ε) is mono-
tonically increasing and unbounded, and the difference between value functions
V Γ

LB and V Υ
UB is bounded by U − L (since L ≤ V Γ

LB(b) ≤ V Υ
UB(b) ≤ U for every

belief b ∈ ∆(S)). Therefore, there exists Tmax such that ρ(Tmax) ≥ U − L ≥
V Υ

UB(b)− V Γ
LB(b) for every b ∈ ∆(S), so the recursive procedure Explore always

terminates.
To prove that the whole algorithm terminates, we reason about sets Ψt ⊂ ∆(S)

of belief points where the trials performed by the Explore terminated. Initially,
Ψt = ∅ for every 0 ≤ t < Tmax. Whenever the Explore recursion terminates
at recursion level t (i.e., the condition on line 10 does not hold), the belief
bt (which was the last belief considered during the trial) is added into set Ψt

(Ψt := Ψt ∪ {bt}). Recall that since ∆(S) is compact, it is, in particular, totally
bounded (that is, if any two distinct elements b, b′ of a set Ψt ⊂ ∆(S) satisfy
‖b−b′‖1 > D, the set Ψt must be finite). Since the number of possible termination
depths is finite (0 ≤ t ≤ Tmax), the algorithm has to terminate unless some Ψt

is infinite. To show that the algorithm terminates, it thus remains that every
two distinct points b, b′ ∈ Ψt are at least D apart.
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Assume to the contradiction that two trials terminated at recursion level t
with the last beliefs considered b(1)

t (for the earlier trial) and b(2)
t (for the trial

that occurred at a later time), and that these beliefs satisfy ‖b(1)
t − b

(2)
t ‖1 ≤ D.

When the former trial has been terminated in belief b(1)
t , all reachable beliefs

from b
(1)
t had a negative excess gap (otherwise the trial would have continued as

the condition on line 10 would have been satisfied). According to Lemma 9.4,
after the point-based update is performed in b(1)

t , the excess gap of all beliefs b′t
with ‖b(1)

t − b′t‖1 ≤ D have negative excess gap excesst(b′t) ≤ 0. When b(2)
t has

been selected for exploration in (t − 1)-th level of recursion, the condition on
line (10) was met and b(2)

t must have had positive excess gap excesst(b(2)
t ) > 0.

This, however, contradicts the assumption that all beliefs b′t with ‖b
(1)
t −b′t‖1 ≤ D

(i.e., including b(2)
t ) already have negative excess gap.

Now that we know that Algorithm 4 always terminates, note that at least one
trial must have terminated in the first level of recursion (unless the Algorithm 4
has terminated on line 2 with excess0(binit) ≤ 0 beforehand). By Lemma 9.4,
the update in binit then renders excess0(binit) ≤ −2δD ≤ 0. We then have that
V Υ

UB(binit)− V Γ
LB(binit) ≤ ρ(0) = ε which completes the proof.

10. Using Value Function to Play

In the previous section, we have presented an algorithm that can approximate
the value V ∗(binit) of the game within an arbitrary given precision ε > 0 starting
from an arbitrary initial belief binit. However, in many games, knowing only the
game’s value is not enough. Indeed, to solve the game, we also need access to
strategies that achieve the desired near-optimal performance. In this section,
we show that using the value functions V Γ

LB and V Υ
UB computed by the HSVI

algorithm (Algorithm 4) enables us to obtain ε-Nash equilibrium strategies for
both players.

The Bellman’s equation from Theorem 1 may suggest that the near-optimal
strategies can be extracted by employing the lookahead decision rule (similarly
to POMDPs) and obtaining strategies to play in the current stage by computing
the Nash equilibrium of stage games [HV Γ

LB](b) and [HV Υ
UB](b), respectively.

However, unlike in POMDPs and Markov games of imperfect information, this
approach does not work in one-sided POSGs because the belief of player 1 does
not constitute a sufficient statistic for playing the game. The reasons for this are
similar to the usage of unsafe resolving [12, 36] in the realm of extensive-form
games. We use the following example to demonstrate the insufficiency of the
belief to play the game.

Example 10.1. Consider a matching pennies game shown in Figure 4a. This
game can be formalized as a one-sided POSG that is shown in Figure 4b. The
game starts in the state s0 (i.e., the initial belief is binit(s0) = 1) and player 2
chooses her action H or T . Next, after transitioning to sH or sT (based on the
decision of player 2), player 1 is unaware of the true state of the game (i.e.,
the past decision of player 1) and chooses his action H or T . Based on the
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H T
H 1 -1
T -1 1

(a) Normal form

s0

sH

sT

∗/H(0)

∗/T (0)

s∞

∗/ ∗ (0)

H/ ∗ (1/γ)
T/ ∗ (−1/γ)

T/ ∗ (1/γ)
H/ ∗ (−1/γ)

(b) OS-POSG representation

sH sT

0

1/γ

αH αT

(c) Value function V ∗

Figure 4: A game where belief is not a sufficient statistic for the imperfectly informed player.

combination of decisions taken by the players, player 1 gets either 1/γ or −1/γ
and the game transitions to the state s∞ where it stays forever with zero future
rewards.

To understand the caveats of using belief b ∈ ∆(S) to derive the stage
strategy to play, let us consider the optimal value function V ∗ of the OS-POSG
representation (Figure 4b) of the matching pennies game. Figure 4c shows the
values of V ∗ over simplex ∆({sH , sT }). If it is more likely that the player 2
played H in the first stage of the game (i.e., the current state is sH), it is optimal
for player 1 to play strategy prescribing him to play H in the current stage (with
value αH). Conversely, if it is more likely that the current state is sT , player 1
is better off with playing T (with value αT ). The value function V ∗ is then a
point-wise maximum over these two linear functions.

Now, since the uniform mixture between H and T is the Nash equilibrium
strategy for both players in the matching pennies game, player 1 will find himself
in a situation when he assumes that the current belief is {sH : 0.5, sT : 0.5}.
In this belief, any decision of player 1 yields expected reward 0—hence based
purely on the belief, player 1 may opt to play, e.g., “always T”. However, such
strategy is not in equilibrium and player 2 is able to exploit it by playing “always
H”. This example illustrates that the belief alone does not provide sufficient
information to choose the right strategy π1 for the current stage based on the
Equation (24b).

10.1. Justified Value Functions
First of all, we define conditions under which it makes sense to use value

function to play a one-sided POSG. The conditions are similar to uniform
improvability in, e.g., POMDPs. Our definitions, however, reflect the fact that
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we deal with a two-player problem (and we thus introduce the condition for each
player separately). Moreover, we use a stricter condition for player 1 who does
not have perfect information about the belief—and thus defining the condition
based solely on the beliefs is not sufficient.

Definition 10.2 (Min-justified value function). Convex continuous value func-
tion V is said to be min-justified (or, justified from the perspective of the
minimizing player 2) if for every belief b ∈ ∆(S) it holds that [HV ](b) ≤ V (b).

Definition 10.3 (Max-justified value function). Let Γ be a compact set of linear
functions, and V be a value function such that V (b) = supα∈Γ α(b) for every
b. V is said to be max-justified by Γ (or, justified from the perspective of the
maximizing player 1) if for every α ∈ Γ there exists π1 ∈ Π1 and α ∈ ΓA1×O

such that valcomp(π1, α) ≥ α.

While the reason for the terminology is not apparent just yet, we will show in
Sections 10.2 that the “max-justifying” set Γ can be used to construct a strategy
σ1 of player 1 such that valσ1(b) ≥ V (b) for every b. Similarly, we will show in
Section 10.3 that if the value function V is min-justified, we can construct a
strategy σ2 of player 2 that justifies the value V (b) for every belief b ∈ ∆(S),
i.e., we have Eb,σ1,σ2 [Discγ ] ≤ V (b) against every strategy σ1 of player 1.

As preparation for more substantial proofs that follow, the remainder of this
subsection presents several basic properties of min- and max-justified functions.

Recall that no matter how well things go for the maximizing player, the
corresponding utility will never get above U . Similarly, the minimizing player
cannot push the utility below L. Lemma 10.5 and Lemma 10.4 prove that max-
and min-justified functions obey the same restrictions. This is in agreement with
our intuition that max-justification should guarantee utility of at least some
value (which therefore cannot be higher than U) and min-justification should
guarantee utility of no more than some value (which therefore cannot be lower
than L).

Lemma 10.4. Let V be a value function that is min-justified. Then V (b) ≥ L.

Lemma 10.5. Let V be a value function that is max-justified by a set of α-vectors
Γ. Then for every α ∈ Γ we have α ≤ U .

To prepare for showing that the value function V Γ
LB resulting produced by

Algorithm 4 is max-justified by Conv(Γ), we state the following technical lemma:

Lemma 10.6. Let Γ be a set of linear functions, and V a value function that is
max-justified by Γ. Then V is also max-justified by Conv(Γ).

10.2. Strategy of Player 1
In this section, we will show that when the value function V is max-justified

by a set of α-vectors Γ, we can implicitly form a strategy σ1 of player 1 that
achieves utility of at least V (binit) for any given initial belief binit. We provide
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an online game-playing algorithm (Algorithm 5) which implicitly constructs the
desired strategy. This algorithm is inspired by the ideas of continual resolving
for extensive-form games [32].

While playing the game, Algorithm 5 maintains a lower bound ρ on the
values the reconstructed strategy has to achieve. Inspired by the terminology of
continual resolving for extensive-form games, we call this lower-bounding linear
function a gadget. The goal of the Act(b, ρ) method is to reconstruct a strategy
σ1 of player such that its value satisfies valσ1 ≥ ρ. We will now show that the
Act method achieves precisely this. The reasoning about the current gadget
allows us to obtain guarantees on the quality of the reconstructed strategy, even
when player 1 does not have an accurate belief because he does not have access
to the stage strategies used by the adversary.

Algorithm 5: Continual resolving algorithm for one-sided POSGs
input : one-sided POSG G

a finite set Γ of linear functions representing convex value
function V

1 b← binit

2 ρinit ← arg maxα∈Γ α(binit)
3 Act(binit, ρinit)
4 procedure Act(b, ρ)
5 (π∗1 , α∗)← arg maxπ1,α{valcomp(π1, α)(b) | π1 ∈ Π1, α ∈

Conv(Γ)A1×O s.t. valcomp(π1, α) ≥ ρ}
6 π2 ← solve [HV ](b) to obtain assumed stage strategy of the

adversary
7 sample and play a1 ∼ π∗1
8 o← observed observation
9 b′ ← τ(b, a1, π2, o)

10 Act(b′, α∗a1,o)

Proposition 10.7. Let V be a value function that is max-justified by a set of α-
vectors Γ. Let binit ∈ ∆(S) and ρinit ∈ Γ. By playing according to Act(binit, ρinit),
player 1 implicitly forms a strategy σ1 for which valσ1 ≥ ρinit.

This proposition is proven by constructing a sequence of strategies under
which player 1 follows Algorithm 5 for K steps (for K = 0, 1, . . .). We provide a
lower bound on the value each of these strategies, and show that the limit of
these lower bounds coincides with ρinit, as well as with the lower bound on the
value guaranteed by following Algorithm 5 for infinite period of time.

Corollary 10.8. Let V be a value function that is max-justified by a compact
set Γ and let binit be the initial belief of the game. The Algorithm 5 implicitly
constructs a strategy σ1 which guarantees that the utility to player 1 will be at
least V (binit).
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Proof. ρinit from line 2 of Algorithm 5 has value ρinit(binit) = V (binit) in the
initial belief binit. By Proposition 10.7, we can construct a strategy σ1 with value
valσ1 ≥ ρinit. Hence valσ1(binit) ≥ ρinit(binit) = V (binit).

10.3. Strategy of Player 2
We will now present an analogous algorithm to obtain a strategy for player 2

when the value function V is min-justified. Recall that the stage strategies π2 of
player 2 influence the belief of player 1 (Equation 11). Unlike player 1, player 2
knows which stage strategies π2 have been used in the past, and he is thus able
to infer the current belief of player 1. As a result, the Act method of Algorithm 6
depends on the current belief of player 1, but not on the gadget ρ as it did in
Algorithm 5.

Algorithm 6: Strategy of player 2
input : one-sided POSG G

convex value function V
1 Act(binit)
2 procedure Act(b)
3 π∗2 ← optimal strategy of player 2 in the stage game [HV ](b)
4 s← currently observed state
5 sample and play a2 ∼ π∗2(· | s)
6 (a1, o)← action of the adversary and the corresponding observation
7 Act(τ(b, a1, π

∗
2 , o))

We will now show that if the value function V is min-justified, playing
according to Algorithm 6 guarantees that the utility will be at most9 V (binit).

Proposition 10.9. Let V be a min-justified value function and let binit be the
initial belief of the game. The Algorithm 6 implicitly constructs a strategy σ2
which guarantees that the utility to player 1 will be at most V (binit).

The proof of Proposition 10.9 is similar to the proof of Proposition 10.7. We
derive an upper bound on the utility player 1 can achieve against player 2 who
follows Algorithm 6 for K steps (for K = 0, 1, . . .). We show that the limit of
these upper bounds coincides with V (binit) and with the upper bound on the
utility player 1 can achieve when player 2 follows 6 for an infinite number of
iterations.

10.4. Using Value Functions V Γ
LB and V Υ

UB to Play the Game
In Sections 10.2 and 10.3, we have shown that we can obtain strategies

to play the game when the value functions are max-justified or min-justified,
respectively. In this section, we will show that the heuristic search value iteration

9In other words, this is a performance guarantee for the (minimizing) player 2.
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algorithm for solving one-sided POSGs (Section 9) generates value functions
with these properties. Namely, at any time, the lower bound V Γ

LB is max-justified
value function by the set of α-vectors Conv(Γ), and the upper bound V Υ

UB is
min-justified.

This allows us to derive two important properties of the algorithm. First,
since Theorem 3 guarantees that the algorithm terminates with V Υ

UB(binit) −
V Γ

LB(binit) ≤ ε, we can use the resulting value functions V Γ
LB (represented by Γ)

and V Υ
UB to obtain ε-Nash equilibrium strategies for both players. Next, we can

also run the algorithm in anytime fashion and, since the bounds V Γ
LB and V Υ

UB
satisfy the properties at any point of time, use these bounds to extract strategies
with performance guarantees.

We will first prove that at any point of time in the execution of Algorithm 4,
the lower bound V Γ

LB is max-justified by the set Conv(Γ), and the upper bound
V Υ

UB is a min-justified value function. To prove this, it suffices to show initial
lower-bound value function V Γ

LB is max-justified by Conv(Γ) and the initial upper-
bound value function V Υ

UB is min-justified, and that this property is preserved
after any sequence of point-based updates performed on V Γ

LB and V Υ
UB. With the

help of Lemma 10.6, we can prove that this is true for V Γ
LB:

Lemma 10.10. Let Γ be the set of α-vectors that have been generated at any time
during the execution of the HSVI algorithm for one-sided POSGs (Algorithm 4).
Then the lower bound V Γ

LB is max-justified by the set Conv(Γ).

Even though the proof is more complicated, the analogous result holds for
V Υ

UB as well:

Lemma 10.11. Let V Υ
UB be the upper bound considered at any time of the

execution of the HSVI algorithm for one-sided POSGs (Algorithm 4). Then V Υ
UB

is min-justified.

Proof. Upper bound V Υ
UB is only modified by means of point-based update

on lines 8 and 12 of Algorithm 4. Therefore, it suffices to show that (1) the
initial upper bound is min-justified and that (2) the upper bound V Υ′

UB resulting
from applying a point-based update on a min-justified upper bound V Υ

UB is
min-justified as well.

First, let us prove that the initial value function V Υ
UB is min-justified. Initially,

V Υ
UB(b) is set to the value of a perfect information version of the game, where

the imperfectly informed player 1 gets to know the initial state of the game. By
removing this information from player 1, the utility player 1 can achieve can
only decrease. It follows that [HV Υ

UB](b) ≤ V Υ
UB(b), so the initial value function

V Υ
UB(b) is min-justified.
Now, let us consider an upper bound V Υ

UB represented by a set Υ = {(bi, yi) |
1 ≤ i ≤ k} that is considered by the Algorithm 4 and let us assume that V Υ

UB is
min-justified. Consider that a point-based update in bk+1 is to be performed. We
show that the function V Υ′

UB resulting from the point-based update in bk+1 is min-
justified as well. Recall that Υ′ = Υ ∪ {(bk+1, yk+1)} and yk+1 = [HV Υ

UB](bk+1).
Clearly, since Υ ⊂ Υ′, it holds V Υ′

UB(b) ≤ V Υ
UB(b) and [HV Υ′

UB](b) ≤ [HV Υ
UB](b)
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for every b ∈ ∆(S). Due to this and since V Υ
UB is assumed to be min-justified,

we have yi ≥ [HV Υ′
UB](b) for every 1 ≤ i ≤ k + 1. We will now prove that

V Υ′
UB is min-justified by showing that [HV Υ′

UB](b) ≤ V Υ′
UB(b) holds for arbitrary

belief b ∈ ∆. Let λi and b′ correspond to the optimal solution of the linear
program (33) for solving V Υ′

UB(b). We have

V Υ′
UB(b) =

k+1∑
i=1

λiyi + δ‖b− b′‖1

λi and b′ represent an optimal solution of V Υ′
UB(b)

≥
|Υ|∑
i=1

λi · [HV Υ′
UB](bi) + δ‖b− b′‖1

≥ [HV Υ′
UB](b′) + δ‖b− b′‖1

HV Υ′
UB is convex, see Proposition 7.2

≥ [HV Υ′
UB](b) V Υ′

UB is δ-Lipschitz continuous, and hence,

by Proposition 7.2, HV Υ′
UB is as well .

This shows that any point-based update results in a min-justified value function
V Υ′

UB. As a result, Algorithm 4 only considers upper bounds V Υ
UB that are

min-justified.

We are now in a position to show that Algorithm 4 produces ε-Nash equilib-
rium strategies.

Theorem 4. In any OS-POSG, applying Algorithms 5 and 6 to the output of
Algorithm 4 yields an ε-Nash equilibrium.

Proof. According to Theorem 3, Algorithm 4 terminates and the value functions
V Γ

LB and V Υ
UB that result from the execution of the algorithm satisfy V Υ

UB(binit)−
V Γ

LB(binit) ≤ ε. Furthermore, we know that lower bound V Γ
LB is max-justified by

the set Γ resulting from the execution of Algorithm 4 (38 10.10), and the upper
bound V Υ

UB is min-justified (Lemma 10.11). We can therefore use Algorithm 5
to obtain a strategy for player 1 that achieves utility of at least V Γ

LB(binit) for
player 1 (Corollary 10.8). Similarly, we can use Algorithm 6 to obtain a strategy
for player 2 that ensures that the utility of player 1 will be at most V Υ

UB(binit)
(Proposition 10.9). It follows that if either player were to deviate from the
strategy prescribed by the algorithm, they would not be able to improve their
utility by more than V Υ

UB(binit) − V Γ
LB(binit). Since V Υ

UB(binit) − V Γ
LB(binit) ≤ ε,

these strategies must form a ε-Nash equilibrium of the game.

11. Experimental evaluation

In this section, we focus on the experimental evaluation of the heuristic search
value iteration algorithm for solving one-sided partially observable stochastic
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games from Section 9. We demonstrate the scalability of the algorithm in three
security domains. Rewards in all of the domains have been scaled to the interval
[0, 100] or [−100, 0], respectively, and we report the runtime required to reach
V Υ

UB(binit)−V Γ
LB(binit) ≤ 1. We first outline the details of our experimental setup.

11.1. Algorithm Settings
Compared to the version of the HSVI algorithm presented in Section 9, we

adopt several modifications to improve the scalability of the algorithm. In this
section, we describe these modifications and show that the theoretical guarantees
of the algorithm still hold.

Pruning the Sets Γ and Υ. Each time a point-based update is performed, the
size of the sets Γ and Υ used to represent value functions V Γ

LB and V Υ
UB increases.

As new elements are generated, some of the elements in these sets may become
unnecessary to accurately represent the bounds V Γ

LB and V Υ
UB. Since the sizes

of sets V Γ
LB and V Υ

UB have a direct impact on the sizes of linear programs used
throughout the algorithm, removing unnecessary elements from V Γ

LB and V Υ
UB

improves the performance. Whenever a new α-vector valcomp(πLB
1 , αLB) is

generated according to Equation (35), all dominated elements in the set Γ get
removed and only those elements of α ∈ Γ that dominate valcomp(πLB

1 , αLB) in
at least one state remain, i.e.,

Γ :=
{
α′ ∈ Γ | ∃s ∈ S : α′(s) > valcomp(πLB

1 , αLB)(s)
}

∪
{

valcomp(πLB
1 , αLB)

}
. (41)

For the set Υ used to represent the upper bound V Υ
UB, we use a batch approach

instead of removing dominated elements immediately. We remove dominated
elements every time the size of the set Υ increases by 10% compared to the
size after the last pruning was performed (this is analogous to the pruning
technique proposed in [39]). Algorithm 7 inspects each point (bi, yi) ∈ Υ and
checks whether it is needed to represent value function V Υ

UB—and if it is not
needed, the point gets removed.

Algorithm 7: Pruning set Υ representing the upper bound V Υ
UB

input : Set Υ used to represent V Υ
UB

1 for (bi, yi) ∈ Υ do
2 if yi > V Υ

UB(bi) then Υ := Υ \ {(bi, yi)}

Removing elements from sets Γ and Υ does not violate the theoretical
properties of the algorithm. First of all, only elements that are not necessary
to represent currently considered bounds are removed—hence the values of
value functions V Γ

LB and V Υ
UB considered at each step of the algorithm remain

unchanged, and the convergence property is hence retained. Furthermore,
we can still use pruned value functions to extract strategies with guaranteed
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performance. Since the resulting upper bound value function V Υ
UB is identical to

the one obtained without pruning, it is still min-justified. It can thus be used
to obtain a strategy of the minimizing player 2 with guaranteed utility at most
V Υ

UB(binit) (Section 10.3). Similarly, V Γ
LB can be used to obtain a strategy of

player 1 (Section 10.2). Despite the fact that the resulting set Γ of α-vectors is
different from the set constructed by Algorithm 4 when no pruning is used, we
can see that for every missing element α′ there has to exist an element α such that
α ≥ α′ (see Equation (41)). Therefore, we can always replace missing α-vectors
in value compositions (i.e., linear functions αa1,o) without decreasing the values
of the resulting value composition—and hence V Γ

LB remains max-justified by the
set of α-vectors Conv(Γ).

Partitioning States and Value Functions. In many games, even the imperfectly
informed player 1 has access to some information about the game. For example, in
the pursuit-evasion games we discuss below, the pursuer knows his position—and
representing his uncertainty about his position within the belief is unnecessary.
To reduce the dimension of the beliefs, we allow for partitioning states into
disjoint sets such that the imperfectly informed player 1 always knows in which
set he is currently. Formally, let S =

⋃K
i=1 Si such that Si ∩ Sj = ∅ for every

i 6= j. Player 1 has to know the initial partition, i.e., Supp(binit) ⊆ Si for
some 1 ≤ i ≤ K. Furthermore, he has to be able to infer which partition he
is in at any time, i.e., for every belief b over a partition Si (i.e., Supp(b) ⊆ Si),
every achievable action-observation pair (a1, o) and every stage strategy π2 ∈ Π2
of player 2, we have Supp(τ(b, a1, π2, o)) ⊆ Sj for some 1 ≤ j ≤ K. We use
T (Si, a1, o) to denote such Sj .

This partitioning allows for reducing the size of LP (27) used to compute
stage game solutions. Namely, the quantification over s ∈ S can be replaced by
s ∈ Si, where Si is the current partition. Furthermore, since also the partition
of the next stage has to be known, we can also replace (a1, o, s

′) ∈ A1 ×O × S
by (a1, o, s

′) ∈ A1 ×O × T (Si, a1, o).

Parameters and Hardware. We use value iteration for stochastic games, or
MDPs, respectively, to initialize the upper and lower bounds. The upper bound
is initialized by solving a perfect-information variant of the game (see Section 9.1).
The lower bound is computed by fixing the uniform strategy σunif

1 for player 1 and
solving the resulting Markov decision process from the perspective of player 2.
We terminate the algorithms when either change in valuations between iterations
of value iteration is lower than 0.025, or 20 minutes time limit has expired. The
initialization time is included in the computation times of the HSVI algorithm.

We use ε = 1. However, similarly to [39], we adjust ε in each iteration,
and we get εimm that is about to be used in the current iteration using formula
εimm = 0.25+η(V Υ

UB(binit)−V Γ
LB(binit)−0.25) with η = 0.9. We set the parameter

D to the largest value such that ρ(t) ≥ 0.25−t holds for every t ≥ 0.
Each experiment has been run on a single core of Intel Xeon Platinum 8160.

We have used CPLEX 12.9 to solve the linear programs.
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Figure 5: Pursuit evasion games: (a) Pursuit evasion game 5×N . The Ps denote the initial
positions of the pursuers, the E denotes the initial position of the evader. (b) Time to reach
gap 1 for different grid-widths (N).

11.2. Experimental Results
We now turn our attention to the discussion of experimental results. We

introduce the domains used in our experiments and comment on the scalability
of the proposed algorithm.

Pursuit-Evasion Games (inspired by [15, 24]). In pursuit-evasion games, a team
of K centrally controlled pursuers (we consider a team of K = 2) is trying to
locate and capture the evader—who is trying to avoid getting captured. The
game is played on a grid (dimensions 3×N), with the pursuers starting in the
top-left corner and the evader in the bottom-right corner – see Figure 5a. In
each step, the units move to one of their adjacent locations (i.e., the actions
of the evader are A2 = {left, right,up,down}, while the actions available to the
team of pursuers are joint actions for all units in the team, A1 = (A2)K). The
game ends when one of the units from the team of pursuers enters the same
cell as the evader—and the team of pursuers (player 1) then receives a reward
of +100. The reward for all other transitions in the game is zero. The pursuer
knows the location of their units, but the current location of the evader is not
known.

The game with N = 3 was solved in 4.5 s on average, while the game with
N = 7 took 10 267 s to be solved to the gap ε = 1 – full results can be found in
Figure 5b. The game 8 ×N has not been solved successfully within 10 hours
time limit, and the gap of V Υ

UB(binit)− V Γ
LB(binit) = 1.245 has been reached after

10 hours. Sizes of the games range from 143 states and 2 671 transitions (for
3×N game) to 3 171 states and 92 531 transitions (for 8×N game).

Search Games (inspired by [8]). In search games that model intrusion, the
defender patrols checkpoint zones (see Figure 6a, the zones are marked with
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Figure 6: Intrusion search games: (a) Intrusion-search game with widthW = 3 in configuration
1-1: A denotes the initial position of the attacker and D the positions of the defender’s units.
T is the attacker’s target. (b) Time to reach V Υ

UB(binit)− V Γ
LB(binit) ≤ 1.

box). The attacker aims to cross the graph while not being captured by the
defender. She can either wait for one move to conceal her presence (and clean
up the trace), or move further. Each unit of the defender can move to adjacent
nodes within its assigned zone. The goal of the attacker is to cross the graph to
reach node marked by T without encountering any unit of the defender. If she
manages to do so, the defender receives a reward of −100.

We consider games with two checkpoint zones with a varying number of
nodes in a zone W (i.e. the width of the graph). We use two configurations of
the defending forces: (1) one defender in each checkpoint and (2) two defenders
in the first checkpoint and one defender in the second checkpoint. We denote
these settings as 1-1 and 2-1.

The results are shown in Figure 6b (with five runs for each parameterization,
the confidence intervals mark the standard error in our graphs). The largest
game (W = 5 and two defenders in the first zone) has 4 656 states and 121 239
transitions and can be solved within 560 s. This case highlights that our algorithm
can solve even large games. However, a much smaller game with W = 5 and
configuration 1-1 (964 states and 9 633 transitions) is more challenging, since
the coordination problem with just one defender in the first zone is harder, and
despite its smaller size it is solved within 640 s.

Patrolling Games (inspired by [4, 50]). In a patrolling game, a patroller (player 1)
aims to protect a set of targets V . The targets are represented by vertices of a
graph, and the possible movements of the patroller are represented by the edges
of the graph. The attacker observes the movement of the patroller and decides
which target v ∈ V he will attack, or whether he will postpone the decision.
Once the attacker decides to attack a target v, the defender has t× steps to reach
the attacked vertex. If he fails to do so, he receives a negative reward −C(v)
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Figure 7: Time to reach V Υ
UB(binit)− V Γ

LB(binit) ≤ 1 for patrolling games with attack times
t× = 3 and t× = 4. Bars indicate percentage of unsolved instances for t× = 4.

associated to the target v—otherwise, he successfully protects the target, and
the reward is zero. The patroller does not know whether and where the attack
has already started. The costs C(v) are scaled so the maxv∈V C(v) = 100/γt× ,
i.e., the minimum possible payoff for the defender is −100.

Following the setting in [50], we focus on graphs generated from Erdos-Renyi
model [33] with parameter p = 0.25 (denoted ER(0.25)) with attack times
t× ∈ {3, 4} and number of vertices |V| ranging from 7 to 15. The time to
solve even the largest instances (V = 17) with t× = 3 was 305.5 s. For attack
time t× = 4, however, some number of instances failed to reach the precision
V Υ

UB(binit)−V Γ
LB(binit) ≤ 1 within the time limit of 10 hours. For the most difficult

setting, |V| = 17 and t× = 4, the algorithm reached desired precision in 70% of
instances. For unsolved instances in this setting, mean V Υ

UB(binit) − V Γ
LB(binit)

after the cutoff after 10 hours is however reasonably small at 3.77±0.54. The
results include games with up to 856 states and 6 409 transitions. See Figure 7
for more details.

11.3. Impact of Initialization on Solution Time
Recall that we use value iteration algorithms for solving perfect information

stochastic games and Markov decision processes, respectively, to initialize upper
and lower bounds on V ∗. In our experiments, we terminate the algorithms
whenever the change in valuation between iterations of value iteration is smaller
than β = 0.025. In Figure 8, we analyze the impact of the choice of β on the
running time of the algorithm when applied to pursuit evasion games. Observe
that the tighter initial bounds are used, the faster the convergence of the
algorithm. In fact, the difference between β = 1 and β = 0.025 is approximately
an order of magnitude in run time. Recall that the bounds V Υ

UB and V Γ
LB not

only serve as bounds on V ∗, but they are also used to obtain strategies that are
considered during the forward exploration phase of the algorithm (see lines 6

44



Figure 8: Effect of initialization on runtime. The target error is measured as Bellman residual
‖TV − V ‖∞ of the value iteration algorithms used to obtain initial bounds.

and 7 of Algorithm 4). We believe that these results indicate that the use of,
e.g., domain-dependent initialization of the bounds can greatly improve the run
time of the algorithm in complex domains.

11.4. Performance Analysis
Based on the the algorithm’s runtime data, we observed that most of the

computation time is split between solving the linear programs used to compute
HV Υ

UB and HV Γ
LB and pruning the representations of these bounds. Together,

these three tasks typically took around 85% of the total runtime (and always
at least 70%), with the remaining time being spent on computation of initial
bounds, construction of the linear programs, and other smaller tasks. More
specifically, solving HV Υ

UB took 30-50% of the runtime in typical games while
reaching as far as 60% in large pursuit evasion games (e.g., 60.5% in the 3× 7
pursuit evasion game). Solving HV Γ

LB was faster — in most games, it took
between 10 and 20% of the total runtime. Finally, time required to perform
pruning of the bounds V Υ

UB and V Γ
LB also took 10-20% of the runtime, with the

exception of the patrolling games with attack time t× = 4, where it required
over 40% of the total runtime.

12. Conclusions

We cover two-player zero-sum partially observable stochastic games (POSGs)
with discounted rewards and one-sided observability — that is, those where the
second player has perfect information about the game. We describe the theoretical
properties of the value function in these games and show that algorithms based on
value-iteration converge to an optimal value of the game. We also propose the first
approximate algorithm that generalizes the ideas behind point-based algorithms
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designed for partially observable Markov decision processes (POMDPs) and
transfers these techniques to POSGs.

The presented work shows that it is possible to translate selected results from
the single-agent setting to zero-sum games. Moreover, in future work, this work
could be further extended in several ways: First, as already demonstrated by
existing follow-up works [23], the scalability of the algorithm can be substantially
improved for specific security games. Second, many heuristics and methods
proven useful in the POMDP setting can be translated and evaluated in the game-
theoretic setting, further improving the scalability. Third, generalization beyond
the strictly adversarial setting (e.g., by computing a Stackelberg equilibrium)
is another key direction supporting the applicability of these game-theoretic
models to security.
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Appendix A. Proofs

Proposition 5.3. Let G be a one-sided POSG. Then the payoff Discγ of an
arbitrary play in G is bounded by values

L = min
(s,a1,a2)

R(s, a1, a2)/(1− γ) U = max
(s,a1,a2)

R(s, a1, a2)/(1− γ) . (14)

It also follows that L ≤ V ∗(b) ≤ U and L ≤ valσ1(b) ≤ U holds for every belief
b ∈ ∆(S) and strategy σ1 ∈ Σ1 of the imperfectly informed player 1.

Proof. The smallest payoff player 1 can hypothetically achieve in any play consists
of getting r = min(s,a1,a2)R(s, a1, a2) in every timestep. The infinite discounted
sum

∑∞
t=1 γ

t−1r converges to r/(1− γ) = L. Conversely, the maximum payoff
can be achieved if player 1 obtains r = max(s,a1,a2)R(s, a1, a2) in every timestep.
Expected values of strategies (and therefore also the value of the game) are
expectation over the payoffs of individual plays—hence are bounded by L and U
as well.

Lemma 5.5. Optimal value function V ∗ of a one-sided POSG is convex.

Proof. Definition 5.2 defines V ∗ as the point-wise supremum over linear functions
valσ1 (over all strategies σ1 ∈ Σ1 of player 1). This implies the convexity of
V ∗ [10, p.81].
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Lemma 5.6. Let X be a finite set and let f : ∆(X)→ [ymin, ymax] be a linear
function. Then f is k-Lipschitz continuous for k = (ymax − ymin)/2.

Proof. Let p, q ∈ ∆(X) be arbitrary two points in the probability simplex over
the finite set X. Since f is a linear function, it can be represented as a convex
combination of values α(x) in the vertices of the simplex corresponding to the
elements u ∈ X,

f(p) =
∑
u∈X

α(u) · p(u) where α(u) = f(1u), 1u(v) =
{

1 v = u

0 otherwise
.

(A.1a)
Without loss of generality, let us assume f(p) ≥ f(q). Now, the difference
|f(p)− f(q)| satisfies

|f(p)− f(q)| = f(p)− f(q) =
∑
u∈X

α(u) · [p(u)− q(u)] . (A.1b)

Denote X+ = {u ∈ X | p(u)− q(u) ≥ 0} and X− = {u ∈ X | p(u)− q(u) < 0}.
We can now bound the difference from Equation (A.1b) by |f(p)− f(q)| =

=
∑
u∈X+

α(u) · [p(u)− q(u)] +
∑
u∈X−

α(u) · [p(u)− q(u)] (A.1c)

≤
∑
u∈X+

ymax · [p(u)− q(u)] +
∑
u∈X−

ymin · [p(u)− q(u)] (A.1d)

= ymax
∑
u∈X+

[p(u)− q(u)] + ymin
∑
u∈X−

[p(u)− q(u)] . (A.1e)

Since both p and q belong to ∆(X), we have ‖p‖1 = ‖q‖1 = 1. Since p(u), q(u) ≥
0 are non-negative, we have

‖p‖1 = ‖q‖1 +
∑
u∈X+

[p(u)− q(u)]−
∑
u∈X−

[q(u)− p(u)].

It follows that ∑
u∈X+

[p(u)− q(u)] = −
∑
u∈X−

[p(u)− q(u)]. (A.1f)

From equation (A.1f), we further see that both terms in (A.1f) are equal to
‖p− q‖1/2. This implies that

|f(p)− f(q)| ≤ ymax‖p− q‖1/2 + ymin(−‖p− q‖1/2)
= (ymax − ymin)/2 · ‖p− q‖1

and completes the proof.

Proposition 5.8. Value function V ∗ of one-sided POSGs is δ-Lipschitz con-
tinuous.
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Proof. V ∗ is defined as a supremum over δ-Lipschitz continuous values valσ1 of
strategies σ1 ∈ Σ1 of the imperfectly informed player 1. Therefore for arbitrary
b, b′ ∈ ∆(S), we have the following

V ∗(b) = sup
σ1∈Σ1

valσ1(b) ≤ sup
σ1∈Σ1

[valσ1(b′) + δ‖b− b′‖1] = V ∗(b′) + δ‖b− b′‖1 .

(A.2)

Proposition 5.11. Let Γ ⊂ {α : ∆(S) → R | α is linear} be a set of linear
functions. Then for every b ∈ ∆(S) we have

sup
α∈Γ

α(b) = sup
α∈Conv(Γ)

α(b) . (18)

Proof. Clearly, it suffices to prove the inequality ≥. Let b ∈ ∆(S) and let∑k
i=1 λiαi be an arbitrary10 convex combination of linear functions from Γ (i.e.,

we have αi ∈ Γ). We need to show that α(b) ≥
∑k
i=1 λiαi(b) holds for some

α ∈ Γ. This is straightforward, as can be witnessed by the function αi∗ ∈ Γ,
i∗ := arg maxi αi(b):

k∑
i=1

λiαi(b) ≤
k∑
i=1

λi max
1≤i≤k

αi(b) = max
1≤i≤k

αi(b) = αi∗(b) .

Proposition 5.12. Let f : ∆(S)→ R be a convex continuous function. Then
there exists a set Γ of linear functions such that α ≤ f for every α ∈ Γ and
f(b) = supα∈Γ α(b) for every b ∈ ∆(S).
Proof. Let Γ := {α : ∆(S) → R linear | α ≤ f}. Clearly, the pointwise
supremum of Γ is no greater than f . It remains to show that supα∈Γ α(b0) ≥ f(b0)
for each b0. Let b0 be an interior point of ∆(S). By the standard convex-analysis
result, there exists a subdifferential of f at b0, that is, a vector v such that f(b) ≥
f(b0)+v ·(b−b0) holds for each b ∈ ∆(S). The function α(b) := f(b0)+v ·(b−b0)
therefore belongs to Γ and witnesses that supα∈Γ α(b0) ≥ f(b0).

Suppose that b0 lies at the boundary of ∆(S) and let η, ‖η‖1 = 1, be a
direction in which every nearby point bδ := b0 − δη, δ ∈ (0,∆], lies in the
interior of ∆(S) (for some ∆ > 0). Since f is convex, the directional derivatives
f ′η(bδ) = limg→0+

f(bδ+gη)−f(bδ)
g are non-decreasing as the points bδ get closer to

b0. In particular, the linear functions αδ found for bδ in the previous step satisfy

αδ(b0) ≥ f(bδ) + f ′η(bδ)δ ≥ f(bδ) + f ′η(b∆)δ.

The right-hand side converges to f(b0) +f ′η(b∆) ·0 = f(b0), which shows that the
supremum of αδ(b0) is at least f(b0). Since αδ ∈ Γ, this proves the remaining
part of the proposition.

10Recall that according to the Carathéodory’s theorem, it suffices to consider finite convex
combinations.
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Proposition 6.2. Every behavioral strategy σ1 ∈ Σ1 of player 1 can be repres-
ented as a strategy composition of some stage strategy π1 ∈ Π1 and player 1
behavioral strategies ζa1,o.

Proof. Let σ1 ∈ Σ1 be an arbitrary behavioral strategy of player 1, and let
π1 = σ1(∅) and ζa1,o(ω′) = σ1(ω′) for every (a1, o) ∈ A1 ×O and ω′ ∈ (A1O)∗.
It can be easily verified that comp(π1, ζ) defined in Definition 6.1 satisfies
comp(π1, ζ) = σ1.

Lemma 6.3. Let G be a one-sided POSG and comp(π1, ζ) a composite strategy.
Then the following holds:

valcomp(π1,ζ)(s) = min
a2∈A2

Ea1∼π1, (o,s′)∼T (· | s,a1,a2)

[
R(s, a1, a2) + γvalζa1,o(s′)

]
= min
a2∈A2

∑
a1∈A1

π1(a1)

R(s, a1, a2) + γ
∑

(o,s)∈O×S

T (o, s′ | s, a1, a2)valζa1,o(s′)

 .
(20)

Proof. Let us evaluate the payoff if player 2 uses a2 in the first stage of the game
given that the initial state of the game is s. The expected reward of playing
action a2 against comp(π1, ζ) in the first stage is

∑
a1∈A1

π1(a1)R(s, a1, a2), i.e.,
the expectation over the actions player 1 can take. Now, at the beginning
of the next stage, player 2 knows everything about the past stage—including
action a1 taken by player 1, observation o he received, and the new state of
the game s′. Therefore, player 2 knows the strategy ζa1,o player 1 is about to
use in the rest of the game. By definition of valζa1,o (Definition 5.1), the best
payoff player 2 can achieve in (a1, o)-subgame is valζa1,o(s′). After reaching
the subgame, however, one stage has already passed and the rewards originally
received at time t are now received at time t + 1. As a result, the reward
valζa1,o(s′) gets discounted by γ. The probability that the (a1, o)-subgame is
reached is

∑
(a1,o,s′)∈A1×O×S π1(a1)T (o, s′ | s, a1, a2), and the expectation over

γvalζa1,o(s′) is thus computed. Player 2 chooses an action which achieves the
minimum payoff which completes the proof.

Lemma 6.5. Let π1 ∈ Π1 be a stage strategy of player 1 and α ∈ (lin∆(S))A1×O

a vector of linear functions s.t. for each αa1,o there exists a strategy ζa1,o ∈ Σ1
with valζa1,o ≥ αa1,o. Then there exists a strategy σ1 ∈ Σ1 such that σ1(∅) = π1
and valσ1 ≥ valcomp(π1, α).

Proof. Let ζ ∈ (Σ1)A1×O be as in the lemma, and let αζ be such that αζa1,o =
valζa1,o . According to the assumption we have αζa1,o ≥ αa1,o. Replacing αa1,o by
αζa1,o in Equation (21) can only increase the objective value, hence

valcomp(π1, α)(s) ≤ valcomp(π1, α
ζ)(s) = valcomp(π1,ζ)(s) . (A.3)

Composite strategies are behavioral strategies of player 1, hence σ1 = comp(π1, ζ).
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Lemma 6.6. Let π1 ∈ Π1 and α ∈ (lin∆(S))A1×O such that L ≤ αa1,o(b) ≤ U
for every b ∈ ∆(S). Then L ≤ valcomp(π1, α)(b) ≤ U for every b ∈ ∆(S) and
valcomp(π1, α) is a δ-Lipschitz continuous function.

Proof. Since valcomp(π1, α)(b) is calculated as a convex combination of the
values valcomp(π1, α)(s) in the vertices of the ∆(S) simplex, it suffices to show
that

(∀s ∈ S) : L ≤ valcomp(π1, α)(s) ≤ U.
Let a∗2 ∈ A2 be the minimizing action of player 2 in Equation (21). It
holds r ≤ R(s, a1, a

∗
2) ≤ r, where r and r are minimum and maximum re-

wards in the game. Hence r ≤
∑
a1∈A1

π1(a1)R(s, a1, a
∗
2) ≤ r. Similarly,

from the assumption of the lemma, we have L ≤ αa1,o(s′) ≤ U and hence
L ≤

∑
(a1,o,s′)∈A1×O×S π1(a1)T (o, s′ | s, a1, a

∗
2)αa1,o(s′) ≤ U . We will now prove

that valcomp(π1, α)(s) ≤ U (the proof of valcomp(π1, α)(s) ≥ L is analogous):

valcomp(π1, α)(s) =

=
∑
a1∈A1

π1(a1)R(s, a1, a
∗
2) + γ

∑
(a1,o,s′)∈A1×O×S

π1(a1)T (o, s′ | s, a1, a
∗
2)αa1,o(s′)

≤ r + γU = r + γ
r

1− γ = U .

The δ-Lipschitz continuity of valcomp(π1, α) then follows directly from Lemma 5.6.

Proposition 7.2. Proposition Let V : ∆(S)→ R be a convex continuous func-
tion and let Γ be a convex set of linear functions such that V (b) = supα∈Γ α(b).
Then HV is also convex and continuous. Furthermore, if V is δ-Lipschitz
continuous, the function HV is δ-Lipschitz continuous as well.

Proof. According to Definition 7.1, operator H can be rewritten as a supremum
over all possible value compositions:

[HV ](b) = max
π1∈Π1

sup
α∈ΓA1×O

valcomp(π1, α)(b) = sup
(π1,α)∈Π1×ΓA1×O

valcomp(π1, α)(b) , and

(A.4a)
[HV ](b) = sup

α∈Γ′
α(b) Γ′ =

{
valcomp(π1, α) | π1 ∈ Π1, α ∈ ΓA1×O

}
.

(A.4b)

In Equation (A.4b), HV is represented as a point-wise supremum from a set Γ′
of linear functions valcomp(π1, α), which is a convex continuous function (see
Proposition 5.9).

Moreover, in case V is δ-Lipschitz continuous, the set Γ representing V can
be assumed to contain only δ-Lipschitz continuous linear functions. According
to Lemma 6.6, valcomp(π1, α) is δ-Lipschitz continuous for every π1 ∈ Π1 and
αa1,o ∈ Γ. Hence, Γ′ contains δ-Lipschitz continuous linear functions only and
the point-wise maximum HV over Γ′ is δ-Lipschitz continuous.
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Theorem 1. Let V : ∆(S)→ R be a convex continuous function and let Γ be a
convex set of linear functions on ∆(S) such that V (b) = supα∈Γ α(b) for every
belief b ∈ ∆(S). Then the following definitions of operator H are equivalent:

[HV ](b) =
= max
π1∈∆(S)

sup
α∈ΓA1×O

valcomp(π1, α)(b) (24a)

= max
π1∈Π1

min
π2∈Π2

[
Eb,π1,π2 [R(s, a1, a2)] + γ

∑
a1,o

Pb,π1,π2 [a1, o] · V (τ(b, a1, π2, o))
]

(24b)

= min
π2∈Π2

max
π1∈Π2

[
Eb,π1,π2 [R(s, a1, a2)] + γ

∑
a1,o

Pb,π1,π2 [a1, o] · V (τ(b, a1, π2, o))
]

.

(24c)

Proof. We first prove the equality of (24b) and (24c). Let us define a payoff
function u : Π1 × Π2 → R to be the objective of the maximin and minimax
optimization in (24b) and (24c).

u(π1, π2) = Eb,π1,π2 [R(s, a1, a2)] +γ
∑
a1,o

Pb,π1,π2 [a1, o] ·V (τ(b, a1, π2, o)) (A.5a)

After expanding the expectation Eb,π1,π2 [R(s, a1, a2)] and expressing V as a
supremum over linear functions α ∈ Γ, we get

u(π1, π2) =
∑
s,a1,a2

b(s)π1(a1)π2(a2|s)R(s, a1, a2) +

+ γ
∑
a1,o

Pb,π1,π2 [a1, o] · sup
α∈Γ

∑
s′

τ(b, a1, π2, o)(s′) · α(s′) (A.5b)

=
∑
s,a1,a2

b(s)π1(a1)π2(a2|s)R(s, a1, a2) + (A.5c)

+ γ
∑
a1,o

π1(a1) · sup
α∈Γ

∑
s,a2,s′

b(s)π2(a2|s)T (o, s′ | s, a1, a2)α(s′) .

Note that the term Pb,π1,π2 [a1, o] cancels out after expanding τ(b, a1, π2, o) in
Equation (A.5c).

We now show that the von Neumann’s minimax theorem [49, 34] applies to
the game with utility function u and strategy spaces Π1 and Π2 for player 1
and player 2, respectively. The von Neumann’s minimax theorem requires that
the strategy spaces Π1 and Π2 are convex compact sets (which is clearly the
case), and that the utility function u (as characterized by Equation (A.5c)) is
continuous, convex in Π2 and concave in Π1. We will now prove the latter and
show that u is a convex-concave utility function. Clearly, for every π2 ∈ Π2,
the function u(·, π2) : Π1 → R (where π2 is considered constant) is linear in
π1, and hence also concave. The convexity of u(π1, ·) : Π2 → R (after fixing
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arbitrary π1 ∈ Π1) is more involved. As weighted sum of convex functions
with positive coefficients π1(a1) ≥ 0 is also convex, it is sufficient to show that
f(π2) = supα∈Γ

∑
s,a2,s′

b(s)π2(a2|s)T (o, s′ | s, a1, a2)α(s′) is convex. Observe
that for every α ∈ Γ, the expression

∑
s,a2,s′

b(s)π2(a2|s)T (o, s′ | s, a1, a2)α(s′)
is linear in π2 and, as a result, the supremum over such linear expressions
in π2 is convex in π2 (see Proposition 5.9). According to von Neumann’s
minimax theorem maxπ1∈Π1 minπ2∈Π2 u(π1, π2) = minπ2∈Π2 maxπ1∈Π1 u(π1, π2)
which concludes the proof of equality of (24b) and (24c).

We now proceed by showing the equality of (24a) and (24b). By further
rearranging Equation (A.5c), we get

u(π1, π2) = sup
α∈ΓA1×O

[ ∑
s,a1,a2

b(s)π1(a1)π2(a2|s)R(s, a1, a2) + (A.6)

+ γ
∑
a1,o

π1(a1)
∑
s,a2,s′

b(s)π2(a2|s)T (o, s′ | s, a1, a2)αa1,o(s′)
]
.

Let us define a game with strategy spaces Γ and Π2 and payoff function u′π1
:

Γ × Π2 → R where u′π1
is the objective of the supremum in Equation (A.6)

(Equation (A.7b) is an algebraic simplification of Equation (A.7a)).

u′π1
(α, π2) =

∑
s,a1,a2

b(s)π1(a1)π2(a2|s)R(s, a1, a2) + (A.7a)

+ γ
∑
a1,o

π1(a1)
∑
s,a2,s′

b(s)π2(a2|s)Ts,a1,a2(o, s′)αa1,o(s′)

=
∑
s

b(s)
∑
a2

π2(a2|s)
∑
a1

π1(a1)
[
R(s, a1, a2) + (A.7b)

+ γ
∑
o,s′

T (o, s′ | s, a1, a2)αa1,o(s′)
]
.

Plugging (A.7b) into (A.6), we can write

max
π1∈Π1

min
π2∈Π2

u(π1, π2) = max
π1∈Π1

min
π2∈Π2

sup
α∈ΓA1×O

u′π1
(π2, α) . (A.8)

To prove the equivalence of (24a) and (24b), we need to show that the minimum
and supremum can be swapped. Since u′π1

is linear in both π2 and α, Π2 is a
compact convex set and Γ (and therefore also the set of mappings α ∈ ΓA1×O)
is convex, it is possible to apply Sion’s minimax theorem [38] to get

max
π1∈Π1

min
π2∈Π2

sup
α∈ΓA1×O

u′π1
(π2, α) = max

π1∈Π1
sup

α∈ΓA1×O
min
π2∈Π2

u′π1
(π2, α) . (A.9)

As u′π1
is linear in π2 (for fixed π1 and α), the minimum over π2 is attained

in pure strategies. Denote π̂2 : S → A2 a pure strategy of player 2 assigning
action π̂2(s) to be played in state s, and Π̂2 the set of all pure strategies of
player 2. We now rewrite u′π1

to use pure strategies Π̂2 instead of randomized
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stage strategies Π2. First, in Equation (A.10a), we replace the maximization
over Π2 by maximization over the pure strategies Π̂2 and replace expectation
over actions of player 2 by using the deterministic action π̂2(s) where appropriate.
Then, in Equation (A.10b), we leverage the fact that, unlike player 1, player 2
knows the state before having to act, and hence he can optimize his actions π̂2(s)
independently. And, finally, in Equation (A.10c), we use Definition 6.4.

max
π1∈Π1

min
π2∈Π2

u(π1, π2) = max
π1∈Π1

sup
α∈ΓA1×O

min
π2∈Π2

u′π1
(π2, α) =

= max
π1∈Π1

sup
α∈ΓA1×O

min
π̂2∈Π̂2

∑
s

b(s)
∑
a1

π1(a1)
[
R(s, a1, π̂2(s)) + (A.10a)

+ γ
∑
o,s′

T (o, s′ | s, a1, π̂2(s))αa1,o(s′)
]

= max
π1∈Π1

sup
α∈ΓA1×O

∑
s

b(s) min
π̂2(s)∈A2

∑
a1

π1(a1)
[
R(s, a1, π̂2(s)) + (A.10b)

+ γ
∑
o,s′

T (o, s′ | s, a1, π̂2(s))αa1,o(s′)
]

= max
π1∈Π1

sup
α∈ΓA1×O

∑
s

b(s) · valcomp(π1, α)(s)

= max
π1∈Π1

sup
α∈ΓA1×O

valcomp(π1, α)(b) . (A.10c)

This concludes the proof of the equality of Equations (24a) and (24b).

Lemma 7.5. Let V,W : ∆(S)→ R be two convex continuous value functions
and b ∈ ∆(S) a belief such that [HV ](b) ≤ [HW ](b). Let (πV1 , πV2 ) and (πW1 , πW2 )
be Nash equilibrium strategy profiles in stage games [HV ](b) and [HW ](b), re-
spectively, and C ≥ 0. If W (τ(b, a1, o, π

V
2 )) − V (τ(b, a1, o, π

V
2 )) ≤ C for every

action a1 ∈ Supp(πW1 ) of player 1 and every observation o ∈ O such that
Pb,πW1 ,πV2

[o | a1] > 0, then [HW ](b)− [HV ](b) ≤ γC.

Proof. By deviating from the equilibrium strategy profiles in stage games [HV ](b)
and [HW ](b), the players can only worsen their payoffs. Therefore, we have

uV,b(πW1 , πV2 ) ≤ uV,b(πV1 , πV2 ) = [HV ](b) ≤ (A.11)
≤ [HW ](b) = uW,b(πW1 , πW2 ) ≤ uW,b(πW1 , πV2 ) .

We can thus bound the difference [HW ](b) − [HV ](b) by uW,b(πW1 , πV2 ) −
uV,b(πW1 , πV2 ) where, according to Definition 7.4,

uW,b(πW1 , πV2 )− uV,b(πW1 , πV2 ) = (A.12)

= γ
∑
a1,o

Pb,πW1 ,πV2
[a1, o] · [W (τ(b, a1, π

V
2 , o))− V (τ(b, a1, π

V
2 , o))] .

Since every W (τ(b, a1, o, π
V
2 ))− V (τ(b, a1, o, π

V
2 ) considered in Equation (A.12)

with non-zero probability Pb,πW1 ,πV2
[a1, o] is assumed to be bounded by C, the

57



expectation over such W (τ(b, a1, o, π
V
2 ))− V (τ(b, a1, o, π

V
2 ) is likewise bounded

by C. It follows that uW,b(πW1 , πV2 ) − uV,b(πW1 , πV2 ) ≤ γC, and hence we also
have [HW ](b)− [HV ](b) ≤ γC.

Lemma 7.7. Lemma The optimal value function V ∗ satisfies V ∗ = HV ∗.

Proof. According to Corollary 7.3, the Bellman’s operator does not depend on
the set Γ used to represent the value function V ∗. To this end, we will assume
that the set Γ used to represent V ∗ is

Γ = Conv{valσ1 | σ1 ∈ Σ1} . (A.13a)

To prove the equivalence of value functions V ∗ and HV ∗ we consider that
these functions are represented as follows:

V ∗(b) = sup
α∈ΓV ∗

α(b) ΓV ∗ = {valσ1 | σ1 ∈ Σ1} (A.13b)

[HV ∗](b) = sup
α∈ΓHV ∗ )

ΓHV ∗ =
{

valcomp(π1, α) | π1 ∈ Π1, α ∈ ΓA1×O
}

.

(A.13c)

To prove the equivalence of V ∗ and HV ∗, it suffices to show that for every
α ∈ ΓV ∗ there exists α′ ∈ ΓHV ∗ such that α′ ≥ α, and vice versa.

First, from Proposition 6.2, Lemma 6.3 and Definition 6.4, it follows that
every strategy σ1 ∈ Σ1 can be represented as a value composition valcomp(π1, ζ),
and we have

valσ1 = valcomp(π1,ζ) = valcomp(π1, α
ζ) (A.13d)

where αζa1,o = valζa1,o ∈ Γ. Hence valσ1 = valcomp(π1, ζ) ∈ ΓHV ∗ .
The opposite direction of the proof, i.e., that for every α ∈ ΓHV ∗ there exists

α′ ∈ ΓV ∗ such that α′ ≥ α, is more involved. Let α = valcomp(π1, α) ∈ ΓHV ∗
be arbitrary. From (A.13c), each αa1,o can be written as a convex combination
of finitely many elements of {valσ1 | σ1 ∈ Σ1}.

αa1,o =
K∑
i=1

λa1,o
i valσ

a1,o,i
1 (A.13e)

Let us form a vector of strategies ζ ∈ (Σ1)A1×O such that each ζa1,o is a convex
combination of strategies σa1,o,i

1 using coefficients from Equation (A.13e),

ζa1,o =
K∑
i=1

λa1,o
i σa1,o,i

1 . (A.13f)

We can interpret strategy ζa1,o as player 1 first randomly choosing among
strategies σa1,o,i

1 , and then following the chosen strategy in the rest of the game.
If the player 2 knew which strategy σa1,o,i

1 has been chosen, he is able to achieve
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utility valσ
a1,o,i
1 . However, he has no access to this information, and hence

valζ
a1,o ≥

∑K
i=1 λ

a1,o
i valσ

a1,o,i
1 = αa1,o. Now, we have

α′ = valcomp(π1,ζ) ≥ valcomp(π1, α) = α (A.13g)

which concludes the proof.

Lemma 8.1. Let Γ = Conv ({α1, . . . , αk)} be a convex hull of a finite set of
α-vectors. Then [HV ](b) coincides with the solution of the following linear
program:

max
π1,λ,α,V

∑
s∈S

b(s) · V (s) (27a)

s.t. V (s) ≤
∑
a1∈A1

π1(a1)R(s, a1, a2) + γ
∑

(a1,o,s′)∈A1×O×S

T (o, s′ | s, a1, a2)α̂a1,o(s′)

∀(s, a2) ∈ S ×A2
(27b)

α̂a1,o(s′) =
k∑
i=1

λ̂a1,o
i · αi(s′) ∀(a1, o, s

′) ∈ A1 ×O × S (27c)

k∑
i=1

λ̂a1,o
i = π1(a1) ∀(a1, o) ∈ A1 ×O (27d)∑

a1∈A1

π1(a1) = 1 (27e)

π1(a1) ≥ 0 ∀a1 ∈ A1
(27f)

λ̂a1,o
i ≥ 0 ∀(a1, o) ∈ A1 ×O, 1 ≤ i ≤ k (27g)

Proof. Since the set Γ is convex and compact, the dynamic programming operator
H can be used:

[HV ](b) = max
π1∈Π1

sup
α∈ΓA1×O

valcomp(π1, α)(b) (A.14a)

= max
π1∈Π1

max
α∈ΓA1×O

valcomp(π1, α)(b) (A.14b)

= max
π1∈Π1

max
α∈ΓA1×O

∑
s∈S

b(s) · valcomp(π1, α)(s) (A.14c)

= max
π1∈Π1

max
α∈ΓA1×O

∑
s∈S

b(s) ·min
a2

[∑
a1

π1(a1)R(s, a1, a2) + (A.14d)

+ γ
∑

(a1,o,s′)∈A1×O×S

T (o, s′ | s, a1, a2)π1(a1)αa1,o(s′)
]
.
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Equation (A.14b) follows from the fact that valcomp(π1, α) is continuous in
α, and Γ is a compact set (and hence also ΓA1×O is). The Equation (A.14c)
represents value of the linear function valcomp(π1, α) as the convex combination
of its values in the vertices of the ∆(S) simplex, and, finally, Equation (A.14d)
rewrites valcomp(π1, α)(s) using Definition 6.4.

Equation (A.14d) can be directly formalized as a mathematical program
(A.15) whose solution is [HV ](b). Indeed, the minimization over a2 ∈ A2 can be
rewritten as a set of constraints for each value of state V (s) (one for each action
a2 ∈ A2 of player 2) in Equation (A.15b). The convex hull of set {α1, . . . , αk} is
represented by (A.15c) where variables λa1,o

i represent coefficients of the convex
combination. The stage strategy π1 is characterized by (A.15e) and (A.15f).

max
π1,λ,α,V

∑
s∈S

b(s) · V (s) (A.15a)

s.t. V (s) ≤
∑
a1∈A1

π1(a1)R(s, a1, a2) + ∀(s, a2) ∈ S ×A2

(A.15b)
+ γ

∑
(a1,o,s′)∈A1×O×S

T (o, s′ | s, a1, a2)π1(a1)αa1,o(s′)

αa1,o(s′) =
k∑
i=1

λa1,o
i · αi(s′) ∀(a1, o, s

′) ∈ A1 ×O × S

(A.15c)
k∑
i=1

λa1,o
i = 1 ∀(a1, o) ∈ A1 ×O

(A.15d)∑
a1∈A1

π1(a1) = 1 (A.15e)

π1(a1) ≥ 0 ∀a1 ∈ A1
(A.15f)

λa1,o
i ≥ 0 ∀(a1, o) ∈ A1 ×O, 1 ≤ i ≤ k

(A.15g)

This mathematical program is not linear since it contains a product of vari-
ables π1(a) · αa1,o(s′). It can, however, be linearized by introducing substitution
α̂a1,o(s′) = π1(a1)αa1,o(s′) and λ̂a1,o

i = π1(a1)λa1,o
i to obtain (27).

Lemma 9.1. Let Υ = {(bi, yi) | 1 ≤ i ≤ k} such that yi ≥ V ∗(bi) for every
1 ≤ i ≤ k. Then the value function V Υ

UB is δ-Lipschitz continuous and satisfies

V ∗ ≤ V Υ
UB ≤ V Υ

HSVI1.

Proof. The inequality V Υ
UB ≤ V Υ

HSVI1 follows trivially from eq. (32) (with b′ := b).
Proving V ∗(b) ≤ V Υ

UB(b) is more involved. Suppose that b′ is the minimizer from
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the definition of V Υ
UB, i.e., that V Υ

UB(b) = V Υ
HSVI1(b′) + δ‖b− b′‖1. By definition

of V Υ
HSVI1, this b′ can be represented as a convex combination

∑
i λibi = b′ for

which
∑
i λiyi = V Υ

HSVI1(b′). We thus have

V Υ
UB(b) =

k∑
i=1

λiyi + δ ‖b− b′‖1 . (A.16)

Our assumptions imply that every pair (bi, yi) satisfies V ∗(bi) ≤ yi. Combining
this observations with the fact that V ∗ is convex and δ-Lipschitz continuous
(Lemma 5.5 and Proposition 5.8), we have

V ∗(b) ≤ V ∗ (b′) + δ ‖b− b′‖1 = V ∗

(∑
i

λibi

)
+ δ ‖b− b′‖1 ≤

≤
k∑
i=1

λiV
∗(bi) + δ ‖b− b′‖1 ≤

k∑
i=1

λiyi + δ ‖b− b′‖1 = V Υ
UB(b) .

Finally, let us prove that V Υ
UB is δ-Lipschitz continuous. Let us consider

beliefs b1, b2 ∈ ∆(S). Without loss of generality, assume that V Υ
UB(b1) ≥ V Υ

UB(b2).
Let barg min be the minimizer of V Υ

UB(b2), i.e.,

barg min = arg min
b′

[V Υ
HSVI1(b′) + δ‖b2 − b′‖1]. (A.17)

By triangle inequality, we have

V Υ
UB(b1) =

= min
b′∈∆(S)

[V Υ
HSVI1(b′) + δ‖b1 − b′‖1] ≤ V Υ

HSVI1(barg min) + δ‖b1 − barg min‖1 ≤

≤ [V Υ
HSVI1(barg min) + δ‖b2 − barg min‖1] + δ‖b1 − b2‖1 = V Υ

UB(b2) + δ‖b1 − b2‖1

which completes the proof.

Lemma 9.2. The lower bound V Γ
LB initially satisfies the following conditions,

which are subsequently preserved during point-based updates:
(1) V Γ

LB is δ-Lipschitz continuous.
(2) V Γ

LB is lower bound on V ∗.

Proof. Initially, value function V Γ
LB satisfies both conditions. Indeed, the set

Γ contains only the value valσ
unif
1 of the uniform strategy σunif

1 , i.e., V Γ
LB(b) =

valσ
unif
1 (b) for every belief b ∈ ∆(S). Value valσ

unif
1 is the value for a valid strategy

σunif
1 of player 1—hence it is δ-Lipschitz continuous (Lemma 5.7) and lower

bounds V ∗.
Assume that every α-vector in the set Γ is δ-Lipschitz continuous, and that

for each α ∈ Γ there exists strategy σ1 ∈ Σ1 with valσ1 ≥ α (which holds
also for the initial V Γ

LB). Let valcomp(πLB
1 , αLB) be the value composition from

Equation (35) obtained when performing the point-based update of V Γ
LB by
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solving [HV Γ
LB](b). We will now show that the refined function V Γ′

LB represented
by the set Γ′ = Γ ∪ {valcomp(πLB

1 , αLB)} satisfies both properties, and hence
any sequence of application of the point-based updates of V Γ

LB preserves the
aforementioned properties.
(1) By Lemma 6.6, valcomp(πLB

1 , αLB) is δ-Lipschitz continuous (and thus so is
the value function V Γ′

LB represented by the set Γ′ = Γ ∪ {valcomp(π1, α)}).
(2) Each α-vector in Γ forms lower bound on the value of some strategy of

player 1. Since αLB ∈ ΓA1×O, we have that every αa1,o lower bounds the
value of some strategy of player 1. The fact that valcomp(πLB

1 , αLB) is also
a lower bound follows from Lemma 6.5—and hence every α-vector from
the set Γ′ = Γ ∪ {valcomp(πLB

1 , αLB)} is a lower bound on V ∗. Hence also
V Γ′

LB(b) = supα∈Γ′ α(b) ≤ V ∗(b).

Lemma 9.3. The upper bound V Υ
UB initially satisfies the following conditions,

which are subsequently preserved during point-based updates:
(1) V Υ

UB is δ-Lipschitz continuous.
(2) V Υ

UB is an upper bound on V ∗.

Proof. V Υ
UB has been defined as a lower δ-Lipschitz envelope of V Υ

HSVI1, hence
it is δ-Lipschitz continuous (Lemma 9.1). We will therefore focus only on the
property (2). Since the upper bound is initialized by a solution of a perfect
information variant of the game, we have that yi ≥ V ∗(bi) for every (bi, yi) from
the initial set Υ (Equation (34)). Hence, applying Lemma 9.1, V Υ

UB is an upper
bound on V ∗.

We will now show that if yi ≥ V ∗(bi) holds for (bi, yi) ∈ Υ (and V Υ
UB is thus an

upper bound on V ∗), the application of a point-based update in any belief yields
set Υ′ such that yi ≥ V ∗(bi) also holds for every (bi, yi) ∈ Υ′—and the resulting
value function V Υ′

UB is therefore upper bound on V ∗ as well. Since V Υ
UB ≥ V ∗, the

utility function of any stage game satisfies uV Υ
UB,b(π1, π2) ≥ uV ∗,b(π1, π2) for every

b ∈ ∆(S), π1 ∈ Π1 and π2 ∈ Π2. This implies that [HV Υ
UB](b) ≥ [HV ∗](b) =

V ∗(b). We already know that yi ≥ V ∗(bi) holds for (bi, yi) ∈ Υ, and now we
have [HV Υ

UB](b) ≥ V ∗(b). Therefore, for every (bi, yi) ∈ Υ∪{(b, [HV Υ
UB](b))}, we

have yi ≥ V ∗(bi), and applying the Lemma 9.1, we have that the value function
V Υ′

UB is an upper bound on V ∗.

Lemma 9.4. Let bt be a belief encountered at t-th recursion level of Explore
procedure and assume that the corresponding action-observation pair (a∗1, o∗)
(from line 9 of Algorithm 4) satisfies

Pb,πUB
1 ,πLB

2
[a∗1, o∗] · excesst+1(τ(bt, a∗1, πLB

2 , o∗)) ≤ 0 . (40)

Then excesst(bt) ≤ −2δD after performing a point-based update at bt. Further-
more, all beliefs b′t ∈ ∆(S) such that ‖bt − b′t‖1 ≤ D satisfy excesst(b′t) ≤ 0.
Proof. Since V Γ

LB ≤ V ∗ ≤ V Υ
UB, it holds that [HV Γ

LB](bt) ≤ [HV Υ
UB](bt). Applying

Lemma 7.5 with C = ρ(t+1) implies that when the beliefs τ(bt, a1, π
LB
2 , o) satisfy

V Υ
UB(τ(bt, a1, π

LB
2 , o))− V Γ

LB(τ(bt, a1, π
LB
2 , o)) ≤ ρ(t+ 1),
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we have [HV Υ
UB](bt) − [HV Γ

LB](bt) ≤ γρ(t + 1). Luckily, this assumption is
satisfied in the considered situation — indeed, otherwise there would be some
(a1, o) ∈ A1 ×O with

V Υ
UB(τ(bt, a1, π

LB
2 , o))− V Γ

LB(τ(bt, a1, π
LB
2 , o)) > ρ(t+ 1),

i.e., one satisfying excesst+1(τ(bt, a1, π
LB
2 , o)) > 0, for which Pb,πUB

1 ,πLB
2

[a1, o] > 0.
This would contradict the assumption

Pb,πUB
1 ,πLB

2
[a∗1, o∗] · excesst+1(τ(bt, a∗1, πLB

2 , o∗)) ≤ 0.

Now, according to Equation (37), we have [HV Υ
UB](bt)− [HV Γ

LB](bt) ≤ γρ(t+
1) = ρ(t)− 2δD. It follows that the excess gap after performing the point-based
update in bt satisfies

excesst(bt) = V Υ
UB(bt)− V Γ

LB(bt)− ρ(t) ≤ γρ(t+ 1)− ρ(t)
= [ρ(t)− ρ(t)]− 2δD = −2δD, (A.18)

which completes the proof of the first part of the lemma.
Now since the value functions V Γ

LB and V Υ
UB are δ-Lipschitz continuous

(Lemma 9.2 and Lemma 9.3), the difference V Υ
UB − V Γ

LB is 2δ-Lipschitz con-
tinuous. Thus for every belief b′t ∈ ∆(S) satisfying ‖bt − b′t‖1 ≤ D, we have

V Υ
UB(b′t)−V Γ

LB(b′t) ≤ V Υ
UB(bt)−V Γ

LB(bt)+2δ‖bt−b′t‖1 ≤ V Υ
UB(bt)−V Γ

LB(bt)+2δD .
(A.19)

Now since excesst(bt) ≤ −2δD, we have excesst(b′t) ≤ 0 which proves the second
part of the lemma.

Lemma 10.4. Let V be a value function that is min-justified. Then V (b) ≥ L.

Proof. Assume for the contradiction that V (b) < L for some belief b ∈ ∆(S).
We pick b = arg minb′∈∆(S) V (b′) and denote ε = L − V (b). Now, using the
utility uV,b from Definition 7.4 and using our choice of b, we have

uV,b(π1, π2) = Eb,π1,π2 [R(s, a1, a2)] + γ
∑
a1,o

Pb,π1,π2 [a1, o]V (τ(b, a1, π2, o))

≥ r + γ
∑
a1,o

Pb,π1,π2 [a1, o]V (b) = r + γV (b) = r + γ(L− ε)

where r is the minimum reward in the game. Since L =
∑∞
t=1 γ

t−1r = r +∑∞
t=2 γ

t−1r = r + γL, we also have that uV,b(π1, π2) ≥ L − γε. Therefore
it would have to also hold that [HV ](b) = maxπ1∈Π1 minπ2∈Π2 u

V,b(π1, π2) ≥
L− γε > L− ε = V (b) which contradicts that V is min-justified.

Lemma 10.5. Let V be a value function that is max-justified by a set of α-vectors
Γ. Then for every α ∈ Γ we have α ≤ U .
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Proof. Let V be max-justified by Γ and let us assume for contradiction that
there exists α ∈ Γ and s ∈ S such that α(s) > U . We pick α and s such that
(α, s) = arg maxα∈Γ,s∈S α(s) and denote ε = α(s)− U . Using Definition 6.4 and
our choice of (α, s), we get the following for every π1 ∈ Π1 and α ∈ ΓA1×O:

valcomp(π1, α)(s) =

= min
a2∈A2

∑
a1∈A1

π1(a1)
[
R(s, a1, a2) + γ

∑
o,s′∈O×S

T (o, s′ | s, a1, a2)αa1,o(s′)
]

≤ min
a2∈A2

∑
a1∈A1

π1(a1)
[
r + γ

∑
o,s′∈O×S

T (o, s′ | s, a1, a2)α(s)
]

= min
a2∈A2

[r + γα(s)]

where r = max(s,a1,a2)R(s, a1, a2) is the maximum reward in the game. Since
U =

∑∞
t=1 γ

t−1r = r +
∑∞
t=2 γ

t−1r = r + γU , we have the following inequality
for every π1 ∈ Π1 and α ∈ ΓA1×O

valcomp(π1, α)(s) ≤ min
a2∈A2

[r+ γα(s)] = r+ γ(U + ε) = U + γε < U + ε = α(s) .
(A.20)

By Equation (A.20), no value composition can satisfy valcomp(π1, α)(bs) ≥ α(bs)
where bs(s) = 1 and bs(s′) = 0 otherwise. Consequently, no value composition
can satisfy valcomp(π1, α)(b) ≥ α(b) for every belief b ∈ ∆(S) as required by
Definition 10.3. This contradicts our assumption and concludes the proof.

Lemma 10.6. Let Γ be a set of linear functions, and V a value function that is
max-justified by Γ. Then V is also max-justified by Conv(Γ).

Proof. Recall that V is max-justified by Ω if 1) V (b) = supα∈Ω α(b) and 2) for
every α ∈ Ω there exists π1 ∈ Π1 and α ∈ ΩA1×O such that valcomp(π1, α) ≥ α.
Let V be a value function and suppose that Γ satisfies 1) and 2). We will now
verify that these properties hold for Conv(Γ) as well. By Proposition 5.11, we
have that supα∈Conv(Γ) α(b) = supα∈Γ α(b). Since the property 1) holds for Γ
and the value of V remains unchanged, 1) holds for Conv(Γ) as well. We will
now prove 2) by showing that for every α ∈ Conv(Γ), there exists π1 ∈ Π1 and
α ∈ Conv(Γ)A1×O such that valcomp(π1, α) ≥ α.

First of all, let us write α ∈ Conv(Γ) as a finite convex combination
∑k
i=1 λiα

i

of α-vectors αi ∈ Γ. Using the assumption that V is max-justified by Γ, we have
that for every αi there exists π(i)

1 ∈ Π1 and α(i) ∈ Γ, such that valcomp(πi1, αi) ≥
αi. Denote π1(a1) :=

∑k
i=1 λiπ

i
1(a1) and αa1,o :=

∑k
i=1 λiπ

i
1(a1)αia1,o/π1(a1).11

We claim that π1 and α witness that V is max-justified by Conv(Γ). Since πi1
and αi were chosen s.t. valcomp(πi1, αi) ≥ αi, we have

∑k
i=1 λivalcomp(πi1, αi) ≥

11Observe that αa1,o ∈ Conv(Γ) since π1(a1) =
∑k

i=1 λiπ
i
1(a1) and the coefficients

λiπ
i
1(a1)/π1(a1) thus sum to 1.
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∑k
i=1 λiα

i = α ∈ Conv(Γ). To finish the proof, we show that valcomp(π1, α) ≥∑k
i=1 λivalcomp(πi1, αi). By Definition 6.4, we have

valcomp(π1, α) =

= min
a2∈A2

[ ∑
a1∈A1

π1(a1)R(s, a1, a2)

+ γ
∑

(a1,o,s′)∈A1×O×S

π1(a1)T (o, s′ | s, a1, a2)αa1,o(s′)
]

= min
a2∈A2

[ k∑
i=1

∑
a1∈A1

λiπ
i
1(a1)R(s, a1, a2)+

+ γ
∑

(a1,o,s′)∈A1×O×S

T (o, s′ | s, a1, a2)
k∑
i=1

λiπ
i
1(a1)αia1,o(s

′)
]

= min
a2∈A2

k∑
i=1

λi

[ ∑
a1∈A1

πi1(a1)R(s, a1, a2)

+ γ
∑

(a1,o,s′)∈A1×O×S

πi1(a1)T (o, s′ | s, a1, a2)αia1,o(s
′)
]

≥
k∑
i=1

λi min
a2∈A2

[ ∑
a1∈A1

πi1(a1)R(s, a1, a2)

+ γ
∑

(a1,o,s′)∈A1×O×S

πi1(a1)T (o, s′ | s, a1, a2)αia1,o(s
′)
]

=
k∑
i=1

λivalcomp(πi1, αi) .

Proposition 10.7. Let V be a value function that is max-justified by a set of α-
vectors Γ. Let binit ∈ ∆(S) and ρinit ∈ Γ. By playing according to Act(binit, ρinit),
player 1 implicitly forms a strategy σ1 for which valσ1 ≥ ρinit.

Proof. Let binit and ρinit be as in the proposition and assume that player 1
follows Act(b, ρ) for the first K stages and then follows the uniformly-random
strategy σunif

1 . We denote this strategy as σb,ρ,K1 . To get to our result, we
will first consider an arbitrary belief b ∈ ∆(S) and gadget ρ ∈ Γ. We will use
induction to prove that the value of σb,ρ,K1 satisfies valσ

b,ρ,K
1 ≥ ρ− γK · (U − L).

First, assume that K = 0, i.e., player 1 plays the uniform strategy σunif
1

immediately. Value of the uniform strategy σunif
1 is at least valσ

unif
1 ≥ L (Pro-

position 5.3) while ρ ≤ U (Lemma 10.5). Hence valσ
b,ρ,0
1 ≥ L ≥ L− (U − ρ) =

ρ− γ0(U − L).
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Let K ≥ 1 and assume that valσ
b′,ρ′,K−1
1 ≥ ρ′ − γK−1(U −L) for every belief

b′ ∈ ∆(S) and gadget ρ′ ∈ Γ. Observe that due to the recursive nature of the Act
method, we can represent the strategy σb,ρ,K1 as a composite strategy σb,ρ,K1 =
comp(π∗1 , ζ), where ζa1,o = σ

τ(b,a1,π2,o),α∗a1,o,K−1
1 and π∗1 comes from line 5 of

Algorithm 5. (To ensure that α∗ and π∗1 are correctly defined, the algorithm
requires the existence of a value composition satisfying valcomp(π1, α) ≥ ρ. This
requirement holds since V is max-justified by the set Γ and ρ ∈ Γ.) Applying
Lemma 6.3, the induction hypothesis, and Definition 6.4 (in this order), we have
valcomp(π∗1 ,ζ)(s) =

= min
a2∈A2

∑
a1∈A1

π∗1(a1)
[
R(s, a1, a2) + γ

∑
(o,s′)∈O×S

T (o, s′ | s, a1, a2)valζa1,o(s′)
]

≥ min
a2∈A2

∑
a1∈A1

π∗1(a1)
[
R(s, a1, a2) +

+ γ
∑

(o,s′)∈O×S

T (o, s′ | s, a1, a2)[α∗a1,o(s
′)− γK−1(U − L)]

]
= min
a2∈A2

∑
a1∈A1

π∗1(a1)
[
R(s, a1, a2) +

+ γ
∑

(o,s′)∈O×S

T (o, s′ | s, a1, a2)α∗a1,o(s
′)
]
− γK(U − L)

= valcomp(π∗1 , α∗)− γK(U − L) .

We thus have valσ
b,ρ,K
1 = valcomp(π∗1 ,ζ) ≥ valcomp(π∗1 , α∗)−γK(U−L). Moreover,

according to constraint on line 5 of Algorithm 5, we also have valcomp(π∗1 , α∗) ≥ ρ.
As a result, we also have valσ

b,ρ,K
1 ≥ ρ−γK(U−L). This completes the induction

step.
Denote by σ1 the strategy where player 1 follows Act(binit, ρinit) for infinite

period of time (i.e., as K →∞). We then have

valσ1 = lim
K→∞

valσ
binit,ρinit,K
1 ≥ lim

K→∞
[ρinit − γK(U − L)] = ρinit

which completes the proof.

Proposition 10.9. Let V be a min-justified value function and let binit be the
initial belief of the game. The Algorithm 6 implicitly constructs a strategy σ2
which guarantees that the utility to player 1 will be at most V (binit).

Proof. For the purposes of this proof, we will use

val2(σ′2, b) = sup
σ1∈Σ1

Eb,σ1,σ′2
[Discγ ]

to denote the value a strategy σ′2 of player 2 guarantees when the belief of
player 1 is b. Similarly to the proof of Proposition 10.7, we will first consider
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strategies σb,K2 where player 2 plays according to Act(b) for K steps, and then
follows an arbitrary (e.g., uniform) strategy in the rest of the game, and we show
that val2(σb,K2 , b) ≤ V (b) + γK(U − L).

First, let K = 0 and b ∈ ∆(S) be the belief of player 1. By Proposition 5.3,
player 1 cannot achieve higher utility than U . Moreover, V is min-justified, so
we have V (b) ≥ L by Lemma 10.4. Therefore, player 1 cannot achieve higher
utility than val2(σb,02 , b) ≤ U ≤ U +V (b)−L = V (b) +γ0(U −L) when his belief
is b.

Now let K ≥ 1 be arbitrary. By the induction hypothesis, we have that
strategy σb

′,K−1
2 guarantees that the utility is at most val2(σb

′,K−1
2 , b′) ≤ V (b′) +

γK−1(U − L) when the belief of player 1 is b′. Let us evaluate the utility that
σb,K2 guarantees against arbitrary strategy σ1 of player 1 in belief b. In the
first stage of the game, player 2 plays according to π∗2 obtained on line 3 of
Algorithm 6, and the expected reward from the first stage is Eb,σ1,π∗2

[R(s, a1, a2)].
If player 1 plays a1 and observes o, he reaches an (a1, o)-subgame where the
belief of player 1 is τ(b, a1, π

∗
2 , o) and player 2 plays στ(b,a1,π

∗
2 ,o),K−1

2 . Using the
induction hypothesis, we know that player 1 is able to achieve utility of at most
val2(στ(b,a1,π

∗
2 ,o),K−1

2 , τ(b, a1, π
∗
2 , o)) ≤ V (τ(b, a1, π

∗
2 , o)) + γK−1(U − L). This

implies that an upper bound on the utility that σ1 achieves against σb,K2 (i.e.,
the strategy corresponding to player 2 following Act(b) for K stages) is

Eb,σ1,π∗2
[R(s, a1, a2)] + γEb,σ1,π∗2

[V (τ(b, a1, π
∗
2 , o)) + γK−1(U − L)]

= Eb,σ1,π∗2
[R(s, a1, a2)]+

+ γ
∑

(a1,o)∈A1×O

Pb,σ1,π∗2
[a1, o] · [V (τ(b, a1, π

∗
2 , o)) + γK−1(U − L)] .

By allowing player 1 to maximize over σ1, we get an upper bound on the value
val2(σb,K2 , b) strategy σb,K2 guarantees when the belief of player 1 is b.

val2(σb,K2 , b) ≤

≤ sup
σ1∈Σ1

[
Eb,σ1,π∗2

[R(s, a1, a2)] +

+ γ
∑

(a1,o)∈A1×O

Pb,σ1,π∗2
[a1, o] · [V (τ(b, a1, π

∗
2 , o)) + γK−1(U − L)]

]
= max
π1∈Π1

[
Eb,π1,π∗2

[R(s, a1, a2)]+

+ γ
∑

(a1,o)∈A1×O

Pb,π1,π∗2
[a1, o] · V (τ(b, a1, π

∗
2 , o))

]
+ γK(U − L)

= max
π1∈Π1

uV,b(π1, π
∗
2) + γK(U − L)

Using the fact that π∗2 is the optimal strategy in the stage game [HV ](b), the
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definition of the stage game’s value, and the fact that V is min-justified, we get

max
π1∈Π1

uV,b(π1, π
∗
2) + γK(U − L) = min

π2∈Π2
max
π1∈Π2

uV,b(π1, π2) + γK(U − L)

= [HV ](b) + γK(U − L) ≤ V (b) + γK(U − L) .

Hence, the utility player 1 with belief b can achieve against player 2 who
follows strategy σb,K2 is at most V (b) + γK(U − L), and we have val2(σb,K2 , b) ≤
V (b) + γK(U − L) which completes the induction step.

Now, similarly to the proof of Proposition 10.7, when player 2 follows Act(binit)
for infinitely many stages (i.e., plays strategy σ2 from the theorem), player 1 is
able to achieve utility at most

val2(σ2, b
init) = lim

K→∞
val2(σb

init,K
2 , binit) ≤ lim

K→∞
[V (binit)+γK(U−L)] = V (binit)

which completes the proof.

Lemma 10.10. Let Γ be the set of α-vectors that have been generated at any time
during the execution of the HSVI algorithm for one-sided POSGs (Algorithm 4).
Then the lower bound V Γ

LB is max-justified by the set Conv(Γ).

Proof. Observe that during the execution of Algorithm 4 the set Γ is modified
only by the point-based updates on lines 8 and 12 of Algorithm 4. To prove
the result, it thus suffices to show that (1) the initial lower bound V Γ

LB is max-
justified by the set Conv(Γ) = Γ = {valσ

unif
1 } and that (2) if V Γ

LB is max-justified
by Conv(Γ) then any point-based update results in a value function V Γ′

LB that is
max-justified by the set Conv(Γ′).

First, let us show that the initial lower bound V Γ
LB is max-justified by the

initial set of α-vectors Γ = {valσ
unif
1 } (and therefore also by Conv(Γ) = Γ). Clearly,

σunif
1 = comp(πunif

1 , ζunif), i.e., the uniform strategy σunif
1 can be composed from

a uniform stage strategy πunif
1 for the first stage of the game, and playing uniform

strategy ζunif
a1,o = σunif

1 in every (a1, o)-subgame after playing and observing (a1, o).
Hence, valσ

unif
1 = valcomp(πunif

1 , αunif) for αunif
a1,o = valσ

unif
1 and the initial V Γ

LB is
therefore max-justified by the set Conv(Γ) = Γ = {valσ

unif
1 }.

Next, consider a lower bound V Γ
LB from Algorithm 4 and assume that it

is max-justified by a set Conv(Γ). The point-based update constructs a set
Γ′ = Γ ∪ {valcomp(π1, α)} for some π1 ∈ Π1 and α ∈ Conv(Γ)A1×O, see Equa-
tion (35). Since V Γ

LB was max-justified by Conv(Γ), we know that for every α ∈
Conv(Γ) there exists π′1 ∈ Π1, α′ ∈ Conv(Γ)A1×O such that valcomp(π′1, α′) ≥ α.
The same holds for the newly constructed α vector valcomp(π1, α), and V Γ′

LB is
therefore max-justified by Conv(Γ) ∪ {valcomp(π1, α)}. By Lemma 10.6, we also
have that V Γ′

LB is max-justified by Conv(Conv(Γ)∪ {valcomp(π1, α)}) = Conv(Γ′).
Every point-based update thus results in a value function V Γ′

LB which is max-
justified by Conv(Γ′) which completes the proof.
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