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Abstract

Recently it has been proven that simple GP systems can efficiently evolve a conjunction of n variables if

they are equipped with the minimal required components. In this paper, we make a considerable step forward

by analysing the behaviour and performance of a GP system for evolving a Boolean conjunction or disjunction

of n variables using a complete function set that allows the expression of any Boolean function of up to n
variables. First we rigorously prove that a GP system using the complete truth table to evaluate the program

quality, and equipped with both the AND and OR operators and positive literals, evolves the exact target function

in O(ℓn log2 n) iterations in expectation, where ℓ ≥ n is a limit on the size of any accepted tree. Additionally, we

show that when a polynomial sample of possible inputs is used to evaluate the solution quality, conjunctions or

disjunctions with any polynomially small generalisation error can be evolved with probability 1−O(log2(n)/n).
The latter result also holds if GP uses AND, OR and positive and negated literals, thus has the power to express

any Boolean function of n distinct variables. To prove our results we introduce a super-multiplicative drift

theorem that gives significantly stronger runtime bounds when the expected progress is only slightly super-linear

in the distance from the optimum.

1 Introduction

Genetic Programming (GP) uses principles of Darwinian evolution to evolve computer programs with some de-

sired functionality. The most popular and well-known GP approach, pioneered by Koza (1992), represents pro-

grams using syntax trees. It uses genetic variation operators to search through the space of programs composed of

the available components, favouring ones which exhibit better behaviour on a wide variety of possible inputs. In

this setting, the quality of a program is evaluated by comparing its outputs for varying inputs to those of the target

function.

Despite the many examples of successful applications of GP (see e.g., Koza, 2010; Liu and Shao, 2013;

Bartoli et al., 2014; Moore et al., 2018; Miranda et al., 2019; Lynch et al., 2019; Vu et al., 2019), our understand-

ing of its behaviour and performance is limited.

The few available theoretical analyses of GP have followed the very successful path used in the analysis of

traditional evolutionary algorithms (EAs) for function optimisation that initially considered simplified EAs such as

the (1+1) evolutionary algorithm (Droste et al., 2002), and has progressively allowed the analysis of realistic EAs

using populations and crossover (see, e.g., Jansen et al., 2005; Witt, 2006; Doerr et al., 2012a; Dang et al., 2018;

Huang et al., 2019; Corus and Oliveto, 2020; Dang et al., 2021; Sutton, 2021; Corus et al., 2021; Zheng et al.,

2022). Similarly simplified GP systems have been considered that use a tree-based mutation operator called HVL-

Prime (an adaptation of the hierarchical variable length mutation operator proposed by O’Reilly and Oppacher,

1996) to evolve a single program. In this paper we consider RLS-GP (Durrett et al., 2011), which analogously to

the randomised local search algorithm (see, e.g., Neumann and Wegener, 2007), performs a single local mutation

before evaluating the fitness, differently to the (1 + 1) GP which can perform a larger number of local changes in

a single iteration, akin to the (1 + 1) evolutionary algorithm.

Initial works analysed the behaviour and performance of these algorithms for the evolution of non-executable

tree structures rather than the evolution of computer programs where the fitness function is an estimate of how well

the the candidate solution matches the behaviour of the target program on a training set of inputs (Durrett et al.,
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2011; Kötzing et al., 2014; Doerr et al., 2020; Lissovoi and Oliveto, 2020). Only recently the performance of

simple GP systems has been analysed for the evolution of executable functions. It has been proven that Boolean

conjunctions of n variables can be evolved by RLS-GP and (1+1) GP algorithms in an expected polynomial

number of iterations (Mambrini and Oliveto, 2016; Lissovoi and Oliveto, 2019). Programs equivalent to the target

conjunction can be evolved when the complete truth table (i.e. the set of all 2n possible inputs) is used to evaluate

the program quality. When the solution quality is evaluated by sampling a polynomial number of inputs uniformly

at random from the complete truth table in each iteration (i.e. employing Dynamic Subset Selection to limit

the total computational effort as suggested by Gathercole and Ross, 1994) the evolved programs are found to

generalise well i.e., they are incorrect only on an arbitrarily small polynomial fraction of the 2n possible inputs.

While these results are promising, the considered GP systems were considerably different from those used

in practice. In particular, they were required to evolve a simple arity-n Boolean conjunction from only its basic

components (i.e. only the binary Boolean AND operator and the variables necessary for the problem). In realistic

applications, the required set of program components is not necessarily known in advance, and thus GP systems

typically have access to a wider range of components than is strictly necessary. Hence an important question that

we address in this paper is whether the GP system is able to cope with a function set containing elements which

should be avoided to express the target function concisely or avoided altogether. Ideally, the system should be

equipped with at least a complete set of operators, from which any Boolean function could be constructed.

In this paper, we make a considerable step forward in this direction by analysing the behaviour and perfor-

mance of RLS-GP for evolving an unknown Boolean function. More precisely, the target functions we consider

are either ANDn, the conjunction of n variables or ORn, the disjunction of n variables. The GP system has access

to both the binary conjunction (i.e. AND) and disjunction operators (i.e. OR). Using ANDn or ORn as the target

function simplifies our understanding of the quality of candidate solutions that mix conjunction and disjunction

operators. Furthermore, we also consider a scenario where the terminal set contains all the n variables in both

positive and negated forms. Thus, such a GP system is complete for the Boolean domain, as with its function and

terminal sets it may express any possible Boolean function of n variables.

These more complex problem settings induce us to introduce more sophisticated features into the RLS-GP

system than those necessary to evolve conjunctions using the AND operator alone, thus making the GP system

more similar to the ones used in realistic applications. Since the presence of disjunctions in the current solution

may reduce the effectiveness of the mutation operator for producing programs with better behaviour, we introduce

a limit on the size of the syntax tree. This allows us to avoid issues due to bloat (a common problem for GP

systems, where the size of the solution tends to increase without a corresponding increase in solution quality

(Koza, 1992; Poli et al., 2008)).

With the limit on the tree size in place, our theoretical analysis reveals that the HVL-Prime mutation operator

used in previous work (Durrett et al., 2011; Lissovoi and Oliveto, 2019), which either inserts, substitutes or deletes

one node of the tree, may get stuck in local optima. Hence, RLS-GP with the traditional HVL-Prime operator has

infinite expected runtime. To avoid this issue, we introduce a mutation mechanism which is more similar to the

most commonly used subtree mutation (Koza, 1992; Poli et al., 2008). Specifically, it allows the deletion operator

to remove entire subtrees in one operation, rather than limiting it to only a single leaf and its immediate parent.

We first show that RLS-GP with the above modifications is able to cope efficiently with the extended function

set and the positive literals in the terminal set if it uses the complete truth table to evaluate the program quality and

rejects any tree with more than ℓ = (1 + c)n (where c > 0 is a constant) leaf nodes. In particular, we prove that it

evolves the exact target functions in O(ℓn log2 n) iterations in expectation. While using the complete truth table

to evaluate the program quality requires exponential time in the number of variables, we consider this setting for

two main reasons. First, this setting represents the best-case model of the GP system’s behaviour (i.e. a system

unable to find the optimal solution when given access to a reliable fitness function is unlikely to be able to perform

well with a noisy one). Second, the deterministic fitness values somewhat simplify the behaviour of the algorithm

and hence our analysis. Note that if the negated literals are also included in the terminal set, then it has been

proven that the standard RLS-GP cannot evolve ANDn in polynomial time with overwhelming probability even if

only the AND operator is used (Mambrini and Oliveto, 2016). We conjecture that the same holds for the modified

RLS-GP with extended function and terminal sets, and provide experimental evidence that this is the case.

On the other hand, we provide a positive general result for the more realistic scenario where training sets of

polynomial size are sampled in each iteration uniformly at random from the complete truth table. In practice some

information about the function class to be evolved may be used to decide which inputs to use in the training set.

For instance, if the target function was known to be the conjunction of n variables, then a compact training set

of linear size would suffice to evolve the exact solution efficiently (Lissovoi and Oliveto, 2019). However, we

assume that the target function is an unknown arbitrary function composed of conjunctions and disjunctions of n
variables. Our aim is to estimate the quality of the solution produced by RLS-GP in this setting.

We show that with probability 1 − O(log2(n)/n) RLS-GP is able to construct and return a conjunction (or a
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Algorithm 1 The RLS-GP algorithm with a tree size limit ℓ.

1: Initialise an empty tree X
2: for t← 1, 2, . . . do

3: X ′ ← HVL-Prime(X)
4: if LeafCount(X ′) ≤ ℓ and f(X ′) ≤ f(X) then

5: X ← X ′

disjunction) with an arbitrarily small polynomial generalisation error in a logarithmic number of iterations even if

the negated literals are present in the terminal set.

To achieve our results, we introduce a super-multiplicative drift theorem that makes use of a stronger drift than

the linear one required by the traditional multiplicative drift theorem (Doerr et al., 2012b). This new contribu-

tion to the portfolio of methodologies for the analysis of randomised search heuristics (Lehre and Oliveto, 2018;

Lengler, 2020) allows for the achievement of drastically smaller bounds on the expected runtime in the presence

of a strong multiplicative drift.

We complement our theoretical results with an empirical investigation that confirms our theoretical intuition

that leaf-only deletion may get stuck on local optima if a limit on the tree size is imposed for bloat control reasons.

Additionally, the experiments indicate that while the algorithm would evolve the solution more quickly without a

limit on the tree size, the size limit reduces the amount of expected undesired binary disjunction operators in the

returned program.

A preliminary version of this work has previously been published at the Genetic and Evolutionary Computation

Conference (Doerr et al., 2019). In this version, we additionally show that the considered GP system without

further modifications can also efficiently evolve disjunctions, and provide the more general result that the algorithm

is also efficient when using an ideal function and terminal set which allows for any Boolean function of up to n
distinct variables to be represented. We have also extended the experimental analyses to complement the theory

in this more general setting.

2 Preliminaries

In this work, we will analyse the performance of the simple RLS-GP algorithm on the ANDn and ORn problems:

the former directly, and the latter by noting that equivalent results can be derived by observing a symmetry between

the search spaces of the two problems. The ANDn problem concerns the evolution of a conjunction of all n
input variables while using F = {AND, OR} binary functions and L = {x1, . . . , xn} input variables. When

the program quality is evaluated using the complete truth table, the fitness function f(X) counts the number

of truth-value assignments (or inputs) on which the output of the candidate solution X differs from that of the

target function ĥ(x) (i.e., ANDn(x) = x1 ∧ . . . ∧ xn and ORn(x) = x1 ∨ . . . ∨ xn for the ANDn and ORn

problems respectively). As observed by Lissovoi and Oliveto (2019), a conjunction of a distinct variables differs

from ANDn on 2n−a − 1 truth-value assignments.

We will analyse the performance of the RLS-GP algorithm, which repeatedly chooses the best between its

current solution and an offspring generated by applying a tree mutation operator. In addition to considering the

classic HVL-Prime mutation operator, which with equal probability inserts, deletes, or substitutes a leaf node in

the current solution (Durrett et al., 2011), we also propose a slightly modified version (HVL-Prime with subtree

deletion) that is able to delete arbitrary subtrees in a single mutation.

We observe that the presence of disjunctions in the current solution may lead to bloat issues. Each OR in-

creases the minimum number of leaf nodes required to represent the exact conjunction, and diminishes the effect

of insertions beneath it on the overall program semantics. Additionally, since the classic HVL-Prime operator per-

forms deletions by removing a leaf node and its immediate parent, it may be difficult for it to remove disjunctions

placed high up in the tree. To counteract this, we add a simple bloat control mechanism to RLS-GP, making it

reject trees which contain more than ℓ leaf nodes, as described in Algorithm 1.

With the tree size limit ℓ in place, applying the original HVL-Prime mutation operator Durrett et al. (2011)

may cause RLS-GP to get stuck on a local optimum.

Theorem 1. The expected optimisation time of RLS-GP with leaf-only deletion and substitution sub-operations of

HVL-Prime, and any ℓ > 0 on ANDn or ORn with F = {AND,OR} is infinite.

Proof. RLS-GP may construct trees which contain ℓ leaf nodes and cannot be further improved by local mutations.

For ANDn, consider a tree constructed by initially creating a disjunction of ℓ/2 x1 leaf nodes, and then

transforming each x1 leaf into an x1 ∧ x2 subtree. No leaf node in the final tree can be deleted or substituted

without decreasing fitness, and no insertion will be accepted due to the tree size limit, rendering RLS-GP unable
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Algorithm 2 HVL-Prime with subtree deletion on tree X .

1: Inputs: a tree X , set of available literals L, set of available binary functions F .

2: Choose op ∈ {INS,DEL, SUB}, l ∈ L, f ∈ F uniformly at random

3: if X is an empty tree then

4: Set l to be the root of X .

5: else if op = INS then

6: Choose a node x ∈ X uniformly at random

7: Replace x with f , setting the children of f to be x and l, order chosen u.a.r.

8: else if op = DEL then ⊲ modified (subtree) deletion

9: Choose a node x ∈ X uniformly at random

10: Replace x’s parent in X with x’s sibling in X
11: else if op = SUB then

12: Choose a leaf node x ∈ X uniformly at random

13: Replace x with l.

14: return the modified tree X

to reach the optimum. As this tree can be constructed with non-zero probability, the expected time to construct

the optimal solution is infinite by the law of total expectation.

For ORn, an equivalent issue arises when an initial conjunction of ℓ/2 x1 leaf nodes has each leaf transformed

into an x1 ∨ x2 subtree.

To avoid this issue, we modify the deletion operation of HVL-Prime to allow deletion of subtrees as described

in Algorithm 2. The only difference with the original HVL-Prime operator is that in line 9 only choosing a leaf

node for deletion was allowed while now any node may be chosen for deletion.

We use the term sampled error to refer to the fitness value of a particular solution in a particular iteration, and

generalisation error to refer to the probability that a particular solution is wrong on an input chosen uniformly

at random from the set of all 2n possible inputs. When the program quality is evaluated using the complete truth

table, the sampled error of a solution is always exactly 2n times its generalisation error. When the complete truth

table is used, the goal of the GP system is to construct a solution that is semantically equivalent to the target

function, i.e. achieve a sampled (and generalisation) error of 0.

As it is computationally infeasible to evaluate all 2n possible inputs for large values of n, we also analyse

the behaviour of RLS-GP when evaluating the solution quality based on s ∈ poly(n) inputs chosen uniformly

at random from the set of all possible inputs. A fresh set of s inputs is chosen in each iteration, and f(X), or

the sampled error, then refers to the number of inputs, among the chosen s, on which X differs from the target

function. The sampled error is thus a random variable, and its expectation is exactly s times the generalisation

error of the solution. We bound the probability that the sampled error deviates from its expectation in Lemma 1

below. When a polynomially sized training set is used to evaluate the program quality, the goal of the GP system

is to construct a solution with a low generalisation error. On ANDn, and most other non-trivial problems, we

do not expect the GP systems to reach a generalisation error of 0 while s remains polynomial with respect to the

problem size, unless the problem’s fitness landscape is well understood and a problem-specific training set is used

(Lissovoi and Oliveto, 2019). We assume that this is not the case, and that the aim is to find a solution that has an

arbitrarily small polynomial generalisation error. Note that we use the following notation throughout the paper:

N := {0, 1, 2, . . .}, lg(n) and ln(n) denoting the base 2 and the natural logarithms of n, while logn is used in

asymptotic bounds.

Lemma 1. Let s ∈ poly(n) be the number of inputs sampled by the GP system, G be the generalisation error of

a solution, and X be the random variable that denotes the sampled error of that solution. Then, for any c that is

at least a positive constant,

|Gs−X | ≤ max{c lgn,Gs}

with probability at least 1− n−Ω(c).

Proof. X is a sum of s Bernoulli variables, each with a probability G of assuming the value 1 (and 0 otherwise),

and hence E[X ] = Gs. As both X and Gs are non-negative, Gs − X ≤ Gs, and we focus solely on the case

where X significantly exceeds its expectation, the probability of which can be bounded by applying a Chernoff

bound.

Suppose that E[X ] ≥ (c/2) lgn; then, Pr[X ≥ (1 + 1)E[X ]] ≤ e−E[X]/3 ≤ n−Ω(c); and hence |Gs−X | <
Gs, with probability at least 1 − n−Ω(c). Otherwise, we upper bound E[X ] ≤ µ+ = (c/2) lgn, and apply a
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Chernoff bound using µ+ Doerr (2020, Theorem 1.10.21), obtaining Pr[X ≥ (1 + 1)µ+] ≤ e−µ+/3 = n−Ω(c);

and hence |Gs−X | ≤ X ≤ c lgn with probability at least 1− n−Ω(c).

3 Complete truth table

In this section, we will present a runtime analysis of the RLS-GP algorithm with subtree deletion (i.e. Algorithm 1

using Algorithm 2 as the mutation operator) on the ANDn problem, using the complete truth table to evaluate the

solution quality, i.e., executing each constructed program on all 2n possible inputs.

Theorem 2. The expected runtime of RLS-GP with F = {AND, OR}, L = {x1, . . . , xn}, and ℓ ≥ n on ANDn

or ORn is E[T ] = Ω(n logn).

Proof. No tree which does not contain all n distinct variables can be equivalent to the ANDn or ORn functions.

By a standard coupon collector argument, Ω(n logn) insertion or substitution operations are required to insert all

n distinct variables into the tree.

The following drift theorem requires that the expected progress when at distance d from the target is of order

Ω(d log d). This assumption is slightly stronger than the linear (i.e. Ω(d)) progress assumed in the multiplicative

drift theorem. Despite this apparently small difference, the resulting bounds for the expected time to reach the

target differ drastically. For an initial distance of d0, they are, roughly speaking, O(log d0) for the multiplicative

drift situation and O(log log d0) for our super-multiplicative drift.

Theorem 3 (Super-multiplicative drift theorem). Let γ > 1 and δ > 0. Let X0, X1, . . . be random variables

taking values in Ω = {0} ∪ [1,∞). Assume that for all t ∈ N and all x ∈ Ω \ {0} such that Pr[Xt = x] > 0 we

have

E[Xt −Xt+1 | Xt = x] ≥ (logγ(x) + 1)δx. (1)

Then the first hitting time T = min{t ∈ N | Xt = 0} of zero satisfies

E[T | X0] ≤
3

δ
+

2(2 + log2 logγ max{γ,X0}) ln γ

δ
.

Proof. For all k ∈ N≥1, let Tk := min{t ∈ N | Xt < γ2k−1

}. We first show that

E[Tk − Tk+1] ≤
1 + 2k ln γ

(2k−1 + 1)δ

holds for all k ≥ 1. To this aim, we regard the process Yt defined for all t ∈ N by Yt = Xt if t ≤ Tk − 1 and

Yt = 0 otherwise. By definition, T Y
k := min{t ∈ N | Yt < γ2k−1

} satisfies T Y
k = Tk. We show that the process

(Yt) satisfies the multiplicative drift condition,

E[Yt − Yt+1 | Yt] ≥ (2k−1 + 1)δYt.

If t ≥ Tk, then both Yt = 0 and Yt+1 = 0. Consequently, the multiplicative drift condition is trivially satisfied. In

the more interesting case that t < Tk, we have Yt ≥ γ2k−1

and Yt = Xt. From this, Yt+1 ≤ Xt+1, and (1), we

conclude

E[Yt − Yt+1 | Yt] ≥ E[Xt −Xt+1 | Xt] ≥ (logγ(Xt) + 1)δXt ≥ (2k−1 + 1)Yt,

again showing the multiplicative drift condition.

Let T Y := min{t ∈ N | Yt = 0}. Since T Y = T Y
k = Tk and since Yt ≤ γ2k for all t ≥ Tk+1, the

multiplicative drift theorem (Doerr et al., 2012b) yields E[Tk−Tk+1] = E[T Y −T Y
k+1] ≤

1+ln γ2k

(2k−1+1)δ = 1+2k ln γ
(2k−1+1)δ .

By a simple application of the multiplicative drift theorem, we also observe that E[T − T1] ≤
1+ln γ

δ .

In the following, we condition on the initial value X0. Assume that X0 ∈ [γ2k−1

, γ2k) for some k ∈ N≥1.

Then Tk+1 = 0 and thus T =
∑k

i=1(Ti − Ti+1) + (T − T1). We compute

E[T ] =
k
∑

i=1

E[Ti − Ti+1] + E[T − T1] ≤
k
∑

i=1

1 + 2i ln γ

(2i−1 + 1)δ
+

1 + ln γ

δ

≤
3

δ
+

2(k + 1) ln γ

δ
≤

3

δ
+

2(2 + log2 logγ X0) ln γ

δ
.

For X0 < γ, we have in an analogous way E[T ] ≤ 1+ln(X0)
δ ≤ 1+ln γ

δ . This proves the claim.
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The proof of Theorem 3 estimates the super-multiplicative drift by piece-wise multiplicative drifts. We pre-

ferred this proof method because of its simplicity and because it could, by using the multiplicative drift theorem

with tail-bounds (Doerr and Goldberg, 2013), also lead to tail-bounds for super-multiplicative drift as well1. An al-

ternative approach which would improve the time bound by a constant factor (again a feature we are not interested

in here) would be to use variable drift (Mitavskiy et al., 2009; Johannsen, 2010).

We use the super-multiplicative drift theorem to prove our upper bound on the expected runtime of RLS-GP

when using the complete truth table as the training set. We initially focus on the ANDn problem, and will later

show that because of the symmetry in the ORn and the ANDn problems, equivalent results also hold for ORn.

We begin by bounding the time spent in iterations in which the tree is not full, i.e. it has not reached the size limit

of having ℓ leaf nodes.

Lemma 2. Consider a run of RLS-GP on ANDn, with F = {AND, OR}, L = {x1, . . . , xn}, and a tree size

limit of ℓ ≥ n. Let T be the number of iterations before the optimum is found, and T0 ≤ T be the number of these

iterations in which the parent individual is not a full tree. Then, E[T0] = O(ℓ n log2 n).

Proof. To bound E[T0], we will apply Theorem 3 using the solution fitness as the potential function, and con-

sidering only the iterations in which the tree is not full. While the tree is full, we instead rely on the elitism of

the RLS-GP algorithm to not accept mutations which increase the potential function value (i.e., offspring with a

worse fitness value). Thus, the T0 iterations in which the tree is not full need not be contiguous.

In an iteration starting with a tree containing less than ℓ leaf nodes, it is possible to insert a new leaf node xi

with an AND parent anchored at the root of the tree. We call such an operation a root-and. The probability that

in one iteration a root-and with a fixed variable xi is performed, is at least 1
3 ·

1
2 ·

1
2ℓ ·

1
n = 1

12ℓn .

We compute the expected fitness gain caused by such modifications. Because the fitness never worsens, it

suffices to regard certain operations that improve the fitness. Recall further that the fitness is just the number of

assignments to the variables x1, . . . , xn such that the tree evaluates differently from ANDn.

Let x1, . . . , xn be such an assignment. This implies that not all xi are true, because any tree generated by RLS-

GP evaluates correctly to true for the all-true assignment. Assume that exactly k ≥ 1 of the variables x1, . . . , xn

are false, but that our tree solution evaluates to true. Then there are exactly k variables such that a root-and with

one of them would make the program evaluate to false on this assignment (and thus improve the fitness, since false

is the correct output). The probability for such a mutation is at least k
12ℓn .

For any 1 ≤ i ≤ n, there are exactly
(

n
i

)

inputs where exactly i variables are set to false, and exactly
∑k−1

i=1

(

n
i

)

inputs where less than k variables are set to false. Thus, if the fitness of the current solution is at least

Mk = 2
∑k−1

i=1

(

n
i

)

, at least half of the inputs contributing to the fitness have at least k variables set to false.

By only regarding the progress caused by these, we have, for x ≥Mk,

E
[

f(Xt)− f(Xt+1) | f(Xt) = x
]

≥
1

12ℓ

k

n
x. (2)

Since for n sufficiently large we have Mk ≤ 2nk−1 for all k ∈ [1..n]. This implies that for all x ∈ [1..2n] and

all t ∈ N, we have

E
[

f(Xt)− f(Xt+1) | f(Xt) = x
]

≥ 1
12ℓn (⌊logn(x/2)⌋+ 1)x

≥ 1
36ℓn (logn(x) + 1)x,

where the last estimate uses n ≥ 2. Hence, Theorem 3 with γ = n and δ = 1/36ℓn gives

E[T ] ≤ 36ℓn(3 + 2(2 + log2 logn 2n)) lnn) = O(ℓn log2 n).

To prove following theorem, we will show that with high probability, the parent solution contains fewer than

ℓ leaf nodes in at least a constant fraction of any t ∈ Ω(ℓ n log2 n) iterations. Intuitively, this means that the

conditions of Lemma 2 apply often enough to not affect the asymptotic expected runtime (i.e. E[T ] = O(E[T0])).

Theorem 4. Consider a run of RLS-GP on ANDn, using F = {AND, OR}, L = {x1, . . . , xn}, and a tree

size limit of ℓ = (1 + c)n. Let T be the number of iterations before the optimum is found. If c = Θ(1), then

E[T ] = O(ℓ n log2 n).

1For this, we note that the multiplicative drift theorem with tail bounds (Doerr and Goldberg, 2013) shows that the phase lengths Tk−Tk−1

and T − T1 are stochastically dominated (see, e.g., Doerr (2019)) by their expectation plus a geometrically distributed random variable.

Consequently, the deviation of T above its expectation is stochastically dominated by a sum of independent geometrically distributed random

variables and thus can be bounded by tail bounds for such sums (Doerr, 2020, Section 1.10.4). We omit further details since in this work we

do not need such tail bounds.
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Proof. Let T ′ = c∗ℓn log2 n, for some constant c∗ > 0, be an upper bound on the expected number of iterations

E[T0] in which the tree is not full before the optimum solution is found per Lemma 2. By an application of

Markov’s inequality, the probability that the optimum is found in at most 2T ′ such iterations is at least 1/2. We

will show that if ℓ = (1 + c)n, for any constant c > 0, 2T ′ such iterations occur in (2 + c′)T ′ iterations with

high probability, where c′ > 0 is constant with respect to n. The theorem statement then follows from a simple

waiting time argument: during each period of (2 + c′)T ′ iterations, the optimum is found with probability at least

1/2 · (1 − o(1)) = Ω(1), so the expected number of such periods before the optimum is found is at most O(1),
and thus the expected runtime is at most O(T ′) = O(ℓn log2 n) iterations.

We will now show that during any N ∈ Ω(ℓ n log2 n) iterations, with high probability and for some constant

c′′ > 0, deletions of at least c′′N leaf nodes in total will be accepted. As each iteration can at most increase the

number of leaf nodes in the tree by 1, there will with high probability be at least c′′N iterations in which the tree

is not full among any (1 + c′′)N iterations. As T ′ ∈ Ω(ℓ n log2 n), 2T ′ iterations in which the tree is not full will

with high probability occur in (2 + c′)T ′ iterations where c′ = 2/c′′ = Ω(1).
Consider a tree X with exactly ℓ leaf nodes. Let LA(X) be a set of leaf nodes connected to the root of X via

only AND nodes, and call essential all the leaf nodes in this set that contain a variable which only appears on nodes

in this set exactly once. If X is non-optimal, at most n− 1 leaf nodes in X are essential, and at least ℓ − (n− 1)
leaf nodes are non-essential. All non-essential nodes are either directly deletable (in the case of redundant copies

of variables in LA(X)), or indirectly deletable (by deleting a branch at any of their OR ancestors).

Every non-essential leaf node can thus be deleted by performing an HVL-Prime deletion sub-operation on at

least one node in the tree. For some non-essential leaf nodes, a larger subtree may need to be deleted to remove

the leaf without adversely impacting fitness. The longer waiting time for such subtree deletions (requiring that the

root of the subtree be chosen for deletion rather than one of the many leaf nodes in the subtree) is balanced by the

increased number of leaf nodes deleted as part of the mutation. We note that the tree contains 2ℓ − 1 nodes, and

thus for ℓ ≥ (1 + c)n and any c > 0, an HVL-Prime mutation in expectation reduces the number of leaf nodes in

the tree by at least
1

3

ℓ− (n− 1)

2ℓ− 1
≥

ℓ− n

6ℓ
≥

c

6 + 6c
≥ δ ∈ Ω(1),

where δ > 0 is a positive constant, as c ∈ Ω(1).
Let X1, . . . , XN be the number of leaf nodes deleted in an accepted mutation during each iteration performed

while the tree is full, and X =
∑N

i=1 Xi. Furthermore, define a sequence Z0, . . . , ZN , where Z0 := 0 and

Zi := Zi−1 + Xi − δ; clearly, ZN − Z0 = ZN = X − δN . We will show that ZN > −δN/2 (and therefore

X > δN/2 ∈ Ω(N)) holds with high probability.

As E[Zi | Z1, . . . Zi−1] = Zi−1 + E[Xi | Z1, . . . Zi−1] − δ ≥ Zi−1, the sequence Z0, . . . , ZN is a sub-

martingale, and ci := |Zi−Zi−1| ≤ ℓ. Hence, by applying the Azuma-Hoeffding inequality forN ∈ Ω(ℓ n log2 n)
and t = δN/2,

Pr[ZN − Z0 ≤ −t] ≤ exp

(

−t2

2
∑N

i=1 c
2
i

)

≤ exp

(

−δ2N

8ℓ2

)

≤ n−Ω(log n)

as N/ℓ2 = Ω(nℓ log2 n/ℓ2) = Ω(log2 n) for ℓ = (1 + c)n where c is a constant.

Thus, there exists a constant c′′ > 0 such that over the course of N ∈ Ω(nℓ log2 n) iterations where the

tree is full, deletions of at least δN/2 = c′′N leaf nodes are accepted with high probability, and hence over the

course of (2/c′′)N iterations, at least 2N iterations occur while the tree is not full with high probability. Setting

N = T ′ = c∗nℓ log2 n iterations per Lemma 2 completes the proof: among Θ(T ′) iterations, at least Ω(T ′) will

take place while the tree is not full, allowing the application of the Markov inequality and waiting time arguments

to produce the bound on the expected runtime.

Additionally, we prove that the RLS-GP algorithm using the same function and terminal sets is able to evolve

disjunctions of n variables efficiently when using the complete truth table to evaluate the solution fitness. Theo-

rem 5 formalises this result, and is proven by the same methods as Theorem 4, taking advantage of the symmetry

between the search spaces of the ANDn and ORn problems.

Theorem 5. Consider a run of RLS-GP on ORn, using F = {AND, OR}, L = {x1, . . . , xn}, and a tree

size limit of ℓ = (1 + c)n. Let T be the number of iterations before the optimum is found. If c = Θ(1), then

E[T ] = O(ℓ n log2 n).

Proof. We note that there is a symmetry between the output vectors of the ANDn and ORn target functions: while

ANDn returns true only when all n input variables are true, ORn returns false only when all n input variables are

false. Similarly, a disjunction of a distinct variables is wrong on 2n−a − 1 inputs on ORn.
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Lemma 2 carries over to the ORn problem by considering the time taken to find the optimal solution through

insertions of disjunctions at the top of the tree, observing that for any 1 ≤ i ≤ n, there are exactly
(

n
i

)

inputs

where exactly i variables are set to true, and exactly
∑k−1

i=1

(

n
i

)

inputs where less than k variables are set to true.

Thus, if the fitness of the current solution is at least Mk = 2
∑k−1

i=1

(

n
i

)

, at least half of the inputs contributing to

the fitness have at least k variables set to true, allowing the error to be at least halved by inserting one of these k
variables.

The proof of Theorem 4 then carries over to the ORn problem by adjusting the definition of essential leaf

nodes: let LA(X) be a set of leaf nodes connected to the root of X via only OR nodes, and call essential all the

leaf nodes in this set that contain a variable which only appears on nodes in this set exactly once. A full tree can

then be shrunk by removing non-essential nodes, either directly (in the case of redundant copies of variables in

LA(X)) or by deleting a branch at any of their AND ancestors.

Thus, the runtime bound derived in the proof of Theorem 4 also holds for the ORn problem.

If the terminal set is extended by adding negations of all positive input variables, RLS-GP withF = {AND,OR}
is able to represent any Boolean function (by having a tree expressing its disjunctive or conjunctive normal

form, where any negations are pushed all the way down to individual variables). For the ANDn problem with

F = {AND}, Lissovoi and Oliveto (2019) have shown that such a terminal set extension renders RLS-GP ineffi-

cient when using the complete training set. In that setting, any solution containing a contradiction (e.g., x1 ∧ x1)

will have the next-to-optimal fitness (being wrong on only the all-true input). This deprives RLS-GP of a fitness

signal until an optimal solution is constructed by random chance inserting all positive terminals into the tree and

removing copies of all negative terminals from the tree. Since all mutations that do not remove the last-remaining

contradiction are accepted, this requires at least exponential time in expectation.

We conjecture that a similar result would hold for RLS-GP with F = {AND,OR}, and subtree deletion on

both the ANDn and ORn problems, as trees containing a contradiction on ANDn, or a tautology on ORn, can

be constructed, and would only be wrong on a single input. However, the negative drift analysis proof technique

used in Lissovoi and Oliveto (2019) cannot be easily applied with the subtree mutation operator as large jumps in

the search space may occur with high probability. Thus we leave this conjecture for future work, and focus in the

next section on the positive result for the realistic scenarios where training sets of polynomial size are used.

4 Polynomially sized training sets

While the previous section provides polynomial bounds on the number of iterations required to evolve a conjunc-

tion or a disjunction of all n variables, calculating the solution quality by comparing the programs’ output to that

of the target function on all of the 2n possible inputs in each iteration requires exponential computational effort.

Thus, it is only computationally feasible for evolving Boolean functions of modest size.

In this section, we consider the behaviour of the RLS-GP algorithm using only a polynomial computational

effort in each iteration. To this end, the solution quality is compared by evaluating the output of the parent and

offspring solutions and the target function on only a polynomial number of inputs (the “training set”) sampled

uniformly at random from the set of all possible inputs in each iteration. This setting was previously considered

by Lissovoi and Oliveto (2019), where it was shown that RLS-GP and (1+1) GP using F = {AND} are able

to construct a solution with O(log n) distinct variables which fits a random polynomially large training set in

expected O(log n) time.

For our main theoretical result below, we opt to have RLS-GP terminate and return a solution once the sampled

error on the training set is below a logarithmic acceptance threshold. This effectively prevents RLS-GP from

entering a region of the search space where the mechanism it uses to evaluate the program quality is overly noisy.

This slightly decreases the expected solution quality, but still allows to guarantee arbitrarily small generalisation

errors.

Theorem 6. For any constant c > 0, consider an instance of the RLS-GP algorithm with F = {AND,OR},
L = {x1, . . . , xn}, ℓ ≥ n, using a training set of s = nc lg2 n rows sampled uniformly at random from the

complete truth table in each iteration to evaluate the solution quality, and terminating when the sampled error of

the solution is at most c′ lg n, where c′ is an appropriately large constant. For both the ANDn and ORn problems,

with probability at least 1−O(log2(n)/n), the algorithm will terminate within O(log n) iterations, and return a

solution with a generalisation error of at most n−c.

To prove this theorem, we will show that RLS-GP is able to create a tree that contains no more than one

copy of each variable, no undesired functions (i.e., OR and AND on the ANDn and ORn problems respectively),

and enough distinct variables to sample an error below the acceptance threshold within O(log n) iterations with
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probability at least 1 − O(log2(n)/n). Additionally, we will show that with high probability the GP system will

not terminate early (i.e. it will not return a solution with a generalisation error greater than n−c for an arbitrary

constant c).

Lemma 3. If, in the setting of Theorem 6, RLS-GP never accepts solutions containing undesired function nodes

(i.e., OR and AND on the ANDn and ORn problems respectively) or multiple copies of any variable, and never

accepts solutions with a worse generalisation error than their ancestors, it will within O(log n) iterations reach

a solution with a sampled error below c′ lgn, where c′ > 0 is an appropriate constant, with probability at least

1−O(1/n).

Proof. To ensure that an error below c′ lg n is sampled, we consider the time required to construct a solution with

an expected sampling error of at most (c′/4) lgn. Such a sampling error can be achieved by a generalisation error

of at most ((c′/4) lgn)/(nc lg2 n) = (c′/4)n−c/ lgn ≥ n−(c+1) (for a sufficiently large n), i.e. a conjunction (on

the ANDn problem, or a disjunction on the ORn problem) of (c+ 1) lgn variables or more.

The time required to construct such a solution under the lemma’s conditions can be bounded by lower-

bounding the probability of inserting a new variable connected to the tree using an appropriate function node

(i.e., AND on ANDn and OR on ORn), and using a Chernoff bound to show that a sufficient number of such

insertions occur within a particular number of iterations (as the number of distinct variables in the current so-

lution is never reduced by the lemma’s conditions). Specifically, suppose that the current solution contains

i < n/2 distinct variables and no undesired function nodes, and let Xi be the event that a mutation inserts

a new variable and connects it to the tree using an appropriate function node, and is accepted. We bound

Pr[Xi] ≥ (1/3)(1/2)(n − i)/n ≥ δ, i.e. δ ≥ 1/12 for i < n/2. The probability that at least (c + 1) lgn
such mutations are accepted within (c′′/δ)(c+ 1) lgn = O(log n) iterations is then, by applying a multiplicative

Chernoff bound, at least 1 − e−Ω(c′′ logn) = 1 − n−Ω(c′′). Thus, when c′′ is a sufficiently large constant, this

probability is at least 1−O(1/n).
We bound the probability that a solution with a low-enough expected sampled error does not meet the accep-

tance threshold by applying Lemma 1. Once a solution with an expected sampled error of at most (c′/4) lgn is

constructed, the probability that its sampled error exceeds the acceptance threshold is at most n−Ω(c′). Thus, when

c′ is picked appropriately, the solution is accepted immediately with probability at least 1−O(1/n).
By combining the failure probabilities using a union bound, we conclude that RLS-GP under the conditions of

the lemma and with an appropriately-chosen constant c′, is able to construct a solution with an acceptable sampled

error within O(log n) iterations with probability at least 1−O(1/n).

We will now use this bound on the runtime of RLS-GP to show that it is likely to avoid all of the potential

pitfalls preventing the application of Lemma 3.

Lemma 4. In the setting of Theorem 6, with probability at least 1 − O(log2(n)/n), during the first O(log n)
iterations and while the expected sampled error of its current solution remains above (c′/4) lgn, RLS-GP is able

to avoid accepting mutations which: (1) insert copies of a variable already present in the current solution, (2)

insert undesired function nodes (i.e., OR and AND on the ANDn and ORn problems respectively), or (3) increase

the generalisation error of the current solution.

Proof. For claim (1), we note that within the first O(log n) iterations, the tree will contain at most O(log n)
distinct variables (as each iteration of RLS-GP is only able to insert one additional variable). Thus, the probability

that a mutation operation adds a variable which is already present in the solution (using either the insertion or

substitution sub-operation of HVL-Prime) is at most O(log n/n). By a union bound, this does not occur during

the first O(log n) iterations with probability at least 1−O(log2(n)/n).
For claim (2), we note that there are two main ways an undesired function node can be introduced into the

solution by an insertion operation. First, the function can be semantically neutral, e.g. on the ANDn problem, if

the ancestor contains only ANDs and unique variables, a leaf xi could be replaced with xi ∨ xi without affecting

any of the solution’s outputs. Second, the sampling process used to evaluate the solution fitness may not have sam-

pled any inputs on which the offspring is wrong and the ancestor is correct. We will consider the two possibilities

separately.

As semantically-neutral insertions of undesired function nodes require inserting a duplicate copy of a variable,

claim (1) already provides the desired probability bound on these insertions not occurring within O(log n) itera-

tions (and hence not being accepted). All other undesired function node insertions will increase the generalisation

error of the solution. The magnitude of this increase depends on the number of distinct variables in the subtree

displaced by the insertion, with insertions displacing only a single leaf node being the easiest to accept.

If a leaf of the ancestor solution is displaced by an insertion which adds an undesired function node and a new

variable, we use the term witness to refer to inputs on which the constructed offspring solution produces incorrect
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output while the parent solution produces correct output. For the ANDn problem, witness inputs are those where

the displaced variable to false while setting the remaining variables in the offspring solution to true, while on the

ORn problem, the displaced variable is set to true while the remaining variables in the offspring solution are set

to false. Witness inputs demonstrate that the offspring solution is worse than its parent; on all other inputs, the

parent and offspring produce the same output. Thus, as long as the sampling procedure finds at least one witness,

RLS-GP will reject the mutated solution.

Suppose the ancestor solution contains U distinct variables (and uses only the desired function nodes, i.e.,

AND on ANDn and OR on ORn); it is then incorrect on 2n−U − 1 possible inputs, while there are at least

2n−(U+1) witnesses; i.e., the probability of randomly selecting a witness is at least half that of randomly selecting

an input on which the ancestor is wrong. Thus, if the expected sampled error of the ancestor solution is at least

X , the expected number of witnesses in the sample is at least X/2. By a Chernoff bound, the probability that

fewer than (c′/16) lgn witnesses are present in the sample is at most e−(c′/128) lgn = n−Ω(c′). By setting the

constant c′ appropriately, this probability can be made into O(1/n). Hence, by a union bound, the probability that

no insertion of an undesired function node which increases the generalisation error is accepted within O(log n)
iterations while the expected sampled error of the solution remains above (c′/4) lgn is at least 1−O(log(n)/n).

For claim (3), we note that decreasing the number of distinct variables in the solution more than doubles its

generalisation error. Applying a similar argument as for rejecting detrimental undesired function node insertions

above (with at least X witnesses expected in a sampled training set), the probability that no mutations increasing

the generalisation error are accepted during O(log n) iterations is at least 1−O(log(n)/n).
Combining the error probabilities of the three claims using a union bound yields the theorem statement.

Finally, we show that with high probability, RLS-GP does not terminate unacceptably early (i.e., by sam-

pling an error below the acceptance threshold for a solution with a worse generalisation error than desired by

Theorem 6).

Lemma 5. In the setting of Theorem 6, with high probability, no solution with a generalisation error greater than

n−c has a sampled error of at most c′ lg n on a set of s ≥ nc lg2 n rows sampled random from the complete truth

table, within any polynomial number of iterations.

Proof. Recall that when sampling s rows uniformly at random from the complete truth table to evaluate the

solution fitness, RLS-GP terminates and returns the current solution when the solution appears wrong on at most

c′ lg n of the sampled rows. As the generalisation error of a solution is also the probability that the solution is

wrong on a uniformly-sampled row of the complete truth table, a solution X with a generalisation error g(X) of at

least n−c, has an expected sampled error E(f(X)) ≥ lg2 n on s = nc lg2 n rows sampled uniformly at random.

Applying a Chernoff bound, the probability that the sampled error Y is less than half of its expected value (which

for large-enough n is above the c′ lg n threshold), is super-polynomially small:

Pr [Y ≤ 1/2E[Y ]] ≤ e−E[Y ]/8 ≤ n−Ω(logn).

By a union bound, RLS-GP with high probability does not return a solution with a generalisation error of at

least n−c within any polynomial number of iterations when sampling s = Ω(nc lg2 n) rows of the complete truth

table uniformly at random to evaluate the solution quality in each iteration.

Our main result is proved by combining these lemmas.

Proof of Theorem 6. By Lemma 4, Lemma 3 can be applied with probability at least 1−O(log2(n)/n), and thus

with probability at least 1 − O(log2(n)/n) − O(1/n), a solution with a sampled error meeting the acceptance

threshold will be found and returned within O(log n) iterations. By Lemma 5, the generalisation error of any

solution returned by RLS-GP within a polynomial number of iterations is with high probability better than the

desired n−c.

Performing λ runs of RLS-GP, as is often done in practice, and terminating once any instance determines that

its current solution meets the acceptance threshold, will guarantee that a solution with the desired generalisation

error is produced using O(λ log n) fitness evaluations with probability 1− n−Ω(λ).

We now consider the GP system equipped with complete Boolean function and terminal sets i.e., the algo-

rithm has the capacity to represent any Boolean function of up to n distinct variables. We show that when using

a polynomial training set to evaluate the solution quality, extending the terminal set to include negations of input

variables (thus allowing RLS-GP to represent any Boolean function) does not significantly affect the algorithm’s

ability to produce solutions with desired polynomially-small generalisation errors on the ANDn and ORn prob-

lems. This result is formalised in Theorem 7, which is proven by observing that insertions of negated variables

are almost as useful as insertions of positive variables on these problems.
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Experiment Deletion F L Training Set Runs Max Iterations

RQ 1 leaf {AND,OR} {x1, . . . , xn} Complete 500 10,000

RQ 2 subtree {AND,OR} {x1, . . . , xn} Complete 500 10,000

RQ 3 subtree {AND,OR} {x1, . . . , xn, x1, . . . , xn} Complete 500 10,000

RQ 4 subtree {AND,OR} {x1, . . . , xn} Incomplete 500 10,000

RQ 5 subtree {AND,OR} {x1, . . . , xn, x1, . . . , xn} Incomplete 500 10,000

Table 1: The experimental setup used in each of the five carried out experiments.

Theorem 7. For any constant c > 0, consider an instance of the RLS-GP algorithm with F = {AND,OR},
L = {x1, . . . , xn, x1, . . . , xn}, ℓ ≥ n, using a training set of s = nc lg2 n rows sampled uniformly at random

from the complete truth table in each iteration to evaluate the solution quality, and terminating when the sampled

error of the solution is at most c′ lgn, where c′ is an appropriately large constant. For both the ANDn and ORn

problems, with probability at least 1−O(log2(n)/n), the algorithm will terminate within O(log n) iterations, and

return a solution with a generalisation error of at most n−c.

Proof. This result can be proven by following the proof of Theorem 6, supplemented by a number of observations

regarding the utility of adding negated variables into the current solution.

A solution containing both the positive and negative form of some variable and only problem-appropriate

function nodes (i.e., AND for ANDn and OR for ORn; producing a contradiction or a tautology respectively)

trivially achieves the desired polynomially-small generalisation error, as it is only wrong on a single input out of

2n possible inputs. Typically, however, RLS-GP will terminate with a solution of desired quality before inserting

both the positive and negative copies of some variable.

Any solution composed of problem-appropriate function nodes and a mix of positive and negative input vari-

ables, but not both the positive and negative versions of any one variable, is wrong on exactly two more inputs than

a solution which contains only positive versions of the same variables. For the ANDn problem, these two inputs

are the all-true input (on which the solution containing negated variables return false), and the input setting all

used leaf nodes to true by assigning true to variables appearing in positive form, and false to variables appearing

negated, and all remaining variables to true. Thus, the first insertion of a negated variable (which does not already

appear in the tree in positive form) is only slightly worse than inserting the corresponding positive variable, while

subsequent insertions of negated and positive variables are equivalent as long as no contradiction or tautology is

produced. The difference is overwhelmingly unlikely to be noticed when sampling a training set of polynomial

size for any polynomial number of iterations: these two inputs are not selected for any polynomially-sized training

set within a polynomial number of iterations with probability overwhelmingly close to 1 by a union bound, and

conditioning on this, the RLS-GP is as likely to accept/reject a mutation involving a negated literal as a positive

literal of the same variable.

For the purposes of Lemmas 3 and 4, the negated variables can therefore be treated as being equivalent to

their positive counterparts, with any solution which contains a logarithmic number of distinct variables in either

form and only the problem-appropriate function nodes producing the desired generalisation error. Thus, with

high probability, a tree which contains each variable in either positive or negative form at most once, contains

no undesired function nodes, and achieves the desired generalisation error can be constructed within O(log n)
iterations.

Combining these with Lemma 5 as in the proof of Theorem 6, and including the probability of not sampling a

training set capable of distinguishing negations in the final union bound yields the result.

5 Experiments

We performed experiments to complement our theoretical results. For each choice of algorithm and problem

parameters, we performed 500 independent runs of the GP systems and we report the average number of iterations

required to find the solution, its average size, as well as standard deviations.

We will investigate five separate research questions to expand upon the knowledge gained from the theory

regarding RLS-GP for evolving conjunctions. The experimental setup for each research question is reported in

Table 1.

We first examine the behaviour of the algorithms when they use the complete truth table to evaluate solution

quality. Theorem 1 showed that using the standard HVL-Prime operator, which applies leaf-only deletion and

substitution, can cause RLS-GP with the complete truth table to get stuck on a local optimum when a tree size

limit is imposed, thus leading to infinite expected runtime. However, the theorem does not provide bounds on the

probability that this event occurs.
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ℓ = n ℓ = n+ 1
n B T S B T S
4 0.008 46.3 (28.0) 4.0 (0.0) 0.002 40.9 (21.8) 4.4 (0.5)

8 0.002 151.8 (91.9) 8.0 (0.0) 0.004 113.8 (51.5) 8.6 (0.5)

12 0.016 284.1 (148.2) 12.0 (0.0) 0.002 214.3 (99.5) 12.7 (0.5)

16 0.008 469.9 (258.0) 16.0 (0.0) 0.010 345.8 (161.0) 16.8 (0.4)

ℓ = 2n ℓ =∞
n B T S B T S
4 0 42.5 (25.8) 5.1 (1.2) 0 38.9 (24.3) 5.4 (2.0)

8 0 98.8 (49.0) 11.0 (2.3) 0 95.3 (43.8) 11.2 (3.0)

12 0 170.7 (99.7) 17.1 (3.3) 0 160.1 (57.1) 17.9 (4.5)

16 0 232.5 (80.9) 23.8 (4.1) 0 235.3 (92.7) 24.6 (6.0)

Table 2: Proportion of runs stuck in a local optimum (B), and average runtime (T ) and solution size (S) of

successful runs of the RLS-GP using leaf-only substitution and deletion with the complete truth table to evaluate

the solution quality for varying n and ℓ. Standard deviations appear in parentheses.
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Figure 1: Examples of locally optimal trees, which cannot be improved by substitution or have any single leaf

deleted without affecting fitness, constructed by RLS-GP using leaf-only substitution and deletion operations.

Research Question 1: How likely is it that RLS-GP using leaf-only deletion and the complete truth table gets

stuck in a local optimum and how does this probability depend on the tree size limit?

Table 2 summarises the experimental behaviour of RLS-GP. The experiments confirm that when using small

tree size limits, RLS-GP does indeed get stuck on local optima even on small problem sizes, thus motivating the

use of sub-tree deletion. Examples of the locally optimal trees constructed during the runs are depicted in Figure

1. However, the probability of getting stuck decreases as ℓ, the limit on the size of the tree, increases. Concerning

the solution quality, with small tree size limits, the number of redundant variables in the final program decreases

at the expense of larger runtimes. For ℓ = n, ‘exact’ solutions are returned when the algorithm does not get stuck.

On the other hand, larger tree size limits (including no limit) lead to smaller expected runtimes at the expense of

redundant variables in the produced programs.

We now turn our attention to the HVL-Prime operator modified to allow subtree deletion, as considered by

Theorem 4. The theorem states that the algorithm will find the optimal solution using the complete truth table

if an appropriate tree size limit is in place. However, it is unclear from the theory whether the tree size limit is

necessary.

Research Question 2: How does the tree size limit affect the runtime and solution quality of RLS-GP using

subtree deletion and the complete truth table for evolving the conjunction?

As predicted by the theory, RLS-GP never gets stuck in our experiments when using the complete truth table

and a tree size limit. Table 3 shows the average number of iterations required to find the global optimum for

various problem sizes and varying tree size limits. Once again the experiments show that smaller tree size limits

lead to lower numbers of redundant variables at the expense of a higher runtime. Larger limits, including no

limit at all, lead to faster runtimes at the expense of admitting more redundant variables. Noting that in practical

applications a tree size limit is often necessary, we leave the proof that the algorithm evolves an exact conjunction

without any limits on the tree size for future work.

We now add the negated literals to the terminal set to turn our attention to the performance of RLS-GP when

equipped with a complete set of functions and terminals that allow to express any Boolean function. Since it

has been proven that negations do not allow to efficiently evolve conjunctions when only the AND function is

available to RLS-GP using the complete truth table (Lissovoi and Oliveto, 2019), we have conjectured that the

same applies when also the OR function is available to the algorithm.

Research Question 3: Can RLS-GP using the fully expressive set of functions and literals evolve the con-
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ℓ = n ℓ = n+ 1 ℓ = 2n ℓ =∞
n T S T S T S T S
4 51.2 4.0 42.5 4.4 38.8 5.1 39.1 5.3

(31.1) (0.0) (23.5) (0.5) (20.8) (1.2) (22.3) (1.8)

8 147.5 8.0 129.9 8.7 93.5 11.3 92.3 11.6

(83.3) (0.0) (69.1) (0.5) (39.1) (2.4) (38.1) (3.0)

12 325.9 12.0 233.4 12.8 153.6 17.7 151.2 18.3

(184.4) (0.0) (123.9) (0.4) (56.6) (3.1) (50.3) (3.8)

16 544.6 16.0 377.0 16.9 228.3 24.5 221.0 25.2

(333.8) (0.0) (176.0) (0.4) (74.6) (3.7) (72.0) (4.9)

Table 3: Average runtime (T ) and solution size (S) of RLS-GP using the subtree deletion sub-operation, and the

complete truth table to evaluate the solution fitness, for varying n and ℓ. Standard deviations appear in parentheses.

ℓ = n ℓ = n+ 1
n B T S B T S
4 0.000 655.3 (638.0) 4.0 (0.0) 0.000 513.7 (480.8) 4.5 (0.5)

8 0.998 1750.0 (-) 8.0 (-) 0.994 5535.3 (3066.0) 8.3 (0.6)

12 1.000 - - 1.000 - -

16 1.000 - - 1.000 - -

ℓ = 2n ℓ =∞
n B T S B T S
4 0.000 431.0 (392.7) 5.7 (1.3) 0.000 422.7 (425.7) 6.4 (2.5)

8 0.990 6443.8 (3789.4) 11.0 (1.6) 0.982 4478.7 (2371.6) 12.4 (3.3)

12 1.000 - - 1.000 - -

16 1.000 - - 1.000 - -

Table 4: Proportion of runs failing to find the global optimum within 104 iterations (B), and average runtime (T )

and solution size (S) of successful runs of the RLS-GP using the subtree deletion sub-operation, negated literals,

and the complete truth table to evaluate the solution fitness, for varying n and ℓ. Standard deviations, where

available, appear in parentheses.

junction using the complete truth table?

Table 4 shows the effect of allowing negated literals: as the problem size increases, RLS-GP is overwhelmingly

likely to construct a negation and not find the global optimum within the allotted runtime of 10,000 iterations as

we have conjectured.

Finally, we examine the behaviour of RLS-GP when using an incomplete training set which allows us to evolve

bigger conjunctions i.e., larger problem sizes. The results from Theorems 6 and 7 rely on the algorithm stopping

once a logarithmic sampled error is achieved using F = {AND,OR} respectively without and with negated

literals. However, from the theory it is unclear whether this error threshold is necessary or not.

Research Question 4: Is the logarithmic error threshold required by RLS-GP using a training set to evolve the

conjunction and how does removing the threshold affect the algorithm’s performance using only positive literals?

We run experiments comparing the performance of RLS-GP when stopping at error 0 or stopping earlier for

n = 50. The average runtimes of the two variants are plotted in Figure 2. The figure confirms our theoretical result

that the algorithms generally run in logarithmic time and produce solutions that contain a logarithmic number of

leaf nodes with respect to the training set size. Stopping at 0 error leads to better solutions at the expense of higher

runtimes.

We now turn our attention to negated literals.

Research Question 5: Is the logarithmic error threshold required by RLS-GP using a training set to evolve

the conjunction and how does removing the threshold affect the algorithm’s performance using both positive and

negated literals?

Figure 3 explores the effect of expanding the literal set with the negated variables. For n = 50, negations

cause a contradiction to be constructed when a solution contains approximately 8 leaf nodes on average, allowing

the algorithm to terminate within an average of 50 iterations even for larger training sets. Figures 4 and 5 show

the average number of ORs in the final program with and without negations in the literal set respectively. While

these are few in number, more disjunctions are present the closer the threshold on acceptable sampled error is to
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0.

6 Conclusion

We analysed the behaviour of a variant of the RLS-GP algorithm and proved expected runtime bounds when using

the complete truth table to evaluate the solution quality, as well as when using a polynomial sample of possible

inputs chosen uniformly at random. Equipped with a tree size limit and a mutation operator capable of deleting

entire subtrees, RLS-GP is able to efficiently evolve a Boolean function – ANDn, the conjunction of n variables

(or ORn a disjunction of n variables) – when given access to both the binary conjunction and disjunction operators.

When using the complete truth table to evaluate the quality of solutions, we show that in expectation, an

optimal solution is found within O(ℓn log2 n) iterations if the terminal set contains exactly the distinct literals

contained in the target function. Experimentally, we see that the GP system is able to find solutions quicker as ℓ,
the limit on the tree size, increases, suggesting that the theoretical bound is overly pessimistic in its modelling of

the process. Conversely, solutions with larger tree size limits tend to contain more redundant variables, suggesting

a trade-off between optimisation time and solution complexity. However, if unnecessary negated literals are also

present in the terminal set, then we show experimentally that the algorithm gets stuck on a local optimum (i.e., a

contradiction) with overwhelming probability. We leave a formal proof for future work.

When sampling a polynomial number of inputs to evaluate the program quality, the evolved solutions are not

exactly equivalent to the target function, but generalise well: any polynomially small generalisation error can be

achieved by sampling a polynomial number of inputs uniformly at random in each iteration. This result holds even

if the GP system is completely expressive i.e., it can represent any Boolean function of at most n distinct variables.

Our theoretical results predict that RLS-GP is usually able to avoid inserting ORs in this setting, which is reflected

in our experimental results. However, when the unnecessary negated literals are present, then a contradiction is

inserted in the tree with high probability leading to solutions of smaller average sizes i.e., the OFF function, that

always returns false, may actually be evolved. Since it returns the correct output on all inputs but one, it generalises

well nevertheless.

While these results represent a considerable step forward for the theoretical analysis of GP behaviour, much

work remains to be done. In addition to addressing the open problem of removing the limit on the tree size,

the analysis should be extended to cover the evolution of Boolean conjunctions and disjunctions of arbitrary size

i.e., not necessarily using all of the n available variables. Furthemore, more complex target functions should be

considered where the use of populations and crossover may be essential.
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Figure 2: Average runtime and tree size produced by RLS-GP with subtree deletion, using an incomplete training

set, stopping once sampled error is at most A, n = 50, ℓ =∞, averaged over 500 independent runs.
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Figure 3: Average runtime and tree size produced by RLS-GP with subtree deletion and negated literals, using an

incomplete training set, stopping once sampled error is at most A, n = 50, ℓ =∞, averaged over 500 independent

runs.
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Figure 4: Number of OR nodes inserted and surviving to the solution returned by RLS-GP with subtree deletion,

using an incomplete training set, stopping once sampled error is at most A, n = 50, ℓ = ∞, averaged over 500

independent runs.
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Figure 5: Number of OR nodes inserted and surviving to the solution returned by RLS-GP with subtree deletion

and negated literals, using an incomplete training set, stopping once sampled error is at most A, n = 50, ℓ = ∞,

averaged over 500 independent runs.
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