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Abstract

Reinforcement learning (RL) is a central problem in artificial intelligence. This prob-
lem consists of defining artificial agents that can learn optimal behaviour by interacting
with an environment – where the optimal behaviour is defined with respect to a reward
signal that the agent seeks to maximize. Reward machines (RMs) provide a structured,
automata-based representation of a reward function that enables an RL agent to de-
compose an RL problem into structured subproblems that can be efficiently learned via
off-policy learning. Here we show that RMs can be learned from experience, instead of
being specified by the user, and that the resulting problem decomposition can be used to
effectively solve partially observable RL problems. We pose the task of learning RMs as a
discrete optimization problem where the objective is to find an RM that decomposes the
problem into a set of subproblems such that the combination of their optimal memoryless
policies is an optimal policy for the original problem. We show the effectiveness of this
approach on three partially observable domains, where it significantly outperforms A3C,
PPO, and ACER, and discuss its advantages, limitations, and broader potential.1

Keywords: reinforcement learning, reward machines, partial observability, automata
learning, abstractions, non-Markovian environments

1. Introduction

A fundamental component of human intelligence is our ability to make decisions – to
decide how to act. Indeed, decision making is essential not only to individuals, but to
companies, to governments, and to computer-controlled systems that ensure the safe and
effective operation of much of our modern infrastructure. Unfortunately, making good
decisions can be hard. It can depend on complex inter-relationships between diverse
factors, not all of them observable, or well understood. Reinforcement learning (RL)

1Our code is available at https://bitbucket.org/RToroIcarte/lrm.
?This work is an extended version of our previous NeurIPS19 publication (Toro Icarte et al., 2019).
Email address: rntoro@uc.cl (Rodrigo Toro Icarte)
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endeavours to solve sequential decision-making problems using minimal supervision and
minimal prior knowledge. Its goal is to define artificial agents that learn optimal be-
haviour by interacting with an environment, which may take the form of a simulator or
the real world (Sutton and Barto, 2018). Every interaction with the environment delivers
a reward signal. An RL agent seeks to learn a policy (a mapping from observations to
actions) that maximizes its expected cumulative reward, improving its policy over time
by learning from its past experiences.

The use of neural networks for function approximation has led to many recent ad-
vances in RL. Such deep RL methods have allowed agents to learn effective policies in
many complex environment including board games (Silver et al., 2017), video games
(Mnih et al., 2015), and robotic systems (Andrychowicz et al., 2018). However, RL
methods (including deep RL methods) often struggle when the environment is partially
observable. Indeed, partial observability is one of the main challenges towards applying
RL in real-world problems (Dulac-Arnold et al., 2019, 2021). This is because agents
in such environments usually require some form of memory to learn optimal behaviour
(Singh et al., 1994). Recent approaches for giving memory to an RL agent either rely on
recurrent neural networks (e.g., Hausknecht and Stone, 2015; Mnih et al., 2016; Jader-
berg et al., 2016; Wang et al., 2016; Schulman et al., 2017), memory-augmented neural
networks (e.g., Oh et al., 2016; Khan et al., 2017; Hung et al., 2018), or external memories
that the agent can control using primitive actions (e.g., Littman, 1993; Peshkin et al.,
1999; Zhang et al., 2016; Toro Icarte et al., 2020b).

In this work, we show that reward machines (RMs) are another useful tool for pro-
viding memory in a partially observable environment. RMs were originally conceived to
provide a structured, automata-based representation of a reward function (Toro Icarte
et al., 2018, 2020a; Camacho et al., 2019; De Giacomo et al., 2020). Exposed structure
can be exploited by the Q-learning for reward machines (QRM) algorithm (Toro Icarte
et al., 2018), which simultaneously learns a separate policy for each state in the RM.
QRM has been shown to outperform standard and hierarchical deep RL over a variety of
discrete and continuous domains. However, QRM was only defined for fully observable
environments. Furthermore, the RMs were handcrafted by a user and then given to the
RL agent, thus allowing the agent to exploit the exposed problem substructure. Here, we
propose a method for learning an RM directly from experience in a partially observable
environment, in a manner that allows the RM to serve as memory for an RL algorithm.

There are three main contributions of this work. The first is to propose a discrete
optimization problem for learning reward machines from experience in a partially ob-
servable environment, where the objective is to find a reward machine that makes the
problem as Markovian as possible. A requirement is that the RM learning method be
given a finite set of detectors for properties that serve as the vocabulary for the RM.
The model is also fed with traces collected by the agent while exploring the environ-
ment. Then, the optimization problem’s objective function ranks the reward machines
according to how well they predict future observations given the current RM state.

Our second contribution is to study different methodologies to solve the resulting
optimization problem for learning reward machines. In particular, we propose a mixed
integer linear programming (MILP) model, a constrained programming (CP) model, and
two local search (LS) methods. In our experiments, the best performance was obtained
by the local search methods.

Finally, we show how to integrate our models for learning reward machines into the
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agent-environment interaction loop and show the effectiveness of doing so. By simulta-
neously learning an RM and a policy for the environment, we are able to significantly
outperform several deep RL baselines that use recurrent neural networks as memory
in three partially observable domains. We also extend the RM-tailored algorithm Q-
learning for reward machines (QRM) to the case of partial observability where we see
further gains when combined with our RM learning method.

This paper builds upon Toro Icarte et al. (2019) – where we originally proposed to
formulate the problem of learning an RM as a discrete optimization problem and solved
it using tabu search. In this work, we provide further details about this learning pipeline
and propose three novel formulations to learn reward machines. These new formulations
include a MILP, CP, and LS model. We compare the performance of these models relative
to tabu search and found that a local search approach with restarts is consistently better
at finding high-quality RMs than tabu search. As a result, the performance of our
method improves considerably with respect to the performance reported in our previous
publication.

2. Preliminaries

RL agents learn policies from experience. When the problem is fully-observable,
the underlying environment model is typically assumed to be a Markov decision process
(MDP). An MDP is a tuple M = 〈S,A, r, p, γ, µ〉, where S is a finite set of states, A is
a finite set of actions, r : S × A → R is the reward function, p(s, a, s′) is the transition
probability distribution, γ is the discount factor, and µ is the initial state distribution
where µ(s0) is the probability that the agent starts in state s0 ∈ S. In addition, a subset
of the states might be labelled as terminal states.

At the beginning of an episode, the environment is set to an initial state s0, sampled
from µ. Then, at time step t, the agent observes the current state st ∈ S and executes an
action at ∈ A. In response, the environment returns the next state st+1 ∼ p(·|st, at) and
the immediate reward rt+1 = r(st, at, st+1). The process then repeats from st+1 until
potentially reaching a terminal state, when a new episode will begin.

The agent’s goal is to collect as much reward from the environment as possible. To
do so, it learns a policy π(a|s), which is a probability distribution over the actions a ∈ A
given a state s ∈ S. As the agent interacts with the environment, it also improves its
policy until (ideally) finding an optimal policy π∗. An optimal policy is a policy that
maximizes the expected return received by the agent, which is formally defined as follows:

π∗ = arg max
π

∑
s∈S

µ(s)Eπ

[ ∞∑
t=0

γtrt

∣∣∣∣∣s0 = s

]
(1)

Q-learning (Watkins and Dayan, 1992) is a well-known RL algorithm that uses sam-
ples of experience of the form (st, at, rt, st+1) to estimate the optimal Q-function q∗(s, a).
Here, q∗(s, a) is the expected return of selecting action a in state s and following an op-
timal policy π∗ thereafter. During execution, Q-learning maintains the current estimate
of the optimal Q-function (i.e., Q-value) for each state s and action a, Q(s, a). Given
a sampled experience (st, at, rt, st+1), where st+1 is the state reached after executing
action at in state st and receiving a reward rt, Q-learning updates Q(st, at) towards
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rt + γmaxa′∈AQ(st+1, a
′). Given enough experience, the Q-value estimates will con-

verge to the optimal Q-function, and so an optimal policy π∗ can be computed by always
selecting the action a with the highest value of Q(s, a) for each state s ∈ S.

Unfortunately, Q-learning is impractical when solving problems with large state spaces.
In such cases, function approximation methods are often used. Instead of storing a Q-
value for each state-action pair in a table, deep RL methods like DQN (Mnih et al., 2015)
and DDQN (Van Hasselt et al., 2016) represent the Q-function as Qθ(s, a), where Qθ
is a neural network whose inputs are features of the state and the outputs are the Q-
value estimates for each action a ∈ A. To train the network, mini-batches of experiences
(s, a, r, s′) are randomly sampled from an experience replay buffer and used to minimize
the Bellman error. In the case of DQN, this is accomplished by minimizing the square
error between Qθ(s, a) and the Bellman estimate r + γmaxa′ Qθ′(s

′, a′). Note that the
updates are made with respect to a target network with parameters θ′. The parameters θ′

are held fixed when minimizing the square error, but updated to θ after a certain number
of training updates. The role of the target network is to stabilize learning. DDQN follows
a similar approach, but the Bellman estimate is computed by selecting the next action
a′ using Qθ instead of the target network. This is, r + γQθ′(s

′, arg maxa′ Qθ(s
′, a′)).

In partially observable problems, the underlying environment model is typically as-
sumed to be a Partially Observable Markov Decision Process (POMDP). A POMDP is
a tuple PO = 〈S,O,A, r, p, ω, γ, µ〉, where S, A, r, p, γ, and µ are defined as in an MDP,
O is a finite set of observations, and ω(o|s) is the observation probability distribution. In-
teracting with a POMDP is similar to interacting with an MDP. The environment starts
from a sampled initial state s0 ∼ µ. At time step t, the agent is in state st ∈ S, executes
an action at ∈ A, receives an immediate reward rt+1 = r(st, at, st+1), and moves to st+1

according to p(st+1|st, at). However, the agent does not observe st directly. Instead, the
agent observes ot ∈ O, which is linked to st via ω, where ω(ot|st) is the probability of
observing ot from state st (Cassandra et al., 1994).

RL methods cannot be immediately applied to POMDPs because the transition prob-
abilities and reward function are not necessarily Markovian w.r.t. O (though by definition
they are w.r.t. S). As such, optimal policies may need to consider the complete history
(o0, a0, . . . , at−1, ot) of observations and actions when selecting the next action.2 Several
partially observable RL methods use a recurrent neural network to compactly represent
the history, and then use a policy gradient method to train it. However, when we do
have access to a full POMDP model PO, then the history can be summarized into a belief
state. A belief state is a probability distribution bt : S → [0, 1] over S, such that bt(s) is
the probability that the agent is in state s ∈ S given the history up to time t. The initial
belief state is computed using the initial observation o0: b0(s) ∝ ω(s, o0) for all s ∈ S.
The belief state bt+1 is then determined from the previous belief state bt, the executed
action at, and the resulting observation ot+1 as follows:

bt+1(s′) ∝ ω(s′, ot+1)
∑
s∈S

p(s, at, s
′)bt(s) for all s′ ∈ S. (2)

2Technically, the history of interactions should also include the immediate rewards (Izadi and Precup,
2005), this is ht = (o0, a0, r1, . . . , at−1, rt, ot). However, we can remove the immediate rewards from the
history without loss of generality because it is always possible to include the immediate reward rt as
part of the observation ot.
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(a) Cookie domain.

? ?

?

(b) Agent’s view.

Figure 1: In the cookie domain, the agent can only see what is in the current room.

Since the state transitions and reward function are Markovian w.r.t. bt, the set of all
belief states B can be used to construct the belief MDP MB , where the states of MB

are B, A are the actions, the transition probabilities are computed using equation (2),
and the reward function rb is as follows:

rb(b, a) =
∑
s∈S

r(s, a)b(s). (3)

Any optimal policies for MB is also optimal for the POMDP (Cassandra et al., 1994).

3. Reward Machines for Partially Observable Environments

In this section, we define RMs for the case of partial observability. We use the
following problem as a running example to help explain various concepts.

Example 1 (The cookie domain). The cookie domain, shown in Figure 1a, has three
rooms connected by a hallway. The agent (purple triangle) can move in the four cardinal
directions. There is a button in the orange room that, when pressed, causes a cookie to
randomly appear in the green or blue room. The agent receives a reward of +1 for reaching
(and thus eating) the cookie and may then go and press the button again. Pressing the
button before reaching a cookie will remove the existing cookie and cause a new cookie
to randomly appear. There is no cookie at the beginning of the episode. This domain is
partially observable since the agent can only see what it is in the room that it currently
occupies, as shown in Figure 1b.

RMs are finite state machines that are used to encode a reward function (Toro Icarte
et al., 2018, 2020a). They are defined over a set of propositional symbols P that corre-
spond to a set of high-level features that the agent can detect using a labelling function
L : O∅ × A∅ × O → 2P where (for any set X) X∅ , X ∪ {∅}. L assigns truth values to
symbols in P given an environment experience e = (o, a, o′) where o′ is the observation
seen after executing action a when observing o. We use L(∅, ∅, o) to assign truth values
to the initial observation. We call a truth value assignment of P a high-level observation
because it provides a high-level view of the low-level environment observations via the
labelling function L. A formal definition of an RM follows:

Definition 2 (reward machine). Given a set of propositional symbols P, a reward ma-
chine is a tuple RP = 〈U, u0, δu, δr〉 where U is a finite set of states, u0 ∈ U is an initial
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state, δu is the state-transition function, δu : U×2P → U , and δr is the reward-transition
function, δr : U × 2P → R.

One way of thinking about RMs is that they decompose problems into a set of high-
level states U and define transitions using if-like conditions defined by δu. These con-
ditions are over a set of binary properties P that the agent can detect using L. For
example, in the cookie domain, P = { , , , , , , }. These properties are true in
the following situations: , , , or is true if the agent is in a room of that color;
is true if the agent is in the same room as a cookie; is true if the agent pushed the
button with its last action; and is true if the agent ate a cookie with its last action.

Figure 2 shows three possible reward machines for the cookie domain. We note
that these three machines define the same reward signal, 1 for eating a cookie and 0
otherwise, but differ in their states and transitions. As a result, they differ with respect
to the amount of information about the current POMDP state that can be inferred from
the RM state, as we will see below.

Each RM starts in the initial state u0. Edge labels in the figures provide a visual rep-
resentation of the functions δu and δr. For example, label 〈 , 1〉 between state u2 and
u0 in Figure 2b represents δu(u2, { , }) = u0 and δr(u2, { , }) = 1. Intuitively, this
means that if the RM is in state u2 and the agent just ate a cookie in room , then the
agent will receive a reward of 1 and the RM will transition to u0. Notice that any prop-
erties not listed in the label are false (e.g. must be false to take the transition labelled
〈 , 1〉). We also use multiple labels separated by a semicolon (e.g., “〈 , 0〉; 〈 , 0〉”)
to describe different conditions for transitioning between the RM states, each with their
own associated reward. The label 〈o/w, r〉 (“o/w” for “otherwise”) on an edge from ui
to uj means that transition will be made (and reward r received) if none of the other
transitions from ui can be taken.

Let us illustrate the behaviour of an RM using the one shown in Figure 2c. The RM
will stay in u0 until the agent presses the button (causing a cookie to appear), whereupon
the RM moves to u1. From u1 the RM may move to u2 or u3 depending on whether the
agent finds a cookie when it enters another room. Finally, the RM moves back to u0 from
u2 (or u3) when the agent eats a cookie. Note that it is possible to associate meaning
with being in RM states. In the example, u0 means that there is no cookie available,
u1 means that there is a cookie in some room (either blue or green), u2 means that the
cookie is in the green room, and u3 means that the cookie is in the blue room.

When learning a policy for a given RM, one simple technique is to learn a policy
π(a|o, u) that considers the current observation o ∈ O and the current RM state u ∈ U
to select action a ∈ A. Interestingly, a partially observable problem might be non-
Markovian over O, but Markovian over O×U for some RM RP . This is the case for the
cookie domain with the RM from Figure 2c, for example.

Q-learning for RMs (QRM) is another way to learn a policy by exploiting a given
RM (Toro Icarte et al., 2018). QRM learns one Q-function Qu (i.e., policy) per RM state
u ∈ U . Then, given any sample experience, the RM can be used to emulate how much
reward would have been received had the RM been in any one of its states. Formally,
experience e = (o, a, o′) can be transformed into a valid experience (〈o, u〉, a, 〈o′, u′〉, r)
used for updating Qu for each u ∈ U , where u′ = δu(u, L(e)) and r = δr(u, L(e)). Hence,
any off-policy learning method can take advantage of these “synthetically” generated
experiences to update all subpolicies simultaneously.

6



u0

〈 , 1〉;
〈 , 1〉;
〈o/w, 0〉

(a) Naive RM.

u0

u1 u2

〈o/w, 0〉

〈o/w, 0〉 〈o/w, 0〉

〈 , 0〉

〈 , 0〉;
〈 , 0〉

〈 , 1〉〈 , 1〉

(b) “Optimal” RM.

u0

u1 u2u3

〈o/w, 0〉

〈o/w, 0〉 〈o/w, 0〉〈o/w, 0〉

〈 , 0〉

〈 , 0〉;
〈 , 0〉

〈 , 0〉;
〈 , 0〉

〈 , 1〉〈 , 1〉

〈 , 0〉〈 , 0〉

(c) Perfect RM.

Figure 2: Three possible Reward Machines for the Cookie domain.

When tabular Q-learning is used, QRM is guaranteed to converge to an optimal policy
on fully-observable problems (Toro Icarte et al., 2018). However, in a partially observable
environment, an experience e might be more or less likely depending on the RM state
that the agent was in when the experience was collected. For example, experience e
might be possible in one RM state ui but not in RM state uj . Thus, updating the policy
for uj using e as QRM does, would introduce an unwanted bias to Quj

. We will discuss
how to (partially) address this problem in Section 6.

4. Learning Reward Machines from Traces

To learn RMs, our overall idea is to search for an RM that can be used as external
memory by an agent for solving a partially-observable problem. As input, our method
will take a set of high-level propositional symbols P and a labelling function L that can
detect them. Then, the key question is what properties should such an RM have.

Three proposals naturally emerge from the literature. The first comes from the work
on learning finite state machines (FSMs) (Angluin and Smith, 1983; Zeng et al., 1993;
Shvo et al., 2021), which suggests learning the smallest RM that correctly mimics the
external reward signal given by the environment, as in Giantamidis and Tripakis’ method
for learning Moore machines (Giantamidis and Tripakis, 2016). Unfortunately, such
approaches would learn RMs of limited utility, like the one in Figure 2a. This naive
RM correctly predicts reward in the cookie domain (i.e., +1 for eating a cookie , zero
otherwise) but provides no memory in support of solving the task.

The second proposal comes from the literature on learning finite state controllers
(FSC) (Meuleau et al., 1999) and on model-free RL methods (Sutton and Barto, 2018).
This work suggests looking for the RM whose optimal policy receives the most reward.
For instance, the RM from Figure 2b is “optimal” in this sense. It decomposes the
problem into three states. The optimal policy for u0 goes directly to press the button,
the optimal policy for u1 goes to the blue room and eats the cookie if present, and the
optimal policy for u2 goes to the green room and eats the cookie. Together, these three
policies give rise to an optimal policy for the complete problem. This is a desirable
property for RMs, but requires computing optimal policies in order to compare the
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relative quality of RMs, which seems prohibitively expensive. However, we believe that
finding ways to efficiently learn “optimal” RMs is a promising future work direction.

Finally, the third proposal comes from the literature on predictive state representa-
tions (PSRs) (Littman et al., 2002), deterministic Markov models (DMMs) (Mahmud,
2010), and model-based RL (Kaelbling et al., 1996). This line of research suggests learn-
ing the RM that remembers sufficient information about the history to make accurate
Markovian predictions about the next observation. For instance, the cookie domain RM
shown in Figure 2c is perfect w.r.t. this criterion. Intuitively, every transition in the
cookie environment is already Markovian except for transitioning from one room to an-
other. Depending on different factors, when entering into the green room there could
be a cookie there (or not). The perfect RM is able to encode such information using 4
states: when at u0 the agent knows that there is no cookie, at u1 the agent knows that
there is a cookie in the blue or the green room, at u2 the agent knows that there is a
cookie in the green room, and at u3 the agent knows that there is a cookie in the blue
room. Since keeping track of more information will not result in better predictions, this
RM is perfect. Below, we develop a theory about perfect RMs and describe an approach
for learning them from experience.

4.1. Perfect Reward Machines: Formal Definition and Properties

The key insight behind perfect RMs is to use their states U and transitions δu to
keep track of relevant past information such that the partially observable environment
PO becomes Markovian with respect to O×U . This is ensured by the following definition.

Definition 3 (perfect reward machine). An RM RP = 〈U, u0, δu, δr〉 is considered perfect
for a POMDP PO = 〈S,O,A, r, p, ω, γ, µ〉 w.r.t. a labelling function L iff for every trace
(o0, a0, . . . , ot, at) generated by any policy over PO, the following holds:

Pr(ot+1, rt|o0, a0, . . . , ot, at) = Pr(ot+1, rt|ot, xt, at),

where x0 = u0 and xt = δu(xt−1, L(ot−1, at−1, ot)).
3

Two important properties follow from Definition 3. First, if the set of reachable belief
states B for the POMDP PO is finite, then there exists a perfect RM for PO. Recall that
a belief state models the probability of being at any POMDP state given the previous
interactions with the environment. When the model of PO is known, we can compute the
current belief state using the Bayes rule, as discussed in Section 2. This first property
states that if there is a finite set of belief states reachable from the initial state, then
there exists a perfect RM for that environment.

Theorem 4. For any POMDP PO with a finite reachable belief space, there exists a
perfect RM for PO.

Proof. If the reachable belief space B is finite, we can construct an RM that keeps
track of the current belief state using one RM state per belief state and emulating their
progression using δu, and one propositional symbol for every action-observation pair.
Thus, the current belief state bt can be inferred from the last observation, last action,
and the current RM state. Hence, the equality from Definition 3 holds.

3Note that xt is the RM state that the agent is in at time t. We will make use of this notation below.
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The second property of perfect RMs is that their optimal policies are also optimal
for the POMDP. This means that summarizing the history ht = (o0, a0, . . . , at−1, ot) as
φ(ht) = 〈ut, ot〉, where ut is the current RM state and ot is the current observation,
results in globally optimal policies – i.e., π∗(at|ht) = π∗(at|ut, ot).
Theorem 5. Let RP be a perfect RM for a POMDP PO, then any optimal policy for
RP w.r.t. the environmental reward is also optimal for PO.

Proof. As the next observation and immediate reward probabilities can be predicted
from O × U × A, a perfect RM for PO also models the belief MDP MB for PO. As
such, optimal policies over O×U are equivalent to optimal policies overMB , which are
optimal over PO (Cassandra et al., 1994).

4.2. Perfect Reward Machines: How to Learn Them

We now consider the problem of learning a perfect RM from traces, assuming one
exists w.r.t. the given labelling function L. Recall that a perfect RM transforms the
original problem into a Markovian problem over O × U . Hence, we should prefer RMs
that accurately predict the next observation o′ and the immediate reward r from the
current observation o, RM state u, and action a. This might be achieved by collecting a
training set of traces from the environment, fitting a predictive model for Pr(o′, r|o, u, a),
and picking the RM that makes better predictions. However, this approach can be very
expensive, especially considering that the observations might be images.

Instead, we propose an alternative that focuses on a necessary condition for a perfect
RM: the RM must predict what is possible and impossible in the environment at the
abstract level given by the labelling function. E.g., it is impossible to be at u3 in the
RM from Figure 2c and make the high-level observation { , }, because the RM reaches
u3 only if the cookie was seen in the blue room (or not to be in the green room) and it
leaves u3 as soon as the agent eats the cookie (or presses the button).

This idea is formalized in the optimization model LRM. Let T = {T0, . . . , Tn} be a set
of traces, where each trace Ti is a sequence of observations, actions, and rewards:

Ti = (oi,0, ai,0, ri,1, . . . , ai,ti−1, ri,ti , oi,ti). (4)

We now look for an RM 〈U, u0, δu, δr〉 that can be used to predict L(ei,t+1) from L(ei,t)
and the current RM state xi,t, where ei,t+1 is the experience (oi,t, ai,t, oi,t+1) and we define
ei,0 as (∅, ∅, oi,0). The model parameters are the set of traces T , the set of propositional
symbols P, the labelling function L, and a maximum number of states in the RM umax.
The model also uses the sets I = {0 . . . n}, Ti = {0 . . . ti−1}, and Σ, where I contains the
indices of the traces, Ti their time steps, and Σ contains all the high-level observations
that appear in T . The model has two auxiliary variables xi,t and Nu,σ. Variable xi,t ∈ U
represents the state of the RM after observing trace Ti up to time t. Variable Nu,σ ⊆ 2Σ

is the set of all the next high-level observations seen from the RM state u and the high-
level observations σ in T . In other words, σ′ ∈ Nu,σ iff u = xi,t, σ = L(ei,t), and
σ′ = L(ei,t+1) for some trace Ti and time t.

minimize
〈U,u0,δu,δr〉

∑
i∈I

∑
t∈Ti

log(|Nxi,t,L(ei,t)|) (LRM)

s.t. 〈U, u0, δu, δr〉 ∈ RP (5)
9



|U | ≤ umax (6)

xi,t ∈ U ∀i ∈ I, t ∈ Ti ∪ {ti} (7)

xi,0 = u0 ∀i ∈ I (8)

xi,t+1 = δu(xi,t, L(ei,t+1)) ∀i ∈ I, t ∈ Ti (9)

Nu,σ ⊆ 2Σ ∀u ∈ U, σ ∈ Σ (10)

L(ei,t+1) ∈ Nxi,t,L(ei,t) ∀i ∈ I, t ∈ Ti (11)

Constraints (5) and (6) ensure that we find a well-formed RM over P with at most
umax states. Constraints (7), (8), and (9) ensure that xi,t is equal to the current state
of the RM, starting from u0 and following δu. Constraints (10) and (11) ensure that
the sets Nu,σ contain every L(ei,t+1) that has been seen right after σ and u in T . The
objective function comes from maximizing the log-likelihood for predicting L(ei,t+1) using
a uniform distribution over all the possible options given by Nu,σ.

A key property of this formulation is that any perfect RM is optimal w.r.t. the
objective function in LRM when the number of traces tends to infinity:

Theorem 6. When the set of training traces (and their lengths) tends to infinity and is
collected by a policy such that π(a|o) > ε for all o ∈ O and a ∈ A, any perfect RM with
respect to L and at most umax states will be an optimal solution to the formulation LRM.

Proof. In the limit, σ′ ∈ Nu,σ if and only if the probability of observing σ′ after executing
an action from the RM state u while observing σ is non-zero. In particular, for all i ∈ I
and t ∈ T , the cardinality of Nxi,t,L(ei,t) will be minimal for a perfect RM. This property
follows from the fact that perfect RMs make perfect predictions for the next observation
o′ given o, u, and a. Therefore, as we minimize the sum over log(|Nxi,t,L(ei,t)|), the
objective value for any perfect RM must be minimal.

Finally, note that the definition of a perfect RM does not impose conditions over the
rewards associated with the RM (i.e., δr). This is why δr is a free variable in the model
LRM. However, in order to apply methods that exploit RM structure (such as QRM), we
still need δr to model the external reward signals given by the environment. To do so,
we estimate δr(u, σ) using its empirical expectation over T – as commonly done when
constructing belief MDPs (Cassandra et al., 1994). Formally,

δr(u, σ) =

∑
i∈I,t∈Ti

ri,t+11u=xi,t∧σ=L(et+1)∑
i∈I,t∈Ti

1u=xi,t∧σ=L(et+1) + ε
for all u ∈ U and l ∈ 2P , (12)

where 1c = 1 if condition c holds (zero otherwise) and ε is a small constant.

5. Searching for a Perfect Reward Machine

We now describe different approaches to solve LRM. These include a mixed integer
linear programming (MILP) model, a constrained programming (CP) model, and two
local search (LS) models. All our models are guaranteed to find optimal solutions given
sufficient resources. But first, let us introduce two preprocessing steps over the training
traces that our models use: trace compression and prefix trees (PTs).

10



5.1. Trace Compression

Recall that LRM works over the high-level observations σt given by the labelling func-
tion L(et), where et represents the experience (ot, at, ot+1) at time t. Thus, the first step
is to transform each trace Ti from being a sequence of interactions with the environment
into a sequence of truth value assignments of P via L:

Ti = (oi,0, ai,0, ri,1, . . . , ai,ti−1, ri,ti , oi,ti)
σt=L(et)
======⇒ τi = (σi,0, σi,1, . . . , σi,ti).

In the abstract space given by P and L, it is usually the case that the same high-level
observation is seen many times in a row. For instance, a typical high-level trace in the
cookie domain would look as follows:

τ = ( , , , , , , , , , , , , , , , , , , , , , , , , , ).

This trace indicates that the agent was first at the hallway ( ), and then it moved to
the orange room ( ) and pressed the button ( ). After that, it returned to the hallway
( ), noticed that there was no cookie in the blue room ( ), came back to the hallway
( ), and finally found a cookie in the green room ( ). Let us assume that the trace
ended there for simplicity. As you can see, the most informative moments are when the
high-level observations change. Indeed, knowing that the agent stayed at the hallway
during 4, 7, or 8 steps is not particularly useful in this case. This suggests that we
could potentially compress the training trace (without losing relevant information) by
removing duplicated high-level observations that appear consecutively in the trace. For
instance, the previous trace will look as follows after being compressed:

τc = ( , , , , , , , ).

Compressing the traces is an optional preprocessing step that has advantages and
disadvantages. The advantage is that it considerably improves the quality of the RMs
that the models find given a fixed computational budget. Intuitively, any model has to
go over the traces to evaluate how good an RM is. Compressing the traces reduces the
computational cost of doing so. The disadvantage is that, by compressing the traces, we
are assuming that observing two or more times the same high-level observation consec-
utively does not provide further information about the current POMDP state. If that is
the case, then we can compress the traces and the model will still find optimal solutions
for LRM. If that is not the case, then compressing the traces might help the models to
find high-quality RMs faster but they will not find optimal solutions.

Two inconsistencies might arise if we compress the traces. First, note that we are
learning RMs using compressed traces but then testing them over uncompressed traces.
This is a problem because the optimal solution for LRM will exploit the fact that no
training trace has the same high-level observation twice in a row. However, when the
agent uses the learned RM in the environment (i.e., at test time), it might encounter the
same high-level observation many times in a row and, thus, update the RM state in ways
that were unintended by LRM. For that reason, if we do compress the traces, we have to
include the following additional constraint to LRM:

[δu(u′, σ) = u] ⇒ [δu(u, σ) = u] ∀u, u′ ∈ U, σ ∈ Σ (13)
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Figure 3: A PT for {(b), (ab), (ac)}. We took this example from Giantamidis and Tripakis (2016).

This constraint ensures that the learned reward machine will not enter and leave a state
u using the same high-level observation σ.

The second inconsistency relates to constraint (9). According to that constraint,
the second high-level observation of the trace is used to progress the initial state in
the reward machine (and not the first one). Indeed, LRM dictates that x0 = u0 and
x1 = δu(u0, ) for τc. However, if we were processing the uncompressed version of
τc (i.e., τ), then the initial RM state would have been updated using x1 = δu(u0, )
instead of x1 = δu(u0, ) because appears many times in a row at the beginning of
τ . We can solve this inconsistency by not compressing the first high-level observation of
the trace. This is, to always include the first high-level observation and only compress
from the second high-level observation forward. In our example, the proper manner of
compressing τ would be as follows:

τ ′c = ( , , , , , , , , ).

5.2. Prefix Trees (PTs)

Regardless of whether we compress or not the training traces, from now on we will
be working with a set of n + 1 traces T = {τ0, . . . , τn}, where each trace is composed
of a sequence of high-level observations: τi = (σi,0, . . . , σi,ti). Then, LRM defines an
independent variable xi,t which models the current RM state at time step t given the
trace τi for all i ∈ I and t ∈ Ti. However, doing so does not exploit the fact that there
exist large sets of xi,t variables whose values are equivalent for any reward machine.
These are cases where the prefix of two traces τi and τj are identical up to some time
step t. Indeed, we know that variables xi,t = xj,t if σi,t′ = σj,t′ for all t′ < t because
the transitions of a reward machine are deterministic. We can compactly capture this
information using prefix trees (PTs) (De la Higuera, 2010).

PTs merge all the training traces into one large tree, where each trace becomes a
branch in this tree. As an example, Figure 3 shows the PT for the following set of traces:
τ1 = (b), τ2 = (a, a), and τ3 = (a, b). Each node in a PT represents a prefix that appears
in one or more training traces. In the example, there are 5 nodes corresponding to the 5
possible prefixes in {τ1, τ2, τ3}: ε, (a), (b), (a, b), and (a, c), where ε represents the empty
trace. Thus, instead of assigning RM states to each variable xi,t, our models assign RM
states to each node in the PT. That way, these models are forced to assign the same
sequence of RM states to all traces as long as their prefixes are identical. For instance,

12



Algorithm 1 Converting Training Data into Prefix Trees

1: Input: {τ0, . . . , τn}
2: root node ← create root node()
3: for i = 0 to n do
4: node ← root node
5: for t = 0 to |τi| − 1 do
6: node.increase trace counter by one()
7: if not node.has child(σi,t) then
8: node.add child(σi,t)
9: node ← node.get child(σi,t)

10: return root node

assigning an RM state to node na in the PT will automatically assign the same RM state
to x2,1 and x3,1 because na represents the current RM state after any trace observes a
at the initial time step and, in this case, ‘a’ is the first observation of τ2 and τ3.

Algorithm 1 shows the pseudo-code to constructing a PT from a given set of traces
{τ0, . . . , τn}. Starting at the root node, the code goes over all the training traces and
adds them as branches of the tree (lines 7-8). We also count how many training traces
pass through each node in the tree (line 6). This information helps us defining the right
weights to penalize predictions in the objective function when reformulating LRM from
assigning RM states to time steps to assigning RM states to nodes in the PT.

5.3. Solving LRM via Mixed Integer Linear Programming (MILP)

In this section, we present a MILP model for LRM. MILP solvers are able to solve
optimization problems with linear constraints and objective functions. They can also
handle continuous and discrete variables. MILP solvers are the state of the art for
solving a wide range of discrete optimization problems and they are guaranteed to find
optimal solutions given sufficient resources (Jünger et al., 2009).

Our MILP model receives as input umax and the PT built using the training traces
T = {τ0, . . . , τn}. Note that the traces in T might or might not be compressed. We
use the following notation to refer to the different elements in the PT: nroot is its root
node, S is a set containing all the nodes in PT except for nroot, Sin ⊂ S is a subset of S
that only contains the inner nodes of PT, wn is the number of training traces that pass
through node n, p(n) is the parent of node n, o(n) is the high-level observation associated
with the edge between nodes p(n) and n, and C(n) is the set of children of node n. Also,
this model assumes that the set Σ contains all the high-level observations that appear in
T , |U | = umax, and K = 2|Σ|.

The idea behind our MILP model is to assign RM states to each node in the PT.
Then, we look for an assignment that (i) can be produced by a deterministic machine and
(ii) optimizes the same objective as LRM. To achieve this, we use the following decision
variables. Variable xn,u ∈ {0, 1} indicates if node n ∈ S ∪ {nroot} is assigned the RM
state u ∈ U . Variable du,σ,u′ ∈ {0, 1} represents the possible transition from state u ∈ U
to state u′ ∈ U given observation σ ∈ Σ in the RM. Formally, this means that du,σ,u′ = 1
iff δu(u, σ) = u′. Variable pu,σ,σ′ ∈ {0, 1} indicates if σ′ ∈ Σ is a possible next observation
at RM state u ∈ U when observing σ ∈ Σ, where pu,σ,σ′ = 1 iff σ′ ∈ Nu,σ. Variable
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yu,σ,m ∈ {0, 1} represents the cardinality of Nu,σ, meaning that yu,σ,m = 1 iff |Nu,σ| = m.
Lastly, variables zn represent the log-likelihood cost for the predictions associated with
node n ∈ S. The full model is then as follows:

min
∑
n∈S

wn · zn (MILP)

s.t. zn ≥
K∑
m=1

yu,σ,m log (m)− (1− xn,u) log (K) ∀n ∈ S, u ∈ U, σ = o(n) (14)

K∑
m=1

yu,σ,m = 1 ∀u ∈ U, σ ∈ Σ (15)

∑
σ′∈Σ

pu,σ,σ′ =

K∑
m=1

yu,σ,m ·m ∀u ∈ U, σ ∈ Σ (16)

pu,o(n),o(n′) ≥ xn,u ∀u ∈ U, n ∈ Sin, n
′ ∈ C(n) (17)∑

u′∈U
du,σ,u′ = 1 ∀u ∈ U, σ ∈ Σ (18)∑

u∈U
xn,u = 1 ∀n ∈ S, u ∈ U (19)

xn,u0
= 1 n = nroot (20)

xp(n),u + xn,u′ − 1 ≤ du,o(n),u′ ∀u, u′ ∈ U, n ∈ S (21)

du,σ,u′ ≤ du′,σ,u′ ∀u, u′ ∈ U, u 6= u′, σ = Σ (22)

xn,u ∈ {0, 1} ∀n ∈ S ∪ {nroot}, u ∈ U (23)

du,σ,u′ ∈ {0, 1} ∀u, u′ ∈ U, σ ∈ Σ (24)

pu,σ,σ′ ∈ {0, 1} ∀u ∈ U, σ, σ′ ∈ Σ (25)

yu,σ,m ∈ {0, 1} ∀u ∈ U, σ ∈ Σ,m ∈ {1..K} (26)

zn ≥ 0 ∀n ∈ S (27)

The objective function of MILP is a sum over the prediction costs at each node in the
tree weighted by how many traces pass through that node. Constraint (14) models the
log-likelihood cost for each node in the tree. Constraints (15) and (16) compute the
cardinality of Nu,l. Constraint (17) defines the possible predictions given an RM state
and high-level observation. Constraint (18) enforces that for each RM state a high-level
observation can lead to exactly one other RM state. Constraint (19) enforces that exactly
one RM state is assigned to each node in the tree. Constraint (20) assigns the initial
RM state to the root node, and constraint (21) enforces that there exists a deterministic
δu that can produce the assignment of RM states to tree nodes. Constraints (23)-(27)
correspond to the variables’ domains. Finally, we note that constraint (22) is an optional
constraint that should be included only if the training traces were compressed. This
constraint enforces that the RM state does not change after observing the same high-
level observation two times consecutively.
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5.4. Solving LRM via Constrained Programming (CP)

CP is another technique for solving discrete optimization problems. CP is less restric-
tive than MILP in the type of variables and constraints that it can handle. For instance,
our MILP model had to include many auxiliary decision variables (e.g., xn,u, pu,σ,σ′ ,
yu,σ,m, and zn) in order to linearize different aspects of LRM. In contrast, our CP model
only uses one set of decision variables du,σ to model δu(u, σ) and all other elements from
LRM are defined w.r.t. those variables. In addition, CP solvers are also guaranteed to find
optimal solutions given enough resources (Rossi et al., 2006).

Our CP model receives the same inputs as our MILP model, including the PT con-
structed using the (potentially compressed) training traces T . Recall that the different
elements in the PT are referred as follows: nroot is the root node, S is the set containing
all nodes but nroot, wn is the number of training traces that pass through node n, p(n)
is the parent of node n, o(n) is the high-level observation between p(n) and n, and C(n)
is the set of children of node n. The model also uses the set U = {0...umax − 1}, the set
Σ with all the high-level observations in T , and the set S(σ, σ′) containing all the nodes
where σ′ is observed immediately after observing σ:

S(σ, σ′) = {n | n ∈ S, n′ ∈ C(n), σ = o(n), σ′ = o(n′)}.

As we previously mentioned, the only decision variables are du,σ ∈ U for all u ∈ U
and σ ∈ Σ. Note that du,σ is an integer variable that goes from 0 to umax − 1 and it
models the output of δu(u, σ) – i.e., if the RM state is u and the agent observes σ, then
the next RM state will be du,σ. With that, the complete model is as follows:

min
∑
n∈S

wn · log(yxn,o(n)) (CP)

s.t. yu,σ
.
=
∑
σ′∈Σ

pu,σ,σ′ ∀u ∈ U, σ ∈ Σ (28)

pu,σ,σ′
.
= logical or ({xn = u|n ∈ S(σ, σ′)}) ∀u ∈ U, σ, σ′ ∈ Σ (29)

xn
.
= du,o(n) ∀n ∈ S, u = xp(n) (30)

xn
.
= 0 n = nroot (31)

if then(du,σ = u′, du′,σ = u′) ∀u, u ∈ U, σ ∈ Σ (32)

du,σ ∈ U ∀u ∈ U, σ ∈ Σ (33)

This model uses the formalism and global constraints available in IBM ILOG CP Opti-
mizer (IBM, 2018). Its only decision variables are du,σ, defined in constraint (33). Note
that the domain of du,σ ∈ U forces the RM to be deterministic, since there is exactly one
possible transition for each u ∈ U and σ ∈ Σ. Using du,σ, the model defines three aux-
iliary CP expressions in equations (28)-(31). Expression yu,σ represents the cardinality
of the prediction set Nu,σ after observing σ ∈ Σ from the RM state u ∈ U . Expression
pu,σ,σ′ is one if and only if it is possible to observe σ′ ∈ Σ from the RM state u ∈ U
after observing σ ∈ Σ (and zero otherwise). This expression uses a logical OR constraint,
logical or(Z) which returns 1 iff at least one element z ∈ Z is true. Expression xn ∈ U
indicates that the RM state assigned to the tree node n. Finally, the objective function
is a weighted sum over the prediction errors and constraint (32) is an optional constraint
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Space of all feasible RP

Figure 4: Local search approaches start from some feasible solution and iteratively move to the best
solution within its neighbourhood. This process repeats until reaching a locally optimal solution.

used if the traces were compressed. This constraint enforces a self loop δu(u′, σ) = u′ if
δu(u, σ) = u′ for some u ∈ U .

5.5. Solving LRM via Local Search (LS) and Tabu Search (TS)

Finally, here we present our local search methods. We note that MILP and CP are
known as exact methods. They incrementally construct a search tree where each branch
represents a feasible solution to the problem and use different relaxation and propagation
rules to prune this tree as much as possible. This approach allows them to find optimal
solutions and prove that those solutions are optimal for small to medium size problems.
However, they struggle when facing large problems because the size of the tree grows
exponentially with the number of variables and computing relaxations and propagation
rules become more expensive with the number of constraints.

When solving large scale problems, the best results are often obtained by heuristic
methods. Heuristic methods propose polynomial-time approximations to solve NP-hard
problems. They favor finding good solutions over providing strong optimality guarantees.
Here, we explore two local search methods (Aarts et al., 2003).

Figure 4 shows how local search works. In the figure, each point inside the rectangle
represents a feasible solution to the problem. Local search starts from a feasible solution
and evaluates its objective function. Then, it evaluates the objective function of all
the solutions near the current solution and then moves to the best solution within that
region. This step is represented by a violet arrow in the figure. The process then repeats
until a locally optimal solution is reached, where no neighbouring solution is better than
the current solution.

Unfortunately, local search can converge to locally optimal solutions that might be
far from a globally optimal solution. To deal with this issue, one option is to restart
local search when it finds a locally optimal solution and start over from a different initial
solution. Another option is to use tabu search (Glover and Laguna, 1998). Tabu search
is a local search approach that saves the last n solutions in a tabu list and always moves
to the best neighbour that is not in the list. This allows tabu search to escape locally
optimal solutions. Here, we explore these two options for solving LRM.

Algorithm 2 shows a local search approach with restarts to learn an RM. This algo-
rithm receives the set of high-level observations Σ, the training traces T , the maximum
number of RM state umax, and some termination criteria such as a time limit or a max-
imum number of steps tmax. The algorithm starts from a randomly generated RM (line
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Algorithm 2 A local search approach with restarts to solve LRM

1: Input: Σ, T , umax, tmax

2: t← 0, c∗ ←∞, R∗ ← None
3: while t ≤ tmax do
4: cp ←∞
5: R ← sample a reward machine(T , Σ, umax)
6: c← evaluate reward machine(R, T )
7: if c < c∗ then
8: c∗ ← c, R∗ ← R
9: while t ≤ tmax and c < cp do

10: t← t+ 1, cp ← c
11: N ← get neighbours(R, Σ, umax)
12: for Rn ∈ N do
13: cn ← evaluate reward machine(Rn, T )
14: if cn < c then
15: c← cn, R ← Rn
16: if c < c∗ then
17: c∗ ← c, R∗ ← R
18: return R∗

5). The initial RM is sampled from a uniform distribution. That is, every RM with at
most umax states can be selected with equal probability. On each iteration, the algorithm
evaluates all neighbouring RMs (lines 9-17). We define the neighbourhood of an RM as
the set of RMs that differ by exactly one transition (i.e., removing/adding a transition,
or changing its value) and evaluate RMs using the objective function of LRM. When all
neighbouring RMs are evaluated, the algorithm moves to the neighbouring RM with the
lowest objective value (line 15), and the process repeats. If at any point a locally optimal
solution is reached, then the algorithm starts over from another randomly generated RM
(line 9). Finally, the best RM seen so far is returned when the terminal condition is met
(line 18).

Algorithm 3 shows a tabu search approach to learn a reward machine. It has the
same inputs as local search, but it also receives the size of the tabu list τsize. Our tabu
search method is identical to Algorithm 2 except that tabu search initializes the tabu list
in line 2, adds the current RM to the tabu list in line 11, and moves to the best solution
that is not in the tabu list in lines 12-18.

We note that, technically, these two methods will eventually find an optimal solution.
The reason is that both methods restart the search when they get stuck: Local search
restarts when it reaches a locally optimal solution and tabu search restarts when it
reaches a neighbourhood where all the RMs are in the tabu list. Thus, these methods
either find an optimal solution during the search or restart the search.4 Since every RM
can be sampled with equal probability when restarting, both methods will eventually
sample an optimal solution (or find one). That said, the space of possible RMs is so vast
that we cannot expect our implementations of local search and tabu search to necessarily
find optimal solutions in practice.

4In the case of tabu search, we are assuming that the tabu list is large enough.
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Algorithm 3 A tabu search approach to solve LRM

1: Input: Σ, T , umax, tmax, τsize

2: τ ← initialize tabu list(τsize)
3: t← 0, c∗ ←∞, R∗ ← None
4: while t ≤ tmax do
5: R ← sample a reward machine(T , Σ, umax)
6: c← evaluate reward machine(R, T )
7: if c < c∗ then
8: c∗ ← c, R∗ ← R
9: while t ≤ tmax and R 6∈ τ do

10: t← t+ 1, c←∞
11: τ ← add reward machine to tabu list(τ , R)
12: N ← get neighbours(R, Σ, umax)
13: for Rn ∈ N \ τ do
14: cn ← evaluate reward machine(Rn, T )
15: if cn < c then
16: c← cn, R ← Rn
17: if c < c∗ then
18: c∗ ← c, R∗ ← R
19: return R∗

6. Simultaneously Learning a Reward Machine and a Policy

We now describe our overall approach to simultaneously finding an RM and exploiting
that RM to learn a policy. Algorithm 4 shows the complete pseudo-code. Our approach
starts by collecting a training set of traces T generated by following a random policy
during tw “warmup” steps (line 2). This set of traces is used to find an initial RM R
using one of our discrete optimization models (line 3). The algorithm then sets the RM
state to u0, sets the current high-level observation σ to L(∅, ∅, o), and initializes the
policy π (lines 4-5). The standard RL loop is then followed (lines 6-19): an action a
is selected according to π(a|o, u) and the agent receives the next observation o′ and the
immediate reward r. The RM state is then updated to u′ = δu(u, L(o, a, o′)) and the
last experience (o, u, a, r, o′, u′) is used to update π. Finally, the environment and RM
are reset if a terminal state is reached (lines 17-18).

If on any step, there is evidence that the current RM might not be perfect, our
approach will attempt to find a new one (lines 11-16). Recall that the RM R was
selected using the cardinality of its prediction sets N , where Nu,σ is the set of high-level
observations seen from the RM state u immediately after observing σ in the training
data. If the current high-level observation σ′ is not in Nu,σ, then adding the current
trace to T will increase the size of Nu,σ for R and, in consequence, R may no longer be
the best RM. Therefore, if σ′ 6∈ Nu,σ, we add the current trace to T and learn a new
RM. Our method only uses the new RM if its cost is lower than R’s and, if the RM is
updated, a new policy is learned from scratch (lines 14-16).

Given the current RM, we can use any RL algorithm to learn a policy π(a|o, u), by
treating the combination of o and u as the current state. If the RM is perfect, then
the optimal policy π∗(a|o, u) will also be optimal for the original POMDP (as stated in
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Algorithm 4 Algorithm to simultaneously learn a reward machine and a policy

1: Input: P, L, umax, tw
2: T ← collect traces(tw)
3: R, N ← learn rm(P, L, T , umax)
4: o← env get initial state(), u← u0, σ ← L(∅, ∅, o)
5: π ← initialize policy()
6: for t = 1 to ttrain do
7: a← select action(π, o, u)
8: o′, r,done← env execute action(a)
9: u′, σ′ ← δu(u, L(o, a, o′)), L(o, a, o′)

10: π ← improve(π, o, u, σ, a, r, o′, u′, σ′, done, N)
11: if σ′ 6∈ Nu,σ then
12: T ← T ∪ get current trace()
13: R′, N ← relearn rm(R, P, L, T , umax)
14: if R 6= R′ then
15: done← true, R ← R′
16: π ← initialize policy()
17: if done then
18: o′ ← env get initial state(), u′ ← u0, σ′ ← L(∅, ∅, o)
19: o← o′, u← u′, σ ← σ′

20: return π

Theorem 5). In this case, we can ignore the reward δr that comes from the RM and only
consider the reward received directly from the environment. However, to further exploit
the problem structure exposed by the RM (such as with QRM), we need to set δr. We
do so using the empirical average, as described in Section 4.2.

Let us now explain how we incorporate QRM into this process. As explained in
Section 3, standard QRM under partial observability can introduce a bias because an
experience e = (o, a, o′) might be more or less likely depending on the RM state that
the agent was in when the experience was collected. We partially address this issue
by updating Qu using (o, a, o′) iff L(o, a, o′) ∈ Nu,σ, where σ was the current high-
level observation that generated the experience (o, a, o′). Hence, we do not transfer
experiences from ui to uj if the current RM does not believe that (o, a, o′) is possible
in uj . For example, consider the cookie domain and the perfect RM from Figure 2c. If
some experience consists of entering to the green room and seeing a cookie, then this
experience will not be used by states u0 and u3 as it is impossible to observe a cookie at
the green room from those states. While adding this rule works in many cases, it does
not fully address the problem. We further discuss this issue in Section 8.

7. Experimental Evaluation

In this section, we provide an empirical evaluation of our method in three partially
observable environments. Our evaluation consists of two parts. First, we compare the
effectiveness of our mixed integer linear programming model (MILP), our constrained
programming model (CP), our local search with restart algorithm (LS), and our tabu
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search method (TS) to solve LRM. We then show how the combination of learning an
RM and a policy using double DQN (LRM+DDQN) and deep QRM (LRM+DQRM)
compares to different baselines. As a brief summary, our results show the following:

1. MILP and CP find optimal solutions for small instances of LRM.
2. LS and TS find better solutions than MILP and CP for large instances of LRM.
3. LS consistently finds better solutions than TS.
4. Our LRM-based methods can outperform A3C, ACER, PPO, and DDQN.
5. LRM+DQRM learns faster then LRM+DDQN, but it is less stable.

7.1. Domains

We tested our approach on three partially observable domains, shown in Figure 5.
These environments consist of three rooms connected by a hallway. The agent can move
in the four cardinal directions but its actions fail with a 5% probability. The agent can
only see what it is in the room that it currently occupies, as shown in Figure 5a. What
makes these tasks difficult is the hallway. The hallway forces the agent to observe long
sequences of identical observations multiple times to solve a task. However, depending
on previous observations, the optimal actions and expected returns will be completely
different when the agent is in the hallway.

The first environment is the cookie domain (Figure 5b) described in Section 3. Each
episode is 5, 000 steps long, during which the agent should attempt to get as many cookies
as possible. To do so, it has to press the button in the orange room and then look for
the cookie that is delivered to the blue or green room.

The second environment is the symbol domain (Figure 5c). This domain has three
symbols ♣, ♠, and � in the blue and green rooms. At the beginning of an episode,
one symbol from {♣,♠,�} and possibly a right or left arrow are randomly placed at
the orange room. Intuitively, that symbol and arrow will tell the agent where to go, for
example, ♣ and → tell the agent to go to ♣ in the east room. If there is no arrow,
the agent can go to the target symbol in either room. An episode ends when the agent
reaches any symbol in the blue or green room, at which point it receives a reward of +1
if it reached the correct symbol and −1 otherwise. All other steps in the environment
provide no reward.

The third environment is the 2-keys domain (Figure 5d). The agent receives a reward
of +1 when it reaches the coffee in the orange room. To do so, it must open the two
doors, shown in brown. Each door requires a different key to open it, and the agent
can only carry one key at a time. At the beginning of each episode, the two keys are
randomly located in either the green room, the blue room, or split between them. To
solve this problem, the agent must keep track of the locations of the keys.

7.2. Comparisons Between the Discrete Optimization Models

We first compare the performance of our four models for solving different instances
of LRM. The objective of this experiment is to compare how well each model scales as we
increase the size of the training data and the size of the reward machine. To that end,
we generated 20 training sets per domain, where each training set consists of 103, 104,
105, or 106 experiences collected by following a uniformly random policy. We sampled
five training sets per each possible size and learned reward machines with at most 5 or
10 states. This gave a total of 120 problems instances of LRM.
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Figure 5: Partially observable domains where the agent can only see what is in the current room.

Each approach was run with a 10-minute time limit using 62 cores on a Threadripper
2990WX processor with 124GB of RAM. We used Gurobi 9.1 (Gurobi Optimization,
LLC, 2018) to solve the MILP model and IBM ILOG CP Optimizer 12.8 (IBM, 2018)
for the CP model. These are sophisticated state-of-the-art solvers. In contrast, we used
a simple Python implementation of local search and tabu search in our experiments. We
set τsize = 100 for tabu search. We note that local search and tabu search are stochastic
approaches that, in contrast to MILP and CP, might find a different solution on each
run. For that reason, we ran local search and tabu search 5 times per problem instance
and report the average cost across those runs.

Table 1 shows the final results. Each row shows the aggregated results over five
problem instances that share the same domain (i.e., cookie, symbol, or 2-keys), maximum
number of RM states (i.e., umax ∈ {5, 10}), and size of the training set (i.e., |T | ∈
{103, 104, 105, 106}). Each row also shows the average size of the training set |Tc| after
the traces are compressed (as described in Section 5). The table reports the average
objective function of each model, where lower is better, and the number of instances
where each model found the best solution among all others.

For training sets with less than 10, 000 experiences, our CP model tends to find the
best solutions. However, for larger instance, local search methods dominate. Note that
continuously restarting local search is a better strategy for learning RMs than using a
tabu list in these domains. Still, the performance of TS is not too far from LS and,
hence, we test both approaches for learning RMs in our next experiments.

7.3. Reinforcement Learning Experiments

We tested two versions of our learned reward machine (LRM) method: LRM+DDQN
and LRM+DQRM. Both learn RMs from experience but LRM+DDQN learns a policy
using DDQN (Van Hasselt et al., 2016) while LRM+DQRM uses the modified version
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Table 1: Comparing different models for solving LRM in problem instances with training sets varying
from 103 to 106 experiences and umax ∈ {5, 10}. Each row includes five problem instances.

Configuration Avg. objective No. best

Dataset |T | |Tc| MILP CP LS TS MILP CP LS TS

103 59 12.6 12.6 14.2 13.8 5 5 1 1
Cookie 104 487 237.3 226.7 229.1 230.2 1 5 2 0

(umax = 5) 105 4943 3097.0 2700.4 2699.7 2719.7 0 3 2 0
106 48663 31075.1 28226.1 26462.6 26833.3 0 0 5 0

103 59 6.5 6.8 9.6 10.5 5 4 0 0
Cookie 104 487 233.3 204.6 206.0 204.5 0 1 0 4

(umax = 10) 105 4943 3197.0 2713.7 2658.9 2696.8 0 0 5 0
106 48663 30709.5 28366.8 26461.7 27092.0 0 0 5 0

103 41 21.0 21.0 21.0 21.0 5 5 5 5
Symbol 104 268 218.8 218.8 218.8 220.0 5 5 5 3

(umax = 5) 105 2597 3423.7 2897.9 2896.7 2902.3 0 3 5 2
106 25875 36705.4 29689.9 29687.7 29688.8 0 4 5 3

103 41 16.2 16.2 16.5 16.4 5 5 2 2
Symbol 104 268 185.8 181.2 181.5 185.0 1 5 3 0

(umax = 10) 105 2597 3416.1 2620.7 2583.5 2620.4 0 0 5 0
106 25875 36216.6 27992.9 27050.4 27050.4 0 0 5 5

103 42 6.9 6.9 7.6 7.5 5 5 2 2
2-Keys 104 378 196.5 176.7 176.9 180.7 1 5 3 1

(umax = 5) 105 3690 3713.2 2364.7 2349.6 2391.4 0 0 5 0
106 37923 38875.3 29379.9 24397.0 24762.1 0 0 5 0

103 42 3.5 3.5 5.4 5.1 5 5 0 0
2-Keys 104 378 184.4 151.6 145.4 157.2 0 0 5 0

(umax = 10) 105 3690 3746.1 2363.8 2210.6 2237.6 0 0 5 0
106 37923 38087.0 29065.0 23352.9 23558.8 0 0 5 0

Average/Total 9732.7 7900.3 7251.8 7325.2 38 60 85 28

of QRM described in Section 6. To learn the reward machine, these approaches solve
LRM using local search with restarts or tabu search. In all domains, we used umax = 10,
tmax = 100, τsize = 100, tw = 200, 000, an epsilon greedy policy with ε = 0.1, and a
discount factor γ = 0.9. We compared against 4 baselines: DDQN (Van Hasselt et al.,
2016), A3C (Mnih et al., 2016), ACER (Wang et al., 2016), and PPO (Schulman et al.,
2017). DDQN uses the concatenation of the last 10 observations as input which gives
DDQN a limited memory to better handle the domains. A3C, ACER, and PPO use an
LSTM to summarize the history. Note that the output of the labelling function was also
given to the baselines, as described below.

7.3.1. Hyperparameters and Features

For LRM+DDQN and LRM+DQRM, the neural network used has 5 fully connected
layers with 64 neurons per layer. On every step, we trained the network using 32 sampled
experiences from a replay buffer of size 100,000 and a learning rate of 5 ·10−5. The target
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Figure 6: Results on the cookie domain. LRM is solved using local search or tabu search.

networks were updated every 100 steps.
The DDQN baseline uses the same parameters and network architecture as our LRM

methods, but its input is the concatenation of the last 10 observations, as commonly
done by Atari playing agents (Mnih et al., 2015). This gives DDQN a limited memory
to better handle partially observable domains. We note that since the optimal path from
any one room to another is less than 10 steps, giving the agent the last 10 observations
means that the agent has enough information to perfectly summarize its history if it can
figure out how to do so. The rest of the baselines, namely A3C, ACER, and PPO, use
an LSTM to summarize the history.

To select hyperparameters for A3C, ACER, and PPO, we followed the same method-
ology that was used in their original publications. We ran each approach at least 30
times per domain, and on every run, we randomly selected the number of hidden neu-
rons for the LSTM from {64, 128, 256, 512} and a learning rate from (1e-3, 1e-5). We
also sampled δ from {0, 1, 2} for ACER and the clip range from (0.1, 0.3) for PPO. Other
parameters were fixed to their default values.

While interacting with the environment, the agents were given a “top-down” view of
the world represented as a set of binary matrices. One matrix had a 1 in the current
location of the agent, one had a 1 in only those locations that are currently observable,
and the remaining matrices each corresponded to an object in the environment and had
a 1 at only those locations that were both currently observable and contained that object
(i.e., locations in other rooms are “blacked out”). The agent also had access to features
indicating if they were carrying a key, which color room they were in, and the current
status of the events detected by the labelling function.
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Figure 7: Results on the symbol domain. LRM is solved using local search or tabu search.

7.3.2. Results

Figures 6, 7, and 8 show the total cumulative rewards that each approach gets every
10, 000 training steps and compares it to the optimal policy. For the LRM algorithms,
the figures show the median performance over 30 runs per domain, and percentile 25 to
75 in the shadowed area. For the DDQN baseline, we show the maximum performance
seen for each time period over 5 runs per problem. Similarly, we also show the maximum
performance over the 30 runs of A3C, ACER, and PPO per period. All the baselines
outperformed a random policy, but none make much progress on any of the domains.
Each figure shows two settings. In the left, it shows the performance when LRM is solved
using local search with restarts. In the right, it shows the case where LRM is solved using
tabu search. Note that this only affects the LRM methods. The baselines’ performance
is identical in the left and right figures.

As the results show, LRM-based methods largely outperform all the baselines in
these domains, reaching an optimal policy in the cookie domain (Figure 6) and a close-
to-optimal policy in the symbol domain (Figure 7). We also note that LRM+DQRM
learns faster than LRM+DDQN. In particular, LRM+DQRM converged to considerably
better policies in the 2-keys domain (Figure 8). However, LRM+DQRM is more unstable
than LRM+DDQN when solving LRM via tabu search. We believe this behaviour is due
to two factors. First, tabu search is likely finding worse solutions than local search, as
suggested by Table 1. Second, QRM exploits the structure of the learned RM. Thus, it
is reasonable to expect that converging to a suboptimal RM would hurt the performance
of DQRM more than the performance of DDQN.
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Figure 8: Results on the 2-keys domain. LRM is solved using local search or tabu search.

8. Discussion

Solving partially observable RL problems is challenging and LRM was able to solve
three problems that were conceptually simple but presented a major challenge to A3C,
ACER, and PPO with LSTM-based memories. A key idea behind these results was to
optimize over a necessary condition for perfect RMs. This objective favors RMs that are
able to predict possible and impossible future observations at the abstract level given by
the labelling function L. In this section, we discuss the advantages and current limitations
of such an approach.

We begin by considering the performance of local search methods in our domains.
Given a training set composed of one million transitions, our simple Python implementa-
tion of local search takes less than 2.5 minutes to learn an RM across all our environments,
when using 62 workers on a Threadripper 2990WX processor and tmax = 100. Note that
local search’s main bottleneck is evaluating the neighbourhood around the current RM
solution. As the size of the neighbourhood depends on the size of the set of propositional
symbols P, exhaustively evaluating the neighbourhood may sometimes become imprac-
tical. To handle such problem, we might import ideas from the large neighborhood search
literature (Pisinger and Ropke, 2010).

Regarding limitations, learning the RM at the abstract level is efficient but requires
ignoring (possibly relevant) low-level information. For instance, Figure 9a shows an
adversarial example for LRM. The agent receives reward for eating the cookie ( ). There
is an external force pulling the agent down – i.e., the outcome of the “move-up” action
is actually a downward movement with high probability. The agent can press a button
( ) to turn off (or back on) the external force. Hence, the optimal policy is to press the
button and then eat the cookie. Given P = { , }, a perfect RM for this environment
is fairly simple (see Figure 9b) but LRM might not find it, even if the traces are not
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(a) The gravity domain.
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(b) A perfect RM for the gravity domain.

Figure 9: A partially observable environment where the agent cannot see the external force.

compressed. The reason is that pressing the button changes the low-level probabilities in
the environment but does not change what is possible or impossible at the abstract level.
In other words, while the LRM objective optimizes over necessary conditions for finding
a perfect RM, those conditions are not sufficient to ensure that an optimal solution will
be a perfect RM. In addition, if a perfect RM is found, our heuristic approach to share
experiences in QRM would not work as intended because the experiences collected when
the force is on (at u0) would be incorrectly used to update the policy for the case where
the force is off (at u1).

Other current limitations include that it is unclear how to handle noise over the
high-level detectors L and how to transfer learning from previously learned policies when
a new RM is learned. Finally, defining a set of proper high-level detectors for a given
environment might be a challenge to deploying LRM. Hence, looking for ways to automate
that step is an important direction for future work.

9. Related Work

State-of-the-art approaches to partially observable RL use Recurrent Neural Networks
(RNNs) as memory in combination with policy gradient (e.g., Mnih et al., 2016; Wang
et al., 2016; Schulman et al., 2017; Jaderberg et al., 2016) or use external neural-based
memories (e.g., Oh et al., 2016; Khan et al., 2017; Hung et al., 2018). Other approaches
include extensions to Model-Based Bayesian RL that work under partial observability
(e.g., Poupart and Vlassis, 2008; Doshi-Velez et al., 2013; Ghavamzadeh et al., 2015) or
provide a small binary memory to the agent and a special set of actions to modify it
(Peshkin et al., 1999). While our experiments highlight the merits of our approach with
respect to RNN-based approaches, we rely on ideas that are largely orthogonal. As such,
there is significant potential in mixing these approaches to get the benefit of memory at
both the high- and the low-level.

The effectiveness of automata-based memory has long been recognized in the POMDP
literature (Cassandra et al., 1994), where the objective is to find policies given a complete
specification of the environment. The idea is to encode policies using finite state con-
trollers (FSCs) which are finite state machines (FSMs) where the transitions are defined
in terms of low-level observations from the environment and each state in the FSM is
associated with one primitive action. When interacting with the environment, the agent
always selects the action associated with the current state in the controller. Meuleau
et al. (1999) adapted this idea to work in the RL setting by exploiting policy gradient
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to learn policies encoded as FSCs. RMs can be considered as a generalization of FSC as
they allow for transitions using conditions over high-level events and associate complete
policies (instead of just one primitive action) to each state. This property allows our
approach to easily leverage existing deep RL methods to learn policies from low-level
inputs, such as images – which is not achievable by Meuleau et al. (1999). That said,
further investigating using ideas for learning FSMs (e.g., Angluin and Smith, 1983; Zeng
et al., 1993; Giantamidis and Tripakis, 2016; Shvo et al., 2021) in learning RMs is a
promising direction for future work.

Our approach to learn RMs is greatly influenced by predictive state representations
(PSRs) (Littman et al., 2002). The idea behind PSRs is to find a set of core tests (i.e.,
sequences of actions and observations) such that if the agent can predict the probabilities
of these occurring, given any history H, then those probabilities can be used to compute
the probability of any other test given H. The insight is that state representations that
are good for predicting the next observation are good for solving partially observable
environments. We adapted this idea to the context of RM learning.

Finally, we note that different approaches to learn RMs were proposed simultaneously,
or shortly after, our original publication (e.g., Xu et al., 2020a,b; Furelos-Blanco et al.,
2020; Rens et al., 2020; Gaon and Brafman, 2020; Memarian et al., 2020; Neider et al.,
2021; Hasanbeig et al., 2021). They all learn reward machines in fully observable domains.
Their goal is to learn the smallest RM that is consistent with the reward function – which
makes sense for fully observable domains, but would have limited utility under partial
observability (as discussed in Section 4).

Since they stay in the fully-observable setting, they can use off-the-shelf automata
learning approaches to learn the RM. These include methods that learn reward machines
using a SAT solver (Xu et al., 2020a; Neider et al., 2021), use inductive logic programming
(Furelos-Blanco et al., 2020), and by using program synthesis (Hasanbeig et al., 2021).
There has also been work on adapting the L∗ algorithm (Angluin, 1987) to learn RMs
given the model of the MDP (Rens et al., 2020), expert demonstrations (Memarian et al.,
2020), or in a pure RL setting (Gaon and Brafman, 2020; Xu et al., 2020b).

Besides proposing approaches to learn reward machines for fully-observable problems,
these works also make additional contributions that may be useful in the context of partial
observability. For instance, Furelos-Blanco et al. (2020) and Hasanbeig et al. (2021)
add a reward shaping procedure to encourage exploration. Xu et al. (2020a) propose a
simple mechanism to transfer some of the previously learned Q-value estimates when a
new reward machine is learned. Neider et al. (2021) show how to incorporate domain
knowledge when learning a reward machine. Finally, Gaon and Brafman (2020) and
Xu et al. (2020b) allow, in some cases, driving the agent’s exploration towards finding
bugs in the reward machine. Further study into how to use these in the case of partial
observability is left as future work.

10. Concluding Remarks

We have presented a method for learning reward machines in partially observable
environments and demonstrated the effectiveness of doing so to tackle partially observable
RL problems that are unsolvable by the state-of-the art deep RL methods A3C, ACER
and PPO. Informed by criteria from the POMDP, FSC, and PSR literature, we proposed
a set of RM properties that support tackling RL in partially observable environments.
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We used these properties to formulate RM learning as a discrete optimization problem.
We experimented with several optimization methods, finding local search methods to be
the most effective. We then combined this RM learning with policy learning for solving
partially observable RL problems. Our combined approach outperformed a set of strong
LSTM-based approaches on different domains.

We believe this work represents an important building block for creating RL agents
that can solve cognitively challenging partially observable tasks. Not only did our ap-
proach solve problems that were unsolvable by A3C, ACER and PPO, but it did so in a
relatively small number of training steps. RM learning provided the agent with memory,
but more importantly the combination of RM learning and policy learning provided it
with discrete reasoning capabilities that operated at a higher level of abstraction, while
leveraging deep RL’s ability to learn policies from low-level inputs. This work leaves open
many interesting questions relating to abstraction, observability, and properties of the
language over which RMs are constructed. We believe that addressing these questions
will push the boundary of partially observable RL problems that can be solved.
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