
Saliency-Aware Regularized Graph Neural Network

Wenjie Peia,∗, WeiNa Xub,∗, Zongze Wuc, Weichao Lid, Jinfan Wangb,
Guangming Lua, Xiangrong Wangc,∗∗

aDepartment of Computer Science, Harbin Institute of Technology at
Shenzhen, Shenzhen, 518172, China

bInstitute of Future Networks, Southern University of Science and
Technology, Shenzhen, 518055, China

cCollege of Mechatronics and Control Engineering, Shenzhen
University, Shenzhen, 518060, China

dPeng Cheng Laboratory, Shenzhen, 518066, China

Abstract

The crux of graph classification lies in the effective representation learn-
ing for the entire graph. Typical graph neural networks focus on modeling
the local dependencies when aggregating features of neighboring nodes, and
obtain the representation for the entire graph by aggregating node features.
Such methods have two potential limitations: 1) the global node saliency
w.r.t. graph classification is not explicitly modeled, which is crucial since
different nodes may have different semantic relevance to graph classification;
2) the graph representation directly aggregated from node features may have
limited effectiveness to reflect graph-level information. In this work, we pro-
pose the Saliency-Aware Regularized Graph Neural Network (SAR-GNN)
for graph classification, which consists of two core modules: 1) a traditional
graph neural network serving as the backbone for learning node features and
2) the Graph Neural Memory designed to distill a compact graph represen-
tation from node features of the backbone. We first estimate the global node
saliency by measuring the semantic similarity between the compact graph
representation and node features. Then the learned saliency distribution is
leveraged to regularize the neighborhood aggregation of the backbone, which
facilitates the message passing of features for salient nodes and suppresses the
less relevant nodes. Thus, our model can learn more effective graph represen-

∗Equal contribution.
∗∗Corresponding author.

ar
X

iv
:2

40
1.

00
75

5v
1

 [
cs

.L
G

]
 1

 J
an

 2
02

4

tation. We demonstrate the merits of SAR-GNN by extensive experiments
on seven datasets across various types of graph data. Code will be released.

Keywords: Graph Neural Network, Graph Classification.

1. Introduction

Successful graph classification requires effective representation learning
not only for each node but also for the entire graph. Existing methods
based on graph neural networks [1, 2] have achieved significant progress in
node representation learning, benefiting from the excellent feature refinement
through neighborhood aggregation for each node. Most of these methods fo-
cus on modeling the local dependencies between neighboring nodes when
performing neighborhood aggregation. Prominent examples include GCN [3]
which aggregates neighborhood features by considering the node degree dis-
tribution, GraphSAGE [4] as well as GIN [5] which seek to learn effective
aggregating functions, and GAT [6] which employs an attention mechanism
to learn aggregating weights. While these methods are able to learn effective
node representations in a graph, they ignore the global saliency of each node,
formulated as the semantic similarities between features of each node and the
graph representation in a latent space. Nevertheless, it is crucial to perceive
global node saliency for graph classification since different nodes potentially
have different relevance. Noisy or irrelevant nodes may have adverse effects
on graph classification.

A straightforward way of modeling such global saliency is to employ at-
tention mechanism to calculate the attention distribution, as SAGPool [7]
and ChebyGIN [8] behave. However, such implicit modeling way has limited
effectiveness since it estimates the attention scores solely based on local node
features and lacks the explicit modeling of semantic similarities between each
node and the global graph representation. Other typical methods of modeling
global node saliency include Graphormer [9] interpreting node degrees as cen-
trality, DGM [10] utilizing node connectivities to compute a lens function,
and DGCNN [11] equating the graph convolution output with continuous
Weisfeiler-Lehman (WL) [12] for sorting nodes (termed ‘SortPooling’). Nev-
ertheless, all these methods still suffer from the limitation that they do not
explicitly measure the semantic similarities between each node and the global
graph representation, which essentially characterizes the saliency.

2

Another essential concern of graph classification is how to learn the effec-
tive representation for the entire graph. A commonly adopted approach by
most existing methods based on graph neural networks [13, 14, 11, 15, 16], is
to first learn node features and then aggregate all node features to produce
the graph representation via a readout function, which is typically imple-
mented by various pooling operations. Despite the simplicity of such ap-
proach, the obtained graph representation may have limited effectiveness.
This is because most model capacity is allocated for learning node features
rather than the graph representation, and the quality of obtained graph rep-
resentation depends heavily on that of the node features.

To address the above two potential limitations, in this work we pro-
pose the Saliency-Aware Regularized Graph Neural Network (SAR-GNN)
for graph classification which is built upon traditional graph neural net-
works. It first measures the saliency of each node in a global view, namely
the semantic similarities between each node and the graph representation,
and then leverages the learned saliency distribution to regularize the graph
neural network. Specifically, the SAR-GNN consists of two core modules: 1)
a traditional graph neural network serving as the backbone for learning node
features and 2) Graph Neural Memory which is designed to distill a compact
graph representation for the entire graph from node features of the backbone.
Both the backbone network and the Graph Neural Memory are iteratively
stacked to refine node features and the graph representation progressively.
The learned compact graph representation is used to estimate the global
saliency of each node by measuring the semantic similarities between the
graph representation and node features. Then the obtained saliency distri-
bution is used to regularize the aggregating weights of the backbone network
when performing neighborhood aggregation for each node, which facilitates
the message passing of features for the salient nodes while suppressing the
feature propagation for the less relevant nodes to graph classification. As a
result, the Graph Neural Memory can distill more relevant features to graph
classification from the salient nodes when learning the compact graph rep-
resentation. Two modules work interdependently with interactions between
each other in each stacked layer. The obtained compact graph representation
is finally utilized for graph classification.

To conclude, we highlight following contributions.

• We propose the Saliency-Aware Regularized Graph Neural Network
(SAR-GNN), a novel framework for graph classification, which consists

3

of two core modules: a backbone network for learning node features and
the Graph Neural Memory for distilling the compact graph represen-
tation. Two modules are optimized interdependently with interactions
between each other in each stacked layer and thus both the node fea-
tures and the graph representation can be refined iteratively. Such
framework enables the proposed SAR-GNN to model the global node
saliencies in an explicit manner by measuring the semantic similarities
between each node and the graph representation.

• We design an effective saliency-aware regularization mechanism, which
utilizes the learned global node saliencies to regularize the feature ag-
gregation for each node in such a way that it facilitates the message
passing of features for the salient nodes while suppressing the feature
propagation for the less relevant nodes to graph classification. As a
result, the Graph Neural Memory can distill more relevant features to
graph classification from the salient nodes and thereby produce more
effective graph representation for graph classification.

• The proposed SAR-GNN can be readily applied to most of the existing
graph neural networks which perform neighborhood aggregation for re-
fining node features. In particular, we instantiate the backbone of our
model with four classical types of graph neural networks, namely GCN,
GraphSAGE, GIN and GAT respectively. Then we conduct extensive
experiments both quantitatively and qualitatively on seven challenging
datasets across various types of graph data, which demonstrate 1) the
effectiveness of our method via thorough ablation studies and complex-
ity analysis, and 2) the favorable performance of our model compared
to the state-of-the-art methods for graph classification.

2. Related Work

Traditional approaches to graph classification, preceding the popularity
of graph neural networks, typically employ graph kernel functions to mea-
sure the similarity between pairs of graphs [17, 18, 19]. Our SAR-GNN
is built upon graph neural networks and is designed to: 1) regularize the
neighborhood aggregation of graph neural networks and 2) learn effective
representation for the entire graph. Thus, we discuss related work to our
method from these two perspectives below.

4

Neighborhood aggregation of Graph Neural Networks. The core idea
shared across various graph neural networks is to perform neighborhood ag-
gregation for each graph node to refine the node features iteratively [20, 21].
Typical convolutional neural networks [22] are successfully adapted to graph
data either in the spectral domain [23, 24] or spatial domain [2, 25]. In par-
ticular, GCN [3] presents a scalable and efficient implementation of graph
convolution. GraphSAGE [4] explores multiple potential aggregating func-
tions while Graph Isomorphism Network (GIN) [5] builds upon GraphSAGE
and presents a framework which is as theoretically powerful as the Weisfeiler-
Lehman graph isomorphism test [12]. Another research line of modeling
neighborhood aggregation is to learn the aggregating weights directly per
edge around the center node. Edge-Conditioned Convolution (ECC) [13]
learns aggregating weights conditioned on edge labels while GAT [6] employs
an attention mechanism to measure compatibility between neighboring nodes
for each edge.

All aforementioned methods focus on modeling the local dependencies
between neighboring nodes when performing feature aggregation whilst the
relevance of each node to the task of graph classification is ignored. While
the node saliency can be modeled by the attention mechanism roughly, as
ChebyGIN [8] and SAGPool [7] do, this type of methods has limited effective-
ness in that it solely relies on the attention model without explicit modeling
of saliency. Besides, the global node saliency has been also modeled based on
1) node degrees by Graphormer [9], or 2) the connectivities between nodes by
DGM [10], or 3) the graph convolution output by DGCNN [11]. Neverthe-
less, all these methods do not explicitly model the saliency yet, namely the
semantic similarties between each node and the global graph representation.
In contrast, our SAR-GNN measures the node saliency by modeling the com-
patibility between the learned graph representation and the node features.
The learned node saliency is then leveraged to regularize the modeling of
neighborhood aggregation.
Representation learning for the entire graph. Most of the existing
methods for graph classification learn the representation for the entire graph
in an indirect manner: they allocate most of the model capacity to learning
effective node features, and obtain the representation for the entire graph
by simply aggregating node features via a readout function, mostly imple-
mented as a variety of pooling functions. Typical examples include Diff-
Pool [14] which designs an adaptive pooling method that collapses nodes
hierarchically, ECC which pre-calculates a pooling map to coarsen graphs,

5

DGCNN [11] that sorts nodes first using SortPool before pooling, Eigen-
Pooling [15] which is proposed based on graph Fourier transform to preserve
graph structure during pooling, Graph U-Nets [16] which performs top-K
pooling scheme, and SAGPool [7] which identifies the important nodes using
the self-attention mechanism [26]. On the other hand, ESAN [27] represents
a large graph as a set of distinguishable subgraphs based on the predefined
policy. Unlike aforementioned prior work, we design a module termed as
Graph Neural Memory specifically to distill a compact graph representation
from node features progressively using a cross-attention mechanism. In par-
ticular, the compact graph representation and the node features are refined
by two modules interdependently.

Although our model is mainly designed for effective graph representation
learning, another potentially advantageous application of it, which is worth
noting, is that the derived node saliency distribution by our SAR-GNN can
be naturally used for interpretable explanation of GNN predictions. In this
sense, our model is essentially consistent with GNNExplainer [28] which iden-
tifies compact subgraphs crucial for GNN’s predictions for interpretation, as
well as PGExplainer [29] that is a generalizable GNN explainer by parame-
terizing the generation process of explanations.

3. Saliency-Aware Regularized Graph Neural Network

Built upon traditional graph neural networks, our SAR-GNN first cap-
tures the global node saliency w.r.t. the task of graph classification. The
learned node saliency is then leveraged to regularize the neighborhood aggre-
gation of graph neural networks and facilitate the massage passing of features
for salient nodes, thus our model can learn more effective representations for
the entire graph.

3.1. Overview

Figure 1 illustrates the architecture of our SAR-GNN, which consists of
two core modules: 1) a traditional graph neural network serving as the back-
bone for learning features of each node in a graph and 2) Graph Neural
Memory which is specifically designed for distilling a compact graph repre-
sentation for the entire graph from the node features of the backbone. Two
modules work interdependently to refine both the compact graph represen-
tation and node features progressively through the stacked layers.

6

Input Graph G

Compact
Graph

Representation
𝐌𝟎

Graph
Neural

Networks

MLP

Classification

Graph 𝐇𝒍#𝟏

𝐌𝒍

Saliency-Aware
Regularization

(SAR)

𝐌𝐋&𝟏

Graph 𝐇𝒍

𝐌𝒍#𝟏

Cross
AttentionQ

K V

Graph 𝐇𝐋

+

Node Features 𝐗

Node Features 𝐇𝒍#𝟏

𝐌𝒍

Compatibility
Function ℱ!

Global Saliency
𝒔𝐥#𝟏

Graph
Neural

Networks

Weight
Fusion

Local Weight

Graph 𝐇𝒍

Cross
AttentionQ

K V

+ Cross
AttentionQ

K V

+

𝐌𝒍&𝟏

SAR

Backbone Network

Graph Neural Memory

Saliency-Aware
Regularization

(SAR)

Figure 1: Architecture of the Saliency-Aware Regularized Graph Neural Network (SAR-
GNN). It consists of two core modules: 1) a traditional graph neural network serving
as the backbone network for learning node features and 2) the Graph Neural Memory for
distilling a compact graph representation from node features of the backbone. The learned
graph representation is leveraged to measure the global node saliency and regularize the
backbone. Thus, two modules work interdependently to refine node features and the
compact graph representation in an iterative manner. The operation of Saliency-Aware
Regularization in the left panel is elaborated in the right panel.

Taken a graph G with N nodes as input, SAR-GNN first employs the
Graph Neural Memory to perform feature distillation from the node features
in the backbone network and obtains a compact graph representation for the
whole graph:

Ml = FM(Hl−1,Ml−1). (1)

Here Ml ∈ RdM denotes the compact graph representation with dM dimen-
sions at the l-th stacked layer, which is refined iteratively from the previous
representation Ml−1 by incorporating the newly distilled information from
the node feature matrix Hl−1 ∈ RN×dH at the (l − 1)-th layer. Each of N
nodes has dH dimensions of features. FM is the transformation function by
the Graph Neural Memory that will be explained concretely in Section 3.2.
The obtained compact graph representation Ml is further leveraged to mea-
sure the global saliency of each node for graph classification. In particular,
we learn global saliency by modeling the compatibility between Ml and node
features via a function FS (explicated in Section 3.3):

sl−1 = FS(Ml,Hl−1). (2)

Herein, sl−1 ∈ RN is a vector, which sums to 1, denoting the saliency distri-
bution for all nodes in the (l − 1)-th layer of the backbone network. It can
be interpreted as the semantic similarities between each node and the graph

7

representation. The saliency sl−1 is then used to regularize the backbone
network and thereby refines the node features in the l-th layer:

Hl = FB(Hl−1, sl−1), (3)

where FB is the transformation function of the backbone network. The re-
fined node features Hl are in turn used to distill the compact graph repre-
sentation in the next layer Ml+1 as shown in Equation 1. Thus, the compact
graph representation and the node features are refined interdependently. The
compact graph representation in the last layer of the Graph Neural Memory
ML+1 (L is the number of feature-refining layers in the backbone network)
is finally utilized for graph classification.

We will first elaborate on the design of the Graph Neural Memory, and
then describe how to perform global regularization for the backbone network
using the compact graph representation obtained from the Graph Neural
Memory. Finally, we show that our SAR-GNN can be optimized in an end-
to-end manner as a whole.

3.2. Graph Neural Memory

The Graph Neural Memory is designed to distill a compact latent repre-
sentation for the entire graph from node features in the backbone network.
As shown in Figure 1, the Graph Neural Memory learns a vectorial latent
embedding M ∈ RdM as the compact graph representation and refines it
iteratively using cross-attention operation. Specifically, the initial latent em-
bedding in the 0-th layer (denoted M0) is parameterized as a learnable vector
and initialized randomly. In each layer of the Graph Neural Memory, the la-
tent embedding is refined by attending to the node features of the previous
layer in the backbone to perform feature distillation with cross-attention op-
eration. Formally, the transformation function of the Graph Neural Memory
FM in Equation 1 is modeled as:

qm = Ml−1Wq, K = Hl−1WK , V = Hl−1WV ,

Ml = FMLP(M′), M′ = softmax(
qmK

⊤
√
d

)V,
(4)

where the latent embedding Ml−1 in the l-1-th layer of the Graph Neural
Memory serves as the query while the node feature matrix Hl−1 in the (l-
1)-th layer of the backbone network is used as both the key and value in

8

cross-attention operation. Wq ∈ RdM×d, WK ∈ RdH×d, WV ∈ RdH×d are
learnable parameter matrices for linear transformations. FMLP is a Mul-
tilayer Perceptron (MLP) module consisting of two fully connected layers
(with transformation matrices W1

MLP ∈ RdM×d and W2
MLP ∈ Rd×d) with

ReLU function. In our implementation, the transformation FM described in
Equation 4 is typically performed k iterations (tuned as a hyper-parameter)
in a single layer of the Graph Neural Memory. Note that residual connections
are applied between adjacent layers of the Graph Neural Memory.

The learned latent embedding Ml is in turn used to regularize the back-
bone network for refining the node feature matrix Hl (Section 3.3). Thus the
Graph Neural Memory is able to distill graph representations from newly re-
fined node features in each layer instead of constant node information. Sim-
ilar way of information distillation via cross attention has been previously
adopted in Transformer-based models like BERT [30] and ViT [31] that learn
a ‘CLS’ token for classification, DETR for object detection [32] and Perceiver
for multi-modal feature learning [33]. Note that the initial latent embedding
M0 is modeled as learnable parameters to learn an appropriate initial feature
point that is compatible with the latent feature space in the backbone.

3.3. Saliency-Aware Regularization of the Backbone

The distilled compact graph representation from the Graph Neural Mem-
ory is used to perform global regularization on the backbone network, which
enables the backbone network to perceive the global node saliency w.r.t.
graph classification when learning node features. Specifically, we first utilize
the compact graph representation to measure the global saliency for each
node, and then regularize the backbone network using the node saliency dis-
tribution.
Measuring the global node saliency. The node saliency w.r.t. graph clas-
sification is measured by modeling the compatibility between the compact
graph representation and features of each node in the graph. A straightfor-
ward way is to calculate the similarity between them by dot product in a
projected latent space. The obtained similarity scores for all nodes are then
normalized. Thus, the compatibility function FS in Equation 2 is formulated
as:

qs = MlWq
s, Ks = Hl−1WK

s ,

sl−1 = softmax(
qsK

⊤
s√

ds
),

(5)

9

where Wq
s ∈ RdM×d and WK

s ∈ RdH×d are learnable parameter matrices to
project the compact graph representation Ml and the node feature matrix
Hl−1 into the same latent space. Note that the scaling factor 1√

d
is used to

avoid the explosive growth of dot product between two vectors.
Regularizing the backbone network with node saliency. Typical
graph neural networks refine features of a node by performing weighted ag-
gregation over (transformed) features of its neighboring nodes, where the
weights are either derived based on the node degrees like GCN or basic uni-
form distributions such as GraphSAGE or GIN. These methods solely model
the local dependencies between neighboring nodes and fail to incorporate
the global node saliency w.r.t. graph classification. Intuitively, the nodes
with higher saliency score should receive more attention than those with
lower saliency score during information propagation between adjacent nodes.
Hence, we regularize the backbone network with the learned node saliency
distribution.

We formulate the aggregating weights for the neighborhood of the i-th
node (including itself) in the l-th layer as local weight distribution al

i ∈
R|Ni|+1, where Ni denotes the set of neighboring nodes of the i-th node.
The learned global saliency sl is viewed as the global weight distribution.
Then we regularize the feature aggregation for each node in the backbone
network by fusing the local and global weights together. We discuss two
fusion mechanisms:

• Weighted sum over the local and global weights:

wl
i(j) = softmax

(
al
i(j) + βsl(j)

)
,

∀j ∈ {i} ∪ Ni, 1 ≤ i ≤ N,
(6)

where wl
i ∈ R|Ni|+1 is the regularized aggregating weights for the i-th

node and its neighboring nodes, and j is a node index. β is a hyper-
parameter tuned on a validation set. Softmax function is applied for
normalization.

• Scaling regularization over the local weights by the global weights:

wl
i(j) = softmax

(
(1 + sl(j))γal

i(j)
)
,

∀j ∈ {i} ∪ Ni, 1 ≤ i ≤ N,
(7)

wherein, γ > 0 is a hyper-parameter.

10

The proposed saliency-aware regularization mechanism is readily appli-
cable to most graph neural networks. In our implementation, the backbone
network is instantiated with four classical types of graph neural networks:
GCN, GraphSAGE, GIN and GAT. The transformation function FB in Equa-
tion 3 is formulated correspondingly as follows.

• GCN, which takes into account the degree distribution when perform-
ing neighborhood aggregation:

al = D̃− 1
2 ÃD̃− 1

2 ,

Hl+1 = σ
(
wlHlΘl

)
.

(8)

Herein, we consider al ∈ RN×N as the local aggregating weight matrix
in the renormalized form [3] derived from the adjacency matrix Ã and
degree matrix D̃. wl ∈ RN×N is the regularized aggregating weight
matrix for all nodes, calculated by Equation 6 or 7. Θl is the learnable
parameter matrix for linear transformation in l-th layer and σ is the
activation function.

• GraphSAGE. Taking the mean aggregator of GraphSAGE as an ex-
ample, the local aggregating weight for all neighboring nodes is equal
to 1. Thus, the features for i-th node H

(l+1)
i is refined as:

Hi
(l+1) = σ

(
ΘlMEAN({wl

i(i)H
l
i} ∪ {wl

i(j)H
l
j, ∀j ∈ Ni}

)
. (9)

Here wl
i is the regularized weights for the i-th node and its neighboring

nodes by Equation 6 or 7.

• GIN, whose local aggregating weights are equal to 1 except for the
center node:

al(i) = 1 + ϵl+1, al(j) = 1,∀j ∈ Ni,

Hi
l+1 = F l

MLP

(
wl

i(i)H
l
i +

∑
j∈Ni

wl
i(j)H

l
j

)
, (10)

where F l
MLP denotes the transformation function for a Multilayer Per-

ceptron at the l-th layer of backbone network, and wl
i is the regularized

weights for the i-th node and its neighboring nodes by Equation 6 or 7.

11

• GAT, which uses an attention mechanism to calculate the local weight
distribution between each node and its neighboring nodes:

al
i(j) =

exp(LeakyReLU(a⊤[Whi ∥ Whj]))∑
j∈{i}∪N (i) exp(LeakyReLU(a⊤[Whi ∥ Whj]))

,

hl+1
i = σ(

∑
j∈{i}∪N (i)

wl
i(j)Whj).

(11)

where hi are the feature vector for the i-th node and W is a shared
transformation matrix. a is the parameters for a linear transformation
to calculate a scalar matching score while ∥ denotes the concatenation
operation. wl

i(j) is the regularized weights between the i-th node and
the j-th node.

3.4. End-to-End Parameter Learning

Since the compact graph representation in the 1-th layer of the Graph
Neural Memory M1 is learned from the input node features X, the Graph
Neural Memory contains one more layer than the backbone network. Suppose
the backbone network contains in total L feature-refining layers, the learned
compact graph representation in the last layer of the Memory ML+1 is utilized
for predicting the graph label:

P (y|ML+1) = softmax(FMLP(ML+1)), (12)

where y ∈ RK is predicted probabilities for all potential K categories. FMLP

refers to the transformation function for a Multilayer Perceptron.
The proposed SAR-GNN can be optimized in an end-to-end manner by

a cross-entropy loss:

L = −
Nt∑
i=1

logP (yi|Xi). (13)

Here Xi and yi refer to the i-th training sample with its graph label while
Nt is the training size.

4. Experiments

To evaluate our proposed SAR-GNN, we first conduct ablation study to
investigate the effectiveness of each essential technique in our model, then

12

we conduct extensive experiments to compare our model with other state-of-
the-art methods for graph classification on seven challenging graph datasets
across various types of graph data. Moreover, we also perform qualitative
evaluation to validate the effectiveness of the learned node saliency and the
learned graph representation.

4.1. Experimental Setup

Datasets. We conduct experiments on seven datasets across various types
of graph data for evaluation. 1) MUTAG [34] is a chemical dataset contain-
ing two categories of compounds: mutagenic aromatic and heteroaromatic
compounds. 2) ENZYMES [35] is a protein dataset comprising 600 pro-
tein tertiary structures, which are grouped into 6 top-level enzyme classes.
3) PROTEINS [36] is also a protein dataset which contains two types of
samples: enzymes or non-enzymes. 4-5) IMDB-MULTI [37] and IMDB-
BINARY [37] both include ego-network graphs involving 1000 actors who
play roles in movies appeared in IMDB. All graphs in IMDB-MULTI are
categories into three genre classes including Comedy, Romance and Sci-Fi
while IMDB-BINARY has two categories: Action and Romance. 6) TRI-
ANGLES [8] is a large synthetic dataset consisting of 45,000 graph samples,
and the task is to predict the number of triangles in a graph (ranging from
1 to 10). Note that we perform evaluation on the split of the test set, which
has the same number of categories of graphs as the training set. 7) Letter-
high [38] is also a synthetic dataset containing 2,250 graph samples and each
sample represents a distorted letter drawings.
Implementation details. Following typical evaluation protocol for graph
classification [21], we perform 10-fold cross validation for all datasets except
for TRIANGLES dataset which has the official data division for training
and test. For quantitative evaluation, we measure the accuracy of graph
classification as the evaluation metric. Adam [39] is employed for gradient
descent optimization.

4.2. Ablation Study

To investigate the effectiveness of each proposed component, we first per-
form ablation study with six variants of our SAR-GNN for all four types of
backbones.

• Base model, which is exactly the backbone network, e.g., base model
is GCN when it is used as the backbone. Following Errica et al. [21], we
apply sum pooling to obtain graph representations for all Base models.

13

Table 1: Classification accuracy (%) of six variants of our model on MUTAG and Letter-
high for ablation study. The backbone is instantiated with GCN, GIN, GraphSAGE and
GAT, respectively. The standard deviation on 10-fold cross validation is also provided.

Variants

Backbone GCN GIN GraphSAGE GAT

MUTAG Letter-high MUTAG Letter-high MUTAG Letter-high MUTAG Letter-high

Base model 71.6 ±10.9 61.1±2.6 81.4±6.6 73.3±2.5 75.8±7.8 71.0±2.7 76.1 ±4.2 82.1±1.8

GNM-GNN 76.7±7.0 73.2±1.9 84.7±5.6 79.5±2.2 78.4±7.3 75.9±2.3 77.5 ±4.3 82.6±1.3

SAR-Pooling-W 76.2±6.0 70.7±1.8 83.8±4.0 75.3±1.8 82.8±6.8 76.8±2.5 79.9 ±2.7 83.4±4.6

SAR-Pooling-S 75.9±10.1 70.5±2.9 84.0±7.3 74.1±3.4 81.9±10.3 75.8±2.9 78.3 ±3.2 84.4±4.1

SAR-GNN-W 80.0±5.1 77.6±2.4 85.1±5.0 82.3±1.8 84.6±4.2 80.8±2.6 81.4 ±2.8 85.1±2.6

SAR-GNN-S 82.2±5.5 76.8±1.7 85.3±5.5 83.6±1.7 87.4±3.1 80.5±2.6 80.2 ±3.4 85.0±5.2

• GNM-GNN, which employs the Graph Neural Memory (GNM) to
learn the compact graph representation for graph classification. Nev-
ertheless, the backbone is not regularized with the node saliency.

• SAR-Pooling, which performs sum pooling over all node features in
the last layer of the backbone for graph classification, instead of using
the compact graph representation. Note that the backbone of this
variant is regularized with node saliency. In particular, two proposed
mechanisms for weight fusion (Equations 6 and 7), namely ‘weighted
sum’ and ‘scaling regularization’, are evaluated separately. We denote
them as SAR-Pooling-W and SAR-Pooling-S respectively.

• SAR-GNN, which is the intact version of our model. Both mecha-
nisms for weight fusion are evaluated, denoted as SAR-GNN-W and
SAR-GNN-S respectively.

Table 1 shows the experimental results of these variants on MUTAG and
Letter-high datasets, from which we conduct following investigation.

Effect of regularization with learned node saliency. The large per-
formance gap between Base model and SAR-Pooling-W as well as SAR-
Pooling-S for all four backbones on both datasets reveals the effect of the
global regularization with learned node saliency. Besides, the comparisons
between GNM-GNN and SAR-GNN also demonstrate the advantages of such
saliency-aware regularization.

14

Effect of the Graph Neural Memory. Compared with Base model,
GNM-GNN improves the performance by a large margin for all types of back-
bones on both datasets. Additionally, SAR-GNN consistently outperforms
SAR-Pooling using the same fusion mechanism in all cases (with different
backbones and datasets). These results validate the superiority of the Graph
Neural Memory over the pooling method in learning graph representation.

Comparison between ‘Weighted sum’ and ‘Scaling regularization’
for weight fusion. We further compare two different mechanisms for weight
fusion in Equations 6 and 7. Comparing the performance between SAR-
GNN-W and SAR-GNN-S, or between SAR-Pooling-W and SAR-Pooling-S
in all cases, we observe that there is no clear winner between these two fusion
mechanisms. In most cases, there is no big performance gap between them.

Investigation into the optimization policy. our SAR-GNN consists
of two core modules: the backbone network for learning node features and
Graph Neural Memory for distilling the compact graph representation. Two
modules work interdependently to refine each other and the whole model
can be optimized in an end-to-end manner. We investigate two optional
optimization policies: 1) joint training of two modules and 2) alternating
training of two modules.

• Joint training, which optimizes two modules jointly by gradient de-
scent method. Adam is employed in our implementation.

• Alternating training, in which two modules are optimized in an al-
ternating manner, i.e., the parameters of one module are frozen when
optimizing the other one. Such policy is essentially analogous to the
block coordinate descent method when considering the two modules as
two blocks of parameters to be optimized. The only difference is that we
still employ gradient descent method to optimize each block of parame-
ters instead of calculating the local optimal solution per block directly.
Similar to the block coordinate descent method, we optimize two mod-
ules by conducting such alternating training iteratively to reach the
learning convergence.

Figure 2 presents the experimental comparison between two optimization
policies. The alternating training policy reaches the optimization conver-
gence after several iterations of alternating optimization. We observe that
the joint training policy achieves better performance for graph classifica-
tion than the alternating training policy. Similar to the coordinate descent

15

Ac
cu

ra
cy

 (%
)

Alternating Training Join Training

Alternating Steps
1 4 7 10

60

70

80

90

(a) MUTAG

Ac
cu

ra
cy

 (%
)

Alternating Training Join Training

Alternating Steps
1 4 7 10

60

70

80

(b) Letter-high

Figure 2: The performance of our SAR-GNN adopting two optimization policies, namely
the joint training policy and the alternating training policy, on MUTAG (a) and Letter-
high datasets (b), respectively.

method, the alternating training policy can theoretically achieve globally op-
timum performance if it can obtain the local optimum w.r.t. the optimized
module in each iteration of per-module optimization for convex optimization
problem. However, in our case both alternating training and joint training
policies employ gradient descent for non-convex optimization of deep neural
networks. Thus, the alternating training policy can hardly reach the op-
timum w.r.t. the optimized module in each alternating optimization step
in practice. On the other hand, the joint training policy performs gradient
back-propagation w.r.t. all parameters of the model whilst alternating train-
ing only propagates gradients w.r.t. the parameters of the optimized module
of the model for optimization. Thus, we surmise that joint training policy is
able to optimize the model along more optimized directions than alternating
training, thereby yielding better performance.

4.3. Comparison with Other Methods

Next we compare our model with the state-of-the-art methods for graph
classification. Apart from four backbone models (GCN, GIN, GraphSAGE
and GAT), we also compare our model with 12 state-of-the-art methods for
graph classification, including DGCNN [11], ECC [13], ChebyGIN [8], SAG-
Pool [7], Graphormer [9], ESAN [27] (termed ‘DSS-GNN’ in the paper) based
on the overall best policy ‘EGO+’, GSN [40], Graph U-Nets [16], DGM [10],
UGformer [41], SLIM [42] and ADSF-RWR [43]. ADSF-RWR is initially
designed for node classification and we adapt it for graph classification by
applying sum pooling over all node embeddings to obtain the graph represen-
tation. We re-train and re-evaluate all methods under the same experimen-

16

Table 2: Classification accuracy (%) of different methods for graph classification on seven
datasets. The standard deviations on 10-fold cross validation (different initializations for
TRIANGLES) are provided. ‘SAR-GCN’ refers to our method using GCN as the back-
bone. The performance gains of our method over each of four base models are highlighted
in italic in parentheses.

Method MUTAG ENZYMES IMDB-MULTI TRIANGLES Letter-high PROTEINS IMDB-BINARY

DGCNN [11] 83.9±5.8 38.6±4.8 46.4±3.5 77.3±4.2 44.7±2.9 72.5±4.1 66.9±3.9

ECC [13] 81.4±7.6 29.5±8.2 43.5±3.1 80.4±0.5 80.8±1.5 72.3±4.0 66.2±2.1

ChebyGIN-unsup [8] 83.4±6.0 26.3±2.7 39.0±1.5 67.0±3.0 27.0±2.2 71.2±3.4 50.0±0.5

DSS-GNN (EGO+) [27] 84.1±5.9 62.5±5.7 50.1±2.4 93.3±1.1 83.6±2.0 69.2±5.6 71.5±3.6

GSN [40] 84.4±5.5 63.2±6.8 51.1±2.7 76.1±5.2 40.3±2.4 72.9±3.7 72.5±4.1

Graphormer [9] 83.1±6.7 58.7±5.2 48.9±2.7 56.1±2.1 76.3±2.4 76.3±3.4 72.9±3.3

SAGPOOL [7] 72.6±5.7 31.9±5.7 46.0±3.8 63.2±10.3 72.2±3.3 72.6±3.3 69.2±3.5

Graph U-Nets [16] 76.0±7.2 34.4±3.0 47.6±3.0 54.0±1.0 42.5±1.3 74.2±5.2 68.3±3.3

DGM [10] 86.2±6.7 40.3±2.2 49.2±2.5 53.4±2.3 56.4±3.4 68.8±6.9 73.1±3.8

UGformer [41] 78.2± 5.9 68.9±4.7 49.6± 2.1 81.0±4.6 80.6±2.7 70.1±3.5 70.1±2.3

SLIM [42] 78.8± 4.8 56.1±3.4 47.6± 2.1 68.9±3.1 71.3±1.8 74.1±4.7 70.8±5.7

ADSF-RWR [43] 76.4± 6.2 66.0±4.3 45.2± 4.9 62.4±5.2 80.1±2.4 73.9±6.8 69.4±2.7

GCN 71.6±10.9 68.1±4.0 48.2±3.8 46.0±1.0 61.1±2.6 73.3±3.1 68.4±6.7

GIN 81.4±6.6 62.3±5.0 48.5±3.3 51.6±2.7 73.3±2.5. 73.5±3.4 70.2±2.8

GraphSAGE 75.8±7.8 62.1±6.2 47.6±3.5 52.5±0.4 71.0±2.7 73.0±4.6 70.7±4.4

GAT 76.1±4.2 65.4 ± 5.2 46.0±3.2 65.4±3.4 82.1±1.8 73.5±2.6 70.0±5.1

SAR-GCN (Ours) 82.2±5.5 (+10.6) 69.3±5.0 (+1.2) 49.1±3.1 (+0.9) 81.7±0.9 (+35.7) 77.6±2.4 (+16.5) 76.8±3.4 (+3.5) 69.2±4.8 (+0.8)

SAR-GIN (Ours) 85.3±5.5 (+3.9) 65.7±3.5 (+3.4) 51.6±3.7 (+3.1) 78.2±4.2 (+26.6) 84.8±1.3 (+11.5) 75.3±6.4 (+1.8) 73.7±3.9 (+3.5)

SAR-GraphSAGE (Ours) 87.4±3.1 (+11.6) 68.7±4.0 (+6.6) 48.7±3.2 (+1.1) 78.9±1.2 (+26.4) 80.5±2.6 (+9.5) 76.0±4.7 (+3.0) 70.9±4.1 (+0.2)

SAR-GAT (Ours) 81.4 ±2.8 (+5.3) 69.1±4.7 (+3.7) 47.7±2.6 (+1.7) 87.4±4.6 (+22.0) 85.1±2.6 (+3.0) 75.8 ±1.9 (+2.3) 72.5±2.8 (+2.5)

tal setting, using the same data split and evaluation metrics, to have a fair
comparison. Note that we compare with ChebyGIN in both unsupervised
(denoted as ChebyGIN-unsup) and supervised training settings for learning
node saliencies to have a comprehensive comparison. In this set of experi-
ments, we only report the performance of our model by selecting the better
one between two fusion mechanisms based on the validation set.

Table 2 presents the experimental results of different methods on seven
datasets. We make the following observations. First, our method achieves
substantial performance gains compared to the corresponding base models
used for backbone on all datasets except IMDB-BINARY, which validates the
effectiveness and adaptability of our method across different types of back-
bones. The performance improvement of our method on IMDB-BINARY is
minor presumably due to the ceiling effect, considering the fact that the per-
formance of multiple models on this dataset is close to each other. Second,
our method based on one of four backbones achieves the best performance
on all seven datasets except TRIANGLES, which manifests the robustness
of our method. In contrast, other methods, such as GSN, Graphormer and

17

C
C

C

C

C

C

C

C

C C

C

C

C

C

C

C

CC

C

C

C

C

CC

O O

N

MUTAG

C
C

C

C

C

C

C

C

C C

C

C

C

C

C

C

CC

C

C

C

C

CC

O O

N

C
C

C

C

C

C

C

C

C C

C

C

C

C

C

C

CC

C

C

C

C

CC

O O

N

TRIANGLES

Input Subgraph 1 Subgraph 2

Figure 3: Visualization of two randomly selected subgraphs generated by DSS-GNN
(EGO+) on samples from MUTAG and TRIANGLES datasets, respectively. The tri-
angles are indicated in shaded regions for the TRIANGLES sample. While DSS-GNN can
preserve the triangle structure in the generated subgraphs, its generated subgraphs on the
MUTAG sample fail to preserve intact fused rings whose number is closely correlated to
the recognition of mutagenic aromatic.

ECC, show unstable performance across different datasets. DSS-GNN per-
forms substantially better than other methods on TRIANGLES, presumably
because DSS-GNN can recognize the triangle structure as distinguishable
subgraphs. To validate it, we visualize two randomly selected subgraphs
learned by DSS-GNN in Figure 3, which shows that DSS-GNN can indeed
generate subgraphs that preserve the triangles on the samples from TRIAN-
GLES dataset. However, its generated subgraphs on the MUTAG sample fail
to preserve intact fused rings whose number is closely correlated to the recog-
nition of mutagenic aromatic [34], which accounts for its relatively inferior
performance to our model on MUTAG. The third observation we make is that
our method consistently performs well when built upon different backbones
and the performance differences between them are minor. Interestingly, the
performance differences among four base models are substantially reduced
when they are integrated into our method.

Comparison with the implicit modeling of global saliency by at-
tention mechanism. SAGPool and ChebyGIN use attention mechanism to
model global saliency implicitly by learning a parameterized attention func-
tion Fatt taking the node features H as input: satt = Fatt(H). In contrast,
our method models the global saliency explicitly by measuring the compat-
ibility between the compact graph representation M and node features H:

18

Table 3: Classification accuracy (%) of our methods instantiated with different backbones
as well as ChebyGIN in both unsupervised and supervised learning settings on TRIAN-
GLES dataset.

Learning settings ChebyGIN
Our method

SAR-GCN SAR-GIN SAR-GraphSAGE SAR-GAT

Unsupervised 67.0±3.0 81.7±0.9 78.2±4.2 78.9±1.2 87.4±4.6

Supervised 88.0±1.0 91.2±1.7 89.8±2.1 89.3±2.0 91.8±1.5

sour = FS(M,H), as shown in Equation 2 and 5. The iterative interde-
pendent refining mechanism enables our model to learn more effective node
features and graph representation, which in turn lead to more accurate global
saliency. The large performance superiority of our model over SAGPool and
ChebyGIN in Table 2 in the paper demonstrates the advantage of our model.
Besides, the qualitative comparison in Figure 4 and Figure 5 also reveal such
advantage of our model over SAGPool and ChebyGIN.

Comparison with ‘ChebyGIN’ in the supervised setting for learn-
ing global node saliency. Our model, as well as other methods involved in
comparison, is optimized for graph classification only using graph category
labels but with no annotations of the global saliency. In this sense, the global
saliency is learned in an unsupervised setting. To further investigate the per-
formance of the our model in the supervised setting, we conduct experiments
on TRIANGLES dataset by leveraging both the annotations of the global
saliency and graph categories for supervision. We compare our method and
the supervised version of ChebyGIN, which is presented in Table 3. The re-
sults show that all four instantiations of our method with different backbones
consistently outperform ChebyGIN in the supervised setting, which reveals
the effectiveness of our method in such setting. Besides, comparing the per-
formance between unsupervised and supervised settings, both our method
and ChebyGIN achieve substantial improvements. Such results indicate that
the supervision on the global saliency yields more effective learning of global
saliency and thereby more precise graph classification, which also implies
the essential benefit of learning global node saliencies to the task of graph
classification.

19

Graph Label : 1 Graph Label : 3 Graph Label : 5

SA
R

-G
C

N
C

he
by

G
IN

-U
N

SU
P

Low

High

SA
G

Po
ol

Figure 4: Visualization of learned node saliency by our SAR-GCN, ChebyGIN-unsup and
SAGPool on three graphs randomly selected from TRIANGLES test data. The triangles
are indicated in shaded regions and the number of triangles is given as the graph label.
Our SAR-GCN tends to assign higher saliency scores to those nodes associated with more
triangles, and thus shows higher accuracy than ChebyGIN-unsup and SAGPool in captur-
ing the discriminative nodes associated with more triangles. The nodes that are assigned
distinctly inaccurate saliency weights are marked with red dotted circles.

4.4. Qualitative Evaluation

In this set of experiments, we perform qualitative evaluation on the
learned node saliency and the graph representation by our model, respec-
tively.

Evaluation of the learned node saliency. To validate whether the
learned node saliency by our method can accurately reflect the relevance
of each node to the task of graph classification, we visualize the learned node
saliency on TRIANGLES and MUTAG datasets in Figures 4 and 5, respec-
tively. We also visualize the learned global attention scores by ChebyGIN-
unsup and SAGPool which employs an attention mechanism to model the
global saliency in an implicit manner.

As shown in Figure 4, our method tends to assign higher saliency scores

20

C
C

C

C

C

C

C

C

C C

C

C

C

C

C

C

CC

C

C

C

C

CC

O O

N

C
C

C

C

C

C

C

C

C C

C

C

C

C

C

C

CC

C

C

C

C

CC

O O

N

O

O
NC

C

C

C
C

C

C

C

C

C

C

C
C

C

C

C
O

O

N

O

O
C

C

C

C
C

C

C

C

C

C

C

C
C

C

C

C
O

O

N

C
C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

O O

N

C

C
C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

O O

N

C

Low

HighSA
R

-G
ra

ph
SA

G
E

C
he

by
G

IN
-U

N
SU

P

C
C

C

C

C

C

C

C

C C

C

C

C

C

C

C

CC

C

C

C

C

CC

O O

N
O

O
NC

C

C

C
C

C

C

C

C

C

C

C
C

C

C

C
O

O

N

C
C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

O O

N

C

SA
G

Po
ol

N

Figure 5: Visualization of learned node saliency by our SAR-GraphSAGE, ChebyGIN-
unsup and SAGPool on three graphs, labeled as ‘mutagenic aromatic’, randomly selected
from MUTAG. Our SAR-GraphSAGE can capture the key nodes located at the center
of fused rings which are discriminative for ‘mutagenic aromatic’, whilst ChebyGIN-unsup
and SAGPool either assign roughly uniform attention to all nodes or fail to capture the
key nodes.

to those nodes associated with more triangles, which is reasonable since these
nodes are more relevant to the graph category, namely the number of triangles
in the graph. Although the learned attention scores by ChebyGIN-unsup and
SAGPool also show a similar pattern, the results are less accurate than those
of our method.

Figure 5 visualizes the learned saliency by our model as well as ChebyGIN-
unsup and SAGPool on three positive samples labeled as ‘mutagenic aro-
matic’, randomly selected from MUTAG. Our model assigns higher saliency
scores to the key nodes which locate at the center of fused rings, which is
consistent with the chemical knowledge that ‘compounds with three or more
fused rings are much more mutagenic, other factors being equal, than those
with one or two’ [34]. In contrast, ChebyGIN-unsup and SAGPool either

21

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVPR
#929

CVPR
#929

CVPR 2023 Submission #929. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

L
et

te
r-

hi
gh

(a) DGCNN: 44.7% (b) ECC: 80.8% (c) GIN: 73.3% (d) SAR-GIN: 84.8%

E
N

Z
Y

M
E

S

(e) DGCNN: 38.6% (f) ECC: 29.5% (g) GraphSAGE: 62.1% (h) SAR-GraphSAGE: 68.7%

Figure 5. t-SNE maps of test data from five randomly selected classes of Letter-high and ENZYMES, constructed based on the learned graph
representations by four different methods. We show results of our model with different backbones (GIN and GraphSAGE) on two datasets to
show the robustness of our model. 30 randomly selected samples are visualized for each class. The classification accuracy for each method
on each dataset is also presented.

4.4. Qualitative Evaluation

To validate whether the learned node saliency by our
method can accurately reflect the relevance of each node to
the task of graph classification, we visualize the learned node
saliency on TRIANGLES and MUTAG datasets in Figures 3
and 4, respectively. We also visualize the learned global
attention scores by ChebyGIN-unsup employing attention
mechanism.

As shown in Figure 3, our method tends to assign higher
saliency scores to those nodes associated with more triangles,
which is reasonable since these nodes are more relevant to the
graph category, namely the number of triangles in the graph.
Although the learned attention scores by ChebyGIN-unsup
also show a similar pattern, the results are less accurate than
those of our method. Figure 4 visualizes the learned saliency
by our model as well as ChebyGIN-unsup on three positive
samples labeled as ‘mutagenic aromatic’, randomly selected
from MUTAG. Our model assigns higher saliency scores to
nodes which locate at the center of fused rings, which is
consistent with the chemical knowledge that ‘compounds
with three or more fused rings are much more mutagenic,
other factors being equal, than those with one or two’ [8]. In
contrast, ChebyGIN-unsup learns a uniform distribution of
attention weights for all nodes. These visualizations clearly
show the superiority of our method over ChebyGIN-unsup
in learning the global node saliency for graph classification.

To gain further insight into the quality of the learned
global graph representation by our method and other meth-

ods, we show t-SNE [29] maps of test data from Letter-
high and ENZYMES datasets in Figure 5, constructed on the
learned graph representations by four methods. We show
results of our model with different backbones (GIN and
GraphSAGE) on two datasets to show the robustness of our
model. More effective graph representations typically lead to
more separable clustering between classes in the t-SNE map.
These maps reveal the consistent results with the quantitative
evaluation among different methods in Section 4.3, which
demonstrates that our method is able to learn more effective
graph representation than other methods.

5. Conclusion

In this work we have presented the Saliency-Aware Regu-
larized Graph Neural Network (SAR-GNN) for graph clas-
sification. Our SAR-GNN learns the global node saliency
w.r.t. graph classification, and leverages it to regularize the
neighborhood aggregation for feature learning. As a result,
our method pays more attention to those nodes that are more
relevant to graph classification and is able to learn more ef-
fective representations for the entire graph. We have shown
the effectiveness of the proposed method built upon different
types of graph neural networks by extensive experiments.
Limitation. A potential limitation of our model is that the
proposed saliency-aware regularization mechanisms exhibit
slight performance variation over different backbones and an
optimal mechanism depending on backbones can be further
empirically and theoretically explored.

8

Figure 6: t-SNE maps of test data from five randomly selected classes of Letter-high
and ENZYMES, constructed based on the learned graph representations by four different
methods. We show results of our model with different backbones (GIN and GraphSAGE)
on two datasets to show the robustness of our model. 30 randomly selected samples are
visualized for each class. The classification accuracy for each method on each dataset is
also presented.

learn a uniform distribution of attention weights for all nodes or fail to cap-
ture those key nodes. These visualizations clearly show the superiority of our
method over ChebyGIN-unsup in learning the global node saliency for graph
classification.

Evaluation of the learned graph representation. To gain further in-
sight into the quality of the learned global graph representation by our
method and other methods, we show t-SNE [44] maps of test data from
Letter-high and ENZYMES datasets in Figure 6, constructed on the learned
graph representations by four methods. We show results of our model with
different backbones (GIN and GraphSAGE) on two datasets to show the ro-
bustness of our model. More effective graph representations typically lead
to more separable clustering between classes in the t-SNE map. These maps
reveal the consistent results with the quantitative evaluation among different
methods in Section 4.3, which demonstrates that our method is able to learn
more effective graph representation than other methods.

22

4.5. Model Complexity

We conduct extensive investigation into the model complexity of our
model. In particular, we evaluate the model complexity in terms of model
size and computational complexity, respectively.

Model complexity w.r.t. model size. We first conduct experiments to
evaluate the model complexity of our model w.r.t. model size.

• Is the performance gain of our model yielded from more learn-
able parameters compared to the backbone? To investigate it,
we compare the performance as well as the running time of both our
SAR-GCN and the backbone GCN with the same amount of param-
eters by configuring the model structure of each module. Figure 7
(a) presents the results of both models on TRIANGLES dataset as a
function of parameter amount, which show that our model consistently
outperforms the backbone model significantly with the same amount of
parameters, taking comparable running time. Furthermore, our model
reaches performance saturation with a larger model capacity than the
backbone, revealing the greater potential of our model. Both mod-
els exhibit overfitting to some degree when configured with excessive
model capacity.

• Cost performance in terms of the augmented model size of
the Graph Neural Memory. We measure the performance gain of
increasing the model size of the Graph Neural Memory with a con-
stant backbone GCN to evaluate the cost performance in terms of the
augmented model size between our SAR-GCN and the backbone GCN.
The results in Figure 7 (b) reveal that our model outperforms the back-
bone by a large margin even augmented with a relatively small size of
Graph Neural Memory. Larger size of Graph Neural Memory yields
more performance gain due to more modeling capacity.

Computational complexity. The computational cost of our model mainly
consists of three parts, namely the cost incurred by Graph Neural Memory,
the backbone and the saliency-aware regularization, respectively. We analyze
the theoretical computational complexity of these three parts to calculate the
overall complexity of our model. We take the instantiation of our model with
GCN as an example.

23

A
cc

ur
ac

y
(%

)

Params

Accuracy of SAR-GCN (Ours) Accuracy of GCN
Running time of SAR-GCN (Ours) Running time of GCN

R
un

ni
ng

 ti
m

e (
s)

5 103 8 13
30

45

60

75

90

0.1

0.2

0.3

(a)

Ac
cu

ra
cy

 (%
)

SAR-GCN

Params (GNM) / Params (GCN)

GCN

20% 40% 60% 80% 100%
40

60

80

(b)

Figure 7: (a) Accuracy and average running time for one graph sample of our SAR-GCN
and GCN on TRIANGLES dataset with increasing model size. Note that two models are
compared with the same model size in this set of experiments. (b) Performance of our
SAR-GCN on TRIANGLES as a function of increasing model size of the Graph Neural
Memory (GNM) built upon a backbone (GCN) with constant model size. The model
size of the Graph Neural Memory is expressed as a percentage of the model size of the
backbone along the horizontal axis.

• Complexity of Graph Neural Memory (GNM). The computa-
tional complexity of Graph Neural Memory can be obtained by cal-
culating the cost of each modeling step of FM shown in Equation 4.
Specifically, the complexity for calculating mq, K and V is O(dMd),
O(NdHd) and O(NdHd), respectively. Taking into account the com-
plexity involved in the calculation of Ml and M′, the complexity for
one layer of Graph Neural Memory is: O(dMd + NdHd + Nd + d2).

In practice, dM , dH and d are approximately in the same order of
magnitude, which results in the overall complexity of Graph Neural
Memory consisting of L layers:

TGNM = O(LkNd2), (14)

where k ∈ {1, 2} is the iteration number of FM in Equation 4.

• Complexity of the saliency-aware regularization. Measuring the
global node saliency formulated in Equation 5 involves three matrix
multiplications, thus the complexity is O(LdMd+LNdHd+LNd) which
approximately equals to O(LNd2). Besides, the complexity of regular-
ization with the node saliency, performing weight fusion either by the
weighted sum mechanism or the scaling mechanism, is O(LN2). Thus,

24

the total complexity for the saliency-aware regularization is:

TSAR = O(LNd2 + LN2). (15)

• Complexity of the backbone (GCN). The computational com-
plexity of GCN can be derived from the modeling process of GCN in
Equation 8. It has been analyzed [45] that the time complexity of GCN
is:

TGCN = O(LNd2 + L|E|d), (16)

where |E| is the number of graph edges.

Combining the complexity of all three parts, the overall computational com-
plexity of our SAR-GCN is:

TSAR-GCN = O(LNd2 + LN2 + L|E|d). (17)

Compared with the complexity of backbone (GCN) in Equation 16, our model
has the same order of magnitude of complexity when satisfying N = O(d2).

To have a more comprehensive comparison between our model and the
backbone, we conduct experiments to compare the performance of them with
the same computational complexity. Figure 8 shows two sets of comparisons
using different backbones on TRIANGLES dataset as a function of increas-
ing computational complexity by adjusting the model scale. We observe that
our model outperforms the backbones by a large margin consistently, while
increasing the model complexity can potentially lead to more superiority.
These results demonstrate that the performance gain of our model over the
backbone does not result from the extra introduced computational complex-
ity.

5. Conclusion

In this work we have presented the Saliency-Aware Regularized Graph
Neural Network (SAR-GNN) for graph classification. Our SAR-GNN learns
the global node saliency w.r.t. graph classification, and leverages it to reg-
ularize the neighborhood aggregation for feature learning. As a result, our
method pays more attention to those nodes that are more relevant to graph
classification and is able to learn more effective representations for the entire
graph. We have shown the effectiveness of the proposed method built upon
different types of graph neural networks by extensive experiments.

25

A
cc

ur
ac

y
(%

)
SAR-GCN (Ours) GCN

Flops (M)
2 4 6 8

45

60

75

(a)

A
cc

ur
ac

y
(%

)

SAR-GAT (Ours) GAT

Flops (G)
0.05 0.15 0.25 0.35

60

75

90

(b)

Figure 8: Accuracy of our model and the corresponding backbone on TRIANGLES dataset
as a function of increasing computational complexity. GCN and GAT are used as back-
bones for comparisons in (a) and (b), respectively.

References

[1] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini,
The graph neural network model, IEEE transactions on neural networks
20 (1) (2008) 61–80.

[2] A. Micheli, Neural network for graphs: A contextual constructive ap-
proach, IEEE Transactions on Neural Networks 20 (3) (2009) 498–511.

[3] T. N. Kipf, M. Welling, Semi-supervised classification with graph con-
volutional networks, in: International Conference on Learning Repre-
sentations, 2017.

[4] W. L. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning
on large graphs, in: Advances in Neural Information Processing Systems,
2017, pp. 1024–1034.

[5] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural
networks?, in: International Conference on Learning Representations,
2019.

[6] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio,
Graph attention networks, in: International Conference on Learning
Representations, 2018.

[7] J. Lee, I. Lee, J. Kang, Self-attention graph pooling, in: International
Conference on Machine Learning, 2019, pp. 3734–3743.

26

[8] B. Knyazev, G. W. Taylor, M. Amer, Understanding attention and gen-
eralization in graph neural networks, in: Advances in Neural Information
Processing Systems, 2019, pp. 4202–4212.

[9] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, T.-Y.
Liu, Do transformers really perform badly for graph representation?, in:
Advances in Neural Information Processing Systems, 2021, pp. 28877–
28888.

[10] C. Bodnar, C. Cangea, P. Liò, Deep graph mapper: Seeing graphs
through the neural lens, Frontiers in big Data 4 (2021).

[11] M. Zhang, Z. Cui, M. Neumann, Y. Chen, An end-to-end deep learn-
ing architecture for graph classification, in: Proceedings of the AAAI
Conference on Artificial Intelligence, 2018.

[12] A. A. Leman, B. Weisfeiler, A reduction of a graph to a canonical form
and an algebra arising during this reduction, Nauchno-Technicheskaya
Informatsiya 2 (9) (1968) 12–16.

[13] M. Simonovsky, N. Komodakis, Dynamic edge-conditioned filters in con-
volutional neural networks on graphs, in: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2017, pp. 3693–
3702.

[14] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, J. Leskovec, Hi-
erarchical graph representation learning with differentiable pooling, in:
Advances in Neural Information Processing Systems, 2018, pp. 4800–
4810.

[15] Y. Ma, S. Wang, C. C. Aggarwal, J. Tang, Graph convolutional net-
works with EigenPooling, in: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2019,
pp. 723–731.

[16] H. Gao, S. Ji, Graph U-Nets, in: International Conference on Machine
Learning, 2019, pp. 2083–2092.

[17] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. Y. Philip, A compre-
hensive survey on graph neural networks, IEEE transactions on neural
networks and learning systems 32 (1) (2020) 4–24.

27

[18] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn,
K. M. Borgwardt, Weisfeiler-Lehman graph kernels., Journal of Machine
Learning Research 12 (9) (2011).

[19] T. Zhang, Y. Wang, Z. Cui, C. Zhou, B. Cui, H. Huang, J. Yang, Deep
Wasserstein graph discriminant learning for graph classification, in: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 2021, pp.
10914–10922.

[20] T. Chen, S. Bian, Y. Sun, Are powerful graph neural nets necessary?
A dissection on graph classification, in: International Conference on
Learning Representations, 2019.

[21] F. Errica, M. Podda, D. Bacciu, A. Micheli, A fair comparison of graph
neural networks for graph classification, in: International Conference on
Learning Representations, 2020.

[22] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, in: Advances in Neural Information
Processing Systems, 2012, pp. 1097–1105.

[23] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and
locally connected networks on graphs, in: International Conference on
Learning Representations, 2014.

[24] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural net-
works on graphs with fast localized spectral filtering, in: Advances in
Neural Information Processing Systems, 2016, pp. 3844–3852.

[25] M. Niepert, M. Ahmed, K. Kutzkov, Learning convolutional neural net-
works for graphs, in: International Conference on Machine Learning,
2016, pp. 2014–2023.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in
Neural Information Processing Systems, 2017, pp. 5998–6008.

[27] B. Bevilacqua, F. Frasca, D. Lim, B. Srinivasan, C. Cai, G. Balamu-
rugan, M. M. Bronstein, H. Maron, Equivariant subgraph aggregation
networks, in: International Conference on Learning Representations,
2022.

28

[28] R. Ying, D. Bourgeois, J. You, M. Zitnik, J. Leskovec, Gnnexplainer:
Generating explanations for graph neural networks, in: Advances in
Neural Information Processing Systems, 2019.

[29] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, X. Zhang, Pa-
rameterized explainer for graph neural network, in: Advances in Neural
Information Processing Systems, 2020.

[30] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of
deep bidirectional transformers for language understanding, in: Proceed-
ings of the Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2019.

[31] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay,
J. Feng, S. Yan, Tokens-to-token vit: Training vision transformers from
scratch on imagenet, in: Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 558–567.

[32] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko,
End-to-end object detection with transformers, in: European Confer-
ence on Computer Vision, 2020, pp. 213–229.

[33] A. Jaegle, F. Gimeno, A. Brock, A. Zisserman, O. Vinyals, J. Carreira,
Perceiver: General perception with iterative attention, in: International
Conference on Machine Learning, 2021.

[34] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shuster-
man, C. Hansch, Structure-activity relationship of mutagenic aromatic
and heteroaromatic Nitro compounds. Correlation with molecular or-
bital energies and hydrophobicity, Journal of medicinal chemistry 34 (2)
(1991) 786–797.

[35] I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn,
D. Schomburg, BRENDA, the enzyme database: updates and major
new developments, Nucleic acids research 32 (2004) D431–D433.

[36] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J.
Smola, H.-P. Kriegel, Protein function prediction via graph kernels,
Bioinformatics 21 (suppl 1) (2005) i47–i56.

29

[37] P. Yanardag, S. V. N. Vishwanathan, Deep graph kernels, in: Proceed-
ings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, 2015, pp. 1365–1374.

[38] K. Riesen, H. Bunke, IAM graph database repository for graph based
pattern recognition and machine learning, in: Structural, Syntactic, and
Statistical Pattern Recognition, 2008, pp. 287–297.

[39] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization
(2015).

[40] G. Bouritsas, F. Frasca, S. P. Zafeiriou, M. Bronstein, Improving graph
neural network expressivity via subgraph isomorphism counting, IEEE
Transactions on Pattern Analysis and Machine Intelligence (2022).

[41] D. Q. Nguyen, T. D. Nguyen, D. Phung, Universal graph transformer
self-attention networks, in: Companion Proceedings of the Web Confer-
ence 2022, 2022, pp. 193–196.

[42] Y. Zhu, K. Zhang, J. Wang, H. Ling, J. Zhang, H. Zha, Structural
landmarking and interaction modelling: A âslimâ network for graph
classification, in: Proceedings of the AAAI Conference on Artificial In-
telligence, 2022, pp. 9251–9259.

[43] K. Zhang, Y. Zhu, J. Wang, J. Zhang, Adaptive structural fingerprints
for graph attention networks, in: International Conference on Learning
Representations, 2019.

[44] L. van der Maaten, G. Hinton, Visualizing data using t-SNE, Journal of
Machine Learning Research 9 (2008) 2579–2605.

[45] Y. Q. Derrick Blakely, Jack Lanchantin, Time and space complexity of
graph convolutional networks, in: Accessed on: Dec, 2021, 31., 2021.

30

	Introduction
	Related Work
	Saliency-Aware Regularized Graph Neural Network
	Overview
	Graph Neural Memory
	Saliency-Aware Regularization of the Backbone
	End-to-End Parameter Learning

	Experiments
	Experimental Setup
	Ablation Study
	Comparison with Other Methods
	Qualitative Evaluation
	Model Complexity

	Conclusion

