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SUMMARY 

 

Objective: The present study assessed the validity of approximate entropy (ApEn) 

analysis of arterial oxygen saturation (SaO2) data obtained from pulse oximetric 

recordings as a diagnostic test for obstructive sleep apnea (OSA) in patients 

clinically suspected of suffering this disease. 

 

Methodology: A sample of 187 referred outpatients, clinically suspected of having 

OSA, were studied using nocturnal pulse oximetric recording performed 

simultaneously with complete polysomnography. ApEn analysis was applied to SaO2 

data.  

 

Results: Patients with OSA presented significantly higher approximate entropy 

levels than those without OSA (1.08 ± 0.30 versus 0.47 ± 0.26). Apnea-Hypopnea 

index were correlated significantly with ApEn (r = 0.607; P<0.001). Using receiver 

operating characteristic curve analysis, we obtained a diagnostic sensitivity of 

88.3% and specificity of 82.9%, positive predictive value of 88.3% and a negative 

predictive value of 82.9%, at a threshold of 0.679. As a diagnostic test, this method 

presents high sensitivity and specificity compared to traditional methods in the 

diagnosis of OSA. 

 

Conclusion: We conclude that ApEn analysis of SaO2 data obtained from pulse 

oximetric recordings could be useful as a diagnostic technique for OSA subjects. 

 

Keywords: approximate entropy; obstructive sleep apnea; oximetry 
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1. INTRODUCTION 

 

Obstructive sleep apnea (OSA) is a common clinical entity characterized by 

recurrent airflow obstruction as a result of total or partial collapse of the upper 

airway. Given the high prevalence of OSA, its potential importance as a contributing 

factor to cardiovascular morbidity [1], and the availability of effective treatment 

[2,3], numerous efforts have been undertaken to pre-select subjects before 

performing polysomnography. 

 

OSA is frequently accompanied by cyclical drops in oxygen saturations. Thus 

nocturnal oximetry may be useful in detecting OSA. Several studies have analysed 

nocturnal oximetry from different perspectives [4]: visual scoring, oxygen 

desaturation index, cumulative time arterial oxygen saturation (SaO2) spent below 

90%, ∆ index and spectral analysis. However, the reported diagnostic capability of 

oximetry varies widely, with sensitivity and specificity ranging from 31% to 98% 

and 41% to 100%, respectively [5].  

 

Recently, new methods based on chaos theory, such as approximate entropy 

(ApEn), have been widely applied in clinical cardiovascular studies [6,7] but their 

diagnostic accuracy in OSA has yet to be studied. ApEn is a family of parameters 

and statistics introduced as a quantification of data regularity [8-11]. It assigns a 

non-negative number to a time series, such as SaO2, where larger entropy values 

correspond to greater apparent randomness or irregularity, whereas smaller values 

correspond to more data regularity. 

 

Motivated by the above idea, in the present study, ApEn was applied to nocturnal 

SaO2 as a possible diagnostic tool for OSA syndrome. 
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2. PATIENTS AND METHODS 

 

2.1. Subjects 

 

We studied 187 subjects (147 men and 40 females) who were referred for clinical 

suspicion of OSA. The patients were consecutively recruited from the outpatient 

clinic. Subjects ranged in age from 21 to 81 years, with an average age of 57 

years. The mean body mass index (BMI) was 29.5 kg/m2. The study included 42 

(22.5%) patients with chronic obstructive pulmonary disease (COPD). The Review 

Board on Human Studies at our institution approved the protocol, and each patient 

gave his or her informed consent to participate in the study. 

 

2.2. Polysomnography 

 

All sleep studies were carried out in our Sleep Unit; usually from midnight to 8 a.m. 

Patients were prospectively evaluated after a single-night pulse oximetry recording 

obtained by nocturnal pulse oximetry in conjunction with a simultaneous 

polysomnographic study. This technique consisted of continuous monitoring using a 

polygraph (Ultrasom Network, Nicolet, Madison, Wi, USA) and included 

electroencephalogram, electro-oculogram, chin electromyogram, air flow (three-

port thermistor), electrocardiogram and measurement of chest wall movement. 

 

The polysomnographic register was analysed in periods of 30 seconds and during 

stages 1, 2, 3, 4 and REM according to the Rechtschaffen and Kales method [12].  

Rechtschaffen and Kales staging is the standard methodology used to identify the 

stages of normal human sleep. Apnea was defined as the absence of airflow for more 

than 10 seconds [13], and hypopnea as the reduction of respiratory flow ≥ 50% 

accompanied by a 3% or more decrease in the saturation of hemoglobin [14]. The 

average of apnea-hypopnea index (AHI) was calculated in hourly samples of sleep. 

In this study an AHI of 10 or more was considered as diagnostic of OSA. If the subject 

had less than 3 hours of total sleep, the sleep study was repeated [15]. 
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SaO2 recordings were done with a Criticare 504 oximeter (CSI, Wankeska, 

Wisconsin) with a finger probe and sampled at a frequency of 0.2 Hz (one sample 

every 5 sec). The SaO2 signal was analyzed and the following indices were 

calculated: minimal SaO2 (minSaO2), mean SaO2, time with SaO2 < 90% (CT90) 

and oxygen desaturation index per hour of recording (ODI). The computer 

calculated the number of SaO2 dips of 4%/h or more (ODI4), 3%/h or more (ODI3) 

and 2%/h or more (ODI2) from baseline. Baseline was set initially as the mean 

level in the first 3 min of recording [16]. Typical recordings of SaO2 patterns 

comparing non-OSA and OSA patients are shown in Fig. 1. 

 

2.3. Approximate entropy  

 

ApEn was introduced as a quantification of regularity in sequences and time series 

data, initially motivated by applications to relatively short, noisy data sets. ApEn is 

basically a “regularity” statistic and should not be taken as a direct index of 

complexity [8,9]. Mathematically it is part of a general development of 

approximating Markov Chains to a process [17]. Furthermore, it provides a finite 

sequence formulation of randomness, via proximity to maximal irregularity [18,19]. 

ApEn assigns a non-negative number to a time series, with larger values 

corresponding to more irregularity in the data. 

 

ApEn is scale invariant and model independent, evaluates both dominant and 

subordinant patterns in data, and discriminates series for which clear feature 

recognition is difficult. Notably it detects changes in underlying episodic behavior 

not reflected in peak occurrences or amplitudes [20]. It is applicable to systems 

with at least 50 data points and to broad classes of models: it can be applied to 

discriminate both general classes of correlated stochastic processes, as well as 

noisy deterministic systems. Moreover, ApEn is complementary to spectral and 

autocorrelation analyses, providing effective discriminatory capability in instances in 

which the aforementioned measures exhibit minimal distinctions [11]. It is nearly 

unaffected by low level noise, is also robust to meaningful information with a 

reasonable number of data points and is finite for both stochastic and deterministic 



processes [21].  

 

It has two user-specified parameters: a run length m and a tolerance window r. 

Briefly, ApEn measures the logarithmic likelihood that runs of patterns that are 

close (within r) for m contiguous observations remain close (within the same 

tolerance width r) on subsequent incremental comparisons. It is important to 

consider ApEn(m, r) – or  ApEn(m, r, N),  where m is the dimension of the signal 

will be expanded, r is the threshold and N is the number of points of the time series 

– as a family of parameters. Comparisons between time series segments can only 

be made with the same values of m and r [11]. 

 

There are two ways to look at ApEn. From one point of view, it is a statistical 

characteristic (average of logarithm of a conditional probability), which makes it 

applicable to both deterministic and stochastic processes. From the other point of 

view, it reflects the rate of new pattern generation and is thus related to the 

concept of entropy [22]. 

 

Formally, given N data points from a time series {x(n)} = x(1), x(2),…, x(N), to 

compute the ApEn, one should follow these steps [11]: 

1. Form m-vectors X(1)…X(N-m+1) defined by X(i) = [x(i), x(i+1),…, x(i+m-

1)], i=1…N-m+1. These vectors represent m consecutive x values, 

commencing with ith point. 

2. Define the distance between X(i) and X(j), d[X(i),X(j)], as the maximum 

absolute difference between their respective scalar components: 
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3. For a given X(i), count the number of j (j=1…N-m+1, j≠i) so that d[X(i),X(j)] 

≤ r, denoted as Nm(i). Then, for i=1…N-m+1, 
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The values measure within a tolerance r the regularity, or frequency, of 

patterns similar to a given one of window length m. 
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)(rmφ portrays the average frequency that all the m-point patterns in the 

sequence remain close to each other. 

5. Increase the dimension to m+1. Repeat steps 1) to 4) and 

find and . )(1 iC m
r
+ )(1 rm+φ

6. Theoretically, the Approximate Entropy is defined as: 
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In practice, the number of data points N is finite. We implement this formula by 

defining the statistic [23]: 

 

)()(),,( 1 rrNrmApEn mm +−= φφ   (5) 

 

No guidelines exist for optimizing the m and r values. In principle, the accuracy and 

confidence of the entropy estimate improve as the number of matches of length m 

and m+1 increase. The number of matches can be increased by choosing small m 

(short templates) and large r (wide tolerance). However, there are penalties for 

criteria that are too relaxed [23]. For smaller r values, one usually achieves poor 

conditional probability estimates, while for larger r values, too much detailed 

system information is lost. Pincus has suggested parameter values of m = 1, m = 2 

and r = 0.1, 0.15, 0.2 and 0.25 times the standard deviation (SD) of the original 

data sequence {x(n)} [11]. Normalizing r in this manner gives ApEn a translation 
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and scale invariance, in that it remains unchanged under uniform process 

magnification, reduction, or constant shift to higher or lower values [6]. Moreover, 

several studies [19,22,24] have demonstrated that these input parameters produce 

good statistical reproducibility for ApEn for time series of length n ≥ 60, as 

considered herein. 

SaO2 records corresponding to the 187 subjects under study have a mean data 

length of 5895 ± 442 samples (mean ± SD), which corresponds to 8.19 ± 0.62 hours 

(mean ± SD) of register. Every SaO2 signal was first divided into epochs of 200 

samples. We determined this epoch length according to the apnea duration 

(between 25 s and 2 min) in such a way that various disordered respiratory events 

were included in every epoch. The method was then applied over every epoch, 

providing various ApEn values for each signal, which in the end were averaged to 

obtain a single result per subject. The analysis of each signal takes about one 

minute, depending on the exact sample length and the computer used. For this 

study, ApEn was estimated with the widely established parameter values of m = 1 r 

= 0.2 times the standard deviation (SD) of the original data sequence. 

 

2.4. Statistical analysis 

 

The normal distribution of the variables was verified using the Shaphiro –Wilks’ W 

test and homogeneity of variances using the Levene’s test. The ApEn results for 

both groups were compared using one-way analysis of variance. Box plots have 

also been used to analyze differences in the distribution of the results. Moreover, 

we selected a threshold to improve the sensitivity/specificity pair according to the 

receiver operating characteristic (ROC) curves in order to make comparisons of the 

diagnostic accuracy of the ApEn values [25]. Correlations were investigated using 

Pearson correlation test. We considered p < 0.05 to be statistically significant. 

 

3. RESULTS 

 

A diagnosis of OSA was confirmed in 111 (59.3%) out of 187 subjects included in 

the study. Table 1 presents the anthropometric, AHI, and ApEn data. 
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There were no significant differences between the OSA and non-OSA groups in age, 

sleep duration recordings and percentage of patients with COPD. However, the OSA 

group presented a significantly greater number of male (84.7% versus 69.7%) and 

obese patients (53.3% vs 29.5%). Furthermore, OSA patients presented 

significantly higher ApEn level than those without OSA: 1.089 ± 0.308 (95% CI, 

1.02-1.14) versus 0.479 ± 0.261 (95% CI, 0.419-0.538). 

 

A total of 42 patients in our study were found to have COPD. Among these patients 

with COPD, 22 (52.4%) were diagnosed with OSA. COPD patients with OSA showed 

significantly higher ApEn level than COPD patients without OSA (1.050 ± 0.33 

versus 0.615 ± 0.34).  

 

Fig. 2 shows the correlations between ApEn and the AHI.  ApEn was significantly 

correlated with both the ODI4 (r = 0.499, p < 0.001) and the AHI ((r = 0.606, p < 

0.0001). In addition, the BMI ((r = 0.206, p < 0.007), SaO2 media (r = -0.352, p < 

0.001) and minimal SaO2 (r = 0.532, p < 0.001) were significantly correlated with 

ApEn. However, age was not correlated with ApEn. Oximetry numerical indices 

(CT90, ODI4, ODI3, ODI2) were correlated to AHI, although the relationship of 

ApEn to AHI was similar (Table 2). 

 

The ROC curves of the diagnostic accuracy of the ApEn values are shown in Fig 3. 

Different cut-off levels for ApEn of arterial SaO2 were applied. The best results were 

obtained using a threshold of 0.679. At this level, sensitivity was 88.3%, specificity 

82.9%, positive predictive value (PPV) of 88.3% and a negative predictive value 

(NPV) of 82.9%, with an area under ROC curve of 0.921. 

 

Using this ApEn value, the number of misclassifications was low, with a total 

number of thirteen false-positive cases and thirteen false-negatives (11.7%). False-

positive subjects were found to have higher BMI (33.3 ± 6.2 versus 27.7± 5.7, p < 
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0.05), higher AHI (4.03 ± 2.2 versus 1.65 ± 2.1; p < 0.001) and higher COPD 

prevalence (50% versus 21.9%, p < 0.05). 13 OSA patients were false-negative, 

23% had COPD, 31% had an AHI between 10 and 15, and 50% more than 60 years 

of age. Mean AHI of the 13 OSA patients misclassified by ApEn using the cited cut-

off criterion was 33.2 ± 22, but one of these patients had an AHI = 76. The mean 

ApEn value for these patients was 0.521 ± 0.125.  

 

Overall results, likelihood ratios and the areas under the ROC curve for the 

oximetry numerical indices and ApEn are displayed in Table 3 and Fig. 4, using an 

AHI cut-off value of 10. As can be seen, only ApEn achieves an acceptable value. If 

the COPD are not taken into account, the diagnostic accuracy for OSA of ApEn 

improves and reaches a sensitivity of 88.8%, specificity of 89.3%, PPV of 92.4%, 

NPV of 84.3% and the area under the ROC curve was 0.955 (95% CI, 0.907-

0.982). 

 

4. DISCUSSION 

 

The main finding of this study is that patients with OSA had significantly higher 

approximate entropy of SaO2 than non-OSA patients, indicating that OSA patients 

reflect greater SaO2 irregularity. Various parameters of the severity of OSA, 

including ODI4, ODI3 and CT90 were significantly correlated with ApEn.   

 

Based on ROC curves, the ApEn of SaO2 presents high sensitivity and specificity for 

diagnosis of OSA with best results at a cut-off level of 0.679, using conventional 

polysomnography as a gold standard for diagnosis of OSA. As a diagnostic test, this 

method presents good sensitivity and specificity compared to traditional methods 

(different desaturation indices and the total time spent with SaO2 below 90%) in 

the diagnosis of OSA, as assessed by ROC analysis. We also found that excluding 

patients with COPD from the analysis improves the diagnostic value of ApEn. 

 

In a previous study, Sériès et al. found an OSA sensitivity of 98% for the visual 

inspection of the temporal oximetry recording, but specificity was only 48% [26]. 
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Levy et al, using a mathematical index to detect changes in SaO2, found a 

sensitivity of 90% and a specificity of 75% [27]. In a more recent study that used a 

multiple score index on SaO2 recordings, Olson et al [28] obtained a sensitivity of 

88%, but a low specificity (40%). However, a prospective study, which excluded 

COPD patients, showed that analysis of temporal oximetry recordings in suspected 

OSA has a sensitivity of 80% and specificity of 89% [29]. 

 

Another study by our own group [30,31] demonstrated that spectral analysis and 

peak detection in the period 30 to 70 sec of SaO2 or heart rate signal obtained from 

nocturnal pulse oximetry presented a sensitivity of 90% (84-94) and a specificity of 

82% (74-88) for OSA diagnosis which resembles the findings for ApEn. 

 

ApEn is a mathematical tool which was introduced to quantify regularity in 

sequences and time series data. Series of sequential data arise throughout 

epidemiology in multiple contexts. Enhanced capabilities to quantify differences 

among such series would be extremely valuable, since these time series reflect 

essential biological information. ApEn has been used to quantify the differences in 

apparent regularity between the heart rate interval time series of aborted sudden 

infant death syndrome and healthy infants [7], to extract features from 

electroencephalogram and respiratory recordings of a patient during Cheyne-Stokes 

respiration [32] and to study the connection between panic disorder and respiration 

dynamics [33]. Moreover, it has been used to investigate changes in respiratory 

movement during stages of sleep and to associate such alterations with brain 

function [34]. However, to the best of our knowledge there has been no previous 

report assessing the accuracy of ApEn of pulse oximetry in the diagnosis of OSA. 

 

It is known that altered respiratory patterns are not exclusive to OSA. COPD 

patients with OSA showed significantly higher ApEn level than COPD patients 

without OSA. Furthermore, patients with COPD may present periodic nocturnal 

oxygen desaturation perhaps explaining some of the false positive results which have 

decreased our specificity results. If COPD patients are taken out of consideration, the 

specificity of ApEn for OSA diagnosis improves significantly. With respect to the 
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false negatives, we have to take into account that some patients present 

respiratory events that are not significant enough to be detected [27]. Furthermore, 

some patients with high BMI present a similar problem.  False positives were 

patients with obesity or COPD.  

 

The physiological explanation of why OSA syndrome results in an increase of ApEn 

could be the following. In contrast to the efficient control during wakefulness, 

sleeping states are predisposes to increased levels of disordered and unstable 

breathing. These instabilities are often higher in patients with sleep apnea 

syndrome. The underlying cause of this is that the resistance to airflow through the 

upper airway increases significantly in many adults during sleep; moreover, there 

are also ventilation changes during various sleep stages. 

  

In our study, the recurrence of apnea events in patients with OSA led to a 

significant increase in ApEn values of SaO2 signals. ApEn (m = 1, r = 0.2SD) 

reflects the rate of new pattern generation when the dimension m decreases from 2 

to 1. A larger value of ApEn means that the chance of new pattern generation is 

greater, so the sequence is more irregular and vice versa. In OSA, oxygen 

desaturations associated with apnea events cause fluctuations in SaO2 signal 

leading to higher ApEn values. 

 

Despite our results, there are always some technical or physiological limitations 

associated with oximetry for recognizing OSA. For example, poor contact between the 

probe and the finger due to body movements and bad regional circulation occasionally 

produce signals resembling multiple falls in oxygen saturation.  Mindful of this, we 

examined our recordings before the analysis to see if they evidenced technical 

problems. For example, we eliminated from our analysis all data that registered drops 

to zero. From our experience, we knew these falls were probably due to finger-probe 

disconnections. Another limitation of oximetry is that it fails to identify non-apneic 

nocturnal hypoventilation. Also, another limitation of the current study is that we 

did not use nasal cannula and, thus, were not able to identify subtle breathing 

events. 
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In conclusion, we have shown that ApEn of SaO2, a measure sensitive to signal 

regularity,  could be useful as a first approach to the analysis of nocturnal oximetry. 

We believe that ApEn of nocturnal pulse oximetry data may develop into a new 

index for the evaluation oximetry during sleep and could be incorporated into the 

oximeter, making it easy to analyze and to use. 
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Figure 1 SaO2 records from nocturnal oximetry for (a) a common non OSA subject 
and (b) for a common OSA patient. 
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Table 1 Clinical characteristics and approximate entropy data of the 

population 

 

 Non-OSA 

 (n=76) 

OSA  

(n=111) 

P value 

Age (years) 57.5 ± 12.8         (60) 58.3 ± 12.8        (59.5) NS 

BMI (Kg/m2) 28.4 ± 6.01         (26.6) 30.4 ± 4.19        (30.6) 0.03 

AHI 2.03 ± 2.19         (1) 40 ± 19 (38) 0.0001 

Minimal SaO2  83.4±9.5            (88) 69.7±12.6          (72) 0.009 

Recording time (hours)  8.2 ± 0.3           (8) 8.1 ± 0.7           (7.9) NS 

COPD (%) 19.8% 26.3% NS 

Males (%) 69.7% 84.7% 0.014 

ApEn 0.479 ± 0.261   (0.41) 1.089 ± 0.308   (1.09) 0.0001 

Values are mean ± SD; figures in parenthesis are median 
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Figure 2 Linear regression between the ApEn of SaO2 and 
the apnea hypopnea index. (r= 0.606; p< 0.0001). 
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Table 2 Comparison of each oximetric index and ApEn of SaO2 with AHI 

CT90 (percentage of time spent with SaO2 below 90% of the total 

recording); ODI4 number of dips in SaO2 of 4%/h or more, ODI3 number of 

dips in SaO2 of 3%/h or more, ODI2 number of dips in SaO2 of 2%/h or 

more 

 

 ApEn CT90  ODI4 ODI3 ODI2 

r 0.606 0.280 0.603 0.617 0.608 

p 0.0001 0.001 0.0001 0.0001 0.0001 
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Figure 3 ROC analysis at different thresholds of ApEn SaO2. 
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Table 3 Usefulness of conventional oximetric methods in the diagnosis of 

OSA: ApEn of Sao2 recording, the different ODIs and the total time for which 

SaO2 is below 90% 

SaO290 > 1% (percentage of time spent with SaO2 below 90% representing 

1% of the total recording ); PPV, positive predictive value ; NPV, negative 

predictive value; LR+, likelihood ratio for a positive test; LR-, likelihood ratio 

for a negative test 

 

 ApEn SaO290 >1% ODI4 ODI3 ODI2 

Sensivity 88.3 73 58.7 65.1 66.7 

Specificity 82.9 75.5 94.3 88.7 84.9 

PPV 88.3 78 92.5 87.2 84 

NPV 82.9 70.2 65.8 68.1 68.2 

LR + 5.16 2.98 10.38 5,75 4.42 

LR - 0.14 0.36 0.44 0,39 0.39 

Area 0.921 

 (0.873-0.956 

0.774  

(0.68-0.84) 

0.785 

(0.699-0.856) 

0.761 

(0.673-0.835) 

0.743 

(0.653-0.819) 
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Figure 4 ROC curves for each SaO2 index for separation between OSA and non-OSA 
subjects. 
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