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Summary

Objective: TCM (traditional Chinese medicine) is an important avenue for disease
prevention and treatment for the Chinese people and is gaining popularity among
others. However, many remain skeptical and even critical of TCM because of a number
of its shortcomings. One key shortcoming is the lack of objective diagnosis standards.
We endeavor to alleviate this shortcoming using machine learning techniques.
Method: TCM diagnosis consists of two steps, patient information gathering and
syndrome differentiation. We focus on the latter. When viewed as a black box,
syndrome differentiation is simply a classifier that classifies patients into different
classes based on their symptoms. A fundamental question is: do those classes exist in
reality? To seek an answer to the question from the machine learning perspective, one
would naturally use cluster analysis. Previous clustering methods are unable to cope
with the complexity of TCM. We have therefore developed a new clustering method in
the form of latent tree models. We have conducted a case study where we first
collected a data set about a TCM domain called KIDNEY DEFICIENCY and then used latent
tree models to analyze the data set.
Results: Our analysis has found natural clusters in the data set that correspond well to
TCM syndrome types. This is an important discovery because (1) it provides statistical
validation to TCM syndrome types and (2) it suggests the possibility of establishing
objective and quantitative diagnosis standards for syndrome differentiation. In this
paper, we provide a summary of research work on latent tree models and report the
aforementioned case study.
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1. Introduction

We present a work that applies machine-
learning techniques to solve a problem in TCM
(traditional Chinese medicine). To motivate the
work, we will first briefly explain the differences
between TCM and western medicine, discuss the
increasing importance of TCM in health care, and
point out one key shortcoming of TCM (Section
1.1). We will then motivate our approach to over-
come the shortcoming (Section 1.2), and describe
the content and organization of this paper (Sec-
tion 1.3).

1.1. TCM and western medicine

TCM and western medicine represent two different
paradigms. Western medicine approaches the
human body from an anatomic and biochemical
standpoint. It emphasizes specific disease entities
and focuses on pathophysiological mechanisms.
TCM approaches the human body from an energetic
and functional standpoint. It believes that disease
is a result of disharmony within the body and
between the body and the environment. TCM diag-
nosis and treatment involve identifying the factors
that are out of balance and attempting to bring
them back into harmony. Instead of micro level
laboratory tests, TCM diagnosis is primarily based
on overall observation of patient through inspec-
tion, auscultation and olfaction, interrogation and
palpation.

Western medicine is often complicated with
undesirable side effects and does not have effective
treatments for illness such as irritable bowel syn-
drome and menopause [1]. An increasing number of
patients in developed countries are turning to tradi-
tional medicine for alternative treatment. Accord-
ing to a report by World Health Organization [2], the
global market for herbal medicines currently stands
at over US$60 billion annually and is growing stea-
dily. As a matter of fact, 80% of Africans use tradi-
tional medicine; 90% of Canadians, 49% of French
people, 48% of Australians, 42% of Americans, and
31% of Belgians have received traditional medicine
treatment at least once in their life times; and 77%
of German clinics recommend acupuncture for pain
relief.

TCM is a systematic traditional medicine system
and it has been clinically observed to have dra-
matic performance in treating many chronic and
systematic diseases. However, several shortcom-
ings are hindering its wide acceptance. One key
shortcoming is the lack of objective diagnosis stan-
dards. In practice, this results in variability of
diagnosis conclusions among TCM practitioners

[1], which in turn raises doubts about TCM in the
minds of many.

To alleviate the situation, researchers in China
have been seeking for laboratory tests that can be
used as gold standards for TCM diagnosis [3,4].
Despite extensive research work for more than half
a century, little has been achieved [5]. In this paper,
we propose and investigate a different approach.

1.2. Syndrome differentiation, clustering,
and latent structures

TCM diagnosis consists of two steps. In the first step,
a doctor collects patient information through
inspection, auscultation and olfaction, interroga-
tion and palpation. In the second step, he reaches
diagnosis conclusions by analyzing patient informa-
tion based on TCM theories and his experiences. The
second step is known as syndrome differentiation,
while the first step can be called patient informa-
tion gathering.

Subjectivity is an issue in both the patient infor-
mation gathering step and the syndrome differen-
tiation step. We focus on the latter. Our long-term
goal is to establish objective and quantitative stan-
dards for syndrome differentiation using machine
learning techniques. How could this goal be possibly
achieved?

When viewed as a black box, syndrome differen-
tiation is simply a classifier that classifies patients
into different classes based on their symptoms. Do
those classes exist in reality? Can we characterize
them mathematically? To seek answers to those
questions from the machine learning perspective,
one would naturally use cluster analysis. The idea is
to: (1) collect patient data systematically; (2) per-
form cluster analysis to identify natural clusters of
patients in these data; (3) compare the natural
clusters with the classes mentioned in TCM. If some
of the natural clusters match the TCM classes, then
we would have provided statistical validation for
TCM classes. Moreover, we can use the natural
clusters as a basis for syndrome differentiation.
The TCM classes are described in natural language
and are often vague and prone to subjectivity. The
natural clusters, however, are described in the lan-
guage of mathematics and are objective (in a rela-
tive sense). Therefore, they can serve as the
foundation for objective and quantitative syndrome
differentiation standards.

Which clustering method should we use? To
answer this question, we need to take a closer look
at syndrome differentiation. There are several syn-
drome differentiation systems, each focusing on a
different perspective of the human body and with its
own theory. The theories describe relationships
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between syndrome factors and symptoms, as illu-
strated by this excerpt:

KIDNEY YANG
1 is the basis of all YANG in the body. When

KIDNEY YANG is in deficiency, it cannot warm the body
and the patient feels cold, resulting in intolerance
to cold, cold limbs, and cold lumbus and back [6].

The syndrome factor mentioned here is KIDNEY YANG

DEFICIENCY. It is not directly observed. Rather, it is
similar in nature to concepts such as ‘intelligence’
and is indirectly measured through its manifesta-
tions. Hence, we say that it is a latent variable. In
contrast, symptom variables such as ‘cold limbs’ are
directly observed and we call them manifest vari-
ables. TCM theories involve a large number of latent
and manifest variables. Abstractly speaking, they
describe relationships among latent variables, and
between latent variables and manifest variables.
They can be viewed as latent structure models
specified in natural language. To study syndrome
differentiation, therefore, we need statistical mod-
els that involve multiple interrelated latent vari-
ables, i.e. latent structure models described in the
language of mathematics.

How are latent structure models related to clus-
tering? A latent structure model represents amulti-
dimensional classification of objects. Imagine a
latent structure model about people that contains
two latent variables ‘intelligence’ and ‘personal-
ity’. Suppose the first latent variable has three
possible values ‘high’, ‘medium’ and ‘low’, while
the second latent variable has two possible values
‘outgoing’ and ‘withdrawn’. Then, the model repre-
sents one classification of people along the dimen-
sion of ‘intelligence’ into three classes, and at the
same time another classification along the dimen-
sion of ‘personality’ into two classes. By considering
the two dimensions at the same time, one gets a
cross classification where one can speak of classes
such as ‘outgoing people with high intelligence’ and
‘withdrawn people with medium intelligence’.

Now suppose we start from a data set and by
analyzing the data set we obtain a latent structure
model. That would mean that we simultaneously
cluster data inmultiple ways. Each latent variable in
the resultant model represents one dimension along
which to cluster the data set, and different latent
variables represent different ways to cluster the
data set. So, to analyze a data set using latent
structure models is to perform multidimensional
clustering on the data set.

Is the aforementioned latent structure approach
to the study of syndrome differentiation feasible? To
answer this question, we have studied a special class

of latent structure models called latent tree mod-
els, and we have used latent tree models to inves-
tigate a subdomain of TCM diagnosis called KIDNEY

DEFICIENCY. This case study shows that (1) there exist
natural clusters in data that correspond to TCM
syndrome types, (2) we can find those classes using
latent tree models. Those indicate that the latent
structure approach is indeed feasible.

In summary, we propose a novel approach to the
study of syndrome differentiation. The long-term
goal is to establish objective and quantitative stan-
dards for syndrome differentiation. This paper pre-
sents the tools that have been developed for
achieving the goal and demonstrates the feasibility
of the approach through a case study.

1.3. Content and organization

In the first half of the paper, we provide a summary
of research work on latent tree models. We will first
introduce latent tree models as a generalization of
latent class models [7,8](Section 2). Then we will
discuss two representational issues, namely model
equivalence (Section 3) and identifiability (Section
4). In Section 5, we will survey algorithms for learn-
ing latent tree models. In the second half of the
paper, we report the aforementioned case study. We
will start by describing the data set and the data
analysis process (Section 6). In Sections 7 and 8, we
interpret the latent variables and clusters in the
resultant model. The reader will see that the latent
variables correspond to syndrome factors and the
latent clusters can be interpreted as syndrome
types. The paper will end in Section 9 with a sum-
mary and remarks about future directions.

2. Latent tree models

The concept ‘latent variable’ is defined with respect
to some given data set. A variable is observed with
respect to a data set if its value can be found in at
least one of the records. A variable is latent with
respect to a data set if its value is missing from all
the records. For simplicity, we will often talk about
latent variables without explicitly referring to data
sets.

A latent class model [7,8] is a Bayesian network
that consists of a latent variable X and a number of
observed variables Y1;Y2; . . . ;Yn. All the variables
are categorical and the relationships among them
are as shown in Fig. 1. In applications, the latent
variable stands for some latent factor and the
observed variables stand for manifestations of the
latent factor. The observed variables are also called
manifest variables.

Latent tree models and diagnosis in TCM 231
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To learn a latent class model is to: (1) determine
the cardinality, i.e. the number of states for the
latent variable X, and (2) estimate the model para-
meters PðXÞ and PðYijXÞ. A state of the latent vari-
able X corresponds to a class of individuals in a
population. It is called a latent class. Thus, to
determine the cardinality of X is to determine the
number of latent classes, and to estimate PðYijXÞ is
to reveal the statistical characteristics of the latent
classes. So, latent class analysis is a type of model-
based cluster analysis.

Underlying a latent class model is the assump-
tion that the manifest variables are mutually inde-
pendent given the latent variable. A serious
problem with the use of latent class models, known
as local dependence, is that this assumption is
often violated. If one does not deal with local
dependence explicitly, one implicitly attributes
it to the latent variable. This can lead to spurious
latent classes and poor model fit. It can also
degenerate the accuracy of classification because
locally dependent manifest variables contain over-
lapping information [9].

The local dependence problem is acknowledged
in the latent class analysis literature [10]. Methods
for detecting and modeling local dependence have
been proposed. To detect local dependence, one
typically compares observed and expected cross-
classification frequencies for pairs of manifest vari-
ables. To model local dependence, one can join
manifest variables, introduce multiple latent vari-
ables, or reformulate latent class models as log-
linear models and then impose constraints on them.

Previous work for dealing with local dependence
is not sufficient for a number of reasons. First, there
are no criteria for making the trade-off between
increasing the cardinalities of existing latent vari-
ables and introducing additional latent variables. In
[10,11], cardinalities of all latent variables are fixed
at 2 while the number of latent variables is allowed
to change. In most other work, the standard one-
latent-variable structure is assumed and fixed,
while the cardinality of the latent variable is
allowed to change. Second, the search for the best
model is carried out manually. Typically only a few
simple models are considered [11,12]. Finally, when
there are multiple pairs of locally dependent man-
ifest variables, it is not clear which pair should be

tackled first, or if all pairs should be handled simul-
taneously.

Latent tree models are previously known as HLC
(hierarchical latent class) models [13,14]. They are
a generalization of latent class models. A latent tree
model is a Bayesian network where

� the network structure is a rooted tree;
� the internal nodes represent latent variables and

the leaf nodes represent manifest variables; and
� all the variables are categorical.

Fig. 2 shows an example latent tree model. In this
paper, we do not distinguish between variables and
nodes. So we sometimes speak also of manifest
nodes and latent nodes.

The class of latent tree models is clearly much
larger than the class of latent class models. In the
meantime, latent tree models remain computation-
ally attractive because their structures are
restricted to trees. Latent tree models can alleviate
the local dependence problem that latent class
models face. We will later present search-based
algorithms for learning latent tree models. When
there is no local dependence, the algorithms return
latent class models. When local dependence is pre-
sent, they return latent tree models with local
dependence appropriately modeled.

In Section 1.2, we have explained why we need
latent tree models in TCM research. There are two
other reasons why latent treemodels are interesting
in general. First, latent tree models represent com-
plex dependencies among observed variables and
yet are computationally simple to work with. It was
for the reason that Pearl [15] first identified latent
tree models as a potentially useful class of Bayesian
networks. Second, the endeavor of learning latent
treemodels can reveal interesting latent structures.
Researchers have already been inferring latent
structures from observed data. One example is
the reconstruction of phylogenetic trees [16], which
can be viewed as special latent tree models. Latent
structure discovery is also interesting for TCM. After
all, TCM theories themselves are latent structure
models described in natural language.
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Figure 1 The structure of a latent class model.

Figure 2 An example latent tree model. The Xi’s are
latent variables and the Y j’s are manifest variables.
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3. Model equivalence

We write a latent tree model as a pairM¼ ðG; uÞ,
where G stands for the model structure plus cardin-
alities of variables, and u stands for the vector of
probability parameters. We will sometimes refer to
G also as a latent tree model. Two latent tree models
ðG; uÞ and ðG0; u0Þ are marginally equivalent if they
share the same manifest variables Y1;Y2; . . . ;Yn and

PðY1; . . . ;YnjG; uÞ ¼ PðY1; . . . ;YnjG0; u0Þ: (1)

A latent tree model G includes another G0 if for any
parameter value vector u0 of G0, there exists para-
meter value vector u of G such that ðG; uÞ and ðG0; u0Þ
are marginally equivalent. If G includes G0, then G
can represent any distributions over the manifest
variables that G0 can. If G includes G0 and vice versa,
we say that G and G0 are marginally equivalent.
Marginally equivalent models are equivalent if they
have the same number of independent parameters.
It is impossible to distinguish between equivalent
models based on data if penalized likelihood score
[17] is used for model selection.

Let X1 be the root of a latent tree model G.
Suppose X2 is a child of X1 and it is also a latent
node. Define another latent tree model G0 by rever-
sing the arrow X1! X2. Variable X2 becomes the root
in the new model. The operation is called root
walking; the root has walked from X1 to X2.

It has been proved that root walking leads to
equivalentmodels [14]. Therefore, the root and edge
orientations of a latent tree model cannot be deter-
mined from data. What we learn from data are
unrooted latent tree models, which are latent tree
models with all directions on the edges dropped.
Fig. 3 shows the unrooted latent tree model that
corresponds to the latent tree model in Fig. 2.

An unrooted latent tree model represents a class
of latent tree models. Members of the class are
obtained by rooting the model at various latent
nodes. Semantically it is a Markov random field on
an undirected tree. The concepts of marginal
equivalence and equivalence can be defined for

unrooted latent tree models in the same way as
for rooted models. From now on when we speak of
latent treemodels, we always mean unrooted latent
tree models unless explicitly stated otherwise.

4. Identifiability and regularity

Let Y1, Y2, . . ., Yn be the manifest variables in a
latent tree model G. If there exist two different
parameter value vectors u and u0 such that

PðY1; . . . ;YnjG; uÞ ¼ PðY1; . . . ;YnjG; u0Þ; (2)

then model G is said to be unidentifiable. In such a
case, it is impossible to distinguish between the two
parameter value vectors u and u0 based on data.

Identifiability is closely related to three other
concepts, namely effective dimensions, standard
dimensions, and parsimonious models. Let k be
the product of the cardinalities of the manifest
variables. For a given parameter value vector
u; PðY1; . . . ;YnjG; uÞ is a point in the Rk�1 space. If
we let u run through all its possible values, we would
get a set of points in the Rk�1 space. This set is a
manifold [18]. We call it the manifold image of
model G. The effective dimension of G is defined
to be the dimension of its manifold image. The
number of independent parameters for G is called
its standard dimension. The standard dimension of a
latent tree model is always greater than or equal to
its effective dimension.

A latent tree model G is parsimonious if there
does not exist another model that is marginally
equivalent to G and that has fewer independent
parameters than G. A latent tree model is strongly
parsimonious if its standard dimension is the same as
its effective dimension. Clearly, if a model is not
parsimonious, then it is not strongly parsimonious. If
a model is not strongly parsimonious, then it is
unidentifiable.

Are strongly parsimonious models identifiable?
The answer is negative. Let G be an arbitrary latent
tree model, strongly parsimonious or not, and let u
be a parameter value vector for G. Further let X be a
latent variable in G and s1 and s2 be two states of X.
Let u0 be obtained from u by swapping the parameter
values pertaining to s1 and those pertaining to s2.
Then the two pairs ðG; uÞ and ðG; u0Þ satisfy Eq. (2).
Hence, G is unidentifiable. This means that one
cannot identify the identities of the states of latent
variables based on data. We call this the uniden-
tifiability of latent state. It is an intrinsic property
of all models with latent variables. It should be
noted that, in applications, one can usually deter-
mine the meanings of the latent states from domain
knowledge.

Latent tree models and diagnosis in TCM 233

Figure 3 The unrooted latent tree model that corre-
sponds to the latent tree model in Fig. 2.
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If a model is not parsimonious, then it contains
redundancies. The concept of regularity was intro-
duced to identify some of the redundances [14]. Let
jXj stand for the cardinality of a variable X. For a
latent variable Z in a latent tree model, enumerate
its neighbors as X1; X2; . . . ; Xk. A latent tree model is
regular if for any latent variable Z,

jZj �
Qk

i¼1jXij
max k

i¼1jXij
; (3)

and when Z has only two neighbors, one of the
neighbors must be a latent node and the inequality
(3) holds strictly.

If a latent tree model G is not regular, then there
exists a regular model G0 that is marginally equiva-
lent to G and has fewer independent parameters
[14]. The model G0 can be obtained from G through
the following regularization process:

(1) For each latent variable Z in G,
(a) If it violates inequality (3), reduce the car-

dinality of Z to
Qk

i¼1 jXij=max k
i¼1jXij.

(b) If it has only two neighbors with one being a
latent node and it violates the strict version
of inequality (3), remove Z from G and
connect the two neighbors of Z.

(2) Repeat Step 1 until no further changes.

Regularization can remove redundancies in
latent tree models. Can it remove all the redun-
dancies? In other words, are regular models parsi-
monious? This is an open question. What we do
know is that some regular models are not strongly
parsimonious. Examples of this can be found in
Table 1, which is borrowed from [19]. The table
shows the effective and standard dimensions of
several latent class models. Latent class models
are identified using the cardinalities of their vari-
ables. For example, ‘‘2:3,3’’ refers to a latent class
model with two manifest variables, where the
cardinality of the latent variable is 2 while those
of the two manifest variables are both 3. All
the models in the table are regular. However,
their effective dimensions are smaller than their

standard dimensions. Hence, they are not strongly
parsimonious.

In addition to helping us remove redundancies,
the concept of regularity also provides a finite
search space for the algorithms to be described in
the next section. Let, Y be a set of variables. There
are infinitely many possible latent tree models with
Y as manifest variables. However, only a finite
number of them are regular [14].

5. Learning latent tree models

Assume that there is a collection D of i.i.d. samples
that were generated by an unknown regular latent
tree model. Each sample contains values for some or
all the manifest variables. By learning latent tree
model we mean the effort to reconstruct, from D,
the regular unrooted latent tree model that corre-
sponds to the generative model.

Three search-based algorithms have been pro-
posed for this task, namely DHC (double hill-climb-
ing) [13,14], SHC (single hill-climbing) [20], and
HSHC (heuristic single hill-climbing) [20]. All those
algorithms aim at finding the model with the highest
BIC score [21]. The BIC score of a model G given data
set D is given below:

BICðGjDÞ ¼ log PðDjG; u�Þ � dðGÞ
2

logN; (4)

where u� is the maximum likelihood estimate of
model parameters, dðGÞ the standard dimension
of G, and N is the sample size.

The BIC score is a large sample approximation of
the marginal likelihood PðDjGÞ derived in a setting
where all variables observed. Geiger et al. [18] have
re-done the derivation for latent variable models
and arrived at another scoring function called the
BICe score. The BICe score is the same as the BIC
score except that the standard dimension dðGÞ is
replaced by the effective dimension of the model.
Theoretically, BICe is advantageous over BIC. Why
BIC is still used to guide the search algorithms? There
are three reasons. First, effective model dimensions
are difficult to compute, despite recent decomposi-
tion results [22]. Second, there is no substantial
empirical evidence showing that BICe is advanta-
geous over BIC in practice. Third, our experiences
with about one dozen data sets indicate that one can
find good models with BIC.

5.1. Double hill-climbing

The DHC algorithm searches in the space of regular
latent tree models. It starts with the simplest latent
tree model, i.e. the model with one binary latent

234 N.L. Zhang et al.

Table 1 Standard and effective dimensions of several
latent class models

Model Effective
dimension

Standard
dimension

2:2,2 3 5
3:2,2,2 7 11
4:2,2,2 7 15
2:3,3 7 9
3:4,5 17 23
4:3,3,3 25 27
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variable. At each step of search, it first generates a
number of candidate model structures by modifying
the structure of the current model using three
search operators, namely node introduction, node
deletion, and node relocation. It then optimizes
the cardinalities of the latent variables in each of
the candidate model structures, resulting in candi-
date models. Finally, it evaluates the candidate
models and picks the best one to seed the next step
of search. Search terminates when the best candi-
date model is no better than the current model. To
optimize the cardinalities of the latent variables in a
candidate model structure, the algorithm employs
another hill-climbing routine. This is why it is called
DHC (double hill-climbing).

Node introduction is conceptually the most
important among the three search operators. To
motivate the operator, consider the latent tree
model G1 shown in Fig. 4. It assumes that the
manifest variables are mutually independent given
the latent variable. What if this assumption is not
true? To be more specific, what if Y1 and Y2 are
correlated given X? A natural thing to do in this case
is to introduce a new latent node X1 and make it a
parent for Y1 and Y2, as shown in G2.

The NI (node introduction) operator is the result
of applying the idea to unrooted latent tree model
structures. Let X be a latent node in such a struc-
ture. Suppose X has more than two neighbors. For
any two neighbors Z1 and Z2 of X, we can introduce a
new latent node Z to mediate X and its neighbors Z1

and Z2. Afterwards X is no longer connected to Z1

and Z2. Instead X is connected to Z and Z is con-
nected to Z1 and Z2. Consider themodel structure G01

in Fig. 4. Introducing a new latent node X1 to
mediate X and its neighbors Y1 and Y2 results in
the model structure G02. For the sake of computa-
tional efficiency, node introduction is not allowed to
involve three or more neighbors of a latent node.
This implies that we cannot reach G03 from G01 using
the NI operator only.

ND (node deletion) is the opposite of node intro-
duction. Let X be a latent node and let Z1; Z2; . . . ; Zk

be the neighbors of X. If one of these neighbors, say
Z1, is also a latent node, then we can delete X with
respect to Z1. This means to remove X from the
model and connect Z1 to each of Z2; Z3; . . . ; Zk. In
Fig. 4, deleting X1 from G02 or G03 with respect to X
results in G01.

The third search operator is called node reloca-
tion. Let X be a latent node and Z be a neighbor of X.
Suppose X has another neighbor Z0 that is also a
latent node. Then we can relocate Z from X to Z0.
This means to disconnect Z from X and reconnect it
to Z0. In Fig. 4, relocating Y3 from X to X1 in G02
results in G03. For the sake of computational effi-
ciency, it is not allowed to relocate Z to a latent
node that is not a neighbor of X. In Fig. 3, for
example, we cannot relocate Y2 from X2 to X3.

Given a latent tree model structure, how do we
determine the cardinalities of the latent variables?
The answer is to search in the space of all the regular
latent tree models with the given model structure.
The search starts with the model where the cardin-
alities of all the latent variables are set at 2. At each
step, we obtain a number of candidate models by
increasing the cardinality of a single latent variable
by one. Irregular candidate models are discarded.

Latent tree models and diagnosis in TCM 235
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Each of the candidate models is then evaluated and
the best one is picked to seed the next search step.
To evaluate a model, one needs to estimate its
parameters. The EM algorithm [23,24] is used for
this task.

Zhang [14] tested the DHC algorithm on both
synthetic data and real-world data. The synthetic
data sets were generated from a latent tree model
whose structure is shown in Fig. 2. The sample size
ranges from 5000 to 100,000. The models obtained
by DHC are of high quality because: (1) their struc-
tures are either identical to that of the generative
model or only one step away from it, and (2) their
logarithmic scores on a testing data set are very
close to that of the generative model. In another
setting where strong dependence between variables
were enforced, DHC correctly recovered the struc-
ture of the generative model for all sample sizes.
The real-world data sets were taken from the latent
class analysis literature. In all cases but one, DHC
found the models that are considered to be the best
in the literature. The exception happened with a
data set for which latent tree models are apparently
inappropriate.

The DHC algorithm has one serious drawback,
namely its extremely high computational complex-
ity. Although the synthetic data sets involve only
seven manifest variables, DHC took around 100 h on
a 1 GHz Pentium III machine to analyze each of
them.2 As such, DHC is a concept testing algorithm.

5.2. Single hill-climbing

A latent tree model G consists of a network struc-
ture, the cardinalities of the manifest variables, and
the cardinalities of the latent variables. If the car-
dinalities of the latent variables are unknown, then
G is called a pre-LT (pre-latent-tree) model. The
outputs of the three search operators used by DHC
are pre-LT models and the cardinalities of the latent
variables are optimized using a separate hill-climb-
ing routine. We have been vague about this point
until now for readability.

The SHC algorithm is the same as the DHC algo-
rithm in that they both search in the space of regular
latent tree models. However, there are two major
differences. First, the search operators in SHC pro-
duces latent tree models rather than pre-LT models.
This implies attention must be paid to the cardin-
alities of the latent variables when designing the
operators. Second, SHC does not have a separate
routine to optimize the cardinalities of latent

variables. They are optimized at the same time as
the model structure.

Five search operators are used in SHC, namely
node introduction, node deletion, node relocation,
state introduction, and state deletion. The NI (node
introduction) operator of SHC is the same as the NI
operator of DHC, except that it specifies a cardin-
ality for the newly introduced latent node. When
introducing a new latent node Z to mediate a latent
node X and two of its neighbors, we set jZj ¼ jXj. Let
G and G0 the model before and after the operation.
We have the nice property that G0 includes G.

The ND (node deletion) and NR (node relocation)
operators of SHC are the same as the ND and NR
operators of DHC, except that cardinalities of latent
variables are no longer ignored. The SI (state intro-
duction) operator increases the cardinality of a
latent variable by one, while the SD (state deletion)
operator decreases the cardinality of a latent node
by one. Applying the operators to a regular latent
tree model might result in irregular models. For this
reason, they are always followed immediately by
the regularization process described in Section 4.
The operators can sometimes make a latent node a
leaf node. When this happens, the node is simply
deleted.

The SHC algorithm begins with the simplest latent
tree model, i.e. the model with one binary latent
node. It works in two phases. In Phase I, SHC expands
models by applying the NI and SI operators. The aim
is to improve the likelihood term of the BIC score.
The NR operator is also used in Phase I. In Phase II,
SHC simplifies models by applying the ND and SD
operators. The aim is to reduce the penalty term of
the BIC score, while keeping the likelihood term
more or less the same. If model quality is improved
in Phase II, SHC goes back to Phase I and the process
repeats itself.

In Phase I, SHC needs to choose between NI and SI
operations. There is an issue of operation granu-
larity here. Suppose there are 100 manifest vari-
ables. At the first step of search, the current model
contains only one binary latent variable and it has
only two states. Denote the latent variable by X0.
Applying the SI operator to X0 would introduce 101
additional model parameters. Introducing a new
latent node to mediate X0 and two of its neighbors,
on the other hand, would increase the number of
model parameters by only 2. The latter operation is
clearly of much finer-grain than the former. The
former is like a bulldozer if the latter is compared to
a shovel.

To deal with operation granularity, SHC adopts the
so-called cost-effectiveness principle when choosing
among candidate models in Phase I. Let G be the
current model and G0 be a candidate model. Define
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2 The running times for different data sets are more or less the
same because the data sets contain the same number of distinct
samples although their sample sizes are different.
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the unit score improvement of G0 over G given dataD
to be

UðG0;GjDÞ ¼ BICðG0jDÞ � BICðGjDÞ
dðG0Þ � dðGÞ (5)

It is the increase in model score per unit increase in
model complexity. The cost-effectiveness principle
states that, among all candidate models, choose the
one that has the highest unit score improvement
over the current model.

Phase I of SHC involves not only the NI and SI
operators, but also the NR operator. A technical
difficulty might arise when computing the quantity
UðG0;GjDÞ for a candidate model generated by NR.
The NR operator does not necessarily increase the
number of model parameters. The denominator
dðG0Þ � dðGÞ could be zero or negative. One way
to overcome the difficulty is to replaced the
denominator with maxf1; dðG0Þ � dðGÞg.

5.3. Heuristic single hill-climbing

SHC is more efficient than DHC, but it still does not
scale up well. Here is the reason. At each search
step, SHC generates a list of candidate models,
evaluates each of them, and selects the best one.
To evaluate a model, it first runs the EM algorithm to
obtain the maximum likelihood estimation of the
parameters and then computes the BIC score. EM is
known to be computationally expensive. SHC runs
EM on each candidate model and hence has high
computational complexity.

One way to reduce the complexity of SHC is to
apply the technique of structural EM [25]. The idea
is to complete the data set D based on the current
model and evaluate the candidate models using the
completed data set Dc. Parameter optimization
based on Dc does not require EM and hence EM is
avoided during model evaluation and selection. The
HSHC (Heuristic SHC) algorithm is the result of
incorporating this strategy into SHC.

There is an important issue that one needs to
address when incorporating structural EM into SHC.
Structural EM cannot be directly applied to the
candidate models generated by the NI, SI, SD opera-
tors. The latent nodes in those models are different
from those in the current model. NI introduces a
latent node that is not in the current model, while SI
and SD alter the cardinality of one latent variable in
the current model. Dc is complete with respect to
the variables in the current model, but it is incom-
plete with respect to the variables in the candidate
models generated by the NI, SI and SD operators.

To solve the problem, HSHC divides the candidate
models into groups, with one group for each opera-
tor. Models in a group are compared with each other

using heuristics based on the completed data setDc,
and the best one is selected. Thereafter a second
model selection process is invoked to choose the
overall best model among the best models of the
groups. This second process is the same as the model
selection process in SHC, except that there is only
one candidate model for each operator. Here the
model parameters are optimized using EM.

The heuristics for ranking candidate models are
different for different operators. Here we explain
the heuristic for NI. Let G be the current model and
G0 be a candidate model obtained from G by intro-
ducing a new latent node Z to mediate a latent node
X and two of its neighbors Z1 and Z2. As explained in
Section 5.1, the new node would be necessary if Z1

and Z2 are not independent of each other given X.
This hypothesis can be tested based on the com-
pleted data Dc. The variables X, Z1 and Z2 are all
observed in Dc. Hence, one can compute the G-
squared statistic for testing the hypothesis that Z1

and Z2 are independent given X. The larger the
statistic, the further away Z1 and Z2 are from being
independent given X, and hence the more necessary
it is to introduce a new node. Therefore, one can
rank all the candidate models generated by NI using
the G-squared statistics and pick the model with the
largest value.

There is one more issue to clarify before the
description of the HSHC algorithm is complete.
For a given operator, instead of choosing the best
model, one can choose the best K, for some integer
K, models based on heuristic. This top-K scheme
reduces the chance of local maxima. In general, the
larger the K, the lower the probability of encoun-
tering local maxima. On the other hand, larger K
also implies running EM on more models and hence
longer computation time.

For the sake of computational efficiency, HSHC
replaces EM with the so-called local EM in the top-K
scheme. Let G0 be a candidate model obtained from
the current model G by applying one of the search
operators. The parameters for G have been opti-
mized and G0 differs from G only in one or two nodes.
Local EM optimizes only the parameters pertaining
to those one or two nodes in G0 while freezing the
values of all the other parameters. Obviously, model
parameters obtained by local EM deviate from those
obtained by EM. To avoid accumulation of devia-
tions, HSHC runs EM once at the end of each search
step on the best model.

5.4. Empirical results with SHC and HSHC

Howmuchmore efficient is SHC than DHC? To answer
this question, SHCwas tested on one of the synthetic
data sets mentioned in Section 5.1[20]. SHC turned
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out to be 22 times faster than DHC, and it obtained
the same model as DHC. No more experiments were
run to compare DHC and SHC because DHC is extre-
mely slow.

How much more efficient is HSHC than SHC? Can
HSHC find high quality models? To answer those
questions, experiments were conducted on five syn-
thetic data sets with 6, 9, 12, 15 and 18 manifest
variables, respectively and 10,000 records [20]. For
the top-K scheme in HSHC, three values were used
for K, namely 1, 2 and 3. The experiments were run
on a 2.26 GHz Pentium 4 machine and the time limit
was set at 100 h. The results indicate that HSHC is
much more efficient than SHC and scales up much
better. In particular, SHC was not able to finish
analyzing the two data sets with 15 and 18 manifest
variables. On the data set with 12 manifest vari-
ables, it was 10 times slower than HSHC when Kwas
set at 3. When K ¼ 1, the models found by HSHC for
the data sets with 15 and 18 manifest variables are
of poor quality. When K ¼ 2 or 3, however, all the
models reconstructed by HSHC match the genera-
tive models extremely well in terms of the joint
distribution of the manifest variables. The struc-
tures of these models are either identical or very
similar to the structures of the generative models.

How does HSHC perform on real-world data? Can
it discover interesting latent structures and learn
good probabilistic models? To answer those ques-
tions, the algorithm was tested on the CoIL Chal-
lenge 2000 data set [26]. This data set consists of
5,822 customer records of an insurance company.
Each record contains socio-demographic informa-
tion and information about insurance product own-
erships. There are 86 attributes. The task is to learn
a model and use it to predict who would buy mobile
home insurance policies.

Before the data set was fed to HSHC, it was first
preprocessed and the resulting data set contains 42
manifest variables. Four different values were used
for K in the top-K scheme, namely 1, 5, 10 and 20.
The best model was found in the case of K ¼ 10. The
analysis took 121 h. The structure of the best model
is shown in Fig. 5.

The latent structure discovered by HSHC is inter-
esting. This can be appreciated from several angles.
First of all, the data set contains two variables for
each type of insurance. For example, the two vari-
ables for bicycle insurance are ‘contribution to
bicycle insurance policies (Y62)’ and ‘number of
bicycle insurance policies (Y83)’. HSHC introduced
a latent variable for each of such pairs. The latent
variable introduced for Y62 and Y83 is X11. Obviously,
X11 can be interpreted as ‘attitude toward bicycle
risks’. Similarly, X10 can be interpreted as ‘attitude
toward motorcycle risks’, X9 as ‘attitude toward
moped risks’, and so on.

Next consider the manifest variables below the
latent variable X8. Besides ‘social security’, they
are all related to private vehicles. HSHC concluded
that people’s decisions to buy insurance for private
vehicles are influenced by one common latent vari-
able. This is clearly reasonable and X8 can be inter-
preted as ‘attitude toward private vehicle risks’.
The variables about heavy vehicles such as car,
mobile home, and boat are placed under X12. This
is also reasonable and X12 can be interpreted as
‘attitude toward heavy private vehicle risks’.

Similarly, we see that X1 corresponds to ‘attitude
toward firm risks’ and X15 means ‘attitude toward
agriculture risks’. The two latent variables X3 and X6

capture attitudes toward risks in daily life; X21

summarizes socio-demographic information con-
tained in the manifest variables Y04, Y05 and Y43;

238 N.L. Zhang et al.

Figure 5 Latent treemodel found by HSHC for the CoIL Challenge 2000 data. The number next to a latent variable is the
cardinality of that variable.
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and X0 can be interpreted as ‘general attitude
toward risks’.

It is particularly interesting to note that,
although delivery vans (Y48 and Y69) and tractors
(Y37 and Y52) are vehicles, HSHC did not conclude
that the decisions to buy insurance for delivery vans
and tractors are influenced by ‘attitude toward
vehicle risks’ (X8). Rather, it correctly concluded
that the decision to buy insurance for delivery vans
is influenced by ‘attitude toward firm risks’ and the
decision to buy insurance for tractors is influenced
by ‘attitude toward agriculture risks’.

Is the latent tree model found by HSHC a good
probabilistic model for the domain? The prediction
task of CoIL Challenge 2000 provides one criterion
for answering this question. In CoIL Challenge 2000,
there is a test set of 4000 records that contains 238
mobile home policy owners. The prediction task
requires the participants to identify a subset of
800 records that contains as many mobile home
policy owners as possible. The random selection
by the contest organizers resulted in 42 policy own-
ers, while the best entry identified 121 policy own-
ers. The selection based on the model found by
HSHC includes 110 policy owners. This is good per-
formance considering that HSHC aims at optimizing
BIC score rather than classification error.

For the purpose of building a probabilistic model
for the domain, one can choose to learn a Bayesian
network without latent variables. How would such a
network compare with the latent tree model found
by HSHC? To answer this question, Zhang and Kocka
also analyzed the data set using the GES algorithm
[27] for learning Bayesian networks. The structure
of the resulting model is shown in Fig. 6. We see that
the network structure is less interpretable than the
structure of the latent tree model found by HSHC.

When the model is used to guide the CoIL prediction
task, only 83 policy owners were identified. This is
significantly better than the random selection, but
significantly worse than the selection based on the
latent tree model.

6. Analysis of kidney deficiency data

We propose a new machine learning approach to the
study of TCM syndrome differentiation. It is called
the latent structure approach. The idea is to first
collect patient data systematically and then per-
form multidimensional cluster analysis using latent
structure models. The goal is to find natural clusters
in data that correspond well to TCM syndrome types
and hence can be used to establish objective and
quantitative standards for syndrome differentia-
tion. To investigate the feasibility of the latent
structure approach, we have used latent tree mod-
els to study a subdomain of TCM diagnosis, namely
KIDNEY DEFICIENCY. We report this case study in the rest
of the paper. In this section, we describe the
domain, the data set, and the data analysis process.

Diagnosis and treatment in TCM are based on
several theories. One of the theories is called
ZANG-FU theory. It explains the physiological func-
tions, pathological changes, and mutual relation-
ships of the TCM ‘vital organs’, which include HEART,
LUNG, KIDNEY, and so on. Although minor similarities
exist, the vital organs of the body in TCM are
different from the anatomical organs of western
medicine. They are classified according to their
functions and functional entities. The main physio-
logical functions of KIDNEY, for instance, are: (1)
storing YIN-ESSENCE; (2) controlling water metabolism;
(3) receiving QI; (4) controlling human reproduction,
growth and development; (5) producing marrow,
controlling the bones, manufacturing blood and
influencing hair luster; (6) opening into the ear;
(7) controlling the urinary bladder. Most KIDNEY DISEASES

are due to the lack of essence, a condition known as
KIDNEY DEFICIENCY. KIDNEY DEFICIENCY includes several sub-
types, namely KIDNEY YANG DEFICIENCY, KIDNEY YIN DEFICIENCY,
KIDNEY ESSENCE INSUFFICIENCY, and so on [6]. Common
symptoms of KIDNEY DEFICIENCY include lumbago, sore
and weak lumbus and knees, tinnitus, deafness, loss
of hair, impotence, irregular menstruation, edema,
abnormal defecation and urination, and so on.

The first step in the latent structure approach is
data collection, and the first step in data collection
is to determine its coverage in terms of symptom
variables. In consultation with the China national
standards on clinic terminology of TCM syndromes
[28] and some textbooks on TCM diagnosis [6,29], we
have selected 67 symptoms variables for our study.
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Figure 6 Bayesian network model found by GES for the
CoIL Challenge 2000 data set.
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Those variables cover all aspects of the aforemen-
tioned physiological functions of KIDNEY. Each of the
variables has four possible values, namely ‘no’,
‘light’, ‘medium’, and ‘severe’.

TCM diagnosis consists of two steps, patient infor-
mation gathering and syndrome differentiation.
Subjectivity is an issue in both steps. The focus of
our research is on the second step. To minimize the
influence of subjectivity in the first step, we
adopted, during data collection, the operational
standards for determining the severity levels of
KIDNEY DEFICIENCY symptoms by Yan et al. [30].

A total of 2600 data cases were collected. The
data set was collected from communities in several
regions in China and all the subjects were at or
above the age of 60 years. The sample space was
set this way because KIDNEY DEFICIENCY is more common
among senior people. The entire data collection
process was managed personally by the second
co-author and a variety of measures were taken
to ensure data quality.

We attempted to analyze the whole KIDNEY data
using the HSHC algorithm. Despite being the most
efficient algorithm for learning latent tree models3,
HSHC was not able to handle all 67 symptom vari-
ables. We were forced to reduce the number of
variables and only 35 variables were included in
the analysis. This limits the applicability of the
results in practice. However, it does not prevent
us from drawing conclusions about the feasibility of
the latent structure approach. The approach is
possible if (1) there exist natural clusters in data
that correspond to TCM syndrome types, and (2) it
can discover such clusters from data. We can
demonstrate those two points using a data set of

35 variables as well as using a data set of 67 vari-
ables.

The analysis was conducted on a 2.4 GHz Pentium
4 machine and it took 98.5 h to finish. The BIC score
of the resultant model is �73,947. HSHC is a hill-
climbing algorithm. Like most hill-climbing algo-
rithms, it might get stuck at local maxima. To detect
whether HSHC was trapped at a local maximum and,
if this was the case, to help it escape from the local
maximum, we modified the initial result based on
domain knowledge and continued the search with
HSHC from the modified models. This resulted in
another model, denoted by M�, with BIC score
�73,860. Further efforts to improve M� did not
result in better models. We hence regard M� as
the best model for the data set. The structure ofM�

is given in Fig. 7.

7. Interpretation of latent variables

ModelM� consists of 14 latent variables, X0 to X13.
This means that our analysis has identified 14 latent
factors from the KIDNEY data set. Each of the latent
variables has a specific number of states. For exam-
ple, the variable X1 has five states. This means that
we have grouped the data set into five clusters
according to the latent factor. The variable X13

has four states. This means that we have grouped
the data set in another way into four clusters. Thus,
we have simultaneously clustered the data set in
multiple ways.

Do the clusters correspond to TCM syndrome
types? This question will be answered in the next
section. As a preparatory step, we examine the
meanings of the latent variables. In this process,
we need to compare the structure of modelM� with
the TCM theory on KIDNEY, which is itself a latent
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Figure 7 The structure of the best modelM� found for the KIDNEY data set. The symptom variables are at the leaf nodes
and the latent variables are at the internal nodes. The numbers in parentheses are the numbers of states of the latent
variables. The abbreviation HSFCV stands for hot sensation in the five centers with vexation, where the five centers refer
to the centers of two palms, the centers of two feet, and the heart.

3 The situation is likely to change soon due to some on-going
work.
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structure model described in natural language. We
rely on textbooks [6,29] for description of the TCM
theory.

7.1. Variable interpretation

We start from the lower left corner ofM�. Here the
model states that there is a latent variable X1 that:
(1) directly influences the three symptoms ‘intoler-
ance to cold’, ‘cold limbs’, and ‘cold lumbus and
back’ and (2) through another latent variable X2

indirectly influences ‘loose stool’ and ‘indigested
grain in stool’. Do those match the TCM theory on
KIDNEY? What are the meanings of the latent variables
X1 and X2?

According to TCM theory, KIDNEY YANG is the basis of
all YANG in the body. When KIDNEY YANG is in deficiency, it
cannot warm the body and the patient feels cold,
resulting in manifestations such as cold lumbus and
knees, intolerance to cold, and cold limbs. Defi-
ciency of KIDNEY YANG also leads to spleen disorders,
resulting in symptoms such as loose stool and indi-
gested grain in stool.

Both of the above two paragraphs speak of two
latent factors and some symptoms. The relation-
ships between the latent factors and the symptoms
are almost identical in the two cases. Therefore,
there is a good match between the lower left corner
ofM� and the relevant part of the TCM KIDNEY theory.
The latent variables X1 can be interpreted as KIDNEY

YANG deficiency, while X2 can be interpreted as SPLEEN

DISORDERS DUE TO KYD, where KYD stands for KIDNEY YANG

DEFICIENCY.
To the right of X1, modelM� states that there is a

latent variable X3 that influences the symptoms
‘edema on legs’ and ‘edema on face’. On the other
hand, TCM theory maintains that when KIDNEY YANG is
in deficiency, water is out of control. It flows to the
skin and brings about edema. We see a perfect
match here. The latent variable X3 can be inter-
preted EDEMA DUE TO KYD.

To the right of X3, modelM� states that there is a
latent variable X4 that: (1) directly influences the
symptoms ‘urine leakage after urination’, ‘frequent
urination’, and ‘frequent nocturnal urination’, and
(2) through another latent variable X5 indirectly
influences ‘urinary incontinence (day)’ and ‘urinary
incontinence (night)’. On the other hand, TCM the-
ory maintains that when KIDNEY fails to control the
urinary bladder, one would observe clinical mani-
festations such as frequent urination, urine leakage
after urination, frequent nocturnal urination, and in
severe cases urinary incontinence. Once again,
there is a fairly good match between this part of
M� and the relevant part of the TCM KIDNEY theory.
The latent variable X4 can be interpreted as KIDNEY

FAILING TO CONTROL UB, where UB stands the urinary
bladder.

According to TCM theory, the clinical manifesta-
tions of KIDNEY ESSENCE INSUFFICIENCY include premature
baldness, tinnitus, deafness, poor memory, trance,
declination of intelligence, fatigue and weakness.
Those match the symptom variables under X8 fairly
well and hence X8 can be interpreted as KIDNEY ESSENCE

INSUFFICIENCY. The clinical manifestations of KIDNEY YIN

DEFICIENCY include dry throat, tidal fever or hectic
fever, fidget, hot sensation in the five centers,
and yellow urine. Those match the symptom vari-
ables under X10 fairly well and hence X10 can be
interpreted as KIDNEY YIN DEFICIENCY. Finally, TCM theory
maintains that there are several subtypes of KIDNEY

DEFICIENCY, namely KIDNEY YANG DEFICIENCY, KIDNEY ESSENCE

INSUFFICIENCY, KIDNEY YIN DEFICIENCY, and so on. They share
common symptoms such as lumbago, sore and weak
lumbus and knees, mental and physical fatigue.
Moreover, KIDNEY DEFICIENCY can be caused by prolonged
illness. Those and the topology ofM� suggest that
X0 should be interpreted as KIDNEY DEFICIENCY.

Table 2 summarizes the meanings of the latent
variables.

7.2. Remarks

All symptom variables in our case study are those
that a TCM doctor would consider when making
diagnostic decisions about KIDNEY DEFICIENCY. There is
hence no surprise that one of the latent variables in
M� can be interpreted as KIDNEY DEFICIENCY. However, it
is very interesting that some of the latent variables
correspond to syndrome factors such as KIDNEY YANG/YIN
DEFICIENCY, as each of them is associated with only a
subset of the symptom variables. Take KIDNEY YANG

DEFICIENCYas an example. TCM claims that it can cause
symptoms such as ‘intolerance to cold’, ‘cold
limbs’, and ‘cold lumbus and back’. On the other
hand, the result of our analysis states that, judging
from data, there should be a latent factor that
directly influences those symptom variables. In
this sense, our analysis has validated the TCM claim.
This is important because TCM theories are some-
times discarded as being unscientific and even
groundless. Our work has shown that there are
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Table 2 Interpretations of some of latent variables in
M�

X0: KD (KIDNEY DEFICIENCY)
X1: KYD (KIDNEY YANG DEFICIENCY)
X3: EKDY (EDEMA DUE TO KYD)
X4: KFCUB (KIDNEY FAILING TO CONTROL)
X8: KEI (KIDNEY ESSENCE INSUFFICIENCY)
X10: KYD (KIDNEY YIN DEFICIENCY)
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scientific (more precisely, statistically valid) con-
tents in TCM theories.

It should be noted that the scope of our case study
is KIDNEY DEFICIENCY, which is determined by the selec-
tion of symptom variables. Hence, the results should
be helpful in determining whether a patient is
suffering from KIDNEY DEFICIENCY and if so which sub-
type. Table 2 shows that modelM� is indeed useful
in this aspect. What should we do if we want to
determine whether a disease is with KIDNEY, or LIVER, or
other vital organs? The answer is to build another
model with symptom variables that can help this
higher level differentiation task.

It should also be pointed out that there are some
aspects ofM� that do not match TCM theory well.
As one example, consider the symptoms ‘tinnitus’
and ‘poor memory’. According to TCM theory, they
can be caused both by KIDNEY YIN DEFICIENCY and KIDNEY

ESSENCE INSUFFICIENCY. InM�, however, they are directly
connected to only X8, but not to X10. This mismatch
is due to the restriction that in latent tree models a
manifest variable can be connected to only one
latent variable. Another mismatch is in the scope:
M� involves fewer symptom variables than the TCM
theory on KIDNEY. This is due to two reasons. First, we
were not able to collect data about human repro-
duction because our subjects did not feel comfor-
table talking about it. Second, some symptom
variables were excluded from data analysis for
the sake of computational efficiency. The conse-
quence is twofold. First, many symptoms, especially
those about human reproduction, are absent from
the discussions above. They are mentioned in TCM
theory, but do not appear in the modelM�. Second,
two other common subtypes of KIDNEY DEFICIENCY,

namely UNCONSOLIDATION OF KIDNEY QI and FAILURE OF KIDNEY

TO RECEIVE QI are absent fromM�.
Finally, we would like to make a remark about

edge orientations in latent tree models. As
explained in Section 3, edge orientations cannot
be determined during data analysis. However, they
sometimes can be determined during model inter-
pretation. As an example, consider the edges
between the latent variable X1 and the symptom
variables Y2, Y3, and Y4. X1 is interpreted as KIDNEY

YANG DEFICIENCY, which according to TCM theory causes
‘intolerance to cold’, ‘cold limbs’, and ‘cold lumbus
and back’. Therefore, the edges can be oriented and
they point from X1 to the symptom variables. As a
matter of fact, all edges inM� can be oriented and
they all point downward. There is only one excep-
tion, namely the edge between X0 and Y17.

8. Interpretation of latent clusters

Each of the latent variables in modelM� defines a
number of clusters. In this section, we examine the
meaning of some of the clusters and check to see
whether they correspond to TCM syndrome types.
We will focus primarily on X1 and X4.

The latent variable X1 was interpreted as KYD

(KIDNEY YANG DEFICIENCY) and it has five states. This
means that the data has been grouped into five
clusters according to KIDNEY YANG DEFICIENCY. Fig. 8 shows
the probability distributions of the five symptom
variables Y0 to Y4 in each of the clusters. There is
one bar diagram for each cluster. In each diagram,
there are five bars, each corresponding to one of the
five symptom variables. The bars consist of up to
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Figure 8 Characteristics of the five clusters identified by the states of the latent variable X1: the diagrams show the
probability distribution of the symptom variables Y0, Y1, Y2, Y3, and Y4 in each of the clusters. The table shows the most
typical members of the clusters, together with the probability distribution of X1 for those members. In the table,
symptom severity levels are indicated using integers: 0–—no; 1–—light; 2–—medium; 3–—severe.
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four segments, each corresponding to one state of
the symptom variables. The clusters were ordered
and named after an initial visual inspection of those
bar diagrams.

The probability bar diagrams provide an overall
characterization of the clusters, but they do not
provide any information about individual members
of the clusters. To compensate for this lack of
specificity, we also provide information about
the most typical members of the clusters. The
most typical member of the cluster X1 ¼ s0, for
instance, is the configuration of the states of the
variables Y0, Y1, Y2, Y3, and Y4 that maximizes the
probability PðX1 ¼ s0jY0;Y1;Y2;Y3;Y4Þ. This config-
uration might not be unique. Nonetheless, we will
use the term ‘the most typical member’ for sim-
plicity.

We can now digest the meanings of the clusters
defined by X1. Five symptoms are involved here,
namely LS (loose stool), (IGS) (indigested grain in
stool), IC (intolerance to cold), CL (cold limbs), and
CLB (cold lumbus and back). In the cluster X1 ¼ s0,
the five symptoms almost never occur. The most
typical member of X1 ¼ s0 has none of those symp-
toms. Hence, the clusters means ‘no KYD’.

Next, consider the clusters X1 ¼ s1 and X1 ¼ s2. In
both clusters, the five symptoms have substantial
probability of occurring. The overall probability of
the symptoms occurring is higher in X1 ¼ s1, while
the probabilities of the symptoms occurring at the
medium or severe levels are higher in X1 ¼ s2. For
the most typical member of X1 ¼ s1, three of the
symptoms, namely LS, IC and CLB, occur only at the
light level, while for the most typical member of
X1 ¼ s2, only one of the symptoms, namely IC,
occurs at the severe level. Therefore, both clusters
can be interpreted as ‘light KYD’. To differentiate
their characteristics, we label X1 ¼ s1 as ‘light KYD

(1)’ and label X1 ¼ s2 as ‘light KYD (2)’.
In the clusters X1 ¼ s3 and X1 ¼ s4, the overall

probability of the five symptoms occurring is high,
while the probabilities of their occurring at the
medium and severe levels in X1 ¼ s4 are much

greater than those in X1 ¼ s3. For the most typical
member of X1 ¼ s3, three of the symptoms occur at
the light level and one occurs at the medium level.
For the most typical member of X1 ¼ s4, all the five
symptoms occur at the severe level. Hence, X1 ¼ s3
can be interpreted as ‘mediumKYD’ and X1 ¼ s4 can
be interpreted as ‘severe KYD’.

There is one interesting observation that we
would like to make about the class probability dis-
tributions. In the last four of the clusters, the
probabilities of the symptoms LS (Y0) and IGS (Y1)
occurring are much lower than those of the other
three symptoms. This is consistent with TCM theory.
According to the latter, KYD would not affect other
vital organs when at benign stage. As the severity
increases, however, it might affect other vital
organs. In particular, it might lead to spleen dis-
orders, resulting in the symptoms LS and IGS. Hence,
the symptoms IC, CL and CLB are more common than
LS and IGS. IC, CL and CLB can occur as soon as KYD is
present, while LS and IGS occur only when KYD

becomes relatively more severe. Our analysis has
validated this piece of TCM theory and has provided
a quantification for it.

We next consider the four clusters given by the
latent variable X4. The probability distributions of
the symptom variables Y7, Y8, Y9, Y11, and Y11 in
each of the clusters are given in Fig. 9. The typical
members of the clusters are also shown. By using
arguments similar to those used in the case of X1,
one can conclude that the clusters X4 ¼ s0, X4 ¼ s1,
X4 ¼ s2 and X4 ¼ s3 can respectively interpreted as
noKFCUB (KIDNEY FAILING TO CONTROL UB), ‘lightKFCUB(1)’,
‘lightKFCUB(2)’, and ‘severe KFCUB’.

As mentioned in the previous section, TCM theory
maintains that when kidney fails to control the
urinary bladder, one would observe clinical mani-
festations such as FU (frequent urination), ULU
(urine leakage after urination), FNU (frequent noc-
turnal urination), and in severe cases UID (urinary
incontinence (day)) and UIN (urinary incontinence
(night)). Therefore, UID and UIN occur less fre-
quently than the other three symptoms. This is
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Figure 9 Characteristics of the four clusters identified by the states of the latent variable X4: the diagrams show the
probability distributions of the symptom variables Y7, Y8, Y9, Y10, and Y11 in each of the clusters. The table shows the
most typical members of the clusters. In the table, symptom severity levels are indicated using integers: 0–—no; 1–—light;
2–—medium; 3–—severe.
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consistent with the bar diagrams in Fig. 9. We see
that the probabilities of UID (Y9) and UIN (Y10)
occurring are always significantly lower than those
of the other three symptoms. Once again, our ana-
lysis has validated a piece of TCM theory and has
provided a quantification for it.

We have also examined the clusters identified by
X3, X8, and X10. The interpretations are given in
Table 3.

9. Conclusions and future directions

TCM diagnosis consists of two steps, patient infor-
mation gathering and syndrome differentiation. We
propose a novel approach, namely the latent struc-
ture approach, to the study of syndrome differen-
tiation. The long-term objective is to establish
objective and quantitative standards for syndrome
differentiation. The idea is to systematically collect
patient data, performmultidimensional cluster ana-
lysis, and use the resultant clusters as the basis for
syndrome differentiation.

To demonstrate the feasibility of the new
approach, we have studied a special class of latent
structure models called latent tree models. The
study on latent tree models has spanned over sev-
eral years. In this paper, we have provided a detailed
survey of the work so far. It is intended to serve as a
good entry point for those who want to use or
further develop the methodology.

We have collected a data set about KIDNEY DEFICIENCY

and have analyzed the data set using latent tree
models. The resulting model matches relevant TCM
theory well: the latent variables correspond to syn-
drome factors, and the latent clusters correspond to
syndrome types. We have recently analyzed several
other data sets from joint projects with Beijing Uni-
versity of Chinese Medicine and China Academy of
Chinese Medicine. Equally good results were
obtained.4 Consequently, we have shown that the
latent structure approach is indeed feasible.

For future work, there is obviously a need to
develop more efficient algorithms for learning

latent tree models. It would be also interesting to
study latent structures beyond trees. In the TCM
front, the immediate next step is to investigate how
the results produced by the latent structure
approach can actually be used to improve TCM
diagnosis and treatment. One area is to start with
the integration of TCM and west medicine. The idea
here is to divide all patients suffering from a wes-
tern medicine, e.g. irritable bowel syndrome, into
several groups from the TCM perspective and apply
different treatments to different groups. Doctors in
China have been practicing this for decades. The
latent structure approach can be applied to estab-
lish objective and quantitative standards for the
grouping. TCM doctors and western medicine doc-
tors can then come together, study the groups and
form treatments accordingly.
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