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Summary

Objective: Appropriate antimicrobial treatment of infections in critically ill patients
should be started as soon as possible, as delay in treatment may reduce a patient’s
prognostic outlook considerably. Ventilator-associated pneumonia (VAP) occurs in
patients in intensive care units who are mechanically ventilated and is almost always
preceded by colonisation of the respiratory tract by the causative microorganisms. It
is very difficult to clinically diagnose VAP and, therefore, some form of computer-
based decision support might be helpful for the clinician.
Materials and methods: As diagnosing and treating VAP involves reasoning with
uncertainty, we have used a Bayesian network as the primary tool for building a
decision-support system. The effects of usage of antibiotics on the colonisation of the
respiratory tract by various pathogens and the subsequent antibiotic choices in case of
VAP were modelled using the notion of causal independence. In particular, the
conditional probability distribution of the random variable that represents the overall
coverage of pathogens by antibiotics was modelled in terms of the conjunctive effect
of the seven different pathogens, usually referred to as the noisy-AND model. In this
paper, we investigate different coverage models, as well as generalisations of the
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noisy-AND, called noisy-threshold models, and test them on clinical data of intensive
care unit (ICU) patients who are mechanically ventilated.
Results: Some of the constructed noisy-threshold models offered further improve-
ment of the performance of the Bayesian network in covering present causative
pathogens by advising appropriate antimicrobial treatment.
Conclusions: By reconsidering the modelling of interactions between the random
variables in a Bayesian network using the theory of causal independence, it is possible
to refine its performance. This was clearly shown for our Bayesian network concerning
VAP, indicating that only specific noisy-threshold models might be appropriate for the
modelling of the interaction between pathogens and antimicrobial treatment with
respect to susceptibility. The results obtained also provide evidence that the noisy-OR
and noisy-AND might not always be the best functions to model interactions among
random variables.
# 2008 Elsevier B.V. All rights reserved.
1. Introduction

Establishing an accurate diagnosis and choosing
appropriate treatment for infections are desirable,
especially when it concerns critically ill patients. In
the intensive care unit (ICU) patients who depend on
respiratory support are prone to develop ventilator-
associated pneumonia, or VAP for short. Although it
is important to start antimicrobial treatment for VAP
as soon as possible, when indicated, unnecessary
antimicrobial treatment will enhance selection of
antibiotic-resistant pathogens, which may subse-
quently hamper the treatment future infections.
Since the accurate diagnostic tests for diagnosing
VAP (i.e., bronchoscopy with quantitative microbio-
logical cultures) are invasive, expensive and labour
intensive, some form of computer-based decision
support could be helpful in the process of early
diagnosis and treatment of VAP.

Previously, we have developed a computer-based
decision-support system (DSS) that is aimed at
assisting physicians with the diagnosis and treat-
ment of VAP. The model underlying the DSS consists
of a Bayesian network with an associated decision-
theoretic part. The structure as well as the condi-
tional probabilities and utilities were elucidated
with the help of two infectious-disease specialists
(IDS). The resulting decision-theoretic model, or
influence diagram, was translated into a Bayesian
network, and this is the model currently used (cf.
Ref. [1] for details concerning the model and the
construction process of the model). The probability
of VAP is computed using the diagnostic part of the
Bayesian network. In addition, the therapeutic part
of the network can be used to determine the best
possible combination of antibiotics.

When prescribing antimicrobial treatment a phy-
sician intends to cover all microorganisms causing
the infection, using an antibiotic with the narrowest
possible spectrum. This policy aims at preventing
antibiotic resistance and at saving costs [2]. This was
already taken into account when constructing the
DSS, described in more detail in Ref. [1]. To cover as
many pathogens as possible by the antibiotic treat-
ment advised by the DSS, a noisy-AND probabilistic
model was used in the Bayesian network for the
modelling of the probabilistic interactions of the
effects of the prescribed antibiotics on the patho-
gens, taking into account colonisation by those
pathogens. However, this approach yielded antibio-
tic choices that were considered much too broad.

The start of the current research reported in this
paper is an analysis of the reason of this behaviour of
the model, and a number of alternatives to define
this particular conditional probability distribution
are studied. As the noisy-AND is a special case of the
more general class of probabilistic models based on
the Boolean threshold functions, Boolean functions
that are defined in terms of the number of truths
among Boolean values, it is also studied theoreti-
cally what happens when the AND is replaced by a
threshold function. The resulting probabilistic mod-
els are called noisy-threshold models [3,4]. Argu-
ments are presented why we expect that a noisy-
threshold model might work better than the noisy-
AND. Finally, behaviour of the various noisy-thresh-
old probabilistic models is investigated by replacing
the noisy-AND used, using data of patients with VAP
from the ICU of the University Medical Center,
Utrecht. It is also investigated whether the thera-
peutic performance of the Bayesian network for VAP
improves in this way.

Although we focus on an actual clinical problem—
the prescription of antibiotics for patients with VAP
— this problem can be seen as an instance of a
common and important problem in medicine: the
modelling of the effectiveness of treatment. In this
sense, the results achieved here have a bearing on a
clinical area wider than infectious disease.

The paper is organised as follows. In the next
section, our earlier work on the development of a
Bayesian network that is able to assist physicians in
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Figure 1 Abstractmodel of the Bayesian network for the
management of VAP. Colonisation and VAP play a central
role in this model. The duration of hospitalisation and
mechanical ventilation influence colonisation (col.) of the
patient. PA: Pseudomonas aeruginosa; HI: Haemophilus
influenzae; SP: Streptococcus pneumoniae; Ent{1,2}:
Enterobacteriaceae{1,2}; SA: Staphylococcus aureus;
AC: Acinetobacter spp. Each pathogen is susceptible (sus-
cept.) to particular antibiotics and an optimal coverage of
pathogens is what the model aims to achieve. The dura-
tion of mechanical ventilation, immunological status and
colonisation influence the development of VAP. When a
patient is diagnosed with VAP, the patient often has
symptoms such as an increased body temperature. Boxes
denote entities or processes which are observed; pro-
cesses that change or can be changed are denoted by
ellipses.
the diagnosis and treatment of VAP is briefly
reviewed. In Section 3, the mathematical principles
of causal independence models are discussed and
noisy-threshold models are introduced. Further-
more, three different models of antimicrobial cov-
erage are constructed and analysed. In Section 4,
the data and methods used in evaluating the Baye-
sian networks incorporating the threshold functions
are described. The results achieved are commented
on in Section 5. The paper is rounded off by some
conclusions in Section 6.

2. A Bayesian network for the
management of VAP

Bayesian networks, or BNs for short, have been
introduced in the 1980s as a formalism to compactly
represent and reason efficiently with joint probabil-
ity distributions. Bayesian networks are in particular
well suited for the representation of causal relations
within a specific domain of expertise.

Formally, a Bayesian network B ¼ ðG; Pr Þ is an
acyclic directed graph G ¼ ðVðGÞ;AðGÞÞ with set of
vertices VðGÞ ¼ fV1; . . . ;Vng, corresponding to
random variables, here denoted by the same letters
or strings of characters, and a set of arcs
AðGÞ�VðGÞ � VðGÞ, representing statistical depen-
dences and independences among the variables. On
the set of random variables, a joint probability
distribution Pr ðVðGÞÞ is defined that is factorised
according to the structure of the graph:

Pr ðVðGÞÞ ¼
Y

V 2VðGÞ
Pr ðV jpðVÞÞ;

where pðVÞ stands for the variables corresponding
to the parents of vertex V.

In the following, we will often make use of binary
random variables. If the variable X assumes the
value ‘true’ or ‘yes’, this will be sometimes indi-
cates by x, whereas if X assumes the value ‘false’ or
‘no’, this will be indicated by : x.

The formalism of BNs supports the kind of reason-
ing under uncertainty that is typical for medicine
when dealing with diagnosis, treatment selection,
planning, and prediction of prognosis. Our clinical
domain is restricted to patients who are mechani-
cally ventilated and are at risk of developing VAP.
Entities that play an important role in the develop-
ment of VAPand that belong to the diagnostic part of
the Bayesian network for VAP include: the duration
of mechanical ventilation, the amount of sputum,
radiological signs, i.e., whether the chest radio-
gram shows signs of an infection, body temperature
of the patient and the number of leukocytes (white
blood cells) [5]. The structure of the Bayesian net-
work for VAP is shown in Fig. 1. Mechanically venti-
lated ICU patients become colonised by bacteria.
When colonisation of the lower respiratory tract
occurs within 2—4 days after intubation, this is
usually caused by antibiotic-sensitive bacteria,
whereas after one week of intubation often anti-
biotic-resistant bacteria are involved in colonisation
and infection. Such infections are more difficult to
treat and immediate start of appropriate treatment
in case of infection is, therefore, important. Dura-
tion of hospital stay and severity of illness are
associated with an increased risk of colonisation
and infection with Gram-negative bacteria. We
modelled seven groups of microorganisms, each
by one vertex in the Bayesian network, and the
pathogenicity, i.e., the influence of that particular
microorganism on the development of VAP, was
included in the model. The presence of certain
bacteria is influenced by antimicrobial therapy;
however, a microorganism is susceptible only for
particular antibiotics. Susceptibility, in this case,
is stated as the sensitivity to or degree to which a
microorganism is affected by treatment with a spe-
cific antibiotic. The susceptibility of each microor-
ganism was taken into account while constructing
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the model. The infectious-disease experts assigned
utilities, by definition quantitative measures of the
strength of the preference for an outcome [6], to
each combination of microorganism(s) and antimi-
crobial drug(s) using a decision-theoretic model.
These variables are included in the therapeutic part
of the Bayesian network for VAP.

3. Causal independence modelling

Causal independence is a popular means to facil-
itate the specification of conditional probability
distributions Pr ðVijpðViÞÞ involving many parent
variables pðViÞ. Its basic principles and some special
forms are briefly discussed below.

3.1. Basic principles

Consider the conditional probability distribution
Pr ðEjC1; . . . ;CnÞ, where the variable E stands for
an effect, e.g., coverage, and the variables
Cj; j ¼ 1; . . . ; n, denote causes, e.g., colonisation
by pathogens in combination with treatment by
means of antibiotics. By taking a number of assump-
tions into account, which are summarised in Fig. 2,
it is possible to simplify the specification of
Pr ðEjC1; . . . ;CnÞ. These assumptions are: (1) the
causes Cj are assumed to be mutually independent,
and (2) the variable E is conditionally independent
of any cause variable Cj given the intermediate
variables I1; . . . ; In. In our domain the intermediate
variable I j stands for susceptibility of pathogenj to a
specific antibiotic. Using basic probability theory, it
follows that:

Pr ðejC1; . . . ;CnÞ ¼
X
I1;...;In

Pr ðejI1; . . . ; InÞ
Yn
j¼1

Pr ðI jjCjÞ:

(1)

Now, if we assume that the probability distribu-
tion Pr ðEjI1; . . . ; InÞ that is specified for variable
E expresses some deterministic function
f : I1 � � � � � In! E, with I j; E 2f? ;>g, called an
interaction function, an alternative formalisation is
Figure 2 Causal independence model.
possible. Using the interaction function f and the
causal parameters Pr ðI jjCjÞ, it follows that [7,3,8]:

Pr ðejC1; . . . ;CnÞ ¼
X

fðI1;...;InÞ¼e

Yn
j¼1

Pr ðI jjCjÞ: (2)

The result is called a causal independence model
[7,9,3]. In this paper we assume that the function f
in Eq. (2) is a Boolean function. The consequences
are that instead of a specification of a conditional
probability distribution that is exponential in size,
one only needs to specify a conditional probability
distribution in terms of a linear number of para-
meters Pr ðI jjCjÞ and a Boolean function f.

Systematic analyses of the global probabilistic
patterns in causal independence models based on
restricted Boolean functions were presented in Refs.
[3,10]. There are 22

n
different n-ary Boolean func-

tions [11,12]; thus, the potential number of causal
interaction models is huge. If we assume that the
order of the cause variables does not matter, the
Boolean functions become symmetric; formally, an
interaction function f is called symmetric if [12]

fðI1; . . . ; InÞ ¼ fðI j1 ; . . . ; I jnÞ

for any index function j : f1; . . . ; ng!f1; . . . ; ng
[12]. The number of different Boolean function
reduces then to 2nþ1. Examples of symmetric binary
Boolean functions include the logical OR, AND,
exclusive OR and bi-implication. An example of a
general, possibly non-binary, symmetric Boolean
function is the exact Boolean function ek, which is
defined as follows [12,3]:

ekðI1; . . . ; InÞ ¼
> if

Xn
j¼1

nðI jÞ ¼ k

? otherwise

8><
>: (3)

with k2N, and

nðIÞ ¼ 1 if I ¼ >
0 otherwise

�

where > stands for ‘true’, and ? for ‘false’. Sym-
metric Boolean functions can be decomposed in
terms of the exact functions ek as follows [12]:

fðI1; . . . ; InÞ ¼
_n
k¼0

ekðI1; . . . ; InÞ ^ gk (4)

where gk are Boolean constants only dependent of
the function f. Using this result, the conditional
probability of the occurrence of the effect E given
the causes C1; . . . ;Cn can be decomposed in terms of
probabilities that exactly l amongst the intermedi-
ate variables I1; . . . ; In are true, as follows:

Pr ðejC1; . . . ;CnÞ ¼
X
0�l�n

gl

X
elðI1;...;InÞ

Yn
j¼1

Pr ðI jjCjÞ: (5)
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Figure 3 Prototypical structure for investigating out-
come of medication M, based on the susceptibility of the
causal factors Cj to that medication. The meaning of the
used abbreviations is as follows: Cj: causal factor j; S j:
susceptibility to medication; M: treatment by antimicro-
bial medication; O: overall outcome. The variable O is
taken as a measure of success of the treatment.
Thus, Eq. (5) yields a general formula to compute the
probability of theeffect in terms of exact functions in
any causal independencemodelwhere an interaction
function f is a symmetric Boolean function.

The interaction among variables modelled by the
susceptibility, or coverage variables, as shown in
Fig. 1, was modelled by assuming f to be a logical
AND. The resulting probabilistic model
Pr ðEjC1; . . . ;CnÞ is usually called the noisy-AND
model, or noisy-AND for short. The probability dis-
tribution of the variable that represents the overall
susceptibility (coverage in Fig. 1), models the con-
junctive effect of the sevendifferent pathogens. This
principle is modelled by a probability distribution
Pr ðEjC1; . . . ;CnÞ that is defined as in Eq. (1) by the
noisy-AND, yielding the following equation:

Pr ðcoveragejColonisation1; . . . ;Colonisationn;

AntibioticsÞ

¼
Yn
j¼1

Pr ðsusceptibility-pathogen jjColonisation j;

AntibioticsÞ:

By adopting this modelling approach, the net-
work attempts to cover all pathogens in choosing
appropriate antimicrobial treatment. As revealed in
our dataset, patients were colonised by at most 3
pathogens. Therefore, covering all 7 possible groups
of pathogens is simply too much and results, most of
the time, in antimicrobial treatments that are too
broad. Furthermore, in modelling the effect of
antibiotics on the susceptibility, one also needs to
express what effect the absence of colonisation has
in the absence or presence of antimicrobial treat-
ment. In the next section, both issues will be
explored in detail. Both issues have raised doubts
on the appropriateness of the noisy-AND for the
modelling of interactions concerning coverage of
bacteria by antibiotics.

As themethods which are developed subsequently
are generic, a slightlymore general terminology than
theoneabovewill beadopted. Thus, in the following,
‘coverage’ will be abbreviated to O (outcome), ‘sus-
ceptibility-pathogenj’ by S j (susceptibility),
‘Colonisation j’ by Cj (causal factor) and ‘Antibiotics’
by M (medication), i.e., the conditional probability
distribution that is studied is of the form

Pr ðOjC1; . . . ;Cn;MÞ: (6)

3.2. Bayesian network coverage models

As argued in Section 1, it is generally felt that
clinicians could be more careful in the prescription
of antibiotics as they tend to prescribe antibiotics
that are either not needed or have a too broad
spectrum [13]. A symmetric Boolean function that
is useful in designing a generalised version of the
noisy-AND is the threshold function tk, which simply
checks whether there are at least k trues among its
arguments; it is defined as follows:

tkðI1; . . . ; InÞ ¼
> if

Xn
j¼1

nðI jÞ� k

? otherwise

8><
>:

where again nðI jÞ equals 1 if I j equals > (true) and 0
otherwise [12]. Let us denote a conditional probabil-
ity of the effect E given causes C1; . . . ;Cn in a noisy-
threshold model with interaction function tk as
Pr tk
ðejC1; . . . ;CnÞ. Then, from Eq. (5) it follows that:

Pr tkðejC1; . . . ;CnÞ ¼
X
k�l�n

X
elðI1;...;InÞ

Yn
j¼1

Pr ðI jjCjÞ: (7)

Note that the Boolean AND corresponds to the
threshold function tk with k ¼ n, whereas the Boo-
leanOR is a threshold functionwith k ¼ 1. Hence, the
ANDandORcanbeseenas theextremesofa spectrum
of Boolean functions based on the threshold function.

The prototypical structure that can be used to
model the outcome O of medication M on the causal
factors Cj is shown in Fig. 3; it offers a possible way
to model the conditional probability distribution of
Formula (6). The resulting decomposition then has
the following form:

Pr tkðojC1; . . . ;Cn;MÞ ¼
X
k�l�n

X
elðS1;...;SnÞ

Yn
j¼1

Pr ðS jjCj;MÞ:

(8)

There are various choices possible for the condi-
tional probability distributions

Pr ðS jjCj;MÞ (9)
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that are associatedwith the vertex S j (susceptibility)
indicated in Figure 3. Let us for simplicity’s sake
assume thatM takesonly twovalues: ‘no’ (sometimes
indicatedby :m),which corresponds to the situation
where no treatment is given, and ‘yes’ (sometimes
indicated by m), which corresponds to the situation
that drugs are given that influence some susceptibil-
ities S j. For the example, we also assume this prob-
ability distribution to be deterministic, which
normally will not hold in real life. One way to define
the probability distribution (9) is as follows:

Pr ðs jjCj;MÞ ¼
0 ifCj ¼ yes;M ¼ no
1 otherwise

�

Figure 4 Comparison of the three different susceptibility
microorganism, where each subfigure includes the results of th
t2 (Coverage_2) and t1 (Coverage_OR). To the left are show
to give nomedication; to the right are shown themarginal prob
infection is given. (a) Susceptibility I model; colonisation by 1
colonisation by 1 microorganism, effective medication. (c) Su
medication]. (d) Susceptibility II model; colonisation by 1 m
colonisation by 1 microorganism, no medication. (f) Susceptib
medication.
We call this definition the ‘susceptibility I
model’. The implication of this definition is that
treatment is always successful in the absence of the
causal factors, such as the absence of colonisation in
the case of VAP. Although this may seem natural at
first sight, a disadvantage is that when optimising
the medication, it is likely that causal factors that
have no effect, will have a major influence on the
choice of medication. In case of VAP this means that
absence of colonisation is consistent with medica-
tion.

Another way to model susceptibility might be
to change the probability distribution above by
models, assuming that the patient is colonised by one
ree threshold interactions functions: t3 (Coverage_AND),
n the marginal probability distributions when the choice is
ability distributions when effectivemedication against the
microorganism, no medication. (b) Susceptibility I model;
sceptibility II model; colonisation by 1 microorganism, no
icroorganism, effective medication. (e) Susceptibility III;
ility III model; colonisation by 1 microorganism, effective
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stating that Pr ðsij : ci; :mÞ ¼ 1, whereas
Pr ðsij : ci;mÞ ¼ 0. We call this definition the ‘sus-
ceptibility II model’; it has the advantage that when
optimising medication, it is unlikely that a drug will
be selected in the absence of the causal factor.
However, a disadvantage is that the model may
select nomedication when only a few causal factors
are active, and covering the inactive causal factors
would already be optimal. In the case of VAP this
corresponds to covering absent colonisation by no
medication.
Figure 5 Comparison of susceptibility models II and III, assu
three threshold interactions functions: t3 (Coverage_AND),
that no medication or effective medication is given, resp
microorganisms, no medication. (b) Susceptibility II model;
(c) Susceptibility III model; colonisation by 2microorganisms, n
microorganisms, effective medication. (e) Susceptibility III mo
Susceptibility III model; colonisation by 2 microorganisms, ef
A third way to model likelihood of susceptibility is
to take almost the reverse of the definition above:

Pr ðs jjCj;MÞ ¼
1 ifCj ¼ yes;M ¼ yes
0 otherwise

�

We call this definition the ‘susceptibility III model’.
This implies that as long as causal factors are active,
the optimal policy is to cover those by medication.
For VAP this means coverage of the microorganisms
colonising a patient by means of appropriate treat-
ment.
ming the patient is colonised by two microorganisms, with
t2 (Coverage_2) and t1 (Coverage_OR), and assuming
ectively. (a) Susceptibility II model; colonisation by 2
colonisation by 2 microorganisms, effective medication.
omedication. (d) Susceptibility III model; colonisation by 2
del; colonisation by 2 microorganisms, no medication. (f)
fective medication.
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Another issue that should be considered concerns
the choice of the Boolean interaction function f
corresponding to the deterministic probability dis-
tribution Pr ðOjS1; . . . ; SnÞ. In the original model, we
took the logical AND as an implementation for this
probability distribution. Using the threshold function
tk with k 6¼ 1; n, may result in a more intuitivemodel.
Using a particular way of exploiting the noisy-thresh-
old functions, the network might be redesigned such
that it only covers a fixed number of the causal
factors. For the VAP model, it might, for example,
cover 1 (k ¼ 1), i.e., the noisy-OR, 2 (k ¼ 2), 3
(k ¼ 3), 4 (k ¼ 4), 5 (k ¼ 5) or 6 (k ¼ 6) of the
causative pathogens compared to the noisy-AND
gate, where all pathogens, i.e., k ¼ 7, are taken into
account. However, as the behaviour of the entire
Bayesian network model shown in Fig. 3 is not only
determined by the probability distribution
Pr ðOjS1; . . . ; SnÞ but, in addition, also by
Pr ðSijCj;MjÞ we first need to study the various beha-
viours obtained by combining various definitions of
these two conditional probability distributions. Next,
we explore the consequences of choosing a particular
combination of these two conditional probability
distributions for the case of VAP.

The behaviour of the susceptibility I model, as
shown in Fig. 4(a) and (b), indicates that no dis-
tinction is made between presence and absence of
colonisation by a particular microorganism. As a
consequence, all three threshold functions indi-
cate coverage even when the patient is only colo-
nised by one microorganism. Fig. 4(a) and (b) also
indicate that as soon as effective treatment
against the single microorganism by which the
patient is colonised is selected, the noisy-AND
concludes that it is able to cover all, i.e., both
microorganism by which the patient is and is not
colonised.

The results for the susceptibility II model with no
medication, as shown in Fig. 4(c), are identical to
those of Fig. 4(a). However, as medication is no
longer assumed to cover microorganisms by which
the patient has not been colonised, the noisy-AND
and noisy-t2 models indicate failure of coverage.
This behaviour is identical to the probabilistic beha-
viour shown in Fig. 4(f).

As shown in Fig. 5(b) and (d), the susceptibility II
and III models also give identical results if the
patient is colonised by two microorganisms and
being appropriately treated. However, as Fig. 5(a)
and (c) indicate, the susceptibility II model indicates
coverage of the single microorganism by which the
patient has not been colonised when no medication
is given, whereas the susceptibility III model indi-
cates failure. Clearly, the susceptibility II model
encodes a sort of symmetry between no treatment
in the absence of colonisation and treatment in the
presence of colonisation, where the susceptibility III
model is asymmetric and incorporates the implicit
assumption that it is unlikely that patients are
completely uncolonised and that taking this situa-
tion into account is therefore unnecessary. The
susceptibility model III also clearly indicates prob-
able coverage of microorganisms, as shown in
Fig. 5(f) in the vertex concerning the noisy-AND,
which appears to be another advantage.

Probability distributions Pr ðEjC1; . . . ;CnÞ defined
in terms of Boolean threshold functions using the
same probabilistic parameters Pr ðIkjCkÞ have the
following important property (Monotonicity):

Pr tkðejC1; . . . ;CnÞ� Pr tkþ1ðejC1; . . . ;CnÞ (10)

for each nonnegative integer k, where again Pr tk
is a

probability distribution defined in terms of the
threshold function tk. The proof follows directly
from Eq. (7), as according to this equation

Pr tkðejC1; . . . ;CnÞ þ
X

ekþ1ðI1;...;InÞ

Yn
j¼1

Pr ðI jjCjÞ

¼ Pr tkþ1ðejC1; . . . ;CnÞ;

and
P

ekþ1ðI1;...;InÞ
Qn

j¼1 Pr ðI jjCjÞ� 0. This property is
consistent with the probabilities of coverage
depicted in the bar charts in Figs. 4 and 5, as the
probability for the noisy-AND is never above that for
t2, which is never above that for the noisy-OR.

In the following we therefore investigate proper-
ties of the threshold function, and subsequently
study its use in improving the Bayesian network
model shown in Fig. 1.

3.3. Counting functions

So far we have assumed that the probability dis-
tributions

Pr ðOjS1; . . . ; SnÞ
are defined as single big tables. However, it is
possible to decompose these probability distribu-
tions using a basic property of symmetric Boolean
functions [12]. The values of a symmetric Boolean
function can be represented as a vector ðv0; . . . ; vnÞ
such that fðI1; . . . ; InÞ ¼ vi if I1 þ � � � þ In ¼ i. This
means that it suffices to count the number of trues
in the arguments of f, interpreting ‘true’ arithme-
tically as 1 and ‘false’ as 0, and this can be done
incrementally, as addition is commutative and
associative: I1 þ � � � þ In ¼ ð � � � ððI1 þ I2 þ I3Þ þ � � �
þIn�1Þ; InÞ ¼ i. The probability distribution that
corresponds to this counting is defined in terms
of the following conditional probability distribu-
tions:
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Pr ðO1 ¼ nðI1; I2ÞjI1; I2Þ ¼ 1

Pr ðO2 ¼ nðO1; I3ÞjO1; I3Þ ¼ 1

..

.

Pr ðOn�2 ¼ nðOn�3; In�1ÞjOn�3; In�1Þ ¼ 1

Pr ðOn�1 ¼ vijOn�2; InÞ

¼
1 if nðOn�2; InÞ ¼ i

0 otherwise

�

Figure 6 Decomposition of the conditional probability
distribution Pr ðOjS1; . . . ; SnÞ.
Note that the last variable, On�1�O, is binary,
whereas the other Ok variables, 1 � k � n� 2, take
values from the set f0; . . . ; nðok�1; ikþ1Þg, where ok�1
indicates the maximum value of the random vari-
Figure 7 Example Bayesian network implementation of th
probabilities for 2 observations. (b) Posterior probabilities fo
able Ok�1. The resulting Bayesian network struc-
ture, when the susceptibility variables Sk are
taken as the intermediate variables Ik, is shown in
Fig. 6.

For a threshold function tk it is only necessary
that random variables take values out of the set
f0; 1; . . . ; kg, as when the maximum k is reached,
PrðOjS1; . . . ; SnÞ ¼ 1. An example is shown in Fig. 7.

4. Validation

The usefulness of the methods described above has
been investigated for the Bayesian network con-
cerning VAP, using data of actual ICU patients.
The characteristics of the data are described in
the next section, after which we return to the
problem of the prescription of antibiotics to
patients with VAP.

4.1. ICU data

We used a temporal database with 17,710 records,
each record containing data of a period of 24 h of a
mechanically ventilated patient admitted to the ICU
of the University Medical Center Utrecht between
1999 and 2002. The database contains information
of 2233 distinct patients. For 157 of these 2233
patients, a VAP was diagnosed according to the
judgement of two infectious-disease specialists,
which was subsequently considered as the reference
standard. Four of 157 patients with VAP were
e decomposition of threshold function t3. (a) Posterior
r 3 observations.
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excluded from analyses, as these infections were
caused by a type of pathogen that was not modelled
in the Bayesian network model. The distribution of
all monobacterial (caused by one pathogen) and
polymicrobial (caused by 2 or more pathogens)
infections among patients with VAP is shown in
Table 1.

4.2. Methods

In order to improve the therapeutic performance
of the Bayesian network, the network was
inspected in detail. Points for possible improve-
ment that were identified included the way prob-
able pathogen coverage by antibiotics was
modelled for the assessment of the conditional
probability distribution

Pr ðCoveragejColonisation1; . . .

Colonisation7;AntibioticsÞ;

as described in detail in Section 3.
Prescribing antibiotics that cover all likely patho-

gens is not an easy task for non-specialists. Normally,
a fixed list of antimicrobials to which pathogens are
susceptible, so-called susceptibility patterns, is
available. As antibiotic resistance patterns differ
between countries and even hospitals, this list may
be different for each hospital. When susceptibility
tests indicate resistance of the pathogen against
antimicrobial a, another antibiotic, or combination
of antibiotics, should be prescribed. In the model,
susceptibility probabilities were computed using
data from the Department of Medical Microbiology,
indicated that in a particular percentage of cases
pathogen p was susceptible to antibiotic a.

As described earlier, there are several types of
antibiotics; some antibiotics have a narrow spec-
trum and are effective against specific pathogens,
whereas other antibiotics have a broad spectrum,
that usually cover difficult-to-treat pathogens. In
Table 1 Reference standard: frequency of VAP-causing pa

Causative pathogens Patients with VAP

Monobacterial
N ¼ 107 episodes (70%)

Pseudomonas aeruginosa 19
Acinetobacter spp. 6
Enterobacteriaceae 1 29
Enterobacteriaceae 2 17
Staphylococcus aureus 25
Haemophilus influenzae 8
Streptococcus pneumoniae 3

Total number of pathogens 107
addition, two groups of pathogens are clinically
distinguished: early-onset and late-onset patho-
gens. The former are pathogens that colonise
patients predominantly during the first 5 days of
ICU admission, whereas the latter pathogens mainly
occur after day 6 of ICU admission. Subdividing the
pathogens modelled in our Bayesian network yields:

	 Early:
— S. aureus
— H. influenzae
— S. pneumoniae

	 Late:
— Enterobacteriaceae
— Acinetobacter spp.
— P. aeruginosa

For each pathogen, we selected the commonly
used antibiotics, modelled in the Bayesian network,
and that are highly effective according to laboratory
data. For some pathogens, there are multiple anti-
biotics that are effective. Table 2 gives a summary of
this information. For example, amoxicillin is a very
narrow-spectrum antibiotic that is effective
against–—in other words, covers–—both H. influenzae
(HI) and S. pneumoniae (SP). Furthermore, in gen-
eral, one would expect broad-spectrum antibiotics
to have better coverage numbers than narrow-spec-
trum antibiotics.

For the assessment of the covering behaviour of
the Bayesian network, the overall coverage for the
pathogens of all 153 episodes of VAP was calculated,
using different susceptibility models and threshold
functions. In particular, we explored the question
how well the model was able to cover the patho-
gens. To answer this question, the following assump-
tions were made:
1. presence of VAP was assumed, based on the

reference standard and, therefore, the VAP ver-
tex in the Bayesian-network model was always
instantiated;
thogens.

Polymicrobial
N ¼ 46 episodes (30%)

Total N ¼ 153
episodes (100%)

11 30
8 14

17 46
15 32
16 41
14 22
11 14

92 199
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Table 2 Antibiotics and their effectiveness (+). PA: P. aeruginosa; AC: Acinetobacter spp.; Ent{1,2}: Enterobacter-
iaceae; SA: S. aureus; HI: H. influenzae; SP: S. pneumoniae. Names of antibiotics are abbreviated, e.g., ‘A’ stands for
amoxicillin; antimicrobial spectrum: vn: very narrow; n: narrow; i: intermediate; b: broad.

Antibiotic Spectrum Effectiveness

PA AC Ent1 Ent2 SA HI SP

A Amoxicillin vn + +
B Amoxicillin/clavulanic acid n + +
C Benzyl penicillin vn +
D Ceftazidime i + + + +
E Ceftriaxone n + + + +
F Ciprofloxacin b + + + +
G Cotrimoxazole n +
H Flucloxacillin vn +
I Meropenem b + + + + + + +
J Vancomycin vn +
K No antibiotics —
2. based on previous endotracheal culture data, the
colonisation vertices in the model were instan-
tiated to denote either the presence or absence
of particular pathogens colonising a patient.

5. Results

The results of using different threshold functions
and susceptibility models were subsequently com-
puted. The probability of coverage, which was
between 0% and 100%, denotes howwell a particular
model was able to cover the present VAP-causing
pathogens. However, these probabilities may not be
correct. For example, it might be the case that,
according to the model, there is 100% coverage of a
pathogen by an antibiotic, where in reality this
probability should be 0%.

The tables have been split up in terms of early-
and late-onset VAP, as well as by the number of VAP-
causing pathogens; Nr. 1 denotes that the patient
was infected by one pathogen (monobacterial epi-
sodes), where Nr. 2 denotes that the patient has
been infected by 2 pathogens (polymicrobial epi-
Table 3 Predicting optimal treatment for 153 patients di
guished by different number of colonising pathogens (Nr.). M

Onset Nr. Patho N Antibiotic coverage (see

A B C D

Early 2 13 100
1 SA 25

HI 8 100 100 1
SP 3 100 100 100 1

Late 2 33
1 PA 19 1

AC 6
Ent1 29 1
Ent2 17
sodes). Table 5, for example, shows the results for
the susceptibility I model for threshold functions t1
(or equivalently, the noisy-OR) and t2. In the ‘Patho’
column, the name of the pathogen is listed. The
mean coverage for the in total 13 early-onset poly-
microbial episodes of VAP when prescribing antibio-
tic B, i.e., amoxicillin-clavulanic acid, is 97.
Prescribing no antibiotics in this case would not
be advisable, as column K indicates that coverage
would then be zero.

The various definitions of Boolean threshold func-
tions, from t1 (noisy-OR), t2; . . . ; t7 (noisy-AND)
were combined with the three susceptibility models
defined above. The following tables summarise the
results obtained:

Susceptibility I model: Tables 3—8 show the
results for susceptibility model I for threshold func-
tions tk, for k ¼ 1; . . . ; 7.

Susceptibility II model: For k ¼ 1; . . . ; 5 the cov-
erage results obtained for this model are identical to
those obtained for susceptibility model III, with the
exception of the probabilities in column K, i.e., the
case when no antibiotics are prescribed, which
agnosed with VAP using the (SI, k ¼ 1; 2) model, distin-
ean coverage is specified for a selection of antibiotics.

Table 2)

E F G H I J K

100 100 0
100 100 100 100 0

00 100 0
00 100 0

100 100 0
00 100 100 0

100 100 100 0
00 100 100 100 0

100 100 100 100 0
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Table 4 Predicting optimal treatment for 153 patients diagnosed with VAP using the (SI, k ¼ 3) model, distinguished
by different number of colonising pathogens (Nr.). Mean coverage is specified for a selection of antibiotics.

Onset Nr. Patho N Antibiotic coverage (see Table 2)

A B C D E F G H I J K

Early 2 13 99 100 100 0
1 SA 25 100 100 100 100 0

HI 8 98 99 99 100 0
SP 3 100 100 100 100 100 0

Late 2 33 100 100 0
1 PA 19 100 100 100 0

AC 6 100 100 100 0
Ent1 29 100 100 100 100 0
Ent2 17 100 100 100 100 0

Table 5 Predicting optimal treatment for 153 patients diagnosed with VAP using the (SI, k ¼ 4) model, distinguished
by different number of colonising pathogens (Nr.). Mean coverage is specified for a selection of antibiotics.

Onset Nr. Patho N Antibiotic coverage (see Table 2)

A B C D E F G H I J K

Early 2 13 97 97 100 0
1 SA 25 100 95 100 96 0

HI 8 86 98 98 100 0
SP 3 93 97 67 97 100 0

Late 2 33 100 100 0
1 PA 19 100 100 100 0

AC 6 100 100 100 0
Ent1 29 99 99 100 100 0
Ent2 17 98 98 99 100 0
are always 0% for model III and 100% for model II. For
k ¼ 6; 7 the pathogen coverages for susceptibility
model II are equal to the coverages for susceptibility
model III. To save space, the outcome tables for
model II have, therefore, been omitted.

Susceptibility III model: Tables 9—14 show the
results for susceptibility model III for the various
threshold functions tk, for k ¼ 1; . . . ; 7.
Table 6 Predicting optimal treatment for 153 patients diag
by different number of colonising pathogens (Nr.). Mean co

Onset Nr. Patho N Antibiotic coverage (se

A B C D

Early 2 13 90
1 SA 25

HI 8 74 90 9
SP 3 37 90 33 8

Late 2 33
1 PA 19 9

AC 6
Ent1 29 9
Ent2 17
Note that the changes in probabilities when going
from t1 to t7 are according to the Monotonicity
Property (10), and this is thus as expected. What is
important is to look for cases where the
coverage, computed using the Bayesian network,
becomes very low, even though the antibiotics
are known to be effective according to Table 2, or
very high, even though the antibiotics are known
nosed with VAP using the (SI, k ¼ 5) model, distinguished
verage is specified for a selection of antibiotics.

e Table 2)

E F G H I J K

95 100 0
98 88 100 88 0

3 100 0
7 100 0

98 100 0
8 100 100 0

100 100 100 0
7 96 100 100 0

93 96 98 100 0



Modelling treatment effects in a clinical Bayesian network using Boolean threshold functions 263

Table 7 Predicting optimal treatment for 153 patients diagnosed with VAP using the (SI, k ¼ 6) model, distinguished
by different number of colonising pathogens (Nr.). Mean coverage is specified for a selection of antibiotics.

Onset Nr. Patho N Antibiotic coverage (see Table 2)

A B C D E F G H I J K

Early 2 13 62 88 100 0
1 SA 25 85 63 100 64 0

HI 8 71 73 78 100 0
SP 3 33 50 33 53 100 0

Late 2 33 91 99 0
1 PA 19 97 97 99 0

AC 6 98 98 100 0
Ent1 29 91 82 100 100 0
Ent2 17 67 94 89 99 0

Table 8 Predicting optimal treatment for 153 patients diagnosed with VAP using the (SI, k ¼ 7) (noisy-AND gate)
model, distinguished by different number of colonising pathogens (Nr.). Mean coverage is specified for a selection of
antibiotics.

Onset Nr. Patho N Antibiotic coverage (see Table 2)

A B C D E F G H I J K

Early 2 13 41 66 98 0
1 SA 25 49 24 97 24 0

HI 8 46 60 62 98 0
SP 3 33 33 36 33 95 0

Late 2 33 68 92 0
1 PA 19 70 85 81 0

AC 6 90 75 100 0
Ent1 29 69 64 88 100 0
Ent2 17 12 78 66 91 0

Table 9 Predicting optimal treatment for 153 patients diagnosed with VAP using the (SIII, k ¼ 1) (noisy-OR gate)
model, distinguished by different number of colonising pathogens (Nr.). Mean coverage is specified for a selection of
antibiotics.

Onset Nr. Patho N Antibiotic coverage (see Table 2)

A B C D E F G H I J K

Early 2 13 96 97 100 0
1 SA 25 94 72 100 72 0

HI 8 94 99 99 100 0
SP 3 71 97 65 97 100 0

Late 2 33 96 100 0
1 PA 19 85 91 88 0

AC 6 92 81 100 0
Ent1 29 88 89 96 100 0
Ent2 17 48 98 90 96 0

Table 10 Predicting optimal treatment for 153 patients diagnosed with VAP using the (SIII, k ¼ 2) model, distin-
guished by different number of colonising pathogens (Nr.). Mean coverage is specified for a selection of antibiotics.

Onset Nr. Patho N Antibiotic coverage (see Table 2)

A B C D E F G H I J K

Early 2 13 67 72 85 0
1 SA 25 42 25 67 28 0

HI 8 31 34 41 50 0
SP 3 27 47 0 43 67 0
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Table 10 (Continued )

Onset Nr. Patho N Antibiotic coverage (see Table 2)

A B C D E F G H I J K

Late 2 33 67 79 0
1 PA 19 22 26 28 0

AC 6 13 8 17 0
Ent1 29 22 10 28 31 0
Ent2 17 23 40 37 46 0

Table 11 Predicting optimal treatment for 153 patients diagnosed with VAP using the (SIII, k ¼ 3) model, distin-
guished by different number of colonising pathogens (Nr.). Mean coverage is specified for a selection of antibiotics.

Onset Nr. Patho N Antibiotic coverage (see Table 2)

A B C D E F G H I J K

Early 2 13 32 42 54 0
1 SA 25 19 0 31 0 0

HI 8 1 31 23 38 0
SP 3 0 27 0 23 63 0

Late 2 33 17 29 0
1 PA 19 6 11 13 0

AC 6 0 0 0 0
Ent1 29 10 6 14 16 0
Ent2 17 16 24 22 28 0

Table 13 Predicting optimal treatment for 153 patients diagnosed with VAP using the (SIII, k ¼ 5) model, distin-
guished by different number of colonising pathogens (Nr.). Mean coverage is specified for a selection of antibiotics.

Onset Nr. Patho N Antibiotic coverage (see Table 2)

A B C D E F G H I J K

Early 2 13 0 2 7 0
1 SA 25 0 0 4 0 0

HI 8 0 0 0 11 0
SP 3 0 0 0 0 0 0

Late 2 33 0 0 0
1 PA 19 0 0 0 0

AC 6 0 0 0 0
Ent1 29 0 0 1 3 0
Ent2 17 0 2 2 5 0

Table 12 Predicting optimal treatment for 153 patients diagnosed with VAP using the (SIII, k ¼ 4) model, distin-
guished by different number of colonising pathogens (Nr.). Mean coverage is specified for a selection of antibiotics.

Onset Nr. Patho N Antibiotic coverage (see Table 2)

A B C D E F G H I J K

Early 2 13 3 25 31 0
1 SA 25 4 0 12 0 0

HI 8 0 5 11 25 0
SP 3 0 0 0 7 33 0

Late 2 33 7 8 0
1 PA 19 0 0 0 0

AC 6 0 0 0 0
Ent1 29 3 3 8 9 0
Ent2 17 6 19 14 22 0
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Table 14 Predicting optimal treatment for 153 patients diagnosed with VAP using the (SIII, k ¼ 6; 7) model,
distinguished by different number of colonising pathogens (Nr.). Mean coverage is specified for a selection of
antibiotics.

Onset Nr. Patho N Antibiotic coverage (see Table 2)

A B C D E F G H I J K

Early 2 13 0 0 0 0
1 SA 25 0 0 0 0 0

HI 8 0 0 0 0 0
SP 3 0 0 0 0 0 0

Late 2 33 0 0 0
1 PA 19 0 0 0 0

AC 6 0 0 0 0
Ent1 29 0 0 0 0 0
Ent2 17 0 0 0 0 0
to be ineffective. In the next section, the clinical
implications of these results are discussed in detail.

6. Conclusions and discussion

In this paper, we have shown that by reconsidering
the modelling of interactions between the random
variables in a Bayesian network using the theory of
causal independence, it is possible to refine its
performance. We used a Bayesian network for the
diagnosis and treatment of ventilator-associated
pneumonia as an example. The advantage of the
theory of causal independence is that it not only
facilitates the assessment of probability tables by
allowing the specification of a table in terms of a
linear number of parameters of the form Pr ðI jjCjÞ,
but it also allows taking into account domain char-
acteristics in choosing the right Boolean function
[3]. This was clearly shown for our Bayesian network
concerning VAP, where motivation was derived from
the domain of infectious diseases, indicating that
only specific noisy-thresholdmodels might be appro-
priate for the modelling of the interaction between
pathogens and antimicrobial treatment with respect
to susceptibility.

As the Boolean threshold functions are examples
of symmetric Boolean functions, the exploitation of
this form of symmetry may suggest that the effects
of presence of particular pathogens are judged
equally. However, this is not the case, as the prob-
ability of being colonised by a particular pathogen
together with the susceptibility of a pathogen to
specific antibiotics determine to what extent a
pathogen-treatment combination contributes to
the overall effect. For example, the presence of
P. aeruginosa has more effect on the type of anti-
biotics to be prescribed than the presence of S.
pneumoniae, as it is in general more likely that
patients are colonised by P. aeruginosa than by
S. pneumoniae.

When using the susceptibility I model (i.e., pre-
scribing antimicrobial therapy results in coverage of
pathogens colonising as well as pathogens not colo-
nising a patient), the model always gives high cover-
age. It is counter-intuitive that even threshold
functions with high k give high coverage, as patients
are usually colonised with at most two pathogens. In
addition, this probabilistic model does not support
obtaining insight into the actual effects of the
antibiotics on the pathogens that cause the infec-
tion. This is the information a clinician would like to
obtain from a probabilistic model.

The results for susceptibility II model (i.e., when
there is no colonisation no medication should be
prescribed), however, indicate that when a patient
is colonised with, for example, 2 pathogens, the
model advises to prescribe no antimicrobial ther-
apy. This is due to dominance of the remaining
five pathogens by which the patient has not been
colonised. This is clearly undesirable for a life-
threatening disease like VAP. This model might,
therefore, be used for patients with a low likelihood
of having VAP.

Incorporation of susceptibility III model (i.e.,
when there is colonisation, cover it with antibiotics)
yields a Bayesian network that performs best at
prescribing antimicrobial therapy for monobacterial
as well polymicrobial VAP. It appeared that a thresh-
old function tk with k ¼ 1 and k ¼ 2 yielded the best
results, according to the reference standard. Using a
model that is able to combine and compare covering
results of both k ¼ 1 and 2 would be worth consider-
ing. As can be learnt from these tables, coverage
probabilities for k ¼ 1 are high for monobacterial as
well as for polymicrobial VAP, whereas for k ¼ 2
coverage probabilities for monobacterial infections
were relatively low, compared to those for polymi-
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crobial VAP episodes. Therefore, a combination
model should be used as follows:

Clearly, susceptibility model III is able to distin-
guish between monobacterial and polymicrobial
VAP, which is important for the selection of appro-
priate therapy. In addition, early-onset VAP requires
other, often more narrow-spectrum antibiotics com-
pared to late-onset VAP. These two findings that are
important to limit the creation of antibiotic resis-
tance have certain implications for the construction
of a clinical Bayesian network model for assisting in
the prescription of antimicrobial therapy.

Naturally, susceptibility model II has other impli-
cations to the selection of antimicrobial therapy, as
compared to susceptibility model I, as it accounts
for the pathogens that are absent. Therefore, the
specificity of the model predictions for selecting
antimicrobial treatment will be high for model II,
whereas for model I the sensitivity will be high.

In general, these results also provide evidence
that the noisy-OR and noisy-AND, which are very
popular in Bayesian network modelling, might not
always be the best functions to model interactions
among random variables.

Although in this paper, we have studied the use of
susceptibility models in combination with the use of
Boolean threshold functions for treatment selection
in VAP, it is likely that the techniques introduced in
this paper are also relevant to other biomedical
fields. In particular in biomedical areas where it is
relevant to consider the number of causes of disease
in selecting treatment of the disease, the methods
can be of use.

To conclude, it was shown that the noisy-thresh-
old model is useful from a practical point of view by
using it as a basis for the refinement of an existing
real-world Bayesian network for the management of
critically ill patients.
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