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Summary

Objective

The construction of genetic regulatory networks from time series gene expression

data is an important research topic in bioinformatics as large amounts of quantitative

gene expression data can be routinely generated nowadays. One of the main difficulties

in building such genetic networks is that the data set has huge number of genes but

small number of time points. In this paper, we propose a novel linear regression model

for uncovering the relations among the genes.

Methods

The model is based on the multiple regression. It takes into account of the fact that

the real biological networks have the scale-free property. Based on this property and the

statistical tests, a filter can be constructed to filter some redundant interactions among

the genes. By minimizing the distance between the observed data and the predicted

data, the model can be finally constructed.

Results
∗Preliminary version has presented in the International Conference on BioMedical Engineering and In-

formatics, 2008.



Numerical examples based on the yeast gene expression data are given to demon-

strate our method. The proposed model can fit the data quite well. Some properties

of the genes and the network are obtained. Among them, some are consistent with the

experimental results.

Conclusions

In this paper, we proposed a new multiple regression approach to model the gene-

gene interactions by taking into account the scale-free property. Numerical results

show the effectiveness of our method. The comparison with some other models which

didnot consider the scale-free property will be as one of our future research topics.

Keywords: gene regulatory network, multiple regression, power-law, statistical

tests

1 Introduction

The development of microarray technologies has dramatically accelerated the explo-

ration of living organisms at the genomic level. Huge amounts of quantitative gene

expression data can be routinely generated nowadays. From such data, the regula-

tory interactions among different genes can be inferred with suitable methods. The

difficulty in the inference process lies in the data dimensions: the huge number of

genes and the small number of time points in the time series data and also the small

number of different experiments for the steady-state data. Thus mathematical mod-

eling and computational algorithms for inferring the relations are indispensable. In

fact, many mathematical models and algorithms have been proposed for the inference



of gene networks [4, 18]. For the discrete gene expression data (expressed: 1, un-

expressed: 0), many models including Boolean Network (BN) model, Probabilistic

Boolean Network (PBN) model, multivariate Markov model etc. have been proposed

[1, 2, 6, 16, 17, 19, 20]. For the continuous expression data, clustering algorithms,

Bayesian networks and ordinary differential equations based methods have been pro-

posed for the network inference [4].

We are particularly interested in the continuous gene expression data in this paper.

Although clustering method is not a proper network inference method, it is still widely

used in the case of large volume of data. The rationale behind clustering method is that

genes in the same cluster are more likely to be functionally related to each other [10].

With such a method, the high dimensionality of genes can be reduced to many small

clusters of genes. However, such methods may not give a reasonable explanation of the

regulatory relations. Another widely used method is the Bayesian network [11, 24].

In a Bayesian network, the relationships between the genes are encoded as a directed

acyclic graph, where the parents of a gene represent its regulators. The assumption

behind Bayesian network is the Markovian assumption, which states that each gene

is independent of its non-descendants given its parents. This excludes the case that

a gene may regulate its parent and it is the major limitation of the Bayesian network

approach. To overcome this limitation, dynamic Bayesian network has been developed

to infer the interactions from the time-series data sets [24]. The Bayesian networks are

probabilistic models and the inference of the network is an NP-hard problem.

Another class of methods for inferring the gene networks from the continuous data

is the Ordinary Differential Equation (ODE) based algorithms. They are also developed



to study the gene-gene interactions [3, 8, 12, 22]. Such approaches can describe gene

regulations and result in directed graphs and they can be applied to both steady-state

and time-series expression profiles. The models can be applied to predict the behavior

of the network under different conditions. To infer such models, different kinds of

regression methods have been applied. The usual ODE model is:

ẋi(t) =
n∑

j=1

aijxj(t) + biu(t), (1)

where i = 1, 2 . . . , n, t = 1, 2, . . . , m, n is the number of genes and m is the number of

time points. Here xi(t) is the concentration of Transcript i at time point t and ẋi(t) is

the rate of change of concentration of Gene i at time t. The parameter aij represents the

influence of Gene j on Gene i and bi represents the effect of the external perturbation

on xi and u(t) represents the external perturbation at time t. In Gardner et al. [12],

the Network Identification by multiple Regression (NIR) was proposed to compute aij

from the steady-state gene expression data (ẋ(t) = 0). It requires the knowledge about

which genes have been directly perturbed in each perturbation experiment. And the

number of input genes is determined by the users. The Mode-of-action by Network

Identification (MNI) [9] is similar to the above method. The Time Series Network

Identification (TSNI) algorithm [3] is proposed to identify the networks from the time

series data. All these methods are restricted to the use of perturbations. When inferring

the model, the u(t) is assumed to be known, which is determined when generating the

data sets. In van Someren et al. [21], a Least Absolute Regression Network Analysis

(LARNA) method is proposed. They assume the following model:

Xt+1 = AXt + ε, t = 1, 2, . . . , m. (2)



Here ε is used to model the noise and each entry aij of A is used to model the influence

of the expression of Gene j at time t on the Gene i at time t + 1. To get a good

estimate of A, instead of solving a Least Square (LS) problem which minimizes the

errors between the observed data and the predicted data, a penalty term is added. This

term is used to balance the data fit term and limit the connectivity among the genes,

which only assumes the interactions among the genes are sparse.

The difficulty of applying the ODE based models lies in estimation of the interac-

tion coefficients. It is well known that many real biological networks have the scale-free

property (i.e. the degree approximately follows a power-law distribution) [5]. More

precisely, it is observed that in a gene regulatory network, the out-degree distribution

follows a power-law and the in-degree distribution follows Poisson distribution [14].

However, all the above approaches have not considered such distributions when infer-

ring a genetic regulatory network. In this paper, we take into account such properties.

We propose to use a linear model similar to the model in van Someren et al. [21] for

modeling the relations among the genes by using the multiple regression method. The

scale-free properties are employed in the design of a filter. Such a filter is applied to

filter (remove) the small nonzero entries in matrix A so that the estimated gene-gene

connections matrix A will have the property that the number of nonzero entries in each

row follows the Poisson distribution and the the number of nonzero entries in each

column follows the power-law. Two statistical tests: t-test and χ2-test are applied to

test the power-law distribution and the Poisson distribution respectively. The Least

Square (LS) method with regularization is applied to get the estimate of the filter and

the estimate of the matrix A based on the obtained filter.



The rest of the paper is organized as follows. In Section 2, we present the method-

ology which includes the proposed model and the model inference. In Section 3, nu-

merical examples based on the yeast data are given to illustrate the method. Finally,

conclusions are given in Section 4 to address further research issues.

2 Methodology

2.1 The Linear Model

In this subsection, we present the linear model. We assume the interactions among the

genes can be described by the following linear model:

Xt+1 = AXt + εt, for 1 ≤ t ≤ m. (3)

Here Xt is an n× 1 vector describing the expression level of n different genes at time

t. A is an n × n matrix, where each entry aij , i = 1, 2, · · · , n; j = 1, 2, · · · , n of A

models the regulatory ability of Gene j to Gene i. εt is used to model the noise at

time t. Given the gene expression levels of the n genes at m time points, we get the

following linear equations:

[Xm, Xm−1, · · · , X2] = A[Xm−1, Xm−2, · · · , X1] + [εm−1, εm−2, · · · , ε1], (4)

For the ease of discussion, we write the linear system (4) as:

Y = AX + ε, (5)

where

Y = [Xm, Xm−1, · · · , X2], X = [Xm−1, Xm−2, · · · , X1], ε = [εm−1, εm−2, · · · , ε1].

(6)



We denote yT
k to be the k-th row of Y and aT

k to be the k-th row of A, where MT

denotes the matrix transpose of M . Then, by simple observation, we have

yT
k = aT

k X or yk = XT ak. (7)

The latter form now looks like the standard form of the multiple linear regression for

the coefficients of ak. We note that XT is an (m − 1) × n matrix where m − 1 is

often much smaller than n. This means that the normal regression does not work as the

matrix

(XT )T XT = XXT

has rank smaller than or equal to m− 1 and is therefore singular. To give a reasonable

estimate of the matrix A, here we consider using the singular value decomposition of

the matrix XT [13], XT = UΣV T , where U and V have orthonormal columns ui

(left singular vectors) and vi (right singular vectors), and Σ is a diagonal matrix with

diagonal entries σi ≥ 0, which are assumed to be arranged in descending order. A

large family of estimates ak can be expressed as a linear combination of right singular

vectors vi,

ak =
rank(XT )∑

i=1

fi × uT
i yk

σi
× vi. (8)

We note that for the least squares estimate ‖yk − XT ak‖2, the filter factors are

identically equal to one, fi = 1, for all i. Expressing the least squares estimate in

terms of the singular value decomposition makes manifest that errors of order ε in

the yk typically result in errors of order ε/σmin in the estimate ak, where σmin is the

smallest nonzero singular value. Since the matrix XT is rank deficient, the estimate

with filter factors fi = 1 is the least squares estimate with minimum norm ‖ak‖2.



If the matrix XT has small singular values, regularization methods stabilize the

least squares estimates by filtering out the contributions of right singular vectors vi that

are associated with the small singular values σi. Thus we can consider minimizing the

function

‖yk −XT ak‖22 + λ2‖ak‖22, (9)

which is the Tikhonov regularization [15]. Usually λ is taken to be between 0 and 1.

The filter factors are [15]

fi =
σ2

i

σ2
i + λ2

(10)

This filter function decays smoothly from fi ≈ 1 for σi À λ to fi ≈ 0 for σi ¿ λ; i.e.,

right singular vectors with singular values smaller than λ are effectively filtered out.

After solving the above minimization problems depending on the singular values

of the matrix XT , we can get the estimate of the matrix A denoted as A(1) . How-

ever, the matrix A(1) can be dense and this is not consistent with the properties of a

biological network since the actual underlying gene network should not have many

nonzero entries. To get a consistent estimate of the matrix A, some nonzero entries

need to be filtered. We call this process a “filtering process”. We fix a certain percent-

age of nonzero entries based on the relative magnitude of A(1). The actual procedure

is that we first normalize the rows of A(1), i.e., we subtract each entry by the mean

of the corresponding row and then divide each entry by the standard deviation of the

corresponding row. We denote A(2) to be the normalized form of A(1). Here when the

magnitude of the entries of A(2) is below a certain threshold, it is regarded as zero. Oth-

erwise, it is regarded as one. All these nonzero entries reflect the connectivity among

the genes. To determine the threshold, we use some statistical methods based on the



properties of the gene regulatory network. Starting from zero, we choose the minimum

percentage which can make the matrix A have the given probability distributions. The

details of the filter design will be addressed in the following subsection. Now, a filter

A(3) of size n × n is obtained. The matrix A(3) reflects the connections among the

genes. To get the regulatory abilities among the genes, we need to solve the minimiza-

tion problem again based on the filter. Given the position of all the nonzero entries in

the matrix A which is same as that in the matrix A(3), we need to solve the original

optimization problem again to obtain a new estimation, we denote this solution A(4),

which is the final solution of A.

2.2 The Filter Design

To design the filter, we note that in a genetic network, there are important properties of

the in-degree and out-degree of a gene. It is well-known that the in-degree follows the

Poisson distribution while the out-degree follows the power-law, i.e., the out-degree to

some negative power. These provide useful criteria for determining the percentages of

nonzero entries in the matrix A(2).

Since the in-degree distribution follows the Poisson distribution:

f(k) =
e−λλk

k!
, k = 0, 1, 2, . . . (11)

to test whether the distribution of the in-degree of the filter follows it or not, we carry

out the χ2 Goodness-of-fit test. We choose 5 bins for the test according to the following

rules:

(i) if the floor of the mean number of in-degree, denoted by k, is greater than 2, the



bins k−2, k−1, k, k+1 and the remaining possibilities (0 to k−3 and≥ k+2)

are chosen.

(ii) otherwise the bins 0, 1, 2, 3 and ≥ 4 are chosen.

The test statistic is the following:

T1 =
5∑

i=1

(Oi − Ei)2

Ei
(12)

which follows the χ2 distribution with degree of freedom 4 − 1 = 3 as the parameter

λ has to be estimated from the data. In Equation (12), Oi is the observed frequency

in Bin i and Ei is the expected frequency in Bin i. The p-value is calculated with the

formula Pr{X ≥ T1}. The bigger the p-value, the less likely that the in-degree follows

the Poisson distribution.

Similarly we can test the out-degree distribution and the statistical test is more

straightforward. We first take logarithm on both the frequency and out-degree. We

then perform a simple linear regression analysis on the transformed data. Then we test

for the null hypothesis that the slope (β) is zero, i.e., the transformed data has no linear

relationship, consequently the original data does not follow the power-law. We remark

that other statistical method such as the Coefficient of Determination (R2) can also be

used. The test statistics in our case here is

T2 =
β̂

SE(β̂)
(13)

where

SE(β̂) =

√ ∑s
i=1(yi − ŷi)2

(s− 2)
∑s

i=1(xi − x)2
.

Here β̂ is the estimated slope using regression analysis, s is the number of data points,

ŷi is the estimate of yi using the regressed linear relation and the data xi and x (the



mean of the data xi). The test statistics follows Student-t distribution with a degree of

freedom s− 2. The p-value of this test is 2Pr{X ≥ T2}. The smaller the p-value, the

more likely that the out-degree of the filter follows power-law.

3 Numerical Examples

In this section, we will demonstrate the procedures of our proposed algorithm. There

are 384 genes in the data set which are measured at 17 time points during two cell

cycles from yeast. All the genes are identified based on their peak times of five phases

of the cell cycle and annotated. The levels of each gene were standardized to enhance

the performance of model-based methods. The whole data set [23] can be downloaded

at ‘http://faculty.washington.edu/kayee/ model/’. The description of the genes can be

found at: ‘http://genomics.stanford.edu’.

With the singular vector decomposition to the matrix XT , we can get its singular

values. The minimum singular value is 2.3557. Thus we may use the least square

estimate to estimate the matrix A. To get the estimate of the percentage γ of nonzero

entries, the statistical tests addressed in the previous section are used. There are a

number of thresholds (percentages of nonzero entries) that fulfill the in-degree and out-

degree requirements under a significance level α of 5%, i.e., p-value of goodness-of-fit

test is higher than α and that of the t-distribution test is lower than α. Starting from

0, we set the step size to be 0.001, and iteratively to find the minimum value that can

make the gene connections have the Poisson distribution and power-law distribution.

The minimum value here we obtained is 0.124. We remark that this does not mean



that when the percentage is greater than 0.124, all the networks obtained will have the

scale-free property. We tested the percentage from 0 to 0.5, and found that when the

percentage is greater than 0.124, in most cases(about 82%), the network has the scale-

free property. Since the gene regulatory network should be very sparse [21], we take

the value of γ to be 0.124. To see the sparsity patterns of the matrix A, we present the

figures for γ = 0.124 and 0.180 which can also make the system have the property in

Fig. 1. The patterns of these two cases look similar to each other.

We focus on the case γ = 0.124 from now onwards. Fig. 2 and Fig. 3 show the in-

degree and out-degree distributions respectively. The in-degree follows the Poisson dis-

tribution and the out-degree follows the power-law. Table 1 and Table 2 show ten genes

with the largest out-degree and the largest in-degree. The phase where the genes are

found and their functions are also given, which are taken from:‘http://genomics.stanford.

edu/yeast cell cycle/functional categories.html’. We also listed the explanations of

these genes that can be found from GO in Table 3 and Table 4. From the out-degree

distribution, we observe that there are a few genes having important influences on many

other genes. From Table 3, we can see although some genes (YDR033w, YLR297w,

YKL066w, YBR073w) with comparatively large out-degree are unknown now. These

genes should influence many others genes and should be paid more attentions in the

later studies. From Table 4, the function of Gene YLR236c, which has the largest in-

degree is unknown either. The function of this gene may be studied starting from all its

regulatory genes.

One of the main aims in modeling the gene regulatory network is to predict the

gene activities. To illustrate the effectiveness of our proposed method, we set the initial



state of the whole system to be the state at time point 1, and then use our model to

predict the states at all the other 16 time points. We expect that our model can fit

the data very well and this is in fact the situation. We tested all the 384 genes with

the obtained model and it can fit all the data quite well. Here, we only select two

genes to show the results. Fig. 4 shows the predicted behavior and the errors for Gene

YEL018w and Gene YLR376c, which have the largest in-degree and the smallest in-

degree respectively. Thus, we can predict the behavior of all the genes in the long-term

with the proposed model.

In the paper [7], cell cycle-dependent periodicity was found for 416 transcripts. We

compared all the 384 genes with the genes listed in Table 1. of the paper [7], and found

there are 205 common genes. We predicted the evolution of all the genes with the

obtained model. Among all the 205 genes, 204 genes show the periodicity dependent

on the cell cycle, which are consistent with the results in [7]. Only one gene YNR016c

does not show the periodicity in the simulation. We show the simulation results for the

ten genes with the largest out-degree and in-degree in the Fig. 5 and Fig. 6. Fig. 7 and

Fig. 8 show the long term behavior of the above genes. The transcription level will

approach zero as the time increases.

Finally, some genes may form a closed sub-network (evolution of this system can

be determined by the genes in this network). We propose the following Algorithm (A)

to identify a sub-network with a specified gene i0. The input of the algorithm is: the

filter A(3) and the specified gene number i0. The output of the algorithm is: the genes

which can construct a sub-network including the gene i0. Using Algorithm (A), we

found that given any gene in the data set, the smallest sub-network contains 239 genes.



Algorithm (A)

Initialize Vi0 = (i0);

For each node i in Vi0 , find the indices set V such that for all j ∈ V, Ai,j 6= 0;

If j ∈ Vi0 , return;

Else Vi0 = Vi0

⋃
V ; continue;

The connections among these genes can be found from the filter.

4 Conclusions

In this paper, we proposed a multiple regression model for the network inference of

time series gene expression data. To infer the model, a filtering process is considered

first. It is based on the properties of a real gene regulatory network. This process is

to filter those redundant connections among the genes to get a good estimate of the

network structure. A minimization process is considered to get the estimate of the

influence coefficients of the gene relations. Since the number of time points is very

small compared to the number of genes, the multiple regression can fit the data very

well. Numerical examples based on the yeast data are applied to illustrate the method

and the effectiveness of the method. Although the good fitness of our model to the data

may result from the fact that there are more parameters than necessary, it also depends

on the selection of the percentage of nonzeros γ.

For our future research, we’ll compare our model with some proposed models such

as the multiple regression method by Someren et al. [21], which did not consider the

scale-free property of the network. More numerical experiments based on some other



practical data sets will be conducted to explore more interesting interactions among

the genes. Our multiple regression method can be applied to the sub-network obtained

from Algorithm A to get a more reliable network. The process can then be iterated

until it converge to a fixed sub-network.
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Figure captions:

Figure. 1: Sparsity of matrix A for γ = .124, and .180. ‘nz’ is the number of

nonzero entries in the matrix A. For these two cases, matrix A has the same pattern.

Figure. 2: In-degree distributions for all the 384 genes when γ = .124. In-degree

follows the Poisson distribution.

Figure. 3: Out-degree distributions for all the 384 genes when γ = .124. Out-

degree follows the power-law.

Figure. 4: Prediction results: the left two figures show the prediction results and

the right two figures are the prediction errors (predicted-observed). The model can fit

the given experimental data well.

Figure. 5: The periodicity of the ten genes with the largest out-degree.

Figure. 6: The periodicity of the ten genes with the largest in-degree.

Figure. 7: The long term behavior of the ten genes with the largest out-degree.

Figure. 8: The long term behavior of the ten genes with the largest in-degree.



Table 1: Ten genes with the largest out-degree. Explanations are taken from:

http://genomics.stanford.edu/ yeast cell cycle/functional categories.html

Out-degree Name of Gene Phase Function Explanation

274 YBL002w S DNA replication

274 YPL187w Late G1 mating pathway

271 YDR033w Early G1 unknown function

266 YLR297w M unknown function

262 YLR254c Early G1 unknown function, hypothetical protein

261 YKL066w S unknown function, hypothetical protein

257 YPL256c Late G1 cell cycle regulators

255 YBL003c S DNA replication

253 YBR073w Late G1 miscellaneous

251 YPL127c Late G1 transcription, unknown/complex phenotype



Table 2: Ten genes with the largest in-degree. Explanations are taken from:

http://genomics.stanford.edu/ yeast cell cycle/functional categories.html

In-degree Name of Gene Phase Function Explanation

61 YEL018w S unknown function, weak similarity to Rad50p

61 YLR236c Late G1 unknown function, hypothetical protein

59 YKR001c S biosynthesis

59 YKL165c Late G1 biosynthesis

59 YPL209c Late G1 chromosome, nuclear segregation

59 YLR015w Early G1 unknown function,hypothetical protein

59 YKL163w Early G1 unknown function, PIR3 protein with internal repeats

58 YLR228c S unknown function

58 YDL095w S biosynthesis

58 YDL124w Late G1 unknown function



Table 3: GO terms for the ten largest out-degree genes taken from [14]

Name of Gene GO terms

YBL002w chromatin assembly or disassembly

YPL187w pheromone-dependent signal

transduction during conjugation

with cellular fusion

YLR254c nuclear migration, microtubule-mediated

YPL256c re-entry into mitotic cell cycle after

pheromone arrest regulation of cyclin-

-dependent protein kinase activity

YBL003c chromatin assembly or disassembly,

DNA repair

YPL127c negative regulation of DNA

recombination regulation of

transcription, DNA-dependent



Table 4: GO terms of the ten largest in-degree genes taken from [14]

Name of Gene GO terms

YEL018w DNA repair

YKR001c actin cytoskeleton organization and

biogenesis peroxisome organization and

biogenesis protein retention in Golgi

(IMP) protein targeting to vacuole,

vacuolar transport

YKL165c ATP transport, GPI anchor biosynthetic

process

YPL209c attachment of spindle microtubules to

kinetochore chromosome segregation,

meiotic sister chromatid segregation

mitotic spindle disassembly, regulation

of cytokinesis

YLR015w chromatin silencing at telomere, histone

methylation telomere maintenance,

transcription

YKL163w cell wall organization and biogenesis

YLR228c sterol biosynthetic process

YDL095w protein amino acid O-linked

glycosylation

YDL124w metabolic process
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Figure 1: Sparsity of matrix A for γ = .124, and .180
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Figure 2: In-degree distributions for all the 384 genes when γ = .124
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Figure 3: Out-degree distributions for all the 384 genes when γ = .124
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Figure 4: Prediction results: the left two figures show the prediction results and the right two

figures are the prediction errors (predicted-observed)
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Figure 5: The periodicity of the ten genes with the largest out-degree
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Figure 6: The periodicity of the ten genes with the largest in-degree
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Figure 7: The long-term behavior of the ten genes with the largest out-degree
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Figure 8: The long term behavior of the ten genes with the largest in-degree


