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Objective: Signal and imaging investigations are currently key components in the diagnosis, prognosis
and follow up of heart diseases. Nowadays, the need for more efficient, cost-effective and personalised
care has led to a renaissance of clinical decision support systems (CDSSs). The purpose of this paper is to
present an effective way of achieving a high-level integration of signal and image processing methods in
the general process of care, by means of a clinical decision support system, and to discuss the advantages

gey‘fvf’rde of such an approach. From the wide range of heart diseases, heart failure, whose complexity best
Oiﬂj‘(‘)’gni:s”pport systems highlights the benefits of this integration, has been selected.

Methods: After an analysis of users’ needs and expectations, significant and suitably designed image and
signal processing algorithms are introduced to objectively and reliably evaluate important features
involved in decisional problems in the heart failure domain. Then, a CDSS is conceived so as to combine
the domain knowledge with advanced analytical tools for data processing. In particular, the relevant and
significant medical knowledge and experts’ knowhow are formalised according to an ontological
formalism, suitably augmented with a base of rules for inferential reasoning.
Results: The proposed methods were tested and evaluated in the daily practice of the physicians
operating at the Department of Cardiology, University Magna Graecia, Catanzaro, Italy, on a population
of 79 patients. Different scenarios, involving decisional problems based on the analysis of biomedical
signals and images, were considered. In these scenarios, after some training and 3 months of use, the
CDSS was able to provide important and useful suggestions in routine workflows, by integrating the
clinical parameters computed through the developed methods for echocardiographic image
segmentation and the algorithms for electrocardiography processing.
Conclusions: The CDSS allows the integration of signal and image processing algorithms into the general
process of care. Feedback from end-users has been positive.

© 2010 Elsevier B.V. All rights reserved.
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1. Introduction with the possibility to make more accurate and efficient diagnoses,

often in a non-invasive way. It is no coincidence that, during the last

Signal and imaging investigations are currently a basic compo-
nent of the diagnostic, prognostic and follow-up processes. Current
advances in diagnostic examination technologies and enhancement
of the different modalities have made it possible to obtain high-
resolution images and signals that are able to provide more and
more precise information regarding body structure and function.
These extraordinary accomplishments have provided clinicians
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decades, the development of automatic or semi-automatic proces-
sing methods has attracted a great deal of interest and effort in the
areas of medical imaging, diagnostic radiology and electrocardiog-
raphy [1], in some cases reaching the level of a practical clinical
approach. The main aim is to provide a second opinion or a second
reader that can assist clinicians by improving the accuracy and
consistency of signal and image based diagnoses [2].

In practice, the clinical interpretation of diagnostic data largely
depends on the reader’s subjective point of view, knowledge and
experience. If computer-aided methods are able to make this
interpretation reproducible and consistent, they could be funda-
mental in diagnosis, reducing subjectivity while increasing
accuracy. The presence of structure noise, or the vast amount of
data generated by some devices, can make the detection of
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potential diseases a burdensome task and can limit the reader’s
ability in data interpretation. For these reasons, computerised data
processing methods are likely to become an essential component
of applications designed to support physicians’ decision making in
their clinical workflow.

Diagnostic data interpretation can be considered as one of the
fundamental steps in the routine procedures followed by clinical
professionals when providing personalised medical regimens. The
quantity and complexity of data and information to be analysed
and managed for this task is one of the reasons behind the
renaissance of clinical decision support systems (CDSSs), whose
development, although a long-standing quest (started more than
45 years ago in the early 1960s), is experiencing a period of rapid
expansion in knowledge [3]. CDSSs can cope with the increasing
bulk of clinical data by providing an integrated approach to
analysis; in addition, they may foster adherence to guidelines,
prevent omissions and disseminate up-to-date specialist knowl-
edge to general practitioners.

This being the general setting, the purpose of this paper is to
address the integration of signal and imaging investigations with
the wide-ranging services provided by CDSS. Signal and image
processing methods may be understood and embedded as a part of
a model base of the CDSS. In such a way, it is possible to achieve an
effective high-level integration of signal and image processing
methods into the general process of care.

With the aim of avoiding unnecessary generality, this paper
addresses the specific, yet complex and paradigmatic example of
image and signal processing for decision support in heart failure
(HF). HF is a clinical syndrome, whose management requires —
from the basic diagnostic workup - the involvement of several
stakeholders and the exploitation of various imaging and non-
imaging diagnostic resources. Indeed, given the complexity of the
management of chronic HF patients, several attempts to address
the problem have been made in various research projects and have
resulted in the development of dedicated information technology
solutions, such as automated guidelines systems [4], decision
support systems [5], or machine learning methods for automated
HF diagnosis [6] or prognosis [7]. More recently, the European
project “A knowledge based platform of services for supporting
medical-clinical management of the heart failure within the
elderly population” (HEARTFAID) [8] aims at defining efficient and
effective health care delivery organisation and management
models for the optimal management of care in the chronic HF

domain. The HEARTFAID platform has been conceived as an
integrated and interoperable system, able to guarantee an
umbrella of services ranging from the acquisition and management
of raw data to the provision of effective decisional support to
clinicians [9,10]. Specifically, the core of the platform is
represented by a CDSS, which has been carefully designed by
combining innovative knowledge representation formalisms, robust
and reliable reasoning approaches, innovative methods for
diagnostic image analysis, and robust and high-performance
algorithms for signal processing.

2. Background
2.1. Clinical background

HF is a progressive disorder caused by a decreased ability of the
ventricle to fill with or eject blood and in which damage to the
heart causes weakening of the cardiovascular system [11]. It
usually manifests itself via fluid congestion or inadequate blood
flow to tissues and progresses to underlying heart injury or
inappropriate responses of the body to heart impairment.
Unfortunately, HF is a progressive disorder that must be managed
with regard, not only to the state of the heart, but also to the
condition of the circulation, lungs, neuroendocrine system and
other organs as well. In its chronic form, HF is one of the most
remarkable health problems in terms of prevalence and morbidity,
especially in the developed western countries [12], with a strong
impact in terms of social and economic effects. All these aspects are
typically emphasised within the elderly population, with very
frequent hospital admissions and a significant increase of medical
costs [13].

The first, immediate and enlightening proof of the relevance of
biomedical image and signal investigations in HF is represented by
its diagnostic workup, which can be considered as the first stage of
management of HF patients. Fig. 1 shows the sequence of steps that
composes the HF diagnostic workflow [11]: after having assessed
the presence of main signs and symptoms, physicians usually
require diagnostic examinations such as electrocardiogram (ECG),
chest X-ray and neuroendocrine evaluations (i.e. brain natriuretic
peptides (BNP)), in order to arrive at the diagnosis, which is
eventually confirmed by an echocardiographic investigation.
Supporting such a decision process requires encoding the work-
flow into an appropriate knowledge base (KB), which formalises, for
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Fig. 1. HF diagnostic workflow.
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each step, the set of conditions evaluated by physicians. The first
step concerns the presence and severity of signs and symptoms
such as breathlessness, swelling, fatigue, hepatomegaly and
elevated jugular venous pressure. Then, ECG signals are acquired
for investigating the presence of anterior Q waves and left bundle
branch block, signs of left atrial overload or left ventricular
hypertrophy, atrial fibrillation or flutter, and ventricular arrhyth-
mia. If ECG abnormalities are present, a tentative diagnosis of HF
diagnosis is made [14] and is further investigated by analysis of the
chest X-ray.

The latter examination is useful for detecting the presence of
cardiac enlargement and pulmonary congestion [15]. In the
meantime, a laboratory analysis of neuroendocrine function is
performed to test for high levels of BNP, which would suggest the
presence of cardiac disease [16]. Whether or not all these
examinations confirm the presence of abnormalities, an echocar-
diographic investigation is performed for the documentation of
any cardiac dysfunction. The most important parameter to be
evaluated from such a diagnostic modality is the left ventricular
(LV) ejection fraction (EF), together with other relevant data
regarding chamber dimensions, wall thickening and motion,
systolic and diastolic function, valvular regurgitation, and pulmo-
nary blood pressure [17]. The diagnosis of HF is finally confirmed if
symptoms and signs and ECG/X-ray/BNP level/echocardiographic
abnormalities are all present.

2.2. Significance of signal and image processing methods

Imaging techniques offer invaluable aid in the objective
documentation of cardiac function and, as mentioned in Section
2.1, chest X-ray and echocardiography have to be included in the
HF initial diagnostic workup. Further, echocardiography is
regularly repeated to monitor the changes in the clinical course
of an HF patient in an objective way. Additional techniques, such as
nuclear imaging and cardiac magnetic resonance, may also be
considered for specific patients, since they have not been shown to
be superior to echocardiography in the management of most of the
HF population [11]. Thus, echocardiography - and in particular 2D
transthoracic echocardiography (TTE) for its non-invasiveness and
versatility - is the key imaging technique for the practical
management of HF.

On the other hand, the ECG is recognised as the most
fundamental examination performed in the evaluation and
assessment of several heart abnormalities, including HF. A typical
ECG tracing of a cardiac cycle consists of a P wave, a QRS complex
(structure on the ECG that corresponds to the depolarisation of the
ventricle and is composed of the Q, R and S waves) and a T wave.
According to [18], the negative predictive value of a normal ECG in
excluding left ventricular systolic dysfunction exceeds 90%. The
most common ECG examinations are the resting ECG and the Holter
ECG. While the latter is more commonly used for the discovery of
rhythm abnormalities and the computation of heart rate variabili-
ty, the former is more commonly used for the evaluation of
morphological abnormalities in the heartbeat.

In the context of this paper, TTE and ECG processing methods
may allow for the automatic or semi-automatic computation of
clinical parameters relevant to decisional problems in the HF
domain, thus providing reproducible and reliable numerical values
and reducing intra- and inter-observer variability. Other signifi-
cant and advanced image and signal processing applications that
may aid physicians in facing critical cases or critical problems can
be envisaged, including (i) the support of physicians’ case-based
reasoning processes and (ii) the discovery of novel pertinent
knowledge. In fact, not only are the parameters derived from TTE
and ECG examinations significant to physicians in formulating a
response, but also the data themselves can be useful in giving a

general overview of a patient’s condition. This means that allowing
clinicians to explore data could ensure the availability of many
other items of information hidden in the same data. Moreover,
when dealing with a difficult case, comparing the one at hand with
assessed responses for other patients’ situations can be extremely
helpful. This entails maintaining and making available a database
of cases with annotated images and signals that can be retrieved by
similarity based on a set of computed features. Difficult diagnoses
and, most of all, prognosis assessment are examples of these
situations. For such critical problems, data processing facilities can
have further relevance for the discovery of novel knowledge by
granting the computation of a wide range of parameters that can be
explored and correlated in order to find out new relevant patterns.

Finally, opportune knowledge formalisation may be helpful in
personalising diagnostic imaging and non-imaging investigations.
This means that adequate conditions could be encoded within the
CDSS in order to suggest which kind of parameters could be more
usefully evaluated for a given patient during, for instance, a TTE or
an ECG session.

2.3. Decision support in HF

Recent studies and experience have demonstrated that accurate
heart failure management programs, based on a suitable integra-
tion of inpatient and outpatient clinical procedures, might prevent
and reduce hospital admissions, improving clinical status and
reducing costs [19,20]. Routine practice in HF cases presents
several aspects on which automatic, computer-based support
could have a favourable impact. A careful investigation of the needs
of HF practitioners and the effective benefits assured by decision
support was performed, and four problems were identified as
highly beneficial for CDSS point-of-care intervention [10]. They can
be described as macro-domain problems and listed as: (i) HF
diagnosis, (ii) prognosis, (iii) therapy planning, and (iv) follow up.
Further detailed decision problems have been identified for
specifying these macro-domains, focusing as much as possible
on the medical users’ needs; indicative examples are:

o Evaluation of HF severity;

o Identification of suitable pathways;

o Planning of adequate, patient-specific therapy;
o Analysis of diagnostic examinations;

o Early detection of patient’s decompensation.

The idea behind the development of a CDSS able to support this
kind of problem has been to provide clinicians with advice,
suggestions and alerts in the different phases of management of
chronic HF patients, without altering their normal activities. One
imperative requirement was to tailor the process to the routine
workflow of medical professionals. This means that the CDSS must
be designed to be appropriately active and accessible, so as to
require neither too much learning nor significant changes in
clinicians’ routine activities, while meeting their needs as far as
possible. A strong cooperation with medical practitioners has been
profitable for understanding their expectations as to how the CDSS
could support their activities. In practice, the implementation of
the CDSS has been mainly focused on the incorporation of high-
quality, evidence-based medical knowledge, suitably formalised
and incorporated in automated reasoning processes in order to
obtain diagnostic, prognostic and therapeutic conclusions that can
be supplied to clinicians. A symbolic approach has been selected as
the knowledge representation method, and - among the different
solutions available (most of which refer to logic for a formal
semantics [21]) — a hybrid solution based on the use of formal
ontologies and rules has appeared to be the most promising. Indeed,
ontologies appeared in artificial intelligence as computational
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artefacts used for building conceptual models of a domain of
discourse [22]. They can come in different forms with increasing
levels of complexity, ranging from simple catalogues of terms, to
thesauri, to complex models with logical constraints that allow
automated reasoning. In the latter case, an ontological model is
developed according to the description logics theory [23] and hence
consists of concepts, individuals and their properties and relations.
Despite their advantages, ontologies present some limits and
deficiencies, owing to their foundation in descriptive logics (e.g.
complex or derived relations cannot be induced from an
ontological artefact). A rule-based formalism has been employed
for filling these gaps, and for encoding procedural knowledge, i.e.
not only declarative information about the existence of domain
concepts but also actions to be performed when specific conditions
are met.

3. Methods

The provision of decision support in heart failure through
processing of electro- and echocardiograms is necessarily based on
the confluence of several areas of expertise to solve a common goal.
For the purposes of this paper, however, the focus is more on the
overall decision systems, thus avoiding too technical a treatment of
signal and image processing issues. To this end, the methods
developed for the segmentation of echocardiographic image
sequences and algorithms for electrocardiogram processing
(including heartbeat detection and morphological classification,
and dominant beat averaging) will be described only briefly, with
emphasis on their importance in decisional problems in HF. Then,
the methodologies used for the design and realisation of the
clinical decision support system will be discussed.

3.1. Methods for image processing

Since TTE is the key imaging modality for the management of
HF patients, a careful analysis of this modality was carried out in
cooperation with medical partners. It was concluded that the
development of assisted segmentation methods, able to deal with
echocardiographic image sequences, could represent a valid form
of support to the physicians in the process of image report
formation. Indeed, assisted segmentation methods may render the
estimation of LV EF more reproducible. LV EF, the most important
measurement performed by TTE, permits patients with cardiac
systolic dysfunction to be distinguished from those with preserved
systolic function. It is defined as the normalised (non-dimensional)
difference between LV end-diastolic volume (EDV) and end-systolic
volume (ESV):

EDV — ESV

Among different models for the computation of such volumes,
the “American Society of Echocardiography” [24] suggests the use of
the so-called Simpson’s rule, in which the LV is approximated by a
stack of circular (or elliptical) disks whose centres lie on the major
axis. The border of the LV cavity is needed in order to estimate its
axis and the radii of the disks in the stack. For this reason,
Simpson’s method relies on the segmentation of the LV border. In
the case of manual segmentation of TTE images, inter-and intra-
observer variability is high, since the anatomical structures of
interest may often not be easily distinguishable as a result of
intrinsic limitations of the modality. Further, any error in the
estimation of EDV and ESV is propagated in the calculation of the
value of LV EF by formula 1; for these reasons manual contour
tracing is unable to provide a satisfactory and reproducible
measurement of LV EF. Image processing techniques may reduce
the variability of human interventions in border tracing by

providing automated or, at least, semi-automated methods for
tracing contours of the relevant structures found in an image.
However, the segmentation problem for ultrasound images is by
no means trivial, given the low signal-to-noise ratio, low contrast,
image anisotropy and speckle noise [25]. From these considera-
tions, it was judged important to develop a prototypical toolkit -
composed of three main modules - for the analysis of apical-view
sequences and the estimation of LV EF.

The first module (region identification), which takes in input an
apical sequence of the heart, is able to identify the left ventricular
cavity in every frame of the sequence by means of mimetic criteria,
providing a rough segmentation of it. The second module
(segmentation refinement), which takes as input an image and a
rough segmentation of it, is able to refine the segmentation by
exploiting the variational formulation described in [26] of level set
methods [27,28], which achieves regularisation of the boundary of
the LV as well as better adherence to image edges. The third
module (feature extraction) is able to extract significant features
from a set of segmented left ventricles, the most important being
EDV and ESV (both computed according to Simpson’s rule) and, in
turn, LV EF.

The toolkit is flexible enough to support different operational
scenarios, offering a variable level of automaticity. The following
operational scenarios may be envisaged:

(a) Manual selection of the end-diastolic and end-systolic frames
and rough manual contour tracing. In this case, the toolkit
provides a refinement of the manually traced left ventricle
contour in the manually selected frames. Instead of using the
common freehand selection, the user may just quickly select a
polygonal region approximating the LV cavity. The segmenta-
tion refinement module is then triggered. In brief, the manually
drawn contour is used for the initialisation of the level set
method. Finally, the third module is used for feature extraction.

(b) Manual selection of the end-diastolic and end-systolic frames
and automatic contour tracing. In this case, the toolkit traces
the contour of the LV automatically in the manually selected
frames. The region identification module is used to find an
approximate LV contour. Then the contour is refined by the
level set segmentation step as in (a).

(c) Automatic selection of the end-diastolic and end-systolic
frames and automatic contour tracing. This is the most
automatic way to use the developed algorithms; the workflow
is schematically represented in Fig. 2. The toolkit takes the
entire image sequence as input and applies the region
identification module to every frame in order to obtain a rough
segmentation of the LV. Then the volume of the cavity is
computed on this rough segmentation by using the feature
extraction module. The indices of the frames corresponding to
the extreme values (i.e. maximum and minimum) of the
volume are found and stored. Then, the segmentation refinement
is applied to the contours in the frames which are near to those
with extreme values. Computing volumes on the basis of the
refined contours by the feature extraction module again leads to
the identification of the end-systolic and end-diastolic frames
and to the computation of related clinical parameters.

Identification of
end systolic &
diastolic frames

Identification of
left ventricle
cavity

Selection of an
apical sequence

Volume Result

Contour e
5 EF estimation
computation storage

refinement

Fig. 2. Sketch of the workflow in the operational scenario (c) of Section 3.1.
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Each of the image processing modules developed was tested on
2D image sequences recorded from the apical window (2-chamber
and 4-chamber views). The echocardiographic device was General
Electric Vivid 7. The dataset, provided by the Department of
Cardiology, University Magna Graecia, Catanzaro, Italy, consisted of
image sequences acquired at the rate of 25 frames per second.
Three full cardiac cycles were imaged for each patient. Given the
interactive nature of the methods provided, validation of the
segmentation quality was performed by expert users using visual
inspection. In the limited number of cases in which fully automatic
segmentation, as described in case (c) above, was not satisfactory,
optimal segmentation was achieved with minimal interaction
using the two assisted procedures described in (a) and (b).

3.2. Signal processing methods

Considering the crucial role of ECG signals and the various related
examinations, it was clearly important to design and implement
some basic, robust and scalable algorithms for ECG processing that
could be applied to raw data acquired by devices for different ECG
examinations, with different numbers of leads and acquisition
durations. After some interviews with the clinicians, a standard
procedure was devised, involving a non-interpretive electrocardio-
graph that acquires the resting ECG and transfers it to the hospital
gateway, where the ECG is processed in order to perform:

e QRS detection,;
e Morphological classification of heartbeats;
o Evaluation of the averaged dominant beat.

In fact, in the very large majority of cases, the averaged
dominant beat can be used by the cardiologists for the evaluation
of all the measurements of interest relating to the diagnosis or the
follow up of HF patients, such as ST (the segment connecting the QRS
complex with the T wave) depression, QRS and QT (interval from the
beginning of the QRS complex to the end of the T wave) durations,
Sokolow-Lyon index for left ventricular hypertrophy, presence of
left or right bundle branch block and presence of pathological Q
waves. Observe that, since the average dominant beat has less
noise than the original signal, performing measurements on this
average beat leads to more accurate results, thus reducing inter-
and intra-observer variability. The algorithms developed for ECG
processing are briefly described below.

3.2.1. QRS detection

The selected approach for QRS detection belongs to the time-
domain techniques [29]. The first step consists in a signal pre-
filtering using a moving-average linear filter in order to reduce the
baseline wandering and the high-frequency noise and to select the
typical frequencies contained in the QRS complexes. Then, a QRS
enhanced signal (QES) is built as the sum of the absolute derivatives
of each pre-filtered channel. The filter for the generation of the
derivatives was chosen so as to reduce the effect of the residual
noise. In practice a pass-band filter with a derivative behaviour in
the band of interest was used. The beginning of a QRS is detected
when the QES exceeds a suitable defined adaptive threshold and
the QRS end is obtained when the QES becomes lower than the
adaptive threshold for a defined number of consecutive samples.
To avoid marking large-amplitude T-waves as other QRSs, the QRS
detection threshold is artificially increased after a QRS peak is
detected. Furthermore, a dead-time zone of 200 ms is set up in
order to reject any QRS detection too close to the previous one.
Using only the above algorithm, the QRS detection results are quite
good, especially in recordings with low or medium noise content.
However, when the noise in one or both channels is high, the
performance of the detector is significantly reduced.

Therefore, a further technique was introduced in order to
improve the detection performances when noise is present only in
one channel. In particular, a noise index (NI) is associated with
every detected QRS on the basis of the average power in the
estimated T-P interval (interval from the end of the T wave to the
beginning of the P wave of the next heartbeat) divided by the QRS
average power. The NI can be used as an indicator of the noise in
the two different channels and of the presence of noisy QRSs. The
appearance of a number of consecutive noisy QRSs determines the
beginning of a noisy interval, which ends once a few consecutive
non-noisy QRSs appear. For each noisy interval the detection
algorithm is also executed with the QES obtained using only one
channel and a procedure for best channel selection can be
obtained, leading to significant improvement of the overall
detection performance.

3.2.2. Morphological classification of heartbeats

A prerequisite for the construction of the average dominant
beat is the morphological classification of each detected QRST (the
QRS complex with the following T wave). In fact, it is necessary to
avoid the introduction of extrasystoles or non-dominant beats in
the averaging process, since they would alter the quality of the
averaged beat. Normally, the evaluation of the heartbeat type is
performed by considering its morphology and its occurrence
compared to the previous and following beats (rhythm), but in this
case the requirement is not to obtain a complete rhythm
evaluation, but only to identify the morphologically dominant
beat. For this reason, in the classification algorithm only the basic
morphological parameters are taken into account, in an attempt to
limit the complexity of such a system as far as possible.

The algorithm for the morphological classification of heartbeats
is based on a two-phase decision tree [30]. In the first phase, a
possible classification of all beats is performed, while in the second
phase the classes created are re-estimated and, if necessary,
redefined. In particular, the clusters containing a large number of
non-dominant beats (according to the first stage) are split into
smaller ones and reconsidered as having possibly been misclassi-
fied as non-dominant.

3.2.3. Evaluation of the averaged dominant beat

For a proper averaging, some further processing is necessary in
order to avoid distortions in the averaged beat. In fact, all the beats
classified as dominant could be averaged in order to identify the
centroid; however, beats with too much noise could corrupt the
proper averaging and beats that are not properly aligned could
cause artefacts in the averaged beat.

The list of dominant beats is analysed in order to exclude from
each channel any incomplete beats (usually the first and the last of
the recording) and beats with high noise immediately after or before
the QRS occurrence. Finally, a set of good dominant beats is identified
for each channel and the averaging is performed on this set.

The ECG processing algorithms have been tested on the publicly
available annotated “MIT-BIH Arrhythmia Database” [31]. For QRS
detection, a sensitivity of 99.76% and a positive predictive value of
99.81% have been obtained. Very satisfactory results have also
been achieved for dominant class discrimination on all the
annotated beats of the same database, with sensitivity 99.05%
and specificity 93.94%. There was a slight reduction in performance
for the detected beats obtained by the QRS detector described
above, but the results are still very satisfactory, with sensitivity
98.71% and specificity 93.81%.

The algorithms were easily extended to the 12-lead resting ECG,
producing even better results on a testing set provided by the
Department of Cardiology, University Magna Graecia, Catanzaro, Italy,
and consisting of 63 short-term 12-lead ECG files sampled at
500 Hz and acquired from HF patients.
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Table 1
A few of the elicited rules expressed in natural language.

Rules in natural language

If patient has systolic blood pressure <85 mm Hg or has systolic blood pressure >140 mm Hg or has fatigue and left ventricular ejection fraction

If patient’s symptoms worsened and physical examination has no relevant results and blood pressure increased and heart rate increased then

If left ventricular diastolic diameter decreased or stroke volume decreased or left ventricle ejection fraction decreased then patient’s status worsens

Diagnosis

<45% then suggest diagnosis systolic heart failure

suggest an echocardiographic examination
Follow-up If heart rate differs by 10% from the previous measurement then issue an alert
Therapy

If patient has left ventricular ejection fraction < 40% and is asymptomatic and is taking angiotensin-converting enzyme inhibitors or angiotensin

receptor blockers and had a myocardial infarction then suggest prescribing beta-blockers
If symptoms are worse and there is (pulmonary congestion or peripheral oedema) then suggest prescribing diuretics

3.3. CDSS design

The CDSS was devised for processing information by exploiting
the relevant medical knowledge elicited from medical experts,
extracted from clinical guidelines, and suitably formalised for
exploitation in reasoning processes.

During the encoding of this knowledge, particular emphasis
was given to the diagnostic modalities in order to integrate the
extracted parameters into the more general process of health care
management.

The integration of signal and image processing methods into the
management of care delivery contributed to identifying CDSS
functionalities and modelling its architecture.

As shown in Table 1, the processing of electro- and echocardio-
grams functions in such a way as to provide suggestions:
parameters extracted from diagnostic procedures, such as QRS
and QT durations on the ECG or LV EF in echocardiography, are
important for understanding if the patient’s condition is deterio-
rating, and, at the same time, also form the basis of a proper
therapy assignment.

This integration focused on two main issues:

1. Supplying relevant parameters to reasoning processes;
2. Personalising the diagnostic investigations by suggesting which
parameters should be extracted.

The implications of these two issues can be best explained by
the following example: while a patient’s information is being
processed with the goal of identifying causes of deterioration, the
CDSS may need a number of routine parameters that are not yet
available. In such a case, a suggestion will be issued by the system,
asking the clinician to perform additional examinations, such as an
ECG or a TTE. On the other hand, it can happen that such routine
parameters are not able to completely explain the patient’s status;
thus, the system can request other data that may shed light on the
specific patient’s condition.

The medico-clinical knowledge was formalised into a compos-
ite KB that consists of a suite of ontologies and a base of rules.
Clinical guidelines [11] were used as a knowledge source and
experts’ know-how was elicited through several interviews. Fig. 3
shows the main structure of the CDSS, where a reasoner is capable
of inferring from the ontologies and the base of rules.

The KB was structured modularly, in order to provide suggestions
and to assist clinicians with classes of problems. To this end, a
number of core ontologies, such as Patient and Disease, were
introduced in order to organise minimal domain concepts. These
were combined into upper ontologies, such as TherapyAssignment
and EchoFindingsinterpretation, which are devoted to solving specific
problems. In this way, the entire KB can be understood as a graph,
with core and upper ontologies as vertices and their relationships as
edges. Each problem is solved by reasoning on a specific sub-graph.
The therapy assignment is the most complex problem, correspond-

ing to an upper ontology thatincludes almost all the other ontologies.
All the core ontologies are light compositions of taxonomies of
concepts (i.e. dyspnoea, irregular_heart_rhythm), sets of relation-
ships among these (i.e. hasSymptom), and constraints (i.e. cardinali-
ty of severity class). In addition, the designed sets of ontologies are
also associated with sets of forward chaining rules (see Table 1).

This approach was chosen because of its similarity to the one
followed by clinicians in their daily practice, and also because the
domain tends to be dynamic and the use of a modular approach
makes it easier to handle changes. Moreover, in the attempt to
obtain maximum flexibility, especially during the validation,
inferences were performed on values not hard-coded in the
ontologies. The main advantages of this design choice were that,
since clinical guidelines may vary, it is simpler to change rules than
it is to remodel a huge ontology without forward chaining rules
and only based on constraints, and it is also easier to manage and
maintain such “lighter” ontologies that can also be more easily
combined into upper ontologies.

In order to maintain the focus on the actual routine activities of
clinicians, a problem decomposition approach was then adopted,
identifying the different CDSS interventions and the corresponding
relevant fragments of knowledge, which were then structured
appropriately. Some examples of actual problems identified as
requiring CDSS assistance are the following:

The CDSS detects the presence of signs and symptoms of a patient
monitored at home, and suggests performing a diagnostic
examination for checking out the causes.

A patient undergoes a TTE examination and the computed
parameters are submitted to the CDSS, which estimates additional
information, such as the pulmonary pressure, and accordingly
suggests a change in therapy to the clinician.

A comprehensive conceptual model was firstly devised for
capturing all the relevant information, concepts and relations.

Elicitation from
clinical guidelines
and experts’
interviews

CDSS

J Suite of ontologies
Core ontologies

===
=3

Reasoner

Base of rules

Inference
engine

Fig. 3. The organisation of the knowledge base and the reasoning component of the
CDSS.
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Fig. 4. An excerpt from the conceptual model used for building the ontology: boxes represent classes and contain their datatype properties, while relations among classes are

represented by the arcs (arrows between two boxes).

Fig. 4 shows an excerpt from such a model. Some aspects are
worthy of note: the class “Suggestion” was used for modelling the
responses of the CDSS; the class “PathologicalCondition” was
included for modelling the dynamic features of a patients’
condition (i.e. the New York Heart Association severity class).

Particular attention was paid to the diagnostic procedures and
to the role signals and images have within the functioning of the
CDSS. More precisely, all the parameters computed from the
different modalities were extensively analysed and inserted into
the conceptual model. They were modelled as datatype properties
of each diagnostic procedure sub-class: some examples are
leftVentricle_endSystolicVolume, systolicPulmunaryPressure_esti-
mated and leftVentricle_ejectionFraction_estimated taking float
values, or leftVentricle_ejectionFraction_method which takes values
from the set {Teicholz, Simpson2CH, Simpson4CH, SimpsonBi-
plane}. This choice is motivated by the foreseen use of these
parameters in the rule base: some of the rules are structured for
drawing conclusions according to particular values such param-
eters may take. Examples are given in Section 4.

Rules were formalised utilising the concepts specified in the
ontologies. Again, guidelines and experts’ knowhow were used as
knowledge sources.

4. Results
For the implementation of the CDSS, several tools were selected,

also taking into account the World Wide Web Consortium (W3C)
recommendations.

In particular, regarding the knowledge representation formal-
ism, the Web Ontology Language (OWL) [32] - and specifically the
OWL Description Logic (OWL DL) sublanguage — was selected for
defining the ontologies, since it can be considered as the de facto
standard semantic mark-up language for this task and it offers all
the power and expressivity of description logics. Standard medical
ontologies, such as Unified Medical Language System (UMLS) [33],
were taken into account for selecting a commonly recognised and
agreed terminology.

For realising the reasoning component, Jena [34] was preferred
as aJava programming environment that includes OWL, a language
for querying ontologies, i.e. [35], and a rule-based inference engine.
In particular, for improving the reasoning capability of the latter,
Pellet [36] was also used. For defining the rules, the Semantic Web
Rule Language (SWRL) [37], combining OWL and rule mark-up
language, was selected as suggested by the W3C for extending the
set of OWL axioms to include Horn-like rules.

The implemented system was evaluated at the Department of
Cardiology, University Magna Graecia, Catanzaro, Italy. Since heart
failure in the elderly was the primary concern, participants in the
study were 79 persons over 60 years old (age 74.01 + 6.66). In
particular, 63 males (age 71.74 4 5.33 years) and 16 females (age
82.93 £ 2.59 years) were included.

The system was tested in the daily practice of the physicians
operating in the hospital, taking into account different scenarios in
which decisional problems based on the analysis of biomedical
signals and images were involved. One of these scenarios involved
the HF diagnostic workup, which is discussed below in order to
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describe the functional features of the developed system and to
show the results achieved (a 70-year-old male patient is
considered for illustrative purposes).

In this scenario, a clinician performs a clinical assessment when
the patient visits the hospital and verifies the presence of signs and
symptoms. The clinician then fills in a form on the web site and, on
the basis of the presence or the worsening of signs or symptoms, an
ECG is suggested by the CDSS: in this example, dyspnoea,
peripheral oedema and heart rate are worsened; the CDSS then
suggests that an ECG should be recorded.

The clinician can decide whether to perform an ECG or not.
Supposing he decides to perform an ECG, the physician may use
the tools provided for ECG processing. In particular, once the
recorded data have been provided to the CDSS, the average
dominant beat is automatically computed and, using a graphical
interface, the clinician may perform measurements on this beat,
which is cleaner and less affected by noise. On the basis of the
computed values, entered in a suitable format, the system may
propose a list of further investigations. Specifically, for example,
if the value of the QRS complex duration is greater than or equal
to 120 ms, then there is a bundle branch block and the CDSS
suggests performing other checks. For example, the same
suggestion is also given when the interval between the onset
of the P wave (atrial depolarisation) and the QRS complex
(ventricular depolarisation) (P-R interval) is greater than
200 ms (presence of a first degree atrioventricular block) and
when parameters are increased with respect to their previous
borderline or abnormal values. The list of further investigations
includes laboratory analysis and, in particular, the evaluation of
BNP levels, which may be performed by commercially available
assays. Indeed, BNP assessment works extremely well in ruling
out the presence of HF [11], since its negative predictive
accuracy is 97%.

After the results of lab analysis are ready, the system checks the
value of BNP based on the adaptive thresholds, depending on age
and gender [38], that have been suitably encoded in the KB. If the
BNP level is low, the diagnosis of HF should be carefully revised.

Otherwise, the CDSS, integrating the evidence gathered by the ECG
examination and the lab analysis, suggests performing an
echocardiographic examination.

In the particular case, where the ECG reported a QRS of 150 ms
(as shown in Fig. 5), the CDSS suggested performing an
echocardiography.

If the clinician decides to follow the suggestion, he orders an
echocardiographic examination for his patient using a dedicated
web form. On the specified date, a sonographer performs the
echocardiography and data, images and extracted parameters are
stored in dedicated archives. The over-reading clinician may then
review the acquired images and image sequences and he may
trigger the algorithms for image processing, using a graphical
interface (see Fig. 6). Once having computed the LV volumes and
the LV EF and having approved the results, the clinician sends the
parameters to the CDSS. By integrating all the relevant data about
the patient, the CDSS determines whether there is heart failure
and, if so, whether it is systolic or diastolic.

Specifically, these are some examples of the rules the CDSS
takes into account. First, some rules evaluate the filling pattern on
the base of allowable parameters. Among these, some parameters
need to be extracted from echocardiography, such as the ratio of
early to late diastolic filling velocities. Other rules evaluate if there
is presence of HF or not and, in the positive case, classify it as
systolic or diastolic HF. Examples, in natural language, of
implemented rules are:

If patient has signs or symptoms and has an altered filling pattern
and has not pulmonary pathologies and has a left ventricular
ejection fraction greater than 40, then he has diastolic heart failure.

If patient has a left ventricular ejection fraction less than or equal to
40 and has signs or symptoms then he has systolic heart failure.

In the particular case, the CDSS provided quantitative post-
processed parameters, namely the systolic pulmonary pressure,
Teicholz EF and Simpson’s EF estimations. Moreover, it suggested a
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diagnosis of an altered filling pattern, a preserved EF, and a normal
estimation of pulmonary hypertension.

At any moment during this process, the clinician can see all the
information concerning a patient; moreover, all the suggestions of
the CDSS are also shown contextually. In order to improve the
situation of the patient at the end of the clinical assessment, the
clinician in general assigns the patient to a new or revised therapy.

5. Discussion

Besides the correctness of the suggestions provided, the impact
of the clinical decision support system on routine workflows was
carefully taken into account, since this factor is deemed to be
essential for the success of the system. This preliminary evaluation
was carried out at the Department of Cardiology, University Magna
Graecia, Catanzaro, Italy in the framework of a clinical study,
supported by the system, using a significant number of heart
failure patients (79 persons over 60 years old). During this study
several interviews were performed with the clinical partners at
different times (shortly after the introduction of the system and
after 3 months) in order to evaluate the performance of the CDSS
and its impact on the routine workflow.

The system was perceived as non-invasive from its introduc-
tion, although some training was necessary to let the medical
personnel become acquainted with the web interfaces provided.
Suggestions were judged to be correct from the beginning, but only
after 3 months of use, during which they prevented omissions and
assignment of suboptimal therapy, were they considered useful.

The substantially positive results of this preliminary evalua-
tion were very encouraging and showed that, at least in the real
setting of the selected validation site, the system contributed to a
better delivery of care, thus suggesting the CDSS is ready for a
more extensive phase of qualitative and quantitative evaluation
before its definite release to be used by clinicians in their daily
routine.

6. Conclusions

In this paper a CDSS for the management of HF has been
presented. The wide range of services provided by the CDSS is
enabled by a high-level integration of diagnostic signal and image
processing. In particular, the choices made in designing suitable
image and signal processing algorithms have been analysed and it
has been shown how the algorithm results can be deployed by the
CDSS in decisional problems and hence in the global process of
care.

The CDSS was developed by integrating the knowledge elicited
from clinical guidelines and experts’ interviews into a hybrid KB
consisting of a suite of ontologies and a base of rules. A modular
organisation of the KB was maintained in order to ensure its
flexibility, efficiency and upgradability.

The functioning of the CDSS and the effectiveness of its responses,
as well as the efficiency of the signal and image processing methods,
were analysed and evaluated by clinical experts during the
development activities. The feedback obtained so far from clinicians
has been encouraging. However, while building the KB, some
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considerations about possible improvements emerged, such as the
possibility of managing uncertainty and fuzzy conclusions.

Moreover, in the future, the methods developed for ECG and TTE
processing will be extended so as to permit the computation of a
richer set of clinical parameters (e.g. relative to heart chamber
motion and synchronisation). Introduction of computational
reasoning methods (as opposed to the inferential reasoning
considered in this paper) will be taken into account to compensate
for the lack of established rules for exploiting such richer
parameter sets.
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