
Bennett, CC and K Hauser (2013).  Artificial Intelligence Framework for Simulating Clinical Decision-Making: A Markov Decision Process Approach. 

Artificial Intelligence in Medicine.  In Press.  http://www.sciencedirect.com/science/article/pii/S0933365712001510 

Artificial Intelligence Framework for Simulating Clinical Decision-Making: A Markov 

Decision Process Approach 

 

Casey C. Bennett
a,b

 and Kris Hauser
b 

 

a
Department of Informatics 

Centerstone Research Institute 

44 Vantage Way 

Suite 280 

Nashville, TN, USA 37228 

 

b
School of Informatics and Computing 

Indiana University 

901 E. 10th. St. 

Bloomington, IN, USA 47408 

 

Corresponding Author: 

Casey Bennett 

Department of Informatics 

Centerstone Research Institute  

365 South Park Ridge Road 

Bloomington, IN 47401  

1.812.336.1156 

Casey.Bennett@CenterstoneResearch.org 

cabennet@indiana.edu 

 

 

  

http://www.sciencedirect.com/science/article/pii/S0933365712001510
mailto:Casey.Bennett@CenterstoneResearch.org
mailto:cabennet@indiana.edu


Abstract 

 Objective: In the modern healthcare system, rapidly expanding costs/complexity, the 

growing myriad of treatment options, and exploding information streams that often do not 

effectively reach the front lines hinder the ability to choose optimal treatment decisions over 

time.  The goal in this paper is to develop a general purpose (non-disease-specific) 

computational/artificial intelligence (AI) framework to address these challenges.  This 

framework serves two potential functions: 1) a simulation environment for exploring various 

healthcare policies, payment methodologies, etc., and 2) the basis for clinical artificial 

intelligence – an AI that can “think like a doctor.”   

Methods: This approach combines Markov decision processes and dynamic decision 

networks to learn from clinical data and develop complex plans via simulation of alternative 

sequential decision paths while capturing the sometimes conflicting, sometimes synergistic 

interactions of various components in the healthcare system.  It can operate in partially 

observable environments (in the case of missing observations or data) by maintaining belief 

states about patient health status and functions as an online agent that plans and re-plans as 

actions are performed and new observations are obtained.  This framework was evaluated using 

real patient data from an electronic health record.   

Results: The results demonstrate the feasibility of this approach; such an AI framework 

easily outperforms the current treatment-as-usual (TAU) case-rate/fee-for-service models of 

healthcare. The cost per unit of outcome change (CPUC) was $189 vs. $497 for AI vs. TAU 

(where lower is considered optimal) – while at the same time the AI approach could obtain a 30-

35% increase in patient outcomes.  Tweaking certain AI model parameters could further enhance 

this advantage, obtaining approximately 50% more improvement (outcome change) for roughly 

half the costs. 

Conclusion:  Given careful design and problem formulation, an AI simulation framework 

can approximate optimal decisions even in complex and uncertain environments.  Future work is 

described that outlines potential lines of research and integration of machine learning algorithms 

for personalized medicine. 

 

Keywords: Markov Decision Process; Dynamic Decision Network; Multi-Agent System; 

Clinical Artificial Intelligence; Medical Decision Making; Chronic Illness  



1. Introduction 

1.1 Problem 

 There are multiple major problems in the functioning and delivery of the modern 

healthcare system – rapidly expanding costs and complexity, the growing myriad of treatment 

options, and exploding information streams that often do not, or at most ineffectively, reach the 

front lines.  Even the answer to the basic healthcare question of “What's wrong with this person” 

often remains elusive in the modern era – let alone clear answers on the most effective treatment 

for an individual or how we achieve lower costs and greater efficiency.  With the expanding use 

of electronic health records (EHRs) and growth of large public biomedical datasets (e.g. 

GenBank, caBig), the area is ripe for applications of computational and artificial intelligence 

(AI) techniques in order to uncover fundamental patterns that can be used to predict optimal 

treatments, minimize side effects, reduce medical errors/costs, and better integrate research and 

practice [1].   

These challenges represent significant opportunities for improvement.  Currently, patients 

receive correct diagnoses and treatment less than 50% of the time (at first pass) [2].  There is 

stark evidence of a 13-17 year gap between research and practice in clinical care [3].  This reality 

suggests that the current methods for moving scientific results into actual clinical practice are 

lacking. Furthermore, evidence-based treatments derived from such research are often out-of-

date by the time they reach widespread use and don’t always account for real-world variation 

that typically impedes effective implementation [4].  At the same time, healthcare costs continue 

to spiral out-of-control, on pace to reach 30% of gross domestic product by 2050 at current 

growth rates [5].  Training a human doctor to understand/memorize all the complexity of modern 

healthcare, even in their specialty domain, is a costly and lengthy process – for instance, training 

a human surgeon now takes on average 10 years or 10,000 hours of intensive involvement [6].  

 

1.2 Goal 

The goal in this paper is to develop a general purpose (non-disease-specific) 

computational/AI framework in an attempt to address these challenges.  Such a framework 

serves two potential functions.  First, it provides a simulation environment for understanding and 

predicting the consequences of various treatment or policy choices.  Such simulation modeling 

can help improve decision-making and the fundamental understanding of the healthcare system 



and clinical process – its elements, their interactions, and the end result – by playing out 

numerous potential scenarios in advance.  Secondly, such a framework can provide the basis for 

clinical artificial intelligence that can deliberate in advance, form contingency plans to cope with 

uncertainty, and adjust to changing information on the fly.  In essence, we are attempting to 

replicate clinician decision-making via simulation.  With careful design and problem 

formulation, we hypothesize that such an AI simulation framework can approximate optimal 

decisions even in complex and uncertain environments, and approach – and perhaps surpass – 

human decision-making performance for certain tasks.  We test this hypothesis using real patient 

data from an EHR. 

Combining autonomous AI with human clinicians may serve as the most effective long-

term path.  Let humans do what they do well, and let machines do what they do well.  In the end, 

we may maximize the potential of both.  Such technology has the potential to function in 

multiple roles: enhanced telemedicine services, automated clinician’s assistants, and next-

generation clinical decision support systems (CDSS) [7,8]. 

 

1.3 Previous work 

In previous work, we have detailed computational approaches for determining optimal 

treatment decisions at single timepoints via the use of data mining/machine learning techniques.  

Initial results of such approaches have achieved success rates of near 80% in predicting optimal 

treatment for individual patients with complex, chronic illness, and hold promise for further 

improvement [7,9].  Predictive algorithms based on such data-driven models are essentially an 

individualized form of practice-based evidence drawn from the live population.  Another term 

for this is “personalized medicine.” 

The ability to adapt specific treatments to fit the characteristics of an individual’s 

disorder transcends the traditional disease model.  Prior work in this area has primarily addressed 

the utility of genetic data to inform individualized care.  However, it is likely that the next 

decade will see the integration of multiple sources of data - genetic, clinical, socio-demographic 

– to build a more complete profile of the individual, their inherited risks, and the 

environmental/behavioral factors associated with disorder and the effective treatment thereof 

[10].  Indeed, we already see the trend of combining clinical and genetic indicators in prediction 

of cancer prognosis as a way of developing cheaper, more effective prognostic tools [11-13]. 



 Such computational approaches can serve as a component of a larger potential framework 

for real-time data-driven clinical decision support, or “adaptive decision support.”  This 

framework can be integrated into an existing clinical workflow, essentially functioning as a form 

of artificial intelligence that “lives” within the clinical system, can “learn” over time, and can 

adapt to the variation seen in the actual real-world population (Figure 1).  The approach is two-

pronged – both developing new knowledge about effective clinical practices as well as 

modifying existing knowledge and evidence-based models to fit real-world settings [7,9]. 

 

Figure 1: Clinical decision-making – flow diagram 

 

A high-level example of information flow during the clinical process through an electronic health record (EHR) across 

time.  Information gleaned at Time 1 can be utilized at Time 2.  Data flows from the front-end (clinical information 

module) to a backend EHR database, which can then be pushed into a data warehouse (DW).  The DW can analyze this 

raw data and then push information or recommendations back to the front-end.  AI algorithms can “live” in this DW and 

integrate into an existing clinical workflow, learning over time. 

 

1.4 Computational approaches to sequential decision making 

 The focus of the current study is to extend the prior work beyond optimizing treatments 

at single decision points in clinical settings.  This paper considers sequential decision processes, 



in which a sequence of interrelated decisions must be made over time, such as those encountered 

in the treatment of chronic disorders.   

At a broad level, modeling of dynamic sequential decision-making in medicine has a long 

and varied history.  Among these modeling techniques are the Markov-based approaches used 

here, originally described in terms of medical decision-making by Beck and Pauker [14].  Other 

approaches utilize dynamic influence diagrams [15] or decision trees [16, 17] to model temporal 

decisions.  An exhaustive review of these approaches is beyond the scope of this article, but a 

general overview of simulation modeling techniques can be found in Stahl 2008 [17].  In all 

cases, the goal is to determine optimal sequences of decisions out to some horizon.  The 

treatment of time – whether it is continuous or discrete, and (if the latter) how time units are 

determined – is a critical aspect in any modeling effort [17], as are the trade-offs between 

solution quality and solution time [15].  Problems can be either finite-horizon or infinite-horizon.  

In either case, utilities/ rewards of various decisions can be undiscounted or discounted, where 

discounting increases the importance of short-term utilities/rewards over long-term ones [18].   

Markov decision processes (MDPs) are one efficient technique for determining such 

optimal sequential decisions (termed a “policy”) in dynamic and uncertain environments [18,19], 

and have been explored in medical decision-making problems in recent years [18,20].  MDPs 

(and their partially observable cousins) directly address many of the challenges faced in clinical 

decision-making [17,18].  Clinicians typically determine the course of treatment considering 

current health status as well as some internal approximation of the outcome of possible future 

treatment decisions. However, the effect of treatment for a given patient is non-deterministic (i.e. 

uncertain), and attempting to predict the effects of a series of treatments over time only 

compounds this uncertainty.  A Markov approach provides a principled, efficient method to 

perform probabilistic inference over time given such non-deterministic action effects.   Other 

complexities (and/or sources of uncertainty) include limited resources, unpredictable patient 

behavior (e.g., lack of medication adherence), and variable treatment response time.  These 

sources of uncertainty can be directly modeled as probabilistic components in a Markov model 

[19].  Additionally, the use of outcome deltas, averse to clinical outcomes themselves, can 

provide a convenient history meta-variable for maintaining the central Markov assumption: that 

the state at time t depends only on the information at time t-1 [17].   Currently, most treatment 

decisions in the medical domain are made via ad-hoc or heuristic approaches, but there is a 



growing body of evidence that such complex treatment decisions are better handled through 

modeling rather than intuition alone [18,21]. 

Partially observable Markov decision processes (POMDPs) extend MDPs by maintaining 

internal belief states about patient status, treatment effect, etc., similar to the cognitive planning 

aspects in a human clinician [22,23].   This is essential for dealing with real-world clinical issues 

of noisy observations and missing data (e.g. no observation at a given timepoint).  By using 

temporal belief states, POMDPs can account for the probabilistic relationship between 

observations and underlying health status over time and reason/predict even when observations 

are missing, while still using existing methods to perform efficient Bayesian inference.  

MDPs/POMDPs can also be designed as online AI agents – determining an optimal policy at 

each timepoint (t), taking an action based on that optimal policy, then re-determining the optimal 

policy at the next timepoint (t+1) based on new information and/or the observed effects of 

performed actions [24,25]. 

A challenge in applying MDP/POMDPs is that they require a data-intensive estimation 

step to generate reasonable transition models – how belief states evolve over time – and 

observation models – how unobserved variables affect observed quantities. Large state/decision 

spaces are also computationally expensive to solve particularly in the partially observable 

setting, and must adhere to specific Markov assumptions that the current timepoint (t) is 

dependent only on the previous timepoint (t-1).  Careful formulation of the problem and state 

space is necessary to handle such issues [17,19]. 

 

1.5 Current work  

There have been many applications in other domains, such as robotics, manufacturing, 

and inventory control [17,19,26].  However, despite such applicability of sequential decision-

making techniques like MDPs to medical decision-making, there have been relatively few 

applications in healthcare [18,19]. 

Here, we outline a MDP/POMDP simulation framework using agents based on clinical 

EHR data drawn from real patients in a chronic care setting.  We attempt to optimize “clinical 

utility” in terms of cost-effectiveness of treatment (utilizing both outcomes and costs) while 

accurately reflecting realistic clinical decision-making.  The focus is on the physician’s (or 

physician agent’s) optimization of treatment decisions over time.  We compare the results of 



these computational approaches with existing treatment-as-usual approaches to test our primary 

hypothesis – whether we can construct a viable AI framework from existing techniques that can 

approach or even surpass human decision-making performance (see Section 1.2).   

The framework is structured as a multi-agent system (MAS) for future potential studies, 

though at the current juncture this aspect is not fully leveraged.  However, combining MDPs and 

MAS opens up many interesting opportunities.  For instance, we can model personalized 

treatment simply by having each patient agent maintain their own individualized transition model 

(see Discussion).  MAS can capture the sometimes synergistic, sometimes conflicting nature of 

various components of such systems and exhibit emergent, complex behavior from simple 

interacting agents [14,27].  For instance, a physician may prescribe a medication, but the patient 

may not adhere to treatment [20].  

 

2. Methods 

2.1 Data 

 Clinical data, including outcomes, treatment information, demographic information, and 

other clinical indicators, was obtained from the electronic health record (EHR) at Centerstone for 

961 patients who participated in the Client-Directed Outcome-Informed (CDOI) pilot study in 

2010 [9], as well as patients who participated in the ongoing evaluation of CDOI post-pilot 

phase.  This sample contained 5,807 patients, primarily consisting of major clinical depression 

diagnoses, with a significant number of patients (~65%) exhibiting co-occurring chronic physical 

disorders including hypertension, diabetes, chronic pain, and cardiovascular disease.   

Centerstone providers in Tennessee and Indiana see over 75,000 distinct patients a year 

across over 130 outpatient clinical sites.  Centerstone has a fully-functional system-wide EHR 

that maintains virtually all relevant patient records. 

 In all simulations, 500 randomly selected patients were used.  All other aspects, 

probabilities, and parameters for modeling were estimated directly from the EHR data (e.g. 

average cost per service, expected values of outcome improvement and deterioration, and 

transition model probabilities).  

In all subsequent simulations, a single physician agent with a caseload of 500 randomly 

selected patients was used.  The framework can handle multiple physician agents (from a 

programming code standpoint, see Section 2.2), but at the present time there are no variable 



behaviors across physicians (e.g. variable attitudes towards outcome significance, where one 

physician pays a lot of attention to outcome observations and another does not).  The physician 

agent must make a treatment decision for each patient at each timepoint over the course of seven 

sessions (plus baseline/intake, max total sessions=8). 

The primary outcome of interest used here is the Outcome Rating Scale (ORS) 

component of the CDOI assessment, which is a validated ultra-brief measure of functioning and 

symptomology for chronic and acute mental disorders, with over a decade of research supporting 

its use in similar settings and populations [28].  The ORS correlates highly with lengthier, 

traditional outcome measures such as OQ-45 and the Quality of Life Scale (QOLS) [29].  The 

ORS has been shown previously to be useful as the basis for machine learning algorithms to 

predict individualized patient treatment response [9]. 

The utility metric, which is used to evaluate the quality of decisions in a model, is cost 

per unit change (CPUC), which measures the cost in dollars it takes to obtain one unit of 

outcome change (delta) on a given outcome [30].  In essence, CPUC is a relative measure of 

cost-effectiveness of treatment, given as a ratio between costs and outcome change.  In this 

study, CPUC was calculated using the change in CDOI-ORS over time (delta) - the delta 

calculation varying dependent on the formulation of the transition model (Section 2.4).  

However, CPUC could be calculated for any disease and/or outcome measure – e.g. blood 

pressure, cancer metastasis stage, hospitalization days, quality-adjusted life years (QALYs).  

Hence, the use of CPUC, rather than directly using outcomes, for utility/rewards in the modeling 

framework is principle to keeping the model general purpose (non-disease-specific).  

 

2.2 Framework overview 

 A general framework overview can be seen in Figure 2, which is further elaborated in 

Sections 2.3-2.5 below.  The agents (shown in double-line borders) encapsulate the 

characteristics and functions of their respective real-life counterparts – e.g. patient agents 

incorporate individual patient-specific data and individualized transition models (see Discussion) 

while physician agents maintain beliefs about patients’ health status and treatment effects and 

have decision-making capabilities.   

 

Figure 2: Framework overview 



 

 

 

The types of agents are shown in double-line borders.  The other boxes represent various aspects of the model.  The 

general flow is: 1) create patient-specific MDPs/physician agent filters evidence into existing beliefs, 2) recurse through 

MDP search tree to determine optimal action, and 3) perform treatment action and update belief states  

 

 Figure 2 also displays the general algorithm (implemented in Python 2.7, 

www.python.org), where initially patient-specific MDPs are created from the transition models 

and physician agents must incorporate patient-specific evidence/information into existing beliefs 

prior to decision-making at each timepoint.  The decision-making process then recurses down the 

MDP search tree, resulting finally in a determination of an optimal current action and updates to 

patient belief states. 

 The algorithm steps are as follows: 

1) Create patient and physician agents 

2) Create patient-specific MDP 

Then, for each timepoint (if not horizon): 

3) Calculate current outcome delta, physician agent filters evidence 

4) Determine optimal current action via MDP search tree 

5) Perform action and update belief states 

6) If action ≠ not treat, return to step 3 

 

http://www.python.org/


2.3 POMDP decision-making environment 

We model the decision-making environment as a finite-horizon, undiscounted, sequential 

decision-making process in which the state st from the state space S consists of a patient’s health 

status at time t.  At each time step the physician agent makes a decision to treat or stop treatment 

(an action at from the binary action space A={0,1}).  Here time corresponds to the number of 

treatment sessions since the patient’s first visit (typically one session=one week).  The physician 

agent receives rewards/utilities, and is asked to pick actions in order to maximize overall utilities. 

Similar decision-making models were used in [19,31,32].  We can model this decision as a 

dynamic decision network (DDN, a type of dynamic Bayesian network), as seen in Figure 3. 

 

Figure 3: Dynamic decision network (DDN) 

 

A dynamic decision network for clinical decision-making.  a = action (e.g. treatment option), s = state (patient’s actual 

underlying health status), o = observation (patient’s observed status/outcome), c = treatment costs, CPUC = 

utilities/rewards (cost per unit change of some outcome measure).  The subscripts represent time slices (e.g. treatment 

sessions). 

 

Here: 

• s = State (patient’s actual status, not directly observable) 

• o = Observation (patient’s observed status/outcome, can be missing) 

• a = Action (e.g. treatment option, not treat) 

• c = Treatment costs 

• CPUC = Utilities/Rewards (in this case, patient’s CPUC) 



 

We are interested in the following: at time t, what is the optimal action (a) to choose?  The 

answer depends on what the agent has observed so far, the beliefs the agent has inferred from 

those observations, and what the agent expects might happen in the future. 

In our current implementation, health status is taken to be the delta value (change over 

time, see Section 2.4) of the CDOI-ORS (∆CDOI), given an observation at time t, but more 

generally state models could represent underlying characteristics of disease, 

clinical/demographic characteristics, and individual genetic predispositions.  States – actual, st, 

and belief states, bt (see below) – are derived by discretizing continuous CDOI delta values into 

five discrete bins: High Deterioration (∆CDOI < −4), Low Deterioration (−4 <= ∆CDOI < −1), 

Flatline/Stable (−1 <= ∆CDOI <= 1), Low Improvement (1 < ∆CDOI <= 4) and High 

Improvement (∆CDOI > 4).  These bins are derived from research-validated clinical 

categorization of significant outcome delta classes for CDOI-ORS, described by Miller et al. 

[28].  This binning is necessary for computational tractability (Section 2.5.1). 

We model the effects of actions on the state using a transition model (TR) that encodes 

the probabilistic effects of various treatment actions: 

 

  (1)  

 

which is assumed stationary (invariant to the time step). 

The physician agent’s performance objective is to maximize the improvement in patient 

health, as measured by the change in CDOI-ORS score at the end of treatment, while minimizing 

cost of treatment (e.g. by stopping treatment when the probability of further improvement is 

low).  These two competing objectives are combined via the cost per unit change (CPUC) metric 

that incorporates both outcome delta (change over time) and treatment costs.  Treatment 

strategies with low CPUC are cost effective (high utility).  An optimal strategy 
*
 that minimizes 

CPUC is given as: 

 



 

 

(2)  

 

where CPS=cost per service for a given session, CT is a random variable denoting accumulated 

cost at the end of treatment, E indicates expected value (since we are calculating over future 

events), and ∆CDOI(π) is calculated as: 

 

  (3)  

 

where CDOIT is a random variable denoting the CDOI-ORS value at the end of treatment.  The 

expectation is taken over future patient health trajectories up to a finite horizon T, here taken to 

be T=8 treatments (based on the typical average number of sessions amongst Centerstone’s 

outpatient population).  In cases where the CDOI delta <= 0, we rescale the delta values so that 

as a utility metric, given equal costs, delta=0 is effectively one unit worse than delta=1, delta= −1 

is one unit worse than delta=0, and so on.  This is done by adding additional costs to the CPUC 

for delta=1. 

 In all cases, the treatment decision must be based on the belief state rather than the true 

underlying state (which cannot be directly observed) – that is, a strategy  is defined as a map 

from belief states to actions:  : 2
S
 A.  In other words, the physician agent’s reasoning is 

performed in a space of belief states, which are probability distributions over the patient’s health 

status, bt(s)=P(st=s).  For instance, we cannot directly observe a patient’s disease state (e.g. 

diabetes); rather, we take measurements of symptoms (e.g. blood glucose) and attempt to classify 

the patient into some underlying disease or health state.  Furthermore, in approximately 30% of 

our data, the clinician makes a treatment decision when the CDOI-ORS observation is missing 

(i.e. partially observable environment), and the belief state must be inferred from previous belief 

states (see below).  The belief state categories are the same as those described above for the true 

underlying state (High Deterioration, Flatline, etc.)  In future work, we would like to extend the 

system to reason optimally when integrating unobserved health factors based on their 

probabilistic relationship to observed clinical/demographic characteristics, as well as account for 

non-deterministic effects of variable treatment options (see Discussion).   



Unconditional on observations, the next belief state, bt+1, is predicted from the prior belief 

(over all possible prior states) using the following exact equation: 

 

 

 

(4)  

 

By repeated application of this predict operation our system can compute forecasts of the 

patient’s health status into the future.   

Over time, uncertainty of the belief state is reduced by relating the observations that are 

actually seen by the physician to the health status; in other words, when observations are 

available, we utilize them to update the belief states.  In our problem, observations ot are drawn 

from the observation space O = {missing}  CDOI.  In the case of a missing observation, ot = 

{missing}, the belief bt(s) is maintained as is after the observation.  This provides a probabilistic 

observation model, which defines the relationship between the true underlying state and possible 

observations: 

 

  (5)  

 

Upon receiving an observation ot , we find the posterior belief over the patient’s state using the 

update operation, which uses Bayes rule to derive the backward relationship from an observation 

to the state distribution: 

 

 
 

(6)  

 

where Z is a normalization factor equal to the unconditional probability of observing ot.  For all 

patients and their current belief state, the physician agent maintains a continuous-valued estimate 

of CDOI-ORS at the given timepoint by applying a Gaussian model of average treatment effect 

(estimated from the EHR data) to the CDOI-ORS value at the previous timepoint given the 

predicted belief state, bt(s) (e.g. High Improvement).  This continuous-valued CDOI-ORS belief 

can be recalculated as a delta and then re-binned into states for future prediction steps, bt+1(s). 



  

2.4 Estimation of transition models 

The goal of the transition model is to use the history of health status – i.e. outcome delta 

– to predict the probability distribution of future health states on the subsequent time step.  Let ht 

denote the history of observations (o1,…,ot).  We compare three model classes for predicting the 

change in CDOI-ORS from the current to the next step: CDOIt = CDOIt+1− CDOIt.  

1) 0
th

 order – a raw stationary distribution over CDOIt independent of history (i.e. the 

probability of treatment effect, regardless of improvement/deterioration seen thus far): 

P( CDOIt | ht) = P( CDOIt) 

2) 1
st
 order autoregressive (Local) – the distribution over CDOIt depends only on change 

since the previous timepoint (local change): P( CDOIt | ht) = P( CDOIt  | CDOIt−1). 

3) Global average – the distribution over CDOIt depends on the entire patient history (i.e. 

delta since baseline): P( CDOIt | ht) = P( CDOIt  | (CDOIt−CDOI0)). 

 

The 0
th

 order model ignores any effect of the history on future patient outcomes and treats each 

patient like a new average patient regardless of previous observations.  For instance, even if the 

patient has already experienced significant outcome improvement, the 0
th

 order model still 

assumes they are just as likely to improve in the future.  On the other hand, the 1
st
 order local 

model uses the short-term trajectory of prior improvement/deterioration in order to gain 

somewhat better forecasting ability, but only since the most recent timepoint (previous treatment 

session). One potential drawback of this method is that it may be fooled by large and/or spurious 

short-term oscillations in patient outcomes.  The global averaging technique looks at trends over 

a longer time horizon (change since baseline, t=0).  It provides the most comprehensive measure 

but is less sensitive to recent changes, which can be significant for real-world treatment 

decisions.  The global technique also maintains the Markov property required for MDP use by 

capturing the total history of outcome change as a state meta-variable of a given timepoint (see 

Section 2.5.1). In future work, the potential also exists to combine of models of differing orders 

to improve forecasting (e.g. 1
st
 order/local and global deltas). 

For each transition model class, we build a discrete conditional probability table over the 

values of the independent variable using observed statistics from our EHR data (in other words, 

using a separate sample of patients from the EHR, we estimate the transition probabilities needed 



for the model).  To obtain sufficient sample size for the estimation procedure, we bin deltas into 

5 bins (High Deterioration, Low Deterioration, Flatline/Stable, Low improvement, High 

Improvement) based on research-validated clinical categories (see Section 2.3) [28].  For each 

model, we estimated transition probabilities using maximum likelihood from EHR data.  As 

typical for many EHR systems, our dataset only contains CDOI-ORS data for patients to the 

point of treatment termination – i.e., we have no information on patients’ health status after the 

discontinuation of services at Centerstone.  As noted elsewhere, the collection of such “natural 

history” disease data is fraught with many challenges, ethical and otherwise, particularly if such 

untreated conditions pose significant health risks [18].  Hence, we make the coarse 

approximation that untreated individuals, on average, remain roughly constant at CDOIt=0. 

 

2.5 Decision-making strategies 

2.5.1 MDP models 

 To determine optimal actions via the DDN, we compute an optimal treatment strategy via 

exploration of a belief-space search tree (MDP search tree).  Here, we present an online approach 

where the system continually plans, executes, observes, and re-plans the optimal treatment 

strategy from any given timepoint [33]. 

The MDP/POMDP search tree, also sometimes referred to as a stochastic decision tree [34], 

explores the beliefs (b) obtained for all possible actions (a) and probabilistic treatment outcomes 

(observations, o) out into the future (Figure 4).  The tree alternates layers of decision nodes – in 

which the physician agent has a choice of action – and chance nodes – in which the environment 

(including other agents’ actions, non-deterministic treatment effects, and so on) yields uncertain 

changes to the patient health status.  For stop-treatment actions, we also construct terminal 

nodes.  In our case, we end enumerating layers at the finite horizon, T=8 (producing a tree of 

depth 16 in total).  

We then make a backwards pass to compute the optimal decisions at each decision node that 

optimizes CPUC.  The first step in this pass computes the overall CPUC at leaves and terminal 

nodes.  Then, we recursively backup the optimal CPUC for interior nodes all the way to the root.  

The backup operation for chance nodes calculates the expected CPUC over its children (based on 

probabilities), while at decision nodes the backup picks the action that leads to the optimal (in 

this case, minimal) CPUC for its subtree. Once this operation is complete, we can compute the 



optimal strategy.  The optimal strategy is a subtree obtained by keeping all children of chance 

nodes and the single child corresponding to the optimal action at each decision node.  This 

optimal strategy represents a treatment plan given current information.    

 

Figure 4: MDP search tree 

 

 

 

An example MDP search tree for clinical decision-making.  At each layer/time slice, we have a series of decision and 

chance (or terminal) nodes.  Decision nodes represent choices of actions (a, given k possible actions), while chance nodes 

represent possible resulting observations (o, given m possible observations).  Terminal nodes present a utility measure 

(CPUC, represented in dollars).  As none of these actions or observations has occurred yet, we must use probabilistic 

beliefs (b) at each planning step. 

 

Where the various branches, b, can relate to possible observations, o={o1…om}, at the decision 

nodes and actions, a={a1…ak}, at the probabilistic nodes.  Each node contains some utility value 

(here a CPUC value shown in dollars). 

A primary challenge in this approach is exploring the large search tree that can result.  Here, 

we consider 5 observation bins and a “stop treatment” action with no subsequent branches, 



resulting in a search tree with branching factor = 5 and depth = 10 and the generation of over 

100,000 belief states in the worst case.  While tractable for the problem at hand, more complex 

decision problems – such as larger state spaces, action types, or time frames – may require 

approximate solutions [15]. 

 

2.5.2 Comparative models 

 For comparative purposes with the MDP models, we evaluated several simpler decision-

making approaches.  These alternative strategies provide context for interpreting the optimality 

of the MDP results. 

We considered two heuristic policies that represent current healthcare models.  The MDP 

models were constructed only with the 1
st
 order and global transition models described in section 

2.4, as the MDP policy is trivial in the 0
th

 order case because ∆CDOI from t to t+1 is assumed 

independent of prior history.  As such, the 0
th

 order models essentially represent their own 

decision-making approach – henceforth referred to as Raw Effect models, given they consider 

the raw effect of treatment without consideration of outcome change history.  Given its 

optimistic nature, the Raw Effect model results in always treating till the horizon.  The Raw 

Effect model provides an upper baseline, which represents the overly-optimistic scenario of 

assuming treatment always results in patient improvement.  This is, in effect, an approximation 

of the fee-for-service model prevalent in U.S healthcare.  We also considered a Hard Stop 

policy after the third treatment session. The Hard Stop strategy provides a lower baseline, 

simulating the worst-case scenario of simply stopping treatment after some arbitrary timepoint 

without consideration for outcomes (minimizing costs).  This is, in effect, an approximation of 

the case-rate/capacitated model used by many insurance companies.    

Additionally, for the 1
st
 order and global transition models, we consider two simpler 

decision-making approaches (that do consider outcome change history):  

1) Max Improve that assumes the treatment effect of maximum probability always occurs 

for a given action.  This could be considered a “winner-take-all” approach.  

2) Probabilistic models select an action at random, where the action is chosen with 

probability proportional to its likelihood to improve CDOI.  For example, if treatment 

was predicted to improve CDOI with probability 0.9, then the strategy would flip a biased 

coin with probability 0.9 to decide whether to treat. 



 

Both of the above models – as well as the Raw Effect model – only consider the probabilities 

of treatment effects for a given action from t to t+1, unlike the MDP approach which can 

calculate utilities of a current action across multiple future timepoints considering possible 

action sequences, treatment effects, and contingency plans.  We consider them here to evaluate 

whether the added complexity of the MDP models results in justifiable performance 

improvement in a healthcare setting. 

 

2.6 Simulation analysis approach 

 For purposes of analysis, simulation experiments were performed across multiple 

permutations of the transition and decision-making models laid out in Sections 2.4 and 2.5 

(henceforth termed constructs). We also considered datasets with and without missing 

observation points. 

Additionally, for the MDP model solved via DDN/search tree, the significance of the 

outcomes was varied via an outcome scaling factor (OSF) that adds in scaled outcome values {0-

1} as an additional component of the utility metric.  The outcomes (current delta) are scaled and 

flipped based on the maximum possible delta for a patient at a given timepoint (deltamax), so that 

higher values (near 1) are worse than lower values (given that we are attempting to minimize 

CPUC): 

 

 
 

(7)  

 

Although any scaling to the range y = {0-1} and flipped so that OSF = 1− y would work.  

Increasing this OSF above 0 increases the added importance of outcomes in the decision-making 

process.  It should be noted – this is "added" influence, because outcomes are already accounted 

for in the basic CPUC reward/utility calculation, even when this factor is set to 0.  When set to 0, 

outcomes are considered equally important as costs. 

For the probabilistic decision-making models (Section 2.5.2), it was necessary to perform 

multiple runs (n=10) of each construct in order to build a statistical sample from which to derive 



mean values for CPUC, outcomes, etc. given these probabilistic models are purely non-

deterministic nature.  For the other decision-making models, this was unnecessary.   

 

3. Results 

3.1 General results 

 Nearly 100 different constructs were evaluated during this study.  For brevity, a sampling 

of the main results is shown in Table 1 (with OSF=0).  In general, the purely probabilistic 

decision-making models performed poorly, and are not shown here.  In all tables, results are 

based averages/percentages across all patients (n=500, see Section 2.1) in each construct 

simulation.  As defined in Section 2.3, the goal here (i.e. optimality) is defined as maximizing 

patient improvement while minimizing treatment costs, which equates to minimizing CPUC.   

Additionally, we would prefer models that maintain reasonably high average final delta values 

and lower standard deviations of delta values. 

 Table 1 shows the results of the Hard Stop (i.e. case rate) and the Raw Effect (i.e. fee-for-

service) decision models first.  It should be noted that – for the former – CPUC is reduced but 

still generally higher than other decision making approaches while outcomes are very low, and 

that – for the latter – outcomes are improved but still generally lower than other decision making 

approaches while CPUC is significantly higher.  In short, neither is optimal. 

Table 1: Model simulation results 

 

1Missing observation  
2Cost per Unit Change 
3Final Delta = change in outcome from baseline to end of treatment 
4Percent of patients receiving maximum number of treatment sessions 



 

 More sophisticated decision-making models – including the Max Improve and the MDP 

models – performed much more optimally across various constructs.  This included constructs 

with the inclusion of missing observations, which is a realistic challenge faced by any healthcare 

decision-maker.  Generally speaking, the MDP decision-making models outperformed the Max 

Improve models in terms of minimizing CPUC, which was the primary metric of interest.  

However, the MDP approach generally achieved slightly lower outcome deltas, given an OSF=0 

(see section 3.2).  The MDP models did have slightly lower standard deviations for outcome 

deltas across patients except for a few constructs.  In general, the MDP models appeared to be 

more consistent in terms of our definition of optimality.  We can also see that performance 

increases as we move from the 1
st
 order to global transition models. 

These more sophisticated AI decision-making approaches are superior to the 

aforementioned, more simplistic methods that are commonly employed in many healthcare 

payment methodologies (case rate, fee-for-service). An MDP model using a global transition 

model obtained higher outcomes than the Raw Effect (i.e. fee-for-service) model at significantly 

lower CPUC ($189 vs. $497), even in the face of missing observations. 

 It should also be noted that the same values in Table 1 were calculated for the broader 

patient population from Centerstone’s EHR (Centerstone currently operates in a fee-for-service 

payment model).  These “treatment-as-usual” averages were estimated as: CPUC ≈ $540, final 

CDOI-ORS delta ≈ 4.4 ± 9.5, and number of services ≈ 7.1.  These real-world values roughly 

approximate the simulated values for the Raw Effect decision-making model, providing some 

ground validity for the simulation approach. 

 

3.2 MDP variation in outcome scaling factor 

 Since the MDP decision-making approaches consider utilities inherently as part of their 

decision-making approach, they provide additional opportunities for model refinement over other 

approaches, such as the simpler Max Improve model (Section 3.1).  One way to refine the model 

is by adjusting the outcome scaling factor (OSF, Section 2.6).  The results of such adjustment for 

the MDP model (using the global transition model and inclusion of missing observations) are 

shown in Table 2.  Additionally, we ran the same experiment on a variation of the MDP model 



which takes the action with maximum probability (MaxProb) at each chance node, rather than 

the average/expected values (see Section 2.5.1).   This is shown in Table 3. 

Table 2: Outcome scaling – normal MDP 

 
1Missing observation  
2Cost per unit change 
3Final Delta = change in outcome from baseline to end of treatment 
4Percent of patients receiving maximum number of treatment sessions 

 

Table 3: Outcome scaling – MaxProb MDP 

 
1Missing observation  
2Cost per unit change 
3Final Delta = change in outcome from baseline to end of treatment 
4Percent of patients receiving maximum number of treatment sessions 

 

 In Table 2, we can see that adjusting the OSF from 0 to 10 results in increasing outcome 

deltas, as well as increasing CPUC’s.  For the normal MDP, we appear to reach some sort of 

maxima in outcomes around OSF=3 or 4 (which is reflected in the MaxProb MDP below).  After 

this, CPUC continues to rise, but outcome deltas show minimal improvement, even at OSF=10 



and beyond.  Effects on CPUC and outcome delta for both models using OSF ranging [0,15] can 

be seen in Figure 5.     

 We can see in table 3 that the MaxProb MDP show little change across OSF values in 

terms of CPUC or outcome deltas.  This is probably evidence of some global maxima for CPUC 

≈ $220-225 and outcome delta ≈ 6.25-6.35.  Existence of such maxima should be expected given 

the optimization-problem nature of the current framework.  It does suggest that such problems 

may be ripe for application of other optimization techniques for determining model parameters 

such as OSF or action/treatment decision thresholds. 

It should be noted that with OSF=3, the normal MDP obtains CPUC=$224 and outcome 

delta=6.24 in 4.68 treatment sessions.  This appears to be an optimal decision-making model 

across all model formulations given both CPUC and outcome deltas.  It also vastly outperforms 

the aforementioned treatment-as-usual case rate/fee-for-service models (see Section 3.1).  

Essentially, we can obtain approximately 50% more improvement (outcome change) for roughly 

half the costs. 

Figure 5: Outcome scaling effects 

 



The figure shows the effect of different values of the OSF parameter on CPUC (top) and outcome delta, i.e. ∆CDOI 

(bottom), for both the MDP-Normal and MDP-MaxProb Models.  The delta values level off around ≈ 6.25-6.35 while 

CPUC values continue to increase. 

 

4. Discussion 

4.1 Summarization of findings 

 The goal in this paper was to develop a general purpose (non-disease-specific) 

computational/AI framework in attempt to address fundamental healthcare challenges – rising 

costs, sub-optimal quality, difficulty moving research evidence into practice, among others.  This 

framework serves two potential purposes: 

1) A simulation environment for exploring various healthcare policies, payment 

methodologies, etc. 

2) The basis for clinical artificial intelligence – an AI that can “think like a doctor” 

 

This framework utilizes modern computational approaches to learn from clinical data and 

develop complex plans via simulation of numerous, alternative sequential decision paths.  It 

determines optimal actions based on what has been observed so far, the beliefs inferred from 

those observations, and what we expect might happen in the future.  It must do so in a dynamic 

environment as an online agent – which continually plans, observes, and re-plans over time as 

evidence/facts change.  The framework is structured as a multi-agent system, which in future 

work has potential to account for the various conflicting and synergistic interactions of various 

components in the healthcare system. 

The results shown here demonstrate the feasibility of such an approach relative to human 

decision-making performance.  Even in its early stages of development, such an AI framework 

easily outperforms the current treatment-as-usual case-rate/fee-for-service models of healthcare 

(Section 3.1).  Sophisticated modeling approaches utilizing MDPs and DDNs can be further 

tweaked to provide finer control over the utility input of higher outcomes or lower costs (Section 

3.2), providing robust tools for simulation and AI development in the medical domain. 

 

4.2 Future work 

 Despite the work presented here, there are many areas ripe for exploration in this domain.  

We are particularly interested in: 



• Personalized transition models – Integrate machine learning algorithms for optimal 

treatment selection for each patient.  

• Natural history of disease progression – For patients who receive no treatment as an 

action, consider natural history rather than assuming they remain stable. 

• Variable physician agents – Vary behavior/decision-making by physician depending on 

individual physician priors (e.g., variable perceptions of outcome significance). 

• Variable patient agents – Consider variable patient behaviors (e.g. non-adherence to 

treatment, not taking medications, missing appointments). 

• Optimization methods for thresholds – To determine cutoffs of decision points 

between actions, rather than a priori determination via statistical methods.  Agent would 

determine such cut-points “on the fly.” 

• Gaussian noise for activity effects – More realistic modeling of transitions between 

health states.  

• Improved non-deterministic choices – For example, Monte Carlo simulations, rather 

than simply picking the max probability or random number, to determine if this yields 

better results.   

• Better state conceptualization – Consider combined global/local (1
st
 order) delta state 

space to capture both overall patient progress as well as short-term trajectories. 

• Better utility conceptualization – Consider alternative ways to estimate utility of a 

given action (e.g. different methods for weighting costs and outcomes). 

 

For example, given the multi-agent design, the system can be modeled on an individual, 

personalized treatment basis (including genetics), i.e. “personalized medicine” [10].  In previous 

work (see Introduction), we have described using machine learning methods to determine 

optimal treatments at a single timepoint for individual patients [7,9].  Such methods could be 

combined into the sequential decision AI framework described here, simply by incorporating the 

output probabilities of those single-decision point treatment models into the transition models 

used by the sequential decision-making approaches [35].  As such, each patient agent could 

maintain their own individualized transition model, which could then be passed into the 

physician agent at the time of decision-making for each patient.  This is a significant advantage 



over a “one-size-fits-all” approach to healthcare, both in terms of quality as well as efficiency 

[36,37].    

There are, of course, potential ethical issues about how we might use such 

quality/performance information as the basis for clinician reimbursement and/or clinical 

decision-making (e.g. pay-for-performance), but these are broader issues that transcend whether 

we use artificial intelligence techniques or not [38]. 

Other opportunities include considering combinations of global/local (1
st
 order) deltas to 

capture both long-term prognosis as well as short-term trajectories, modeling variable patient 

behaviors (e.g. non-adherence to medications), testing alternative utility metrics, and utilizing 

optimization techniques to determine decision cutoff thresholds between actions on-the-fly. 

 

4.3 Conclusion 

At the end of the day, if we can predict the likely result of a sequence of actions/treatment 

for some time out into the future, we can use that to determine the optimal action right now.  As 

recently pointed out by the Institute of Medicine, does it make sense to continue to have human 

clinicians attempt to estimate the probabilistic effects of multiple actions over time, across 

multitudes of treatment options and variable patient characteristics, in order to derive some 

intuition of the optimal course of action?  Or would we be better served to free them to focus on 

delivery of actual patient care [39]?  The work presented here adds to a growing body of 

evidence that such complex treatment decisions may be better handled through modeling than 

intuition alone [18,21].  Furthermore, the potential exists to extend this framework as a technical 

infrastructure for delivering personalized medicine.  Such an approach presents real opportunities 

to address the fundamental healthcare challenges of our time, and may serve a critical role in 

advancing human performance as well. 
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