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Abstract

Objective—One of the hardest technical tasks in employing Bayesian network models in practice 

is obtaining their numerical parameters. In the light of this difficulty, a pressing question, one that 

has immediate implications on the knowledge engineering effort, is whether precision of these 

parameters is important. In this paper, we address experimentally the question whether medical 

diagnostic systems based on Bayesian networks are sensitive to precision of their parameters.

Methods and Materials—The test networks include Hepar II, a sizeable Bayesian network 

model for diagnosis of liver disorders and six other medical diagnostic networks constructed from 

medical data sets available through the Irvine Machine Learning Repository. Assuming that the 

original model parameters are perfectly accurate, we lower systematically their precision by 

rounding them to progressively courser scales and check the impact of this rounding on the 

models' accuracy.

Results—Our main result, consistent across all tested networks, is that imprecision in numerical 

parameters has minimal impact on the diagnostic accuracy of models, as long as we avoid zeroes 

among parameters.

Conclusion—The experiments' results provide evidence that as long as we avoid zeroes among 

model parameters, diagnostic accuracy of Bayesian network models does not suffer from 

decreased precision of their parameters.
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1. Introduction

Decision-analytic methods provide a coherent framework for modeling and solving decision 

problems in decision support systems [1]. A popular modeling tool for complex uncertain 

domains, such as those encountered in medical applications, is a Bayesian network [2], an 

acyclic directed graph quantified by numerical parameters and modeling the structure of a 

domain and the joint probability distribution over its variables. There exist algorithms for 

reasoning in Bayesian networks that compute the posterior probability distribution over 

variables of interest given a set of observations. As these algorithms are mathematically 

correct, the ultimate quality of their results depends directly on the quality of the underlying 

models and their parameters. These parameters are rarely precise, as they are often based on 

rough subjective estimates or data that do not reflect precisely the target population. The 

question of sensitivity of Bayesian networks to precision of their parameters is of much 

interest to builders of intelligent systems. If precision does not matter, rough estimates or 

even qualitative “order of magnitude” estimates that are typically obtained in the early 

phases of model building, should be sufficient without the need for their painstaking 

refinement. Conversely, if network results are sensitive to the precise values of probabilities, 

a lot of effort has to be devoted to obtaining precise estimates. The question whether 

precision matters has, thus, important practical implications on knowledge engineering for 

Bayesian networks.

There is a popular belief, supported by some anecdotal evidence, that Bayesian network 

models are tolerant to imprecision in their numerical parameters. There are two lines of 

research that attempt to address this question systematically. The first line of work focuses 

on studying whether introducing noise in the parameters affects the models' accuracy. The 

experiments conducted introduce noise into the parameters and tests the impact of that noise 

on the network's diagnostic accuracy. The results of these experiments are mixed: Pradhan et 

al. [3] argue that Bayesian networks are not sensitive to noise over a wide range of noise 

while Onisko and Druzdzel [4, 5] suggest more caution, agreeing at the same time that small 

amount of noise has minimal impact on accuracy. The second line of work, called 

collectively sensitivity analysis, focuses on identifying parameters that are crucial for 

models' accuracy. Sensitivity analysis studies how much a model output changes as various 

model parameters vary through the range of their plausible values. It allows to get insight 

into the nature of the problem and its formalization, helps in refining the model so that it is 

simple and elegant, containing only those factors that matter, and checks the need for 

precision in refining the numbers [6]. It is theoretically possible that small variations in a 

numerical parameter cause large variations in the posterior probability of interest. Van der 

Gaag and Renooij [7] found that real networks may indeed contain such critical parameters. 

Chan and Darwiche [8] provide a theoretical explanation of their findings. Coupé et al. [9] 

showed empirically in one-way sensitivity analysis that a satisfactory network can be 

quantified by obtaining well-informed estimates for these parameters that are highly 

influential while other parameters can receive only rough estimates.

This paper probes the question whether Bayesian network models as a whole are sensitive to 

precision of their parameters. We manipulate the precision of Bayesian network parameters, 

starting with their original values and rounding them systematically to progressively rougher 

Oniśko and Druzdzel Page 2

Artif Intell Med. Author manuscript; available in PMC 2015 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scales. This models a varying degree of precision of the parameters. Our results show that 

the diagnostic accuracy of Bayesian network models is very sensitive to imprecision in 

probabilities, if these are plainly rounded. However, the main source of this sensitivity 

appears to be in rounding small probabilities to zero. When zeroes introduced by rounding 

are replaced by very small non-zero values, imprecision resulting from rounding has almost 

no impact on models' diagnostic accuracy.

The remainder of this paper is structured as follows. Section 2 reviews existing work on the 

application of Bayesian networks in medical diagnosis. Section 3 provides a brief review of 

relevant literature on the topic of rounding probabilities. Sections 4 and 5 introduce the 

models and describe the results of our experiments, respectively. Finally, Section 6 

summarizes the main insights obtained from our results.

2. Bayesian network models in medical diagnosis

The earliest work on medical expert systems was based on Bayesian approach [10, 11]. 

Pioneer medical systems based on Bayesian networks included the Nestor system [12] for 

diagnosis of endocrinology disorders, Munin [13], a medical system for diagnosing 

neuromuscular disorders, and Alarm [14], a system monitoring patients in intensive care 

units. Other notable systems were Pathfinder IV [15], a medical system for diagnosis of the 

lymph system diseases, and the decision-theoretic version of Qmr, a system for diagnosis in 

internal medicine based on the Cpcs model (Computer based Patient Case Simulation 

system) [16]. Other medical applications include Diaval [17], a diagnostic expert system for 

echocardiography or a Bayesian network model for oesophageal cancer [18]. Bayesian 

networks were also applied to management of infectious diseases in intensive care units 

[19]. A special issue of the journal Artificial Intelligence in Medicine [20] was devoted to 

applications of Bayesian networks in biomedicine and health-care. In the last decade, also 

dynamic Bayesian networks (DBNs), a temporal extension of Bayesian networks, found 

their applications in medicine. Early work in this direction was done by Leong and 

colleagues e.g., [21, 22]. Selected applications of DBNs in medicine included also a DBN 

for management of patients suffering from a carcinoid tumor [23], or NasoNet, a system for 

diagnosis and prognosis of nasopharyngeal cancer [24]. DBNs were also used in cellular 

systems [25] or for modeling dynamics of organ failure in patients in intensive care units 

[26].

Bayesian network models produce posterior probability distributions over hypotheses. In 

case of a diagnostic network, the output of a model can be viewed as an assignment of 

posterior probabilities to various disorders. In order to make a diagnostic decision, one needs 

to know the probabilities of rival hypotheses (in the idealized case, the joint probability 

distribution over all disorders). This allows for weighting the utility of correct against the 

disutility of incorrect diagnosis. If the focus of reasoning is differential diagnosis, it is of 

importance to observe how the posterior in question compares to the posteriors of competing 

disorders.
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3. Rounding of probability distributions

Approximating a number amounts to rounding it to a value that is less precise than the 

original value. For example, according to the U.S. Census Bureau,1 the estimated population 

of the World on 2 December 2011 at 6:07 UTC was 6,978,614,924. This number can be 

rounded to 6,978,615 thousand, 6,979 million, or 7 billion respectively, each successive 

rounding leading to some loss of precision. While several rounding rules exist, the most 

common, applied to the example above, rounds the fractional part to the nearest integer.

Rounding probabilities and, in general, proportions can be approached similarly, although 

there is an additional complication. If we round a set of proportions using a standard 

rounding method, the sum of rounded numbers will not necessarily equal to 1.0. In fact, as 

the number of categories approaches infinity, the probability that the sum of their rounded 

weights is equal to 1.0 approaches zero [27]. This problem has been studied for over two 

centuries with basic analysis conducted around the time of the design of the United States 

constitution, where the motivation for the research was the desire to develop rules for fair 

political representation. A moderately rich literature on the topic exists that studies various 

algorithms for ensuring that the sum of rounded proportions does add to 1.0. Balinski and 

Young [28], in their excellent monograph, demonstrate that among all rounding procedures 

only quotient methods (also called multipler methods) are free from irritating paradoxes.

For our experiments, we selected a generic stationary rounding algorithm for proportions 

based on a multiplier method, described in Heinrich et al. [29], and summarized below. The 

algorithm has three parameters: (1) stationarity parameter q (most common value used in 

rounding is q = 0.5), (2) accuracy n (this is the number of intervals that the proportions are 

to be expressed in, so n = 10 gives us the accuracy of 0.1), and (3) a global multiplier ν (the 

value of ν is typically chosen to be ν = n).

Let (w1, w2, …, wc) be a vector of c weights. The algorithm focuses on finding a vector of 

integer numerators (Nq,1, Nq,2, …, Nq,c), such that , that uniquely determines 

the rounded weights. To derive a rounded weight wq,i, it is sufficient to divide Nq,i by n. To 

obtain the numerators Nq,i, i = 1, …, c, we first compute the discrepancy D,

which is a random variable with integer values in the interval (ν − n − cq, ν −n + c(1 − q)). 

Then, for j = 1, …, c, we adjust the initial assignment [νwj]q to obtain the final numerators

1http://www.census.gov/population/www/popclockus.html (Accessed: 2 December 2011)
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where mj,n(D) is the count of how often index j appears among the |D| smallest quotients

Example 1

Let (0.04, 0.14, 0.46, 0.36) be a vector of 4 weights and the desired accuracy be n = 10. We 

conveniently set ν = n = 10 and use the standard value of the rounding parameter q = 0.5. 

This yields the initial values of numerators νw = (0, 1, 5, 4) and the value of discrepancy D 

= 0. No adjustment to the numerators is needed and we obtain the vector of rounded weights 

of (0.0, 0.1, 0.5, 0.4) by dividing each of the numerators by n = 10.

Example 2

However, an initial vector of weights (0.04, 0.14, 0.48, 0.34) yields the initial values of 

numerators νw = (0, 1, 5, 3) and the value of discrepancy D = −1. Using the formula for D < 

0, we compute the quotients of (2.5, 0.71, 1.08, 0.29) and adjust w4 (the smallest of the 

quotients was for i = 4) by 1, yielding D = 0, the final vector of numerators (0, 1, 5, 4) and 

the resulting rounded weights of (0.0, 0.1, 0.5, 0.4).

4. Models studied

Our desire was to investigate the sensitivity of accuracy of diagnostic Bayesian network 

models to precision of their parameters in a context that is as close to reality as possible. We 

had a thorough understanding of one diagnostic Bayesian network model, the Hepar II 

model. In addition to Hepar II, we created diagnostic Bayesian network models from six real 

medical data sets from the Irvine Machine Learning Repository. This section describes these 

models.

We owe the reader an explanation of the metric that we used in testing the diagnostic 

accuracy of models. We define diagnostic accuracy as the percentage of correct diagnoses 

on real patient cases. This is obviously a simplification, as one might want to know the 

sensitivity and specificity data for each of the disorders or look at the global quality of the 

model in terms of ROC (Receiver Operating Characteristics) curve or AUC (Area Under the 

ROC Curve). This, however, is complicated in case of models focusing on more than one 

disorder — there is no single measure of performance but rather a measure of performance 

for every single disorder. We decided thus to focus on the percentage of correct diagnoses. 

Furthermore, because Bayesian network models operate only on probabilities, we assume 

that each model indicates as correct the diagnosis that is most likely given patient data.

4.1. The Hepar II model

The Hepar II model [30] is one of the largest practical medical Bayesian network models 

available to the community, carefully developed in collaboration with medical experts and 

parametrized using clinical data. The model consists of 70 variables modeling 11 different 
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liver diseases and 61 medical findings, such as patient self-reported data, signs, symptoms, 

and laboratory tests results. The structure of the model, (i.e., the nodes of the graph along 

with arcs among them) is based on medical literature and conversations with domain 

experts, a hepatologist Dr. Hanna Wasyluk, a pathologist, Dr. Daniel Schwartz, and a 

specialist in infectious diseases, Dr. John N. Dowling. The elicitation of the structure took 

approximately 50 hours of interviews with the experts, of which roughly 40 hours were 

spent with Dr. Wasyluk and roughly 10 hours spent with Drs. Schwartz and Dowling. This 

includes model refinement sessions, where previously elicited structure was reevaluated in a 

group setting. The numerical parameters of Hepar II (there are 2,139 of these in the most 

recent version), i.e., the prior and conditional probability distributions, were learned from 

Hepar data. The Hepar database was created in 1990 and has been thoroughly maintained 

since then by Dr. Wasyluk at the Gastroentorogical Clinic of the Institute of Food and 

Feeding in Warsaw, Poland. Each hepatological case in the database is described by over 

160 different medical findings, such as patient self-reported data, results of physical 

examination, laboratory tests, and finally a histopathologically verified diagnosis. The 

version of the Hepar data set that was available to us consisted of 699 patient records.

All our tests of diagnostic accuracy of Hepar II relied on its ability to discern among the 11 

modeled liver disorders given the observations contained in each of the patient records. The 

most likely disorder became by definition Hepar II's diagnosis. Because we used the same, 

fairly small database to learn the model parameters, we applied the method of “leave-one-

out” [31], which involved repeated learning from 698 records out of the 699 records 

available and subsequently testing it on the remaining 699th record. With diagnostic 

accuracy defined as above, the Hepar II model reaches the diagnostic accuracy of 57%. The 

correct diagnosis was among Hepar II's first two most likely disorders in 69% of the cases, 

among the three most likely disorders 75% of the cases, and among the first four most likely 

disorders 79% of the cases [32]. The problem of diagnosing a liver disorder without liver 

biopsy is hard and the model compared very favorably against general practitioners on a 

randomly selected set of 10 patient cases [33]. More details about Hepar II and its 

performance can be found in [30, 34]. Readers interested in the Hepar II model can 

download it from Decision Systems Laboratory's model repository at http://

genie.sis.pitt.edu/ (Accessed: 26 June 2012).

4.2. The Irvine Machine Learning Repository models

In addition to Hepar II, we selected six data sets from the Irvine Machine Learning 

Repository: Acute inflammation [35], SPECT Heart [36], Cardiotocography [37], Hepatitis 

[38], Lymphography [39], and Primary Tumor [39]. In our selection, we were guided by the 

following two criteria: (1) Because we wanted to test the diagnostic accuracy of a model, the 

data set had to have at least one disorder variable, (2) In order to avoid confounding our 

study with additional modeling issues, we tried to avoid data sets with many missing values 

and many continuous variables.

Table 1 presents basic characteristics of the selected data sets, including Hepar data. 

Detailed description of each of the data sets can be found at the Irvine Machine Learning 

repository, in http://archive.ics.uci.edu/ml/ (Accessed: 26 June 2012).
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We learned a Bayesian network model from each of the data sets in the following way. We 

first learned three different networks, using (1) a basic Bayesian search algorithm, (2) a Tree 

Augmented Network (TAN) learning algorithm, and (3) Naive Bayes algorithm, as 

implemented in GeNIe [40]. We subsequently tested these three networks for their accuracy 

using the leave-one-out method. Finally, of the three networks we selected the one that 

performed best (in terms of its diagnostic accuracy) on the original data set. All models that 

made it through this cut were those learned by the Bayesian search algorithm, except for 

Lymphography, created by the TAN learning algorithm, and Hepar II, constructed based on 

expert knowledge. Because each of the learning algorithms that we used accepts only 

discrete data, prior to learning we discretized those variables that were continuous. We used 

expert-based discretization, relying on domain-specific thresholds (e.g., in case of total 

bilirubin test, we divided the range into three intervals: normal, moderately high, and high). 

Because none of the learning algorithms was able to handle missing data, for the purpose of 

structure learning, we temporarily replaced all missing values with the “normal” state of the 

corresponding variable. This, as we demonstrated earlier [32] leads typically to best 

performance in medical systems. Table 2 presents the basic statistics of the Bayesian 

network models that resulted from this procedure, including the Hepar II model.

We assumed that the models obtained this way were perfect in the sense of containing 

parameters as precise as the data would allow. The accuracy measure that we applied was 

identical to that described in the previous section for Hepar II, i.e., we deemed the most 

likely disorder to be the model's diagnosis.

5. The experiments

We performed three experiments to investigate how progressive rounding of models' 

probabilities affects their diagnostic accuracy. To that effect, we have successively created 

various versions of the models with different precision of parameters and tested the 

diagnostic accuracy of these versions. The following two sections describe the rounding 

process and the observed results respectively. Because each of the data sets was moderately 

sized, to maximize the training set and to avoid bias, we also used the leave-one-out 

procedure in testing the networks, i.e., for a data set of size n, we trained the corresponding 

network structures by means of the expectation-maximization (EM) algorithm using n − 1 

records, rounded the parameters learned, and then tested the network on the remaining nth 

record, repeating the procedure n times, each time for a different test record. For this 

procedure we used the original data sets with missing values.

5.1. Progressive rounding of model parameters

For the purpose of our experiment, we used the accuracy values of n = 100, 10, 5, 4, 3, 2, 

and 1. As the reader may recall from Section 3, these correspond to the number of intervals 

in which the probabilities fall. And so, for n = 10, we divided the probability space into 10 

intervals and each probability took one of 11 values, i.e., 0.0, 0.1, 0.2, …, 0.9, and 1.0. For n 

= 5, each probability took one of six values, i.e., 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. For n = 2, 

each probability took one of only three values, i.e., 0.0, 0.5, and 1.0. Finally, for n = 1, the 

smallest possible value of n, each probability was either 0.0 or 1.0.
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Figure 1 shows scatter plots of all 2,139 Hepar II's parameters (horizontal axis) against their 

rounded values (vertical axis) for n equal to 10, 5, 2, and 1. Please note the drastic reduction 

in precision of the rounded probabilities, as pictured by the vertical axis. When n = 1, all 

rounded probabilities are either 0 or 1. Also, note that the horizontal bars in the scatter plot 

overlap. For example, in the upper-right plot (n = 5), we can see that an original probability 

p = 0.5 in Hepar II was rounded sometimes to 0.4 and sometimes to 0.6. This is a simple 

consequence of the surrounding probabilities in the same distribution and the rounding 

algorithm making adjustments that ensured that the sum of rounded probabilities is 1.0.

Figure 2 shows another view of the effect that progressive rounding has on the histogram of 

all Hepar II's parameters. The upper-left plot is the histogram of all 2,139 original model 

parameters. The subsequent plots show the histograms of parameters after rounding to 100, 

10, and 5 intervals respectively. Please note that rounding preserves the basic shape of the 

original histogram, although this shape is progressively malformed.

5.2. Effect of imprecision on accuracy of medical diagnostic systems

For the purpose of our experiments, we assumed that the model parameters were perfect 

and, effectively, the diagnostic accuracy achieved was the best possible. In the experiments, 

we studied how this baseline accuracy degrades with the reduction in parameter precision. 

Of course, in reality the parameters of the model may be imperfect and the original accuracy 

of the model can be improved upon.

5.2.1. Experiment 1—In our first experiment, we computed the diagnostic accuracy of 

various versions of our models, as produced by the straightforward rounding procedure. 

Figure 3 shows a summary of the main results for Hepar II in both graphical and tabular 

format. The horizontal axis in the plot corresponds to the number of intervals n in 

logarithmic scale, i.e., value 2.0 corresponds to the rounding n = 100, and value 0 to the 

rounding n = 1. Intermediate points, for the other roundings can be identified in-between 

these extremes.

The three curves on the plot (Figure 3) show: diagnostic accuracy, the percentage of rejected 

cases, and the percentage of zeroes. A system rejects cases that the model judges as 

impossible. This happens when we try to enter an observation that is impossible given other 

observations. A vivid example of such an observation would be pregnancy in a male patient. 

Because each of the records in the Hepar and the Irvine data sets are real patient cases, the 

problem lies in all such cases with the model and we counted a record rejected by the system 

as a record diagnosed incorrectly.

The plot in Figure 3 shows that the diagnostic accuracy of the system decreases 

exponentially (we observe almost a straight line in logarithmic scale). We examined this 

further and came to the following conclusion. The algorithm presented in Section 3 rounds 

proportions on a linear scale. A small absolute difference between two proportions is treated 

in the same way, regardless of whether it is part of a large fraction or it is close to zero. In 

Example 2, the algorithm rounded 0.14 to 0.1, 0.34 to 0.3, and at the same time 0.04 to 0.0. 

While the first two rounding make perfect sense, the last one, i.e., rounding 0.04 to zero is 

quite a drastic step as the changes for 0.04 to 0.0 is infinite in relative terms. Zero is a 
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special probability denoting an impossible event. A quick examination of Bayes theorem 

will show that once an event is found to be of zero probability, its probability remains zero, 

no matter how strong the evidence in its favor materializes later. This has serious practical 

consequences for a modeling formalism based essentially on Bayes theorem.

It can be shown that the rounding algorithm will turn most probabilities that are smaller than 

1/(2n) into zero. As the right-most column in Figure 3 shows, there is an increasing 

proportion of zeroes among the model parameters as precision decreases. Please note that it 

is clearly the zeroes that cause that models reject patient cases. It is impossible to enter an 

observation that has zero probability. With an increased percentage of zero parameters, there 

is an associated increase in the percentage of posteriors that are zero.

Figure 4 shows the diagnostic accuracy of Hepar II as the function of the percentage of 

zeroes in the model — there is a clear, almost linear dependence between the two.

We repeated the experiment for the six networks built from the Irvine repository data. Figure 

5 shows the diagnostic accuracy of the six models as a function of the logarithm of 

parameter precision on the same plot. The results were qualitatively identical to those 

involving Hepar II.

5.2.2. Experiment 2—Our next experiment focused on the question whether zeroes are to 

blame for the exponential decrease in model's diagnostic accuracy. In this experiment, we 

replaced all zeroes introduced by the rounding algorithm by small ε probabilities and 

subtracted the introduced εs from the probabilities of the most likely outcomes in order to 

preserve the constraint that the sum of probabilities should be equal to 1.0. While this caused 

a small distortion in the probability distributions (e.g., a value of 0.997 instead of 1.0 when ε 

= 0.001 and three zeroes were transformed into ε), it did not introduce sufficient difference 

to invalidate the effect of rounding on the parameters. To give the reader an idea of what 

introducing the εs entailed in practice, we will reveal the so far withheld information that the 

plots in Figure 1 were obtained for data with ε = 0.001.

The effect of this modification on Hepar II's diagnostic accuracy was dramatic. We show it 

in Figure 6, each line for a different value of ε (we preserved the result of Experiment 1 in 

the plot). The meaning of the horizontal and vertical axes is the same as in Figure 3. As we 

can see, the actual value of ε did not matter much (we tried three values: 0.0001, 0.001, and 

0.01). In each case, Hepar II's performance was barely affected by rounding, even when n = 

1, i.e., when all probabilities were either ε or 1 − ε.

We repeated the experiment for the six networks based on the Irvine repository data. Figure 

7 shows the diagnostic accuracy of the six models as a function of the logarithm of 

parameter precision on the same plot. We used ε = 0.001 in all cases. The results were 

qualitatively identical to those involving Hepar II.

5.2.3. Experiment 3—When testing the diagnostic accuracy of models, we may be 

interested in both (1) whether the most probable diagnosis indicated by the model is indeed 

the correct diagnosis, and (2) whether the set of w most probable diagnoses contains the 

correct diagnosis for small values of w. The latter focus is of interest in diagnostic settings, 

Oniśko and Druzdzel Page 9

Artif Intell Med. Author manuscript; available in PMC 2015 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where a decision support system only suggests possible diagnoses to a physician. The 

physician, who is the ultimate decision maker, may want to see several top alternative 

diagnoses before choosing one.

Our next experiment focused on the influence of precision in probabilities on Hepar II's 

accuracy for “windows” of size 1, 2, 3, and 4. Figure 8 shows a summary of the results in 

both graphical and tabular format. We can see that the stability of Hepar II's accuracy is 

similar for all window sizes. This suggests that decreasing precision of parameters does not 

have much impact on the order of diagnoses (i.e., the order among the possible disorders 

imposed by their posterior probability).

5.3. Summary of the results

The experiments' results provide evidence that as long as we avoid zeroes among model 

parameters, diagnostic accuracy of Bayesian network models does not suffer from decreased 

precision of their parameters. The plots of models' accuracy as a function of the number of 

intervals are almost horizontal, which means that even for as few as two or even one 

interval, models perform reasonably close to the idealized situation, when all parameters are 

perfectly precise.

6. Discussion

We described a series of experiments studying the influence of precision in parameters on 

model accuracy in the context of a practical medical diagnostic model, Hepar II, and six 

additional models based on real medical data from the Irvine Machine Learning Repository. 

We believe that the study was realistic in the sense of studying real models and focusing on 

a practical performance measure.

While our experiments offer merely a handful of data points that shed light on the question 

of the importance of parameter accuracy in Bayesian networks, we observed a clear pattern 

across all tested models. Our results indicate that the diagnostic accuracy of Bayesian 

network models is sensitive to imprecision in probabilities, if these are rounded. However, 

the main source of this sensitivity appears to be in rounding small probabilities to zero. 

When we replaced zeroes introduced by rounding by very small non-zero ε values, 

imprecision resulting from rounding had minimal impact on the models' diagnostic 

accuracy. Furthermore, the precise value of ε did not seem to matter – our networks 

performed similarly well for ε ranging between 0.01 and 0.0001.

Sensitivity of Bayesian networks to zero values is not surprising. An examination of Bayes 

theorem, the formula on which all reasoning in Bayesian networks rests, shows that once an 

event's probability becomes zero, it will never change, regardless of the strength of 

subsequent evidence supporting the event. We recommend that unless they are justified with 

high certainty by domain knowledge, zeroes should be avoided in models. In case of 

learning models and their parameters from data, we recommend methods that avoid zeroes, 

such as Laplace estimation or, currently most popular, Bayesian approach with Dirichlet 

priors. Avoiding zeroes in medical models is fairly natural. In fact, we have hardly seen any 
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zeroes in existing practical models, which reflects a widely shared belief that few things are 

impossible when it comes to human health.

Our study of the influence of precision of parameters on the diagnostic accuracy of Bayesian 

networks is inspired by a study performed by Clancey and Cooper [41], who probed the 

sensitivity of the MYCIN expert system [42] to the accuracy of its numerical specifications 

of degrees of belief, certainty factors (CF). CFs are considered an ad-hoc measure of 

uncertainty that does not suffer from the problems encountered in probability, such as the 

need to add up to 1.0 or the importance of zeroes. Similarly to our result, Clancey and 

Cooper noticed minimal effect of precision on the performance of MYCIN. However, they 

attributed it partly to a broad coverage of microorganisms that a possibly incorrectly 

recommended antibiotic would cover, resulting in a reasonably correct therapy.

In case of Bayesian networks we believe that a critical factor may be presentation of ordinal 

relationships among the parameters. Diagnosis, as interpreted typically in probabilistic 

context, amounts to finding the most probable hypothesis, which also rests on ordinal 

relationships among disorders.

The results of our experiments touch the foundations of qualitative modeling techniques. As 

qualitative schemes base their results on approximate or abstracted measures, one might ask 

whether their performance will match that of quantitative schemes, either in terms of their 

strength or the correctness of their results. Because our models performed reasonably well, 

even when every parameter in the model was equal either to ε or 1 − ε, it seems that 

approximate order of magnitude schemes might offer acceptable recommendations, at least 

if they conform to the basic rules of probability calculus, which is what our models did.

Our results support another approach, suggested by an anonymous reviewer. One might 

focus probability elicitation on obtaining verbal probability estimates, such as those on the 

Likert scale [43], covering the categories “very unlikely”, “unlikely”, “50-50”, “likely” and 

“very likely.” This should, of course, be done with much caution, as the meaning of verbal 

phases typically varies from human to human and is sensitive to context [44].

We have also studied the influence of rounding selectively parameters in each of the four 

major classes of variables in Hepar II: (1) medical history, (2) physical examination, (3) 

laboratory tests, and (4) diseases, on the diagnostic accuracy. Hepar II was the only model 

among the models that we studied and that we understood sufficiently well to make this 

distinction. However, the observed differences in diagnostic accuracy for these four classes 

were minimal. Rounding of parameters of variables representing the results of laboratory 

tests had a slightly higher impact on the diagnostic accuracy than the parameters in the other 

three groups.

Prompted by a question from an anonymous reviewer, we tested the impact of the structure 

type (i.e., naive Bayes, TAN, and general networks) on the effect of rounding. To this effect, 

we generated the three types of structures for the same data sets of the Irvine Machine 

Learning repository. We have observed no qualitative difference between the three classes 

of networks and rather small and inconsistent quantitative effects.
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The study designed in this paper is related to other studies that we performed [4, 5]. In those 

experiments, we introduced noise into parameters, similarly to Pradhan et al. [3]. When the 

amount of noise (which we controlled) was sufficiently large, it sometimes led to a change 

in the ordinal relations among the parameters. This noticeably impacted the diagnostic 

accuracy of Bayesian network models.

Few empirical studies are ever complete. Three questions related to our experiments are 

worth further probing: (1) Will replacing true zeroes among the parameters by non-zero 

values lead to deterioration of model accuracy? (2) To what degree does imprecision in 

model structure impact accuracy? (3) Will other performance criteria outside of the most 

likely disorder, such as Most Probable Explanation (MPE) or Maximum A-Posteriori 

assignment (MAP), also be impacted? One difficulty in addressing the first question is that 

there are few models that have genuine zeroes among their parameters and, effectively, 

experiments will have to be performed on artificial models. The experimental results 

presented in this paper do not seem to shed much light on the importance of model structure. 

However, we are currently focusing in our work on the influence of structure on accuracy.
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Figure 1. 
Rounded vs. original probabilities for various levels of rounding precision.

Oniśko and Druzdzel Page 16

Artif Intell Med. Author manuscript; available in PMC 2015 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Histogram of the original and rounded parameters of the Hepar II model.
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Figure 3. 
Diagnostic accuracy of Hepar II, % of rejected cases, and % of zeroes, as a function of the 

logarithm of parameter precision.
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Figure 4. 
Diagnostic accuracy as a function of the percentage of zeroes for the Hepar II model.
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Figure 5. 
The diagnostic accuracy, % of rejected cases, and % of zeroes of the six Irvine models as a 

function of the logarithm of parameter precision.
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Figure 6. 
Diagnostic accuracy of Hepar II as a function of the logarithm of parameter precision and ε.
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Figure 7. 
The diagnostic accuracy of the six Irvine models as a function of the logarithm of parameter 

precision with zeroes replaced by a small ε (upper curve of a plot) and with zeroes (bottom 

curve of a plot).

Oniśko and Druzdzel Page 22

Artif Intell Med. Author manuscript; available in PMC 2015 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Diagnostic accuracy of Hepar II as a function of the logarithm of parameter precision and 

various window sizes (w=1, 2, 3, 4).
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