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Objective:  The  desirable  property  of  tools  used  to  investigate  biological  data  is  easy  to understand  models
and  predictive  decisions.  Decision  trees  are  particularly  promising  in  this  regard  due  to  their  compre-
hensible  nature  that resembles  the  hierarchical  process  of  human  decision  making.  However,  existing
algorithms  for  learning  decision  trees  have  tendency  to  underfit  gene  expression  data.  The  main  aim of
this  work  is to  improve  the  performance  and  stability  of  decision  trees  with  only  a small  increase  in their
complexity.
Methods:  We  propose  a multi-test  decision  tree  (MTDT);  our main  contribution  is the  application  of
several  univariate  tests  in each  non-terminal  node  of the decision  tree.  We  also  search  for  alternative,
lower-ranked  features  in order  to  obtain  more  stable  and reliable  predictions.
Results:  Experimental  validation  was  performed  on  several  real-life  gene  expression  datasets.  Compar-
ison  results  with  eight  classifiers  show  that MTDT  has  a  statistically  significantly  higher  accuracy  than
popular  decision  tree  classifiers,  and  it was  highly  competitive  with  ensemble  learning  algorithms.  The
proposed  solution  managed  to outperform  its baseline  algorithm  on  14  datasets  by  an  average  6%.  A study
performed  on  one  of  the  datasets  showed  that  the  discovered  genes  used  in  the  MTDT  classification  model
are supported  by biological  evidence  in  the  literature.
Conclusion: This  paper  introduces  a new type  of  decision  tree  which  is more  suitable  for  solving  biological
problems.  MTDTs  are  relatively  easy  to analyze  and  much  more  powerful  in  modeling  high  dimensional
microarray  data  than  their  popular  counterparts.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Decision trees [1,2] are one of the most popular classification
techniques in data mining and machine learning. Due to their com-
prehensible nature, they are particularly useful when the aim of
modeling is to understand the underlying processes of the environ-
ment. Decision trees are also useful when the data do not satisfy
the rigorous assumptions required by more traditional methods [3].
Tree-based classifiers can be successfully applied to solving biolog-
ical problems [4–6]. Popular techniques for microarray data involve
decision tree ensembles like random forest [7] and boosted deci-
sion trees [8]. However, existing attempts to apply decision trees
to classification using gene expression data showed that single tree
algorithms are not sufficient for inducing competitive classifiers
[9,10].

In this paper, we tackle the problem of improving the per-
formance of decision trees on gene expression data, with the

∗ Corresponding author. Tel.: +48 85 746 91 63; fax: +48 85 746 90 57.
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constraint of preserving simplicity of decision trees. Standard tech-
niques for improving the performance of classification algorithms,
e.g., ensemble methods, do not satisfy this constraint when applied
to decision trees because resulting classifiers become complex and
almost impossible to understand [11,12]. We  propose a multi-test
approach to decision trees in which several univariate tests can
be used to create a single splitting rule in every non-terminal
node of the classification tree. We also search for alternative,
lower-ranked features in order to obtain more stable and reliable
predictions.

1.1. Gene expression data analysis

Cells represent basic organizational units of all living organisms.
Each cell contains instructions for the creation of proteins and the
regulation of processes in a living body. This collection of instruc-
tions is contained in the DNA. Each protein has a corresponding
gene which can be seen as a recipe for how to create a given
protein. If the gene is expressed, a corresponding protein will be
produced [13]. A significant step in genomic research was the ability
to monitor the expression level of genes in living cells. Specifically,
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cDNA microarray and high-density oligonucleotide chips allow the
expression level of thousands of genes to be monitored simulta-
neously [14]. The outcome of these diagnostic tests is known as
gene expression (or microarray) data.

Microarray data allows for numerous analyses of living
organisms. The application of a mathematical apparatus and
computations tools is indispensable here, since gene expression
observations are represented by high dimensional feature vec-
tors. The important questions are what kind of outcomes can be
expected and what kind of questions can be answered using these
tools. The answer comes from two fundamental approaches to
mathematical modeling, which are equally important in the case
of gene expression data. Scientific modeling attempts to under-
stand the true model that is behind the data generated according
to that model. In the case of gene expression data, it is concerned
with problems of causal relationships between, for example, genes,
or genes and proteins. Technological modeling has different aims.
Here, the purpose is to build a model from past data that would
be good at predicting future data regardless of whether the model
is close to reality or not [15]. Discriminant analysis is an example
of this kind of modeling in a general sense. It has also been widely
used in post-genome cancer research studies [16,17].

Gene expression data poses many research challenges, and
is not limited to research areas that are concerned with living
organisms. This kind of data is also extremely challenging for com-
putational tools and mathematical modeling [18]. Each observation
is described by a high dimensional feature vector with a num-
ber of features that reach into the thousands, but the number
of observations is rarely higher than 100. Therefore, this kind of
data requires new computational tools to extract significant and
meaningful rules, and some feature selection should be taken into
account. Providing a group of most relevant genes may  significantly
improve classification performance [19].

1.2. Decision trees

Decision trees (also known as classification trees) represent one
of the main techniques for discriminant analysis in data mining and
knowledge discovery. They predict the class membership (depend-
ent variable) of an instance using its measurements of predictor
variables.

The most popular algorithms for decision tree induction are
based on top-down greedy search [20]. First, the test attribute (and
the threshold in the case of continuous attributes) is decided for the
root node. Instances are split through the tree from the root node
to a leaf node, which provides classification of a given instance. At
each non-terminal node through which the instance passes, one (or
more) attribute of the instance is tested and the instance is moved
down to the branch that corresponds to an outcome of the test. The
process is recursively repeated for each branch. When to stop par-
titioning and create a leaf node is still one of the major problems in
the area.

Classification trees have many advantages that make them
applicable in various scenarios, particularly when the data does
not satisfy the rigorous assumptions required by more traditional
methods. In this paper, the following facts are significant:

• learning of decision trees is fast, even with huge data sets, due to
greedy search;
• classification is very fast, flexible, and allows for straightforward

approaches to the problem of missing values;
• decision trees are easy to understand and analyze, as they reflect

a hierarchical way of human decision making. They are thus the
opposite of the ‘black-box’ approaches where model parameters
are not understandable.

This introduction applies to cases in which tests in internal
nodes of trees are based on one attribute. There are also algorithms
which apply multivariate tests [21,22] based mostly on linear com-
bination splits. Decision trees that allow the testing of multiple
features at the node are potentially smaller than those limited to
single univariate splits. Additionally, when only one attribute at
each node is tested, it may  cause replication of specific subtrees
in the decision tree [23]. In effect, some features may be tested
more than once in the decision tree. However, trees with simple
tests are still desirable because experts can understand them. This
fact is explicitly emphasized in the related literature. Brodley and
Utgoff [24] say: “A small tree with simple tests is most appealing
because a human can understand it. There is a tradeoff to consider
in allowing multivariate tests: using only univariate tests may  result
in large trees that are difficult to understand, whereas the addition of
multivariate tests may result in trees with fewer nodes, but the test
nodes may be more difficult to understand”. Our  focus is therefore
on univariate trees, since they are a ‘white-box’ technique, which
makes them particularly interesting for scientific modeling. It is
easy to find explanation for decisions of univariate classification
trees.

1.3. Background and motivation

As stated in the previous section, decision trees with univari-
ate splits are convenient. They are much easier to understand than
trees with multivariate splits, and it is much easier to learn from
the data. However, traditional algorithms, for example, C4.5 [25]
or CART [26], fail to produce decision trees with high classification
accuracy of gene expression data. Our previous work with various
univariate decision tree algorithms showed that these algorithms
produce considerably small trees that perfectly classify the training
data but fail to classify unseen instances [10]. Only a small number
of attributes is used in such trees, and their model complexity is low
(high bias). Therefore, they underfit the training data [2]. Producing
bigger trees using standard algorithms such as C4.5 does not solve
the problem in the case of gene expression data because small trees
often classify the training data perfectly [10]. This indicates that the
issue of split complexity could be advocated here, since not much
can be gained from bigger univariate decision trees with this kind
of data. This line of research is pursued in our paper.

We are motivated by the fact that univariate decision tree induc-
tion represents a white-box approach and improvements of such
algorithms have considerable potential for genomic research and
scientific modeling of underlying processes. Thus, our goal is to
improve the classification accuracy of decision trees and imply
more informative analysis of microarray data in a way that will
make them still easy to understand. Decision trees with multivari-
ate splits or bagging/boosting methods often outperform existing
univariate algorithms on gene expression data [9,27,28]. However,
those approaches generate complex rules that from a medical point
of view are more difficult to understand and analyze. Our goal is to
increase the complexity of univariate decision trees to the extent
that makes them easy to understand and more competitive in terms
of classification accuracy. We believe that the use of individual uni-
variate splits may  cause the classifier to underfit the learning data,
since it leads to trees that are not robust enough and do not take
information about other most relevant attributes into account. Our
novel technique uses several univariate tests in each internal node
to avoid these problems. As multi-test nodes are based on univari-
ate tests, trees learned with this approach will be much easier to
analyze than trees with classical multivariate splits.

In this paragraph, we  attempt to justify why our approach is
suitable for gene expression data and why  this may  lead to high
classification accuracy. Gene expression data is characterized by
a very high ratio of features to observations, which poses serious
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problems for standard univariate splits. The learning algorithm can
easily find a test that separates the training data very well at a
given level in the tree, but this split can correspond to noise only.
This situation is even more likely at intermediate and lower levels
of the tree. For example, assuming that at a given level of the tree
there are 20 observations (10 from class A and 10 from class B) and
2 × 105 features, the number of possible partitions of this training
set (the number of combinations of choosing 10 out of 20 instances)
is smaller (the exact number is 184,756) than the number of avail-
able features. This makes finding a test likely, i.e., an attribute and
its corresponding threshold, which can split this data perfectly.
When there are only 10 observations in the node (even distribu-
tion), the number of possible splits is only 252, but the number
of attributes is 3 orders of magnitude higher. When the split con-
tains only one univariate test, there is a very high risk of choosing
tests that correspond to noise. Thus, our approach is to have more
univariate tests in each internal node and to base splitting deci-
sions on a larger number of univariate tests not necessarily those
tests that yield the highest value of the gain ratio [25] or the Gini
index [26].

1.4. Related work

This paper addresses an issue of test complexity in decision
trees. A standard approach in the case of discrete attributes is to
associate a branch with each categorical attribute value. Another
possibility is to group some attribute values in order to reduce the
branching factor. When all values are grouped into two clusters, a
binary tree is obtained (e.g., in CART [26]). In the case of continues
attributes, binary splits are used. Here, the standard split compares
the value of the attribute with a threshold and the outcome of such
a comparison is binary. Thus, a straightforward way  to reduce the
tree complexity (in terms of the number of nodes) is to use multiple
thresholds in each split on a numerical attribute. This will poten-
tially increase the branching factor of such splits; however, such
tests will be more expressive and the overall number of nodes in
the corresponding decision tree will be smaller. This approach was
explored by Berzal et al. [29] who proposed multi-way decision
trees using multi-way splits.

In [29], a hierarchical clustering of attribute values is combined
with the standard greedy decision tree algorithm. Initially, each
separate attribute value is treated as an individual interval, and
the two most similar adjacent intervals are merged in each step.
This process can be repeated until only two intervals are left; this
would lead to a binary decision tree. However, the clustering pro-
cess can be stopped before that. Each time two adjacent intervals
are merged, the impurity measure associated with the decision tree
is checked. The current interval set is determined according to the
highest measure of impurity. This technique is similar to the split-
ting criterion used to evaluate alternative splits like the C4.5 gain
ratio or the Gini index of diversity. The Berzal approach was  not
evaluated in terms of gene expression data, and, due to the nature
of single attribute multi-way tests, it would not be sufficient to
overcome the high ratio of features/observations in this kind of
data.

The specific character of gene expression data and its influence
on the process of building decision trees was  investigated by Li
et al. [30]. This solution focused on using committees of trees to
aggregate the discriminating power of a bigger number of signifi-
cant rules and to make more reliable predictions. First, all features
are ranked according to the gain ratio. Then, the first tree using
the first top-ranked feature in the root node is built. Next, the sec-
ond tree using the second top-ranked feature in the root node is
built and the process continues until the kth tree using the kth top-
ranked feature is obtained. The classification of the final committee

of k decision trees is governed by weighted voting. It was  observed
that:

• significant rules often contain features that are globally low-
ranked;
• if the construction of a tree is confined to a set of globally

top-ranked features, the rules in the resulting tree may be less
accurate than rules derived from the whole feature space;
• alternative trees often outperform or compete with the perfor-

mance of the greedy tree.

This work also supports our decision to use many univariate
tests in our multi-test decision tree induction algorithm. In partic-
ular, our aim is to make use of features that are globally low-ranked
and use them jointly in multi-tests. However, our aim is to pre-
serve the simplicity of final decision trees, which is not the case
in [30].

Our previous work [10] in which standard decision trees were
evaluated on gene expression data led us to the conclusion that the
high ratio of variables/cases may  cause the learning algorithm to be
misled by randomly chosen dependencies in the training data. This
may  be disastrous for learned trees due to the hierarchical nature of
the classification process of decision trees. Performed experiments
revealed that the size of decision trees built with traditional clas-
sification methods, such as C4.5, is relatively small and does not
capture all of the structure available in the data and is additionally
misled by noise.

The rest of the paper is organized as follows. In Section 2,
we introduce a novel representation for decision trees. Then, our
algorithm that learns decision trees in the new representation
is presented in Section 3. In Section 4, the proposed approach
is experimentally evaluated on real gene expression data. The
paper is concluded in the last section and future work is also
discussed.

2. Multi-test decision trees

This paper introduces multi-test decision trees (MTDT) – a new,
richer language to represent a decision tree. The overall structure
of a multi-test tree does not differ from a standard decision tree,
e.g., C4.5 [25]. In multi-test tree, every split in non-terminal nodes
is composed of a set of univariate tests and is called a multi-test
split. These elementary tests are univariate and are combined in a
way that shows our approach is substantially different from typical
multivariate, e.g. oblique, splits.

During classification, the MTDT splitting criterion is directed by
the majority voting mechanism where all univariate test compo-
nents have the same importance.

Fig. 1 illustrates a multi-test with three individual attribute tests,
{(f1 ≤ 2),  (f2 ≤ 5),  (f3 ≤ 8)},  that splits the data in the node into two
subsets: Class A and Class B. In this particular example, as a result
of the majority voting rule, at least 2 out of 3 univariate tests

Fig. 1. An example of a multi-test split which contains a set of univariate tests.
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Fig. 2. Graphical representation of a multi-test split that contains 3 single attribute
tests: {(f1 ≤ 2),  (f2 ≤ 5),  (f3 ≤ 8)}.

determine the decision of the actual multi-test split at the node.
The graphical representation of the multi-test example is shown
in Fig. 2. Each test that uses feature fi can split an instance space
but only with a boundary that is orthogonal to the fi axis. In our
example, if f1 < 2 and f2 < 5, then regardless of the decision of f3,
the decision is Class A (light gray region). If f1 > 2 and f2 > 5, then
regardless of f3, the decision is Class B (dark gray region). If, on
the other hand, f1 and f2 yield a contradiction, the final decision is
determined by f3 where f3 > 8 leads to Class B and f3 < 8 to Class
A. Certainly, univariate tests can be evaluated in any order. The fact
that only univariate tests are used in multi-test splits ensures that
MTDT can be treated as a univariate decision tree despite more than
one being used in each split.

3. Learning multi-test decision trees

The previous section introduced the idea of multi-test deci-
sion trees. In principle, this decision tree learning can take various
approaches. In this section, we propose one particular method for
learning trees that is based on greedy construction of multi-test
splits. In what follows, it is assumed that decision trees learn-
ing uses top-down induction, where, at every level of recursion,
the top-down algorithm constructs multi-test splits to be used in
non-terminal nodes of the decision tree. The procedure to con-
struct those multi-test splits is the core of this section and our
contribution. It should be noted that multi-tests could also be used
with other types of decision tree learning methods, i.e., algorithms
that are not top-down. The concept of top-down induction was
introduced in Section 1.2.

3.1. Building multi-test splits

Top-down decision tree learning algorithms have to choose a
split (or terminate recursion and create a terminal node with a
decision) at every level of recursion, given a subset X of training
instances. For this reason, our procedure in Algorithm 1 takes X,
the current set of instances, and returns the best multi-test for
splitting instances in X. Note, that the cardinality of X is non-
increasing with every recursive call of the top-down procedure.
Additional parameter W,  determines the number of alternative
multi-tests that are considered by the procedure before the best
multi-test is returned. Specifically, our procedure constructs a set
MT  = {mt1, mt2, . . .,  mtW } of W alternative multi-tests and returns
the best one according to the gain ratio criterion (Line 9) in
Algorithm 1.

Fig. 3. An example search process which determines the best multi-test for a non-
terminal node of multi-test decision tree (MTDT) from the set of potential multi-tests
(MT).

Algorithm 1. Multi-test construction.

CreateMultiTest(X,W, N)
1: V ← create all candidate thresholds using X
2:  best primary = argmaxv ∈ V GainRatio(v,X)
3: mt1 = BuildMulti-test(best primary, V, X, N)
4: for i ∈ {2, . . ., W}  do
5: MT = {mt1, . . ., mti−1}
6: next primary = NextPrimary(V, MT,  X)
7: mti = BuildMulti-test(next primary, V, X, N)
8: end for
9: return arg maxmti GainRatio (mti , X)

The first step of algorithm determines the set of univariate tests
for further evaluation. We  only consider the relevant thresholds,
called the candidate thresholds [31], which split instances from
different classes. In existing algorithms with univariate tests, once
the set of possible thresholds is computed (univariate tests corre-
spond to thresholds when continues features are present), the best
threshold is selected according to some priority measure (e.g., the
gain ratio criterion), and the univariate test with highest evaluation
is returned. This standard procedure would return the univariate
test computed in Line 2 of the algorithm. Our algorithm does addi-
tional computation in order to build splits with multiple univariate
tests.

Each ith multi-test is composed of no more than N univariate
tests; the first one is called a primary test (mti,1), and all remaining
N − 1 tests are called surrogate tests mti,j where 1 < j ≤ N.  The
parameter denoted as N represents the maximum number of uni-
variate tests that constitute the multi-test. Fig. 3 illustrates tests
that are considered in every execution of Algorithm 1.

The set {mt1, . . .,  mtW } is constructed as follows. First, mt1 is
constructed in Line 3 using the primary univariate test found in
Line 2. The actual multi-test is built in the BuildMulti-test function,
which identifies which candidate tests should be used as surrogate
tests of the primary test that is provided as a parameter. This step
is explained in detail in Section 3.1.1. mt1 is a special multi-test
because its primary test is the best univariate test according to the
priority measure. Primary tests for remaining multi-tests have to
be selected in a way that would diversify created multi-tests. This
process takes place in the NextPrimary function which is executed
in Line 6 and described in Section 3.1.2. Once the primary test for a
new multi-test is identified, the BuildMulti-test procedure can be
used again (Line 7).

Because of the majority voting mechanism applied during clas-
sification, surrogate tests have a considerable impact on multi-test
decisions because they can outvote the primary test. It should be
noted that this impact can be positive and negative, and it affects
the gain ratio of the entire multi-test. Therefore, it is possible that
the best multi-test that will be returned by Algorithm 1 may  not
contain the original univariate test with highest gain ratio (mt1,1).
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This can happen when voting components of competitive multi-
tests mti (1 < i ≤ W)  have higher gain ratio taken as a whole than
mt1 despite the fact that mt1,1 is the univariate test with the highest
gain ratio. This fact justifies our decision to use multi-test decision
trees, since it can provide better and more robust against noise
classification.

3.1.1. Multi-test construction
When function BuildMulti-test is executed, the primary test

provided in the first parameter constitutes the first univariate test
that will be included in the multi-test, and the goal of this function
is add N − 1 surrogate tests. The reason for adding more tests is that
applying a single primary test based on one attribute may  cause the
classifier to underfit the learning data due to low complexity of the
classification rule. Surrogate tests should support the division of
the training instances made by the primary test. In other words,
the remaining tests (the surrogate tests) of the multi-test should,
using the remaining features, branch the tree in a similar way to
their primary test.

In order to determine surrogate tests, we have adopted a solu-
tion proposed in the CART system [26]. The use of the surrogate
variable at a given split results in a similar node impurity mea-
sure. It also mimics the chosen split in terms of which and how
many observations go to the corresponding branches. Therefore,
the measure of similarity between the primary test and surrogates
of the multi-test is given by the number of observations classified
in the same way. The parameter b equals the percent of decisions
made by surrogate tests that differ from the primary splitter. The
parameter is described in more detail in the next section. In our
method, we also consider tests that classify instances in an inverse
(opposite) way to their primary test (high value of the parameter b).
For such tests, we reverse the relation between attribute and inter-
val midpoint, and recalculate the score. However, this only works
if we a have binary classification problem.

3.1.2. Identifying additional primary tests
The NextPrimary function searches for a threshold that will be

applied in a BuildMulti-test, which is executed to build multi-test
mti for k < i ≤ W after the first k≥1 multi-tests are constructed.

Two factors should be taken into consideration when choosing
the primary test for mti. First, new primary tests should be competi-
tors to all existing primary tests. The competitor tests yield high
gain ratio but are not as good as, e.g., the primary test mt1,1 used
to construct mt1. A significant difference between these tests and
surrogate tests is the way in which they are ranked. As shown in
the previous subsection, surrogate tests are not evaluated by how
much improvement they yield in reducing node impurity but rather
on how closely they mimic  the split determined by their primary
test.

On the other hand, the competitor tests are ranked according to
the highest gain ratio. We  denote tests as competitor tests if their
gain ratio is in the top q highest gain ratio values where primary
tests used in mtj for j < i are not considered (the default value of
q is 10). Performed experiments described in Section 4.2.3 show
that using more competitors (high q value) leads to the selection
of tests with low gain ratio; this decreases the power of alternative
multi-tests. However, decreasing the number of competitor tests
(low q) may  cause new primary tests be too similar to those already
selected.

The second factor that should be considered is that the same
attribute is often listed as both a competitor, i.e., as one of the
primary tests, and as a surrogate. This may  lead to alternative
multi-tests, mti, that contain similar or identical univariate tests
and do not provide any comparable improvement. Therefore,
competitor tests should be diversified in order to diversify the alter-
native multi-tests. For that reason, function NextPrimary receives

the list of all multi-tests that were created before mti. The diversifi-
cation problem is then solved by requiring that every new primary
split must be a competitor for mt1,1, i.e., for the primary test of the
first multi-test (determined by the q value introduced in the pre-
vious paragraph), and it must also be the worst average surrogate
(have the highest average value of parameter b) in all primary tests
mtk,1 where k < i.

To sum up: the surrogate tests are similar to the primary test;
the competitor tests are those that have highest gain ratio and are
different than all previously selected primary tests.

3.2. Multi-test size and prediction

The size of the multi-test, i.e., the maximum number of single
tests that make every multi-test, has a strong impact on its per-
formance and the splitting decision. The parameter denoted as N
represents the maximum number of univariate tests in a multi-test
and is defined by the user. To classify observations, the majority vot-
ing mechanism is employed in which each test has an equal vote.
In the case of a draw, the decision is made in accordance with the
primary test.

The exact size of the multi-test depends on the difference
between the primary and surrogate tests. The main idea of the MTDT
is to use a group of similar tests in a single node instead of one test,
as seen in the classical approach to univariate decision trees. To
avoid discrepancies in the multi-test, surrogate tests should not be
added to tests that do not have a proper substitute. An inappropri-
ate set of surrogates may  dominate the primary test and deteriorate
the splitting criterion. Therefore, surrogate tests added to the multi-
test should return no more than b% of decisions (default 10%) that
differ from the primary test. Using b = 0% means that surrogate
tests can only be added to the multi-test if they split observations
in the exactly the same way as the corresponding primary splitter.
In practice, setting b to 0% rejects almost all surrogates; therefore,
it is equivalent to setting the size of multi-test N to 1. In this event,
the decision tree would become similar to the tree generated by the
C4.5 algorithm because only one attribute would be used in each
multi-test. If the value of b is high then all N − 1 surrogates join the
multi-test.

4. Experimental results

In this section, the proposed solution is experimentally verified
using more than a dozen real microarray datasets. The results of
the MTDT algorithm were compared with several popular decision
tree based systems.

4.1. Setup

The performance of the MTDT classifier was investigated using
publicly available microarray datasets described in Table 1. These
datasets are from the Kent Ridge Bio-medical Dataset Repository
[32] and are related to studies of human cancer, including leukemia,
colon tumor, prostate cancer, lung cancer, breast cancer and lym-
phoma. For datasets that were not pre-divided into the training and
testing parts, the 10-fold stratified cross-validation was applied.
By the stratified cross-validation, we mean that each fold con-
tains roughly the same proportion of instances with the same class
labels. Leave-one-out cross-validation was  also considered; how-
ever, no significant difference in results was observed with this
type of cross-validation. The average score of 10 runs is presented
for cross-validated data.

The classification process for all algorithms was  preceded
by feature selection using the Relief-F [33] method, which is
common for microarray data analysis. In the first step, Relief-F
draws instances at random and computes their nearest neighbors
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Table 1
Kent Ridge bio-medical gene expression datasets used in experiments.

Dataset Abbreviation Attributes Classes Training set Testing set

Breast Cancer BC 24,481 2 34/44 12/7
Central Nervous System CNS 7129 2 21/39 –
Colon  tumor CT 6500 2 40/22 –
DLBCL Stanford DS 4026 2 24/23 –
DLBCL vs. Follicular Lymphoma DF 6817 2 58/19 –
DLBCL NIH DNH 7399 2 88/72 30/50
Leukemia ALL vs. AML  AML  7129 2 27/11 20/14
Leukemia MLL  vs. ALL vs. AML MLL 12,583 3 20/17/20 4/3/8
Lung  Cancer Dana-Farber LCD 12,600 5 139/21/20/6/17 –
Lung  Cancer Brigham LCB 12,533 2 16/16 15/134
Lung  Cancer Univ. of Michigan LCU 7129 2 86/10 –
Lung  Cancer – Toronto, Ontario LCT 2880 2 24/15 –
Ovarian Cancer NCI PBSII OC 15,154 2 91/162 –
Prostate Cancer PC 12,600 2 52/50 27/8

(default 10). Then, Relief-F adjusts a feature weighting vector to
give higher weight to attributes that discriminate the instances
from neighbors of different classes. The main benefits of using
feature selection are shorter training times, improved model inter-
pretability, and enhanced generalization by reducing overfitting.
However, as we mentioned in previous sections, with univariate
decision trees using microarray data, one faces the problem of
underfitting to the learning data (overfitting is not significant).
Hence, there is no need to improve the model interpretability
because it is already simple; it is useful to retain a larger num-
ber of features and use a less aggressive feature selection. We
tested different numbers of top ranked attributes/features 50, 100,
200, 1000, 2000 and also considered no feature selection at all.
Reductions in the number of attributes to 200 have no significant
influence on the test-sets accuracy of compared classifiers; how-
ever, it speeds up the training time of all algorithms. Our multi-test
algorithm works well on test-sets without feature selection and
those with larger numbers of features (200 and over). When the
number of top selected attributes is small, MTDT loses its abil-
ity to find lower-ranked features (as they were excluded from
the data), and its performance is similar to the rest of the tested
decision trees. Therefore, the number of selected attributes was
arbitrarily limited to the top 1000 to allow MTDT to find low-ranked
features.

A statistical analysis of all obtained results was performed using
the Friedman test and the corresponding Dunn’s multiple compari-
son test (significance level equal to 0.05) recommended by Demsar
[34].

4.2. Multi-test decision tree results

4.2.1. Multi-test size
The influence of the multi-test size on the performance of our

method was experimentally verified on real gene expression data.
Classification algorithms applied to these kinds of data are more
likely to underfit because of a small ratio of the number of observa-
tions to the amount of attributes. The performance of the MTDT
classifier was studied with six different values of parameter N,
which stands for the maximum number of univariate tests in the
multi-test. It is worth emphasizing that the MTDT with a single
one-attribute test in a node, N = 1, behaves similarly to the standard
C4.5 algorithm. Both algorithms use the gain ratio criterion and pes-
simistic pruning. There is, however, a slight difference in calculating
the exact threshold value; this is described in Section 3.1.

In Table 2, we compare the influence of the multi-test size on
accuracy. In all experiments, 1000 attributes were considered, and
the algorithm’s parameters had their default values of W = 3 and
b = 10%. These results revealed that the number of univariate tests

used in a single multi-test has a significant impact on the classi-
fier accuracy. According to the Friedman test, there is a statistically
significant difference (p-value of 0.0003) in the accuracy of all
versions. Based on Dunn’s Multiple Comparison Test Difference,
there is a statistically significant difference in classification qual-
ity between the number of tests in the multi-test, N, equal to 1, and
7, 9, and 11.

Experimental validation performed on 14 datasets showed that
the average accuracy of the multi-test algorithms increased over
3% when N = 3, and over 6% when N = 7, compared to the base MTDT
with N = 1. On only one dataset (BC), the result of the multi-test
algorithm was lower than expected, although the overall improve-
ment is noticeable. The reason why results for BC were better for
N = 1 lies in the number of attributes that distinguish classes. For
this dataset, only a few genes are considered as markers; therefore,
a higher number of surrogates could decrease the MTDT accuracy
when the tree is overfit.

Considering the results, we conjecture that the underfitting
is the main cause of lower classification accuracy of the MTDT
approach with N = 1. Decision trees obtained by standard (single
univariate test in a node) algorithm are not complex enough. It
was also observed that using too many genes in the multi-test may
induce more complex rules and overfit learned trees to the training
data.

In order to detect and mitigate the possibility of overfitting in
the training phase of our method, we  created artificial datasets that
were copied from those listed in Table 1; attributes were left exactly
the same, but class labels were randomly changed. This technique

Table 2
A comparison of the multi-test decision tree (MTDT) accuracy under different
numbers of tests (N) in the multi-test. Datasets abbreviations are used (Table 1).
The highest classifiers accuracy for each dataset was bolded.

Dataset N = 1 N = 3 N = 5 N = 7 N = 9 N = 11

BC 68.42 63.15 57.89 52.63 57.89 57.89
CNS  60.50 71.33 72.17 72.00 72.17 74.33
CT  80.40 83.14 85.83 85.97 85.83 83.92
DS  81.75 85.00 85.25 85.55 85.05 86.60
DF  84.82 82.07 83.42 85.01 85.57 85.42
NIH  51.25 60.00 60.00 62.50 63.75 62.50
AML 91.18 85.29 91.18 91.18 91.18 88.23
MLL  86.67 73.33 100.00 100.00 93.33 100.00
LCD  89.41 90.98 91.60 92.12 91.15 90.96
LCB  88.59 95.97 96.64 97.98 98.66 98.66
LCU  97.48 98.04 98.32 98.93 99.78 100.00
LCT  61.42 61.66 63.67 66.83 65.67 62.16
OC  97.04 98.69 98.02 98.34 98.34 98.18
PC  26.47 58.82 61.76 61.76 47.06 44.11

Average 76.10 79.11 81.83 82.20 81.20 80.93
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Fig. 4. The influence of the similarity measure b, on the classification accuracy of
the  multi-test decision tree (MTDT) algorithm.

is usually referred to as the Y-randomization test [35]. The MTDT
classification accuracy was significantly lower on the randomized
data than on original data (which is good in this situation); this
indicates that there is no evidence of overfitting in our method.

4.2.2. Surrogate tests
In Section 3.2, it was explained that surrogate tests, should not

differ more than b% from primary tests. Performed experiments
suggest that surrogate tests added to the multi-test should not
differ from the primary test by more than 10%. We  consider this
a default value in all datasets; however, adequate setting of this
parameter may  improve classification accuracy. Fig. 4 presents the
influence of the similarity parameter, b, on the performance of the
MTDT classifier.

In this figure, b = 0% means that only surrogates that have the
same gain ratio as primary tests are accepted (it is almost equiv-
alent to setting N = 1), and a high value of b (in the figure above
15%) means that all N − 7 surrogates join the multi-test. Although,
a general average on all 14 datasets has the highest accuracy when
b = 10%, we may  observe that the optimal value of this parameter
is different for specific datasets. The score of the MTDT algorithms
on leukemia (MLL) and prostate cancer (PC) datasets increases
significantly when there is no restriction on choosing surrogate
tests. However, in other datasets, when the surrogate tests are more

Fig. 5. The influence of the similarity measure b, on the decision split in the tree
node.

Fig. 6. The influence of the number of competitor tests q, on the application of
multi-tests as a splitting criterion in the tree node.

similar to the primary test, the results are slightly better. An addi-
tional comparison of the MTDT performance with a simple baseline
based on random selection showed the significant difference in
prediction accuracy in favor of proposed solution.

Fig. 5 presents the impact of surrogates on the decision split. It
illustrates the percentage number of splits on the testing data for
which primary tests were outvoted by their surrogates. We  may
observe that for all datasets, for the defined value of parameter b
equal 10%, the average percentage of splits contrasting the primary
test is equal 8%. This impact of surrogate tests, together with alter-
native multi-tests, improves the MTDT average accuracy up to 6%,
from 76.1% to 82.2%.

4.2.3. Alterative multi-tests
The parameters of alternative multi-tests were defined empir-

ically through extensive experiments. Fig. 6 presents the average
influence of the number of competitor tests q on the performance
of alternative multi-tests on all datasets. We  can observe what per-
cent of multi-tests were applied as a splitting criterion in the tree
node. It is not surprising that the tree node splits were mostly deter-
mined by the multi-tests (mt1) that were built on the primary tests.
However, for the default value of the parameter q = 10, over 12%
of all splits were made in accordance to the alternative multi-tests
mti (1 < i ≤ W).

In experiments, we employed two  alternative multi-tests mt2
and mt3, so the number of multi-tests analyzed in each non-
terminal node was equal to 3 (W = 3). Additional experiments show
that employing a higher number of multi-tests, besides significant
increase of the calculation time, did not yield any improvement in
classification accuracy.

4.2.4. Leukemia MLL vs. ALL vs. AML dataset
In one of our experiments, the dataset from Armstrong [36]

was evaluated in more detail. The dataset describes the distinc-
tion between leukemia MLL  and other conventional ALL subtypes.
There are a total of 57 three class training samples (20 for ALL, 17
for MLL, and 20 for AML) and 15 test samples (4, 3, and 8 corre-
spondingly). The MTDT decision trees with N = 1 and N = 7, when
evaluated on the training instances splits data exactly the same
way and for both values of N, the classification accuracy is 100%.
The actual trees are illustrated in Fig. 7, and the confusion matrix
is presented in Table 3.
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Fig. 7. Multi-test decision tree (MTDT) with N = 1 and N = 7 tests in a single node.

We  can observe that although both induced trees have the same
structure and classified instances from the training set, their per-
formances on the test set were significantly different. Because both
trees have identical primary tests, even when there is no impact on
alternative multi-tests, this is a very good example of the strength
of the proposed solution. The reason for such a good performance of
MTDT with N = 7 in this example can be explained by the impact of
surrogates on the multi-test decision. In 6 out of 15 instances, the
surrogate tests mt1,j (1 < j ≤ N) in MTDT with N = 7 have to out-
vote the primary tests mt1,1 in the nodes and correctly classify the
instances. In this way, we have improved the classification accuracy
for the Armstrong dataset from 86% to 100%.

4.3. Comparison of MTDT to other classifiers

The comparison of MTDT to other classifiers was also performed.
The following classification algorithms were selected for this anal-
ysis:

• Decision trees:
1. AD Tree (AD) – alternating decision tree [38].
2. BF Tree (BF) – best-first decision tree classifier [39].
3. J48 Tree (J48) – pruned C4.5 decision tree [25].
4. Simple C&RT (CT) – version of the C&RT algorithm that imple-

ments minimal cost-complexity pruning [26].
• Decision rule classifiers:

1. JRip (JR)  – rule learner – repeated incremental pruning to pro-
duce error reduction (RIPPER) [40].

• ‘Black box’ meta decision trees:
1. Random forest (RF) – algorithm constructing a forest of random

trees [41].
2. Bagging (BG) – reducing variance meta classifier [42].
3. Adaboost (ADA) – boosting algorithm using Adaboost M1

method [43].

Table 3
Results for multi-test decision tree (MTDT) with N = 1 and N = 7 on dataset Leukemia
MLL  vs. ALL vs. AML.

MTDT N = 1 MTDT N = 7 Classified as:

(a) (b) (c) (a) (b) (c)

6 2 0 8 0 0 (a) AML
0  1 2 0 3 0 (b) MLL
0  2 2 0 0 4 (c) ALL
Accuracy 60% Accuracy 100%

It is worth noting that besides the ‘white box’ classifiers, results
on meta decision trees are also included. Those methods can
generate more complex decision rules and outperform standard
approaches. The resulting classifiers are, however, more difficult to
understand. Our results show that the proposed MTDT algorithm
that uses simple, univariate tests is highly competitive with ‘black
box’ solutions.

The implementation of competitive algorithms in the Weka
package [44] was used in our evaluation. All classifiers, including
the MTDT algorithm, were employed with default values of param-
eters on all datasets. The results are presented in Table 4.

Results in Tables 2 and 4 show that MTDT with N = 7 tests in a
single node yielded the best average accuracy: 82.20%, in all classi-
fication problems. In general, it can be observed that more complex
methods like RF,  ADA, and BG performed better than standard
non-ensemble algorithms, which generate simpler solutions. The
proposed MTDT method managed to achieve high accuracy, but
comprehensive classification rules were maintained via the uni-
variate tests used in multi-test splits. According to the Friedman
test, there is a statistically significant difference (p-value of 0.0215)
between tested classifiers. Based on Dunn’s Multiple Comparison
Test Difference, there is a statistically significant difference in terms
of quality between the MTDT (with N = 7), and BF and j48 trees. The

Table 4
Comparison of classification accuracy of algorithms: AD Tree (AD), BF Tree (BF), J48
Tree (J48), Simple CART (CT), JRip (JR), Random forest (RF), Bagging (BG), Adaboost
(ADA).

Dataset AD BF J48 CT JR RF BG ADA

BC 42.10 47.36 52.63 68.42 73.68 68.42 63.15 57.89
CNS  63.33 71.66 56.66 73.33 65.00 75.00 71.66 75.00
CT  74.19 75.80 85.48 75.80 74.19 75.80 79.03 79.03
DS  95.74 80.85 87.23 82.97 74.46 95.74 87.23 89.36
DF  88.31 79.22 79.22 83.11 77.92 88.31 85.71 90.90
NIH 50.00 60.00 57.50 62.50 61.25 52.50 58.75 65.00
AML 91.17 91.17 91.17 91.17 94.11 82.35 94.11 91.17
MLL a 73.33 80.00 73.33 66.66 86.66 100.00 66.66
LCD a 89.65 91.62 88.17 90.14 92.11 90.64 78.32
LCB  81.87 89.65 81.87 81.87 95.97 93.28 82.55 81.87
LCU  96.87 96.87 98.95 96.87 93.75 98.95 97.91 96.87
LCT  69.23 61.53 58.97 58.97 64.10 66.66 61.53 69.23
OC  99.60 98.02 97.23 98.02 98.81 98.02 97.62 99.20
PC  38.23 44.11 29.41 44.11 32.35 29.41 41.17 41.17
Average 74.22 75.66 74.85 77.05 75.89 78.80 79.36 77.26

a AD can be applied to data with two classes only.
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AD classifier was excluded from statistical analysis, as it could not
be applied to a multi-class dataset.

5. Discussion

In some cases, multi-test trees could be treated as a consis-
tent representation of traditional univariate decision trees, but it
works in one way only. A MTDT tree can be transformed into a
traditional decision tree, but it is usually impossible to do it the
other way round. Furthermore, even if our formulation of multi-
test decision trees and traditional univariate trees were isomorphic
(but they are not as we explained above), this would not invali-
date our research because we show another representation that
is more suitable (according to our results) for the greedy search,
which is traditionally employed for learning decision trees. A sim-
ilar relationship exists between decision trees and decision rules.
Even though the hypothesis space of decision rules is a superset of
the hypothesis space of decision trees, researchers still investigate
decision trees because of various advantages that decision trees can
offer.

The importance of particular types of tests that are used to build
decision trees may  depend on the type of search. Results presented
in our paper show that standard greedy top-down learning of deci-
sion trees can be significantly improved using multi-test splits. If
it would be possible to learn the optimal decision trees for a given
test representation (which is infeasible on real-life data because
the problem is NP-hard) instead of using a greedy algorithm, then
one could check, for example, the imfluence of single and multi-test
splits on the exact algorithm. It is likely that single test splits would
be more competitive using alternative search strategies but at the
same time multi-test splits could lead to further improvements.
The current state-of-the-art in decision tree learning uses greedy
search in most academic research and industrial applications; thus,
our multi-test splits improve learning with that most important
type of search. This fact explains, for example, why single test splits
in Fig. 7 were weaker than multi-test splits. Multi-test splits were
simply more convenient for top-down learning and better trees
could be learned. In theory, better single test trees could poten-
tially be obtained for the example in Fig. 7; however, but assuming
that such trees exist and could be found, a different search algo-
rithm or special tuning of existing algorithms would be required to
find them. The same advantage of multi-test splits was observed on
other datasets evaluated in this paper. Theoretically, these obser-
vations can be explained using the concept of ‘inductive bias’ in
machine learning, that is, the need to make explicit or implicit
assumptions about what kind of model is wanted for a particular
problem [46].

In the experiment on the leukemia MLL  vs. ALL vs. AML  dataset,
decision trees with multi-test size N = 1 and N = 7 have the same
structure the same number of nodes. However, for other values
of parameter N or different datasets, this may  not be the case.
Differences in the tree structure may  occur when alternative multi-
tests outperform the multi-test mt1 or surrogate tests outvote the
primary test. In spite of an equal tree size between MTDT with
N = 1 and N > 1, a larger number of univariate tests in a multi-test
generates more complex nodes. Hopefully, the multi-tests con-
tain only univariate tests which are easy to understand by human
experts.

To the most of datasets described in Table 1 biologists have
found and published some marker genes that are highly correlated
with class distinction. In order to evaluate whether the MTDT results
are biological meaningful or not, we explored whether discovered
genes from classifier’s model are supported by biological evidence
in the literature. Our research showed that most of the genes from
the MTDT model were also identified in biological publications. For

this particular dataset, six out of seven genes that built MTDT multi-
test in the root node were also referred to in article [36] and patent
[37]. Attributes that built multi-tests in the lower parts of the MTDT
tree usually do not appear in publications as they represent only a
small sets of instances. We  believe that MTDT is capable of find-
ing not only the most significant groups of marker genes but also
low-ranked genes that may  also be meaningful when combined.

In the comparison of MTDT to other classifiers, it is worth
emphasizing that the MTDT with a single binary test in a node,
i.e., N = 1, performed similarly to all remaining ‘univariate test’
methods. It can be compared to the J48 tree algorithm as they
both use the gain ratio criterion. Their trees in most cases sepa-
rated the training data perfectly, but performed considerably worse
on testing instances. This may  be caused by the underfitted deci-
sion tree model. A slight increase in the number of tests in each
split improved the classification accuracy; this can be observed
in Table 2. The experimental sections showed that the proposed
method leads to highly competitive results. In our tests, MTDT out-
performed classical decision trees and decision rule classifiers and
was highly competitive with more powerful meta learning algo-
rithms.

Even though several interesting questions from the machine
learning point of view are still open, we are convinced that the
existing version of the algorithm reported in this paper offers a use-
ful tool for molecular biologists doing exploratory analysis of gene
expression data. In their work, biologists rarely rely on out of the
box solutions, and tuning algorithm’s parameters is their normal
practice. Therefore, our existing MTDT algorithm is a perfect tool
for their experiments. By changing the number of components in
the multi-tests splits of the MTDT, the biologist can obtain a mono-
tone range of decision trees that start with trees corresponding to
C4.5 (where one attribute is tested in every node) and proceed by
having higher numbers of tests. A known phenomenon in molec-
ular biology is that there often exist groups of genes (or features
in general) that behave in a similar way. Biologists call it ‘epista-
sis’ [45]. For example, a specific substance, such as melanin, which
is produced in living organism, may  require several compounds in
which each compound is produced by its corresponding gene and
compounds that require other compounds in order to be produced.
If any of the genes are defective, its compound will not be produced
and neither will the substance. A similar phenomenon exists when
the features used for data analysis are motifs, i.e., small sequences
of DNA. When the numbers of occurrences of motifs are similar in
the same piece of the DNA sequence, then features corresponding
to motifs become similar. Our idea of identifying surrogate tests
relates to this biological phenomenon, and it can identify these
relationships exactly.

6. Conclusion

In this paper, we  presented a multi-test decision tree approach
to gene expression data classification. A new splitting criterion was
introduced with the aim of reducing the underfit of decision trees
on these kinds of data and improving classification accuracy. The
proposed solution outperforms, or was  highly competitive with,
all tested competitors. Evaluation on real microarray data showed
that knowledge discovered by MTDT is supported by biological evi-
dence in the literature. Therefore, biologist can benefit from using
this ‘white box’ approach, as it can build accurate and biologically
meaningful models for classification and reveal new regularities
in biological data. From the machine learning point of view, our
rigorous empirical analysis revealed and evaluated the important
algorithmic properties of our method.

The standard practical question left open is the autonomous
tuning of the test size, N, to particular data. We  observed that a
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data-specific selection of N can significantly improve the perfor-
mance of our method, although a general domain independent
value was enough to obtain better results than that which existing
algorithm can achieve. We  are currently working on an algorithm
that, through internal cross-validation, can set this parameter
automatically for particular training data. Another improvement
concerns the pre-pruning mechanism that will reduce the size
of the multi-test in lower parts of the tree. Our analysis showed
that the split subsets may  have an incorrect size, which can then
increase the tree height and lead to data overfit.
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