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Abstract

Objective—Terminologies and terminological systems have assumed important roles in many 

medical information processing environments, giving rise to the “big knowledge” challenge when 

terminological content comprises tens of thousands to millions of concepts arranged in a tangled 

web of relationships. Use and maintenance of knowledge structures on that scale can be daunting. 

The notion of abstraction network is presented as a means of facilitating the usability, 

comprehensibility, visualization, and quality assurance of terminologies.

Methods and Material—An abstraction network overlays a terminology’s underlying network 

structure at a higher level of abstraction. In particular, it provides a more compact view of the 

terminology’s content, avoiding the display of minutiae. General abstraction network 

characteristics are discussed. Moreover, the notion of meta-abstraction network, existing at an 

even higher level of abstraction than a typical abstraction network, is described for cases where 

even the abstraction network itself represents a case of “big knowledge.” Various features in the 

design of abstraction networks are demonstrated in a methodological survey of some existing 

abstraction networks previously developed and deployed for a variety of terminologies.

Results—The applicability of the general abstraction-network framework is shown through use-

cases of various terminologies, including the Systematized Nomenclature of Medicine – Clinical 

Terms (SNOMED CT), the Medical Entities Dictionary (MED), and the Unified Medical 

Language System (UMLS). Important characteristics of the surveyed abstraction networks are 

provided, e.g., the magnitude of the respective size reduction referred to as the abstraction ratio. 

Specific benefits of these alternative terminology-network views, particularly their use in 

terminology quality assurance, are discussed. Examples of meta-abstraction networks are 

presented.
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Conclusions—The “big knowledge” challenge constitutes the use and maintenance of 

terminological structures that comprise tens of thousands to millions of concepts and their 

attendant complexity. The notion of abstraction network has been introduced as a tool in helping 

to overcome this challenge, thus enhancing the usefulness of terminologies. Abstraction networks 

have been shown to be applicable to a variety of existing biomedical terminologies, and these 

alternative structural views hold promise for future expanded use with additional terminologies.

Graphical abstract

Keywords

Big Knowledge; Terminology Abstraction Network; Terminology Visualization; Terminology 
Meta-Abstraction Network; Biomedical Terminology Modeling; Disjoint Abstraction Network

1 Introduction

“Big data” has become a major focus of the field of computing [1, 2]. “Big data” is the 

common term used to describe data sets comprising tens of terabytes to many petabytes (and 

beyond). Such data sets are commonly found in areas ranging from genomics, physics, 

finance, and e-commerce to social networks and media services [1–4]. Fundamental issues 

in the “big data” space include developing efficient algorithms to process vast amounts of 

information to extract knowledge, data storage, and transaction management [1]. For 

example, the Big Data program of the US National Institutes of Health is called “BD2K”: 

Big Data to Knowledge [5, 6]. Often, large data sets are annotated using external knowledge 

from some reference structure. For example, in [7], it is recommended that genomic data be 

annotated using the Gene Ontology (GO) [8, 9]. Interestingly, the GO itself is a large 

knowledge structure, comprising approximately 38,000 terms interconnected by IS-A and 

lateral relationships, with certain relationships pointing to external terminologies such as 

Chemical Entities of Biological Interest (ChEBI) [10]. And this leads us to the related issue 

of “big knowledge” in the form of large ontologies and terminologies: collections of 

concepts (from some application domain) typically organized in a hierarchical structure. 

Such a structure provides a common repository from which to derive concepts and terms, 

and allows for smoother communication between diverse software systems in such an 

application domain as well as in interdisciplinary research. In particular, terminologies 

continue to play increasingly important roles in various health-related information systems, 

where we find many examples including the Systematized Nomenclature of Medicine – 

Clinical Terms (SNOMED CT) [11], the National Cancer Institute thesaurus (NCIt) [12, 13], 

Logical Observation Identifiers Names and Codes (LOINC) [14], the Medical Entities 

Dictionary (MED) [15, 16], the National Drug File - Reference Terminology (NDF-RT) [17] 
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of the US Veterans Health Administration, the Unified Medical Language System (UMLS) 

[18–20], etc.

The “big knowledge” challenge is dealing with the tens of thousands to millions of concepts 

constituting a typical terminology. Moreover, adding to the complexity, most terminologies 

have some kind of a network or graph structure, with a backbone of hierarchical IS-A 

relationships and even more lateral relationships. Such a massive network, while purporting 

to serve an invaluable standardization role, can devolve into a tangled web of obscurity for 

users and maintenance personnel alike.

One way to confront the “big knowledge” challenge is to provide auxiliary support 

structures to aid in terminology use and maintenance. In this paper, we deal with one kind of 

such structure called an abstraction network, a secondary network that provides an 

alternative compact view of the structure and content of the primary terminology network. 

One very important feature of an abstraction network is that it is typically multiple orders of 

magnitude smaller in size than its underlying terminology. Their compact structures make 

abstraction networks much more manageable from visualization and comprehension 

perspectives. The reduction in size of an abstraction network is obtained by structurally 

dividing a large terminology into smaller parts, each of which is represented by one 

constituent entity (node) of the abstraction network.

After introducing the general notion of abstraction network, characteristics that distinguish 

various such networks are discussed. Attention is paid to the source of an abstraction 

network’s derivation, namely, intrinsic vs. extrinsic. Another important aspect is whether the 

terminology division underlying the abstraction network is into disjoint or non-disjoint parts. 

Also pertinent is the ratio of reduction in size from the terminology to the abstraction 

network.

A survey of a number of existing abstraction networks is included. For each, we give some 

of the details of the underlying derivation technique and discuss the distinguishing 

characteristics.

Sometimes even an abstraction network’s size is too large for purposes such as orientation. 

In such cases, it is advisable to form abstractions of abstraction networks themselves, 

creating meta-abstraction networks. This process is described and some examples are 

presented.

In addition to supporting orientation to and navigation of terminological content, abstraction 

networks have proven to be especially useful for quality assurance (QA) purposes. These 

applications of abstraction networks are discussed herein. Also, the differences between 

abstraction networks and other high-level structures (such as upper-level ontologies) are 

considered.

The need for the methodological review offered by this paper further stems from the fact 

that, collectively, abstraction networks were not designed in a planned, organized manner 

with an eye toward their use as auxiliary, compact networks for terminologies. In this sense, 

they stand in contrast to upper-level terminologies or ontologies (discussed further below) 
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that were created with the vision of supporting the future design of many different 

terminologies by providing frameworks comprising standard sets of common, high-level 

concepts. Historically, abstraction networks were formulated in isolation under different 

names, e.g., schema or taxonomy, to address the idiosyncrasies of a specific terminology. 

Their properties were investigated on a case-by-case basis. Only later were these compact 

structures agglomerated under the framework of “abstraction network.” At that stage, 

conclusions started to be drawn about desired general properties such as disjointedness. This 

paper characterizes the nature and pertinent properties of the abstraction-network approach, 

while at the same time demonstrating examples of its use. The advantage of this exposition 

is the ability to draw on and refer to examples illustrating various kinds of abstraction 

networks and the options for their assorted features.

The remainder of this paper is organized as follows. In Section 2, we present some 

background on terminologies and the initial motivation for the use of abstraction networks. 

Section 3 introduces the general structure of abstraction networks and their characteristics. A 

survey of existing abstraction networks appears in Section 4. The notion of a higher level 

meta-abstraction network and examples of such networks are presented in Section 5. A 

discussion of the significance of abstraction networks along with a comparison to other 

high-level, concept-network structures and a discussion of future work can be found in 

Section 6. Conclusions follow in Section 7.

2 Background and initial motivation

A terminology is a collection of concepts representing knowledge from some application 

domain such as biomedicine. Each concept exhibits defining properties such as attributes 

(often of primitive data types) and relationships (referencing other concepts). The backbone 

of most terminologies is the IS-A hierarchy comprising IS-A relationships, each of which 

connects a more specific concept (a child) to a more general concept (its parent). Other non-

hierarchical (lateral) relationships are used to represent ad hoc definitional association 

knowledge. For example, the concept Glucose Test would be linked via IS-A to the more 

general concept Test. Moreover, Glucose Test would have a lateral relationship measures to 

Glucose to explicitly capture the substance being measured.

Terminological knowledge can be represented in various formats. For example, SNOMED 

CT is modeled using description logic [21,22], but it is released publicly as a collection of 

relational tables. The UMLS is also distributed as relational tables. Regarding knowledge on 

the Web, Resource Description Framework (RDF) [23] graphs are used to define and 

display linkages between resources. When a more formal representation of a terminology is 

required, the Web Ontology Language (OWL) [24] and Open Biomedical Ontologies (OBO) 

[25] formats, which are based on description logics [22], are commonly used, e.g., many of 

the 350 terminologies in the NCBO BioPortal [26] are released in OWL or OBO.

Terminologies tend to be quite large and complex—i.e., they are instances of big 

knowledge. For example, SNOMED CT currently contains more than 300,000 concepts, 

with many more interconnecting relationships.
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Diagrammatic presentations have long been used in helping with orientation to large, 

complex knowledge structures, including terminologies. Of course, such an approach is not 

unique to knowledge structures. In the context of data modeling, Entity-Relationship (ER) 

[27] diagrams have been used for many decades to visualize the schematic structure of data 

of interest. Aspects of the graphically oriented Unified Modeling Language (UML) [28] can 

serve a similar purpose with a wider array of object-oriented modeling constructs [29]. 

Regarding RDF graphs, it is noted at [23]: “This graph view is the easiest possible mental 

model for RDF and is often used in easy-to-understand visual explanations.”

Suppose that we try to orient ourselves to the content of a small extract of a terminology 

containing, say, ten concepts and their relationships. Proceeding as in many previous 

approaches, including RDF, a natural way is to study a graph whose nodes represent the 

concepts and whose edges represent the relationships. An efficient layout of this graph 

enables its display on a single computer screen. Such a display can give us a quick synopsis 

of this extract of the terminology. Examples of systems offering such diagrammatic displays 

for one concept and its neighbors include the Semantic Navigator for the UMLS [30], 

RxNav [31] for RxNorm [32], and FlexViz [33] for ontologies hosted in the National Center 

for Biomedical Ontology’s (NCBO’s) BioPortal repository [26]. The problem is: how can 

we use the power of graphical display to gain a quick orientation to the typical terminology 

containing on the order of tens or hundreds of thousands of concepts and their relationships?

One might think that zooming into small portions of large terminology graphs is the solution 

to the problem. However, a zoomed-in view suffers from a number of problems. Just 

choosing the spot to zoom into is not so simple as one might lack a context for the whole 

terminology. One really needs prior orientation to do this zooming properly. Even when one 

finds the right spot, there are often many relationships emanating or entering concepts in the 

view that are connected to concepts beyond its scope. This requires extensive navigation to 

resolve. The few edges having both endpoints appear in the view may not constitute a 

unified piece of the terminology. They could very well be disjoint connected components. 

Furthermore, some concepts may have parents in different levels, in which case the 

hierarchical relationships connect concepts in non-consecutive levels. Furthermore, the 

edges denoting such relationships may intersect concepts in intermediate levels, causing 

confusion. These phenomena, and others, show that mere zooming is not sufficient to 

support orientation efforts. There is a need to go beyond the terminology graph itself to find 

useful displays. The mechanism of abstraction yields abstraction networks that serve this 

purpose.

3 Abstraction networks

3.1 General structure

In general, abstraction is the process by which portions of a terminology, each consisting of 

a (possibly large) subset of concepts and their interconnecting relationships (in other words, 

a subnetwork), are each replaced by a higher-level conceptual entity called a node. These 

nodes are in turn interconnected by relationships that are different in nature (though possibly 

derived) from those appearing in the underlying terminology network. To stress this 

difference, we denote the hierarchical relationships connecting nodes in an abstraction 
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network as “child-of ” relationships, whereas the hierarchical relationships in the original 

terminology are “IS-A” relationships. The result of this process is a graph structure—smaller 

in size than the terminology—called an abstraction network. The association between a 

terminology and an abstraction network is illustrated in Figure 1. On the left side is the 

terminology network consisting of a collection of concepts (drawn as ellipses); on the right 

is an abstraction network consisting of a collection of nodes (drawn as rectangles). As is 

shown in the middle of Figure 1, a subnetwork of the terminology’s concepts is delineated 

and mapped to one node of the abstraction network. All nodes of the abstraction network are 

derived in this manner. Of course, the exact nature of the mapping for each terminology is 

defined as part of the abstraction network’s formulation for that specific kind of 

terminology.

By its nature, an abstraction network affords a high-level view of the terminology. It can 

serve as a good entry point for the orientation into and exploration of the conceptual content. 

In actuality, the orientation problem has two facets. On one hand, we need an orientation on 

the macro level to provide context required for some understanding of the content and 

structure of the whole terminology. On the other hand, we need orientation on the micro 

level to small portions of the terminology. As alluded to, without an orientation on the 

macro level, it is difficult to obtain an orientation on the micro level due to lack of context. 

Abstraction networks address the macro-level portion of the orientation problem.

3.2 Characteristics

Different kinds of abstraction networks can be distinguished along a number of 

characteristic dimensions. One important characteristic deals with the manner in which the 

terminology is divided up into concept groupings. In particular, we distinguish abstraction 

networks according to whether or not they partition the underlying terminology (the 

“disjointedness” condition). Another important characteristic deals with the source of the 

nodes (conceptual entities) making up the abstraction network. Are they derived from the 

terminology itself or are they formulated based on some external reference? In the case of 

the former, the network is called intrinsic; in the latter, extrinsic. There is also the issue of a 

compactness ratio, which compares the relative sizes of the terminology to that of the 

abstraction network. In the following, we cover these three characteristic dimensions in 

more detail.

3.2.1 Disjointedness—An abstraction network is called disjoint if each concept of the 

underlying terminology belongs (or is mapped) to a unique node. From an orientation 

perspective, a disjoint abstraction network is easier for a user. Typically, each node of an 

abstraction network is a broad category, e.g., Drug, Antibiotic, etc. However, some original 

concepts genuinely fit into more than one category, leading to a non-disjoint abstraction 

network. For example, the concept Dynamic subaortic stenosis is both a Disease and an 

Anatomical Abnormality, two broad categories in the UMLS [34] Semantic Network [35, 

36]. Such a situation can cause comprehension difficulties for a user. The user would have to 

keep in mind that some concepts have dual categories, i.e., they are both “a this and a that.” 

If we consider an abstraction network’s node as elaborating the semantics of any 

terminology concept mapped to it, then concepts with a single category have a simple 
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semantics while others having multiple categories have a compound semantics elaborated by 

the respective category combination. In such a case, the abstraction network is a non-disjoint 

network.

In the case where one node, say, A is more specific than another node B (such as with 

Antibiotic being more specific than Pharmacologic Substance), a terminology concept that 

fits the more specific category will only be part of the subnetwork of the terminology 

modeled by the more specific category A. The interpretation of the concept as an instance of 

the broader category represented by B—from a knowledge representation perspective—can 

be inferred from the concept’s mapping to A and A’s child-of relationship to B. Hence, for a 

case of a terminology mapped into a non-disjoint abstraction network, the mapping of a 

concept to two categories, one more specific than the other, is forbidden. The mapping of 

such a concept to the less specific category is considered redundant.

The situation of a non-disjoint abstraction network implies that not all concepts in a 

subnetwork of the terminology represented by the same category have a uniform semantics. 

That is, some of the category’s concepts have a simple (single-category) semantics, while 

others may have a compound (multi-category) semantics. As a consequence, orientation into 

a terminology with a non-disjoint abstraction network is more difficult than for a 

terminology with a disjoint abstraction network. To cope with such a difficulty, it may pay 

to design an alternative disjoint abstraction network for the terminology of interest to 

simplify orientation to it.

3.2.2 Intrinsic vs. extrinsic—There are basically two ways one can define the set of 

nodes of an abstraction network. One way is to derive them from the concepts and 

relationships of the underlying terminology itself. That is, some terminology concepts are of 

a general nature and can be used to properly categorize other elements. An abstraction 

network derived in this way is called intrinsic. For example, a concept may be chosen to 

categorize all the concepts that are its descendants in the hierarchy of the terminology. Such 

a choice is proper since each of the descendant concepts is a specialization of the chosen 

concept. But how can we decide at which level of the hierarchy to pick a concept to serve in 

the role of a node? Why not pick its parent concept or its child instead? If a concept has no 

parents, then it is a natural candidate. But most concepts do have parents. In the MED, 

SNOMED CT, and NCIt, only one concept—at the very top of the terminology and called 

the root of the terminology—has no parent.

In SNOMED CT (and NCIt), each of its 19 (22) hierarchies has a unique top concept that is 

a child of the root of the whole terminology. Such a concept is called the root of its 

hierarchy. Those roots aptly serve as the source of the names for the nodes of an abstraction 

network. Such an arrangement would constitute an intrinsic derivation and an intrinsic 

network.

An additional way to derive nodes from a terminology is to pick concepts that are different 

from their parents in their structure, e.g., by introducing a new relationship or a new attribute 

that does not exist at the level of the parents or by inheriting relationships or attributes from 

multiple parents. Such approaches for identifying a node are based on structural properties 
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of the underlying terminology which can be detected automatically. Hence, one can write a 

program to automatically derive the nodes and the subnetworks of original concepts 

modeled by them. In this way, the abstraction network design is done in an algorithmic 

manner, objectively based on the design of the terminology.

Another alternative for choosing nodes is by a domain expert gleaning broad categories, 

befitting the terminology’s subject matter, from external sources. For example, the 

categories might be taken from the general body of literature in a subject area or from a 

standard reference work. An abstraction network derived in this way—from sources external 

to the terminology itself—is called extrinsic. For example, for a terminology in the medical 

field, broad categories could be disease, laboratory test, and procedure. Extrinsic networks 

do put a burden on the designer in terms of determining the level of refinement. Should 

various kinds of diseases be included as subcategories of disease? In general, the question is: 

how granular or how coarse should the abstraction network be? With an intrinsic network, 

the decision is often driven by the structure of the terminology. Extrinsic networks really 

have no such guide.

3.2.3 Abstraction ratio—The size of a network is defined as its number of nodes. This 

measure applies to both the network of concepts constituting the original terminology and 

the abstraction network. Abstraction networks are expected to manifest a significant 

reduction in size as compared to their underlying terminology networks. We ideally like to 

have several orders of magnitude in reduction. Such a significant reduction in size is one 

way the abstraction network offers help in orientation to the content of the terminology.

We define the abstraction ratio as the size of the terminology over the size of the abstraction 

network. The value will often be denoted as “x:1.” For example, a value of 500:1 indicates 

that there are an average of 500 concepts per node. Let us note that, in general, this measure 

does not yield an obvious comparative interpretation when used to judge the relative merits 

of two abstraction networks. For example, it is definitely not appropriate to conclude that a 

network with a 500:1 abstraction ratio is better than one with a 250:1 ratio. The abstraction 

ratio needs to be considered in light of the other characteristics. It does, however, give an 

idea about how compact an abstraction network is.

4 Survey of abstraction networks

In this section, we survey some existing abstraction networks and present some aspects of 

their derivations. We categorize them according to the characteristics discussed above.

4.1 An object-oriented database schema for the MED

In [37, 38], we presented an abstraction network in the form of an object-oriented database 

schema for the Medical Entities Dictionary (MED) [15,16] and related offshoots, e.g., the 

InterMed [39]. In this context, the nodes are object classes and the child-of relationships are 

in the form of “subclass” links between classes. The group of all concepts with the same set 

of properties (i.e., attributes and relationships) is represented by a node. The attributes and 

relationships of a node mirror those of its underlying concepts.
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The child-of relationships between nodes are derived with respect to a node’s root, defined 

as a concept whose parents all belong to other nodes. In other words, a root functions as a 

top-level concept within its node and is, in fact, used as the name of the node. (For the 

handling of multiple roots within a node, see [37, 38].) A child-of is defined from node A to 

node B if there exists an IS-A relationship from the root of A to a concept in B.

A program to create this abstraction network (schema) for the MED as well as other 

terminologies satisfying a given set of desiderata [15, 40, 41] is given in [42, 43].

As an illustration of the nodes and child-of relationships, first consider the excerpt of the 

MED shown in Figure 2. In the figure, additional, italicized labels inside concepts are 

attributes, whereas labeled arrows are relationships. Unlabeled arrows are IS-As. 

Subnetworks have been placed inside larger boxes to indicate identical common properties 

among their respective concepts. The corresponding abstraction network derived from this 

excerpt appears in Figure 3. Figure 4 shows the hierarchy of an excerpt of the whole MED 

abstraction network (1996 version).

The MED abstraction network is disjoint. For the 1996 version of the MED, consisting of 

about 43,000 concepts, the abstraction network contains 90 nodes [37, 38]. Its abstraction 

ratio is thus 478:1.

The InterMed [39] was an interdisciplinary project between six institutions to promote the 

development, sharing, and use of various resources (e.g., software components, data sets, 

procedures, and tools) to facilitate collaboration. It identified a collaborative architecture 

composed of seven tiers. The second tier was focused on vocabulary/taxonomy. During the 

first two years of the InterMed work, much of the emphasis had been placed on developing a 

shared view of how a generic clinical vocabulary should be structured [44]. The vocabulary 

that emerged was known as the InterMed; it was extracted from the MED and stored on a 

Stanford University server [45].

An abstraction network of 28 nodes was derived from the InterMed’s 2,500 concepts [43]. 

The abstraction ratio for this InterMed schema is 89:1.

4.2 The UMLS Semantic Network: an abstraction network of the Metathesaurus

The two major knowledge sources of the UMLS [18–20] are the Metathesaurus (META) 

[46, 47] and the Semantic Network [35,36,48]. The META is a large repository of concepts 

(each aggregating a collection of terms) compiled from more than 160 source vocabularies. 

Its 2013AA release comprises about 8.4 million terms (unique concept names) mapped into 

more than 2.9 million concepts.

The Semantic Network (SN) is an abstraction network for the META consisting of semantic 

types (high-level categories) and relationships among them. The SN contains 133 semantic 

types organized through hierarchical relationships in two trees rooted at Entity and Event.1 

Semantic types are also connected by 53 kinds of lateral relationships. An excerpt of the SN 

1The SN’s hierarchical relationships are typically referred to as “IS-A,” but we will use “child-of ” here, as noted in Section 3. The 
semantic types are denoted in bold.
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comprising 14 semantic types can be seen in Figure 5. The unlabeled, bold arrows are child-

of relationships, while the labeled arrows are lateral relationships. For example, Injury or 
Poisoning is connected to Physiologic Function via the lateral relationship disrupts.

The SN is an extrinsic abstraction network, as it does not derive from the underlying META. 

The connection between the SN and the META is described as follows [49]: “The Semantic 

Network encompasses and provides a unifying structure for the META constituent 

vocabularies.” In order to accomplish this, each concept in the META is assigned one or 

more of the SN’s semantic types. The semantics of each concept is partly elaborated by its 

semantic-type assignments. The SN is a non-disjoint abstraction network due to the fact that 

a concept may be associated with more than one semantic type. It exhibits an abstraction 

ratio of about 19,500:1.

4.3 A semantically uniform abstraction for the META

The non-disjointedness characteristic of the SN implies that the set of concepts assigned a 

given semantic type (also called the extent of the semantic type) may not be uniform from a 

type perspective. For example, the semantic type Experimental Model of Disease is 

assigned to 73 concepts (2013AA release), of which 26 concepts have Neoplastic Process 
as another assigned type. Forty-seven concepts are exclusively assigned Experimental 
Model of Disease itself. So, within Experimental Model of Disease’s extent, we find that 

some concepts are experimental models of disease and neoplastic processes, and others are 

“pure” experimental models of disease. In another example, the extent of Anatomical 
Abnormality contains 3,533 concepts, among which we find 989 also assigned Disease or 
Syndrome and one other also assigned Pathologic Function. The remaining 2,543 concepts 

are “pure” anatomical abnormality concepts. The non-uniformity of such semantic-type 

extents makes it more difficult to comprehend and utilize the knowledge provided by the SN 

abstraction network for presentation purposes.

To address this problem, we introduced the “Refined Semantic Network” (“RSN”) [50, 51]. 

This network comprises two kinds of types: pure semantic types and intersection types. The 

former are derived directly from existing SN semantic types. The extent of a pure semantic 

type is a subset of the extent of the corresponding original semantic type, namely, those 

concepts assigned that semantic type exclusively. From the example above, there would be a 

pure semantic type Experimental Model of Disease assigned to the 47 concepts assigned 

only that type in the SN.

Intersection types are reifications of the non-empty intersections of extents of semantic 

types. Each accommodates a specific combination of semantic-type assignments. For 

example, the RSN would contain an intersection type named Experimental Model of 
Disease ∩ Neoplastic Process with an extent of the 26 concepts that are categorized as both 

semantic types. (The symbol ∩ denotes mathematical set intersection.)

The RSN is an intrinsic network since it is derived automatically from the SN and its 

associated semantic-type assignments to the concepts of the META. Moreover, unlike the 

SN, the RSN is a disjoint abstraction network. However, it is about four times as large as the 

original SN. The RSN contains a total of 534 types, including 401 intersection types, 
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yielding an abstraction ratio of approximately 5,400:1 [52]. The original SN contains just 

133 semantic types. As mentioned in the definition for the semantic type Chemical 
(available at [35]), intersections are common for the 25 semantic types residing in the SN’s 

Chemical subtree. In fact, 352 intersection types out of the 401 in total are for chemical 

semantic types. The high frequency of intersection types from the Chemical subtree is 

utilized in deriving the “Chemical Specialty Semantic Network,” an abstraction network 

focused on the chemical concepts of the UMLS [53]. As shown in [53], the Chemical 

Specialty Semantic Network can also serve as an abstraction network for ChEBI [54]. Five 

of the 49 non-chemical intersection types are shown in an excerpt of the RSN in Figure 6 

beneath the dashed line. Their associated pure semantic types and ancestors are above the 

line.

Another difference between the two abstraction networks is that the SN is strictly a tree 

structure (actually, two separate trees), whereas the RSN is a directed acyclic graph (DAG). 

This can be seen in the excerpt appearing in Figure 6 containing 16 pure semantic types 

(above the dashed line)—six of which do not participate in any intersections, as denoted by 

the bold boxes—and five intersection types that have multiple parents (below the line).

4.4 Taxonomies

Three related kinds of taxonomies have been formulated as abstraction networks for 

description-logic-based terminologies, such as SNOMED CT [11,55] and the NCIt [12,13]. 

They are the area taxonomy, the partial-area taxonomy, and the disjoint partial-area 

taxonomy. The first two have been used for both SNOMED CT [56] and the NCIt [57], 

while the latter has been applied only to SNOMED CT [58,59]. Such taxonomies can be 

derived for similarly modeled terminologies, e.g., the Convergent Medical Terminology of 

Kaiser Permanente [60] and the Enterprise Reference Terminology of the Veterans 

Administration (VA) [61].

4.4.1 Area taxonomy—The nodes of the area taxonomy are derived from a partition of a 

terminology hierarchy based on the relationships of its concepts. Concepts with the exact 

same relationships, irrespective of the relationships’ target concepts, are grouped together 

into a collection called an area. In the area taxonomy, each area becomes a node. It will be 

noted that the area taxonomy is disjoint since the partition is based on sets of relationship 

and each concept has a unique such set.

The area taxonomy’s child-of relationships each has its source in an area’s root, a top-level 

concept whose parents all reside in other areas. There can be more than one root per area, 

hence more than one child-of can emanate from a given area. For further details, see [56]. 

An excerpt of the area taxonomy of SNOMED CT’s Specimen hierarchy (July 2011) can be 

seen in Figure 7.

The area taxonomy is a layered network, color-coded according to the number of 

relationships in each area. For example, all the areas with one relationship appear on Level 

1. These areas and the child-of ’s emanating from them are colored green. The root area of 

the area taxonomy, denoted ∅ (“empty set”), contains concepts with no relationships at all. 

All other areas are labeled by their respective lists of relationships, followed by the 
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cardinality (or number of concepts) in the specific area. For example, the green {substance} 

area has 102 concepts. On the lowest level, there are only two yellow areas. The area 

{procedure, morphology, topography, substance} has 11 concepts. The other area at Level 4 

has just one concept. An example of child-of ’s can be seen for the blue area {topography, 

substance}, which has two blue-colored child-of ’s to {substance} and to {topography}. 

Overall, the area taxonomy serves as a visualization of the distribution of concepts 

according to the numbers of relationships they exhibit and the actual sets of those 

relationships.

4.4.2 Partial-area taxonomy—The area taxonomy groups concepts strictly based on 

their sets of relationships. The partial-area taxonomy refines this by taking into account the 

local hierarchical configurations in the confines of an area. In particular, a partial-area is a 

division of an area consisting of a root together with all its descendants in the area. (In the 

case of an area with one root, the partial-area and the area coincide.) The partial-area 

taxonomy comprises the collection of all partial-areas taken as nodes. Those nodes are 

further grouped graphically inside their respective areas. The partial-area taxonomy is not 

disjoint since a given concept may have more than one root as an ancestor and thus reside in 

multiple partial-areas. As with the area taxonomy, the nodes of the partial-area taxonomy are 

connected via child-of ’s, as described in [56]. The partial-area taxonomy corresponding to 

the area-taxonomy of Figure 7 can be seen in Figure 8. (A software tool, called BLUSNO, 

has been developed for the automatic generation of area and partial-area taxonomies [62].) 

For the sake of readability, Figure 8 shows only child-of ’s connecting ancestors and 

descendants of the partial-area Cyst fluid sample in the (blue) area {morphology, substance}.

Figure 8 provides a refined visualization of Figure 7. For example, inside the area 

{substance}, there are 11 white boxes, each with the name of the respective partial-area and 

the cardinality (i.e., number of concepts). The name of the partial-area is taken to be that of 

the root, as that concept represents the overarching semantics of the group. We see, for 

example, 55 concepts that are body substance specimens, 44 fluid specimens, 25 body 

specimens, and 13 food specimens. There are a smattering of other kinds of concepts in 

seven smaller partial-areas. The sizes of the partial-areas appear in non-increasing order as 

we proceed to the right and down.

As such, the partial-area taxonomy provides a summarization of the kinds of the only 102 

concepts that exclusively exhibit the substance relationship (see Figures 7 and 8). One will 

notice that the sum of the cardinalities of the four large partial-areas is 137 (= 

55+44+25+13), which is greater than the cardinality of 102 of the entire area. This is due to 

the overlap among these four partial-areas in this area having the highest proportion of 

overlaps in the Specimen hierarchy. This issue will be discussed further below.

4.4.3 Disjoint partial-area taxonomy—The presence of concepts residing in more than 

one partial-area has a somewhat deleterious effect on the categorization power of the partial-

area taxonomy. In particular, in the context of a given partial-area, it is possible to find some 

concepts belonging solely to that partial-area—and therefore elaborating the semantics of its 

root only—and other concepts belonging simultaneously to many partial-areas—and thus 

elaborating the semantics of multiple roots. This is analogous to the problem encountered 
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with the UMLS’s SN, where the assignment of multiple semantic types to one concept is 

allowed and results in some types having extents elaborating non-uniform semantics (see 

Section 4.3).

To deal with this issue, we have constructed a further refinement of the partial-area 

taxonomy. It is based on a partitioning technique that operates on an area and yields a 

disjoint collection of concept groups that satisfies single-rootedness. In this case, we get a 

true partition of the concepts of an area, with no overlap among concept groups, which are 

aptly designated disjoint partial-areas. Let us point out that the partitioning is carried out in 

a recursive manner due to the potential of further “hierarchical tangling” within the lower 

reaches of an area (see [58] for details).

Again, we use the disjoint partial-areas as the nodes of an abstraction network, the disjoint 

partial-area taxonomy [58]. A sample portion of the disjoint partial-area taxonomy of the 

Specimen hierarchy’s area {substance} can be seen in Figure 9, which provides a view of 

the overlaps among the six partial-areas (boxes with solid colors) exhibiting overlaps within 

the original partial-area taxonomy (Figure 8). (The BLUSNO tool [62] also displays disjoint 

partial-area taxonomies.) The multi-colored nodes residing below that level are reifications 

of various overlaps that have been factored out recursively. The coloring denotes the 

original partial-areas from which a node is inheriting. For example, the disjoint partial-area 

Acellular blood (serum or plasma) specimen—containing nine concepts—is derived from 

the overlap between Blood specimen, Fluid sample, and Body substance sample, as indicated 

by its three colors: blue, purple, and green. The diagram is arranged in layers according to 

the number of Layer-1 (single-color) partial-areas in which the overlapping concepts 

appeared.

All three of the taxonomy abstraction networks are intrinsic as they are derived strictly from 

the concepts and their relationships appearing in the terminology. As discussed, the area 

taxonomy is disjoint, as is the disjoint partial-area taxonomy (as its name implies). The 

partial-area taxonomy is not disjoint. This was the primary motivation for the design of the 

disjoint partial-area taxonomy.

The abstraction ratios for the area taxonomy and partial-area taxonomy are 58:1 (58 = 1, 

330/23) and 3.26:1 (3.26 = 1, 330/407), respectively. For the disjoint partial-area taxonomy, 

the ratio is 2.73:1 (2.73 = 1, 330/487). We see a slight trade-off for this latter network. We 

achieve a more refined view of the overall arrangement of the overlapping concepts for the 

price of a smaller abstraction ratio.

5 Meta-abstraction networks

As discussed, the size of an abstraction network is expected to be orders of magnitude 

smaller than the size of its associated terminology, as expressed by the abstraction ratio. 

Even when this condition is met, the abstraction network may still be too large for a desired 

purpose such as compact display on a computer screen. In such a case, it is possible to re-

apply abstraction—i.e., create an abstraction network of an abstraction network, what we 

call a meta-abstraction network. The association between a terminology, an abstraction 

network, and a meta-abstraction network is illustrated in Figure 10. On the left side is the 
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terminology whose groups of concepts (enclosed in circles) are mapped to nodes in the 

abstraction network in the middle; in turn, groups of nodes of the abstraction network are 

mapped into nodes (“meta-nodes”), drawn as dashed rectangles, in the meta-abstraction 

network on the right. Let us note that different structural grouping techniques will need to be 

employed for the levels of the abstraction network and the meta-abstraction network.

Meta-abstraction networks are analogous to the meta-level networks found in the area of 

data modeling and database systems. For example, see the metaclasses of UML [63, 64] or 

those used in extending object-oriented data models [65].

In the following, we discuss some details of two meta-abstraction networks defined with 

respect to the UMLS’s Semantic Network (SN): the cohesive metaschema [66] and the 

semantic group collection [67]. Let us note that we have derived other meta-abstraction 

networks related to the former, including the lexical metaschema [68] and the consolidated 

metaschema [69].

In general, a metaschema comprises a collection of nodes, each of which denotes a 

connected subnetwork of semantic types from the SN. This meta-abstraction network has its 

foundation in a partition of the SN into connected subtrees based on some criterion. In the 

specific case of the cohesive metaschema [66], the criterion follows from an analysis of the 

distribution of relationships among the semantic types. The analysis was carried out 

algorithmically and yielded a collection of disjoint, singly-rooted, connected sets called 

meta-semantic types. These were promoted to nodes to form the cohesive metaschema.

Due to the inheritance of relationships within the SN, child semantic types and their parents 

tended to be closely grouped together within the confines of a meta-semantic type. The 

property of connectivity exhibited by a meta-semantic type refers to the fact that all its 

constituent semantic types are hierarchically related and possess a single common ancestor 

(again, called the root), which is used as the meta-semantic type’s name. Another important 

property of a meta-semantic type is the near-identical relationship structure of its member 

semantic types.

In total, there are 28 meta-semantic types. Examples include: Anatomical Abnormality 
(containing also the semantic types Congenital Abnormality and Acquired Abnormality), 

Fully Formed Anatomical Structure (containing also Cell; Cell Component; Tissue; 
Gene or Genome; and Body Part, Organ, or Organ Component). For details of the 

interconnections between the nodes of the cohesive metaschema, see [66]. Overall, the 

metaschema provides a high-level summarization view of the UMLS’s conceptual content 

from two levels above. An excerpt of the hierarchy of the metaschema can be seen in Figure 

11.

In [67], a partition of the SN into disjoint groups was proposed based on six general 

principles: semantic validity (assessable by connectivity), parsimony, completeness, 

exclusivity, naturalness, and utility. Its application yielded a collection of 15 so-called 

“semantic groups” (“SGs”), each comprising a set of semantic types. Taken together, the 

SGs form the nodes of a meta-abstraction structure that we call the SG collection. Example 

SGs include: Genes & Molecular Sequences (containing five semantic types), Activities & 

Halper et al. Page 14

Artif Intell Med. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Behaviors (nine semantic types), Anatomy (11), and Chemicals & Drugs (26). The SG 

collection was created as a coarser-grained view of the Metathesaurus in an effort to reduce 

complexity. It also served in an effort to verify the consistency of relationships in the 

Metathesaurus, and led to corrections of relationship inaccuracies, recommendations for the 

expansion and enhancement of SN relationships, and feedback to source vocabulary curators 

[70]. The SG collection has also been used in the identification and analysis of polysemous 

concepts in the UMLS [71].

Let us note that different from the meta-semantic types, the SGs are not necessarily 

connected as they can aggregate semantic types from disparate parts of the SN. That is, the 

SGs are not necessarily satisfying the validity principle of [67]. Thus, the SGs are not 

hierarchically related to one another. Additionally, we have designed the Enriched Semantic 

Network (ESN) for the UMLS that included new IS-A links to connect the unconnected SGs 

and had a structure of a directed acyclic graph (DAG) rather than the two trees of the SN 

[72]. Subsequently, a cohesive metaschema was formulated for the ESN [73], forming a 

network for the SG collection’s nodes.

As noted already, both the cohesive metaschema and the SG collection are disjoint. The 

latter is extrinsic since its nodes were derived through an intuitive understanding of the 

subject areas covered by the SN. While the metaschema is derived from an extrinsic network 

(the SN), it makes sense to designate it intrinsic because it was derived exclusively using 

knowledge contained in the SN itself. The abstraction ratios—defined in terms of the SN—

are approximately 5:1 for the metaschema and 9:1 for the SG network. The ratios are 

obviously a great deal larger with respect to the Metathesaurus, two levels of abstraction 

below.

6 Discussion

6.1 Significance

The abstraction networks and their characteristics presented in Section 4 are summarized in 

Table 1.

Abstraction networks have been used in a variety of applications. For example, the Semantic 

Network (SN), the most established abstraction network, was originally designed to support 

the integration of new source terminologies into the UMLS [74]. In over twenty years, the 

SN has been utilized for many additional purposes, particularly in conjunction with the 

underlying META. The two together were employed in a biomedical text summarizer to 

identify related concepts [75]. They have been used for tagging entities in a medical 

question-answering system [76]. The SN and the META have aided in the construction of a 

knowledge base for Bayesian decision models [77]. They have also been utilized in the 

analysis of the semantics of the relationships between co-occurring UMLS concepts [78]. A 

recent search of PubMed reported 107 publications with ‘UMLS “Semantic Network”’ 

(search string) in their abstract.

By far the most extensive use of abstraction networks has been in the context of terminology 

quality assurance (QA). Fundamentally, an abstraction network serves to capture the essence 
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of an underlying terminology while ignoring its minutiae. In this capacity, for example, the 

object-oriented schema helped to expose and repair some errors and inconsistencies in the 

MED [37,38]. As a matter of fact, the excerpt of the MED abstraction network in Figure 4 is 

the one obtained after resolving various errors and inconsistencies that were exposed with a 

prior version of the abstraction network derived from the MED’s 1996 release. For example, 

the prior abstraction network had a node Calcified Pericardium with the parents Heart 
Disease and Body Part or Structure. Such a configuration revealed an obvious 

inconsistency. Namely, how could an entity be both a disease and a body part? This issue 

was later resolved for all 43 specific calcified body part concepts in the MED as reflected by 

the nodes Adrenal Calcification and Calcified Body Part or Structure, seen in Figure 4 

[38].

The disjoint Refined Semantic Network (RSN), introduced as a supplementary UMLS 

resource, has proven to be an excellent vehicle for the support of UMLS QA (see, e.g., [50, 

52, 79]). It has aided in the discovery of various modeling and classification errors. Its 

intersection types with very small extents (e.g., one to six concepts) consisting of complex 

concepts (deemed such due to their multiple semantic types) proved to be very fruitful in 

this regard [80]. Furthermore, it is shown in [52] that utilizing the RSN can prevent the 

reintroduction—and repeated elimination—of erroneous intersection types reflecting 

incorrect semantic-type assignments to UMLS concepts.

As shown in [81, 82], the partial-area taxonomy’s partial-areas containing very few concepts 

have a higher likelihood of housing SNOMED concepts that are in error. As such, the 

taxonomy’s compact visualization provides the basis for an enhanced QA regimen for 

SNOMED. The area taxonomy has also proved its worth in additional QA measures for the 

NCIt [57]. Furthermore, the disjoint partial-area taxonomy [58] was shown to identify 

complex concepts of SNOMED that were found to have statistically significantly more 

errors than control samples [59].

Here we see a manifestation of our methodological review in the context of terminology 

QA. We had previously established that disjoint abstraction networks offered better 

orientation into various components of a terminology, and, in particular, into those portions 

that belong to collections of multiple nodes in other abstraction networks. In the examples 

involving the RSN and the disjoint partial-area taxonomy, we see that the portion whose 

concepts are more complex, as expressed by their multiple categorizations, tends to have 

more errors. As a matter of fact, in a current preliminary study of GO [8, 9], we have found 

that the same phenomenon repeats itself in GO’s Biological Process component [83].

Abstraction networks can help in accelerating navigation of the terminology in the search for 

a concept, the name of which is unfamiliar or forgotten. Instead of traversing the large 

complex terminology, the user can start by traversing the much smaller and simpler 

abstraction network to locate a node containing the desired concept. Only then does the 

search continue as a navigation of the subhierarchy consisting of a much smaller number of 

concepts belonging to that node. For an example of an accelerated traversal of the MED, see 

[84]. The RSN has been shown to aid in efficient navigation of the content of the 

Metathesaurus, as demonstrated in [50].
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Abstraction networks also have their use in orientation to terminology content. Let us utilize 

Figure 9 to illustrate how the disjoint partial-area taxonomy supports orientation to the most 

tangled parts of a SNOMED hierarchy, such as those found in the area {substance} of the 

Specimen hierarchy. We pointed out in Section 4.4.2 that with the partial-area taxonomy, 

this area contains a high proportion of overlapping concepts. This is evident from Figures 7 

and 8 where the cardinality of {substance} is listed as 102 concepts, whereas the sum of the 

cardinalities of its constituent partial-areas is 155 (see Figure 8). In Figure 9, we see that the 

sum of the cardinalities of the disjoint partial-areas with coloring is 94 (= 56 + 23 + 15, by 

level). Adding the area {substance}’s extra six smaller partial-areas (Figure 8), which do not 

appear in Figure 9 due to a lack of overlaps, yields a total of 102 concepts. Although these 

are the numbers for the July 2011 release, this situation had existed in earlier years. For 

example, the corresponding numbers were 81 and 136, respectively, in 2007, and 107 and 

173 in 2009 [58, 59].

Moreover, in [59], such overlapping concepts were shown to have a statistically significant 

higher ratio of errors for two releases in 2007 and 2009. Hence, the visualization provided 

by the disjoint partial-area taxonomy formed the basis for a QA regimen for the overlapping 

concepts of a SNOMED hierarchy [59]. This shows how the taxonomy can yield insights 

into the modeling of tangled portions of such a hierarchy that can lead to improvements. 

Furthermore, the disjoint partial-area taxonomy for the area {substance} in 2009 was quite 

different from the one generated for the same area in 2007 (as can be seen in [58, 59]) due to 

corrections that had been implemented as a result of the QA. This offered a more precise 

orientation to this tangled portion of the hierarchy.

Abstraction networks have mostly been brought to bear on terminologies within the 

biomedical field. The only example of an abstraction network that we are familiar with 

outside of biomedicine is the Suggested Upper Merged Ontology (SUMO) [85], designed by 

the IEEE Suggested Upper Ontology Working Group (SUO WG). In [86], it was used for 

categorizing WordNet [87]. Its design was extrinsic. The model of the connection between 

SUMO and WordNet is similar to that between the Semantic Network and the 

Metathesaurus of the UMLS.

6.2 Comparison with other high-level, concept-network structures

In the context of ontologies (concept networks closely related to terminologies), we also find 

networks that serve in a role of abstraction. But these differ from the abstraction networks 

presented herein in a number ways. There is the notion of upper-level ontology (also called 

top-level ontology) that is designed to serve as a solid conceptual foundation for other 

domain-specific ontologies. As such, it consists solely of very general concepts, like 

Continuant, Occurrent, Physical object, and Conceptual entity, rather than the specific 

concepts found in some domain or application. In BioPortal, a repository of ontologies [26, 

88], we find an example called the Basic Formal Ontology (BFO) [89]. Additionally, the 

high-level top-domain ontologies seek to provide consistent definitions for foundational 

concepts within an application area, supporting interoperability between ontologies and 

facilitating top-down construction. BioTop (BT) [90] and ChemTop [91] are examples. 

BioPortal’s Ontology for General Medical Science (OGMS) [92] (itself a top-domain 
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ontology) and Infectious Disease Ontology (IDO) [93] include concepts from BFO. The 

Sleep Domain Ontology (SDO) [94] includes concepts from both BFO and BioTop.

Upper-level and top-domain ontologies do, by definition, contain concepts that denote very 

broad categories, and in that sense offer a level of abstraction compared to domain-specific 

knowledge. An abstraction network differs from upper-level and top-domain ontologies in 

that it is a separate, alternative network sitting alongside a domain-specific terminology. Its 

nodes may or may not be derived from the terminology itself. (As noted, in the latter case, it 

is called an extrinsic abstraction network; in the former, it is intrinsic.) In fact, that is an 

important point: abstraction networks—when intrinsic—are derived from an existing 

terminology rather than having their content used in the formulation of the terminology. 

Upper-level and top-domain ontologies serve the exact opposite purpose: to support and be a 

part of the conceptual content of an ontology that is being constructed. In other words, 

abstraction networks are derived a posteriori, while high-level ontologies exist a priori. 

Admittedly, abstraction networks do tend to have very broad categories as nodes, as we find 

with high-level ontologies. However, not all abstraction-network nodes are high-level and 

“abstract.” The nodes may be rather specific concepts in their own right, but could serve to 

abstract some more specific concepts in a portion of the terminology network. See, e.g., 

Calcified Body Part or Structure for the MED abstraction network and Blood specimen 

(25) for the SNOMED Specimen hierarchy’s partial-area taxonomy. Another important 

feature of an abstraction network is the requirement that at least one terminology concept be 

mapped to each of the abstraction network’s nodes, meaning that there are no unused nodes. 

(Mathematically speaking, there exists a surjective or “right-total” relation between the set 

of the terminology’s concepts and the set of the abstraction network’s nodes.)

An abstraction network is analogous to the notion of a database schema from the 

information management domain. The database schema effectively serves as a template for 

the data entities—defining what they look like. In contrast to an abstraction network, the 

schema is an a priori construction: it is created first, with the population of the database 

ensuing. Actually, concepts of a terminology are like the classes you would find in a 

schema. So, in that sense, the high-level modeling delivered by an abstraction network is 

really on a meta-level with respect to real-world application data, such as is found in clinical 

information systems.

6.3 Future work

The example abstraction networks illustrate various derivation techniques needed for 

different terminologies based on a variety of models. The one case where similar abstraction 

networks were applicable to different terminologies, namely, the taxonomies of SNOMED 

CT and the NCIt, was made possible by the fact that the two follow similar, even if not 

identical, description-logic [22] models. It can be tedious research work deriving new kinds 

of abstraction networks for each new terminology encountered. The hope for more 

widespread use of abstraction networks lies in the standardization of their derivation and an 

acceleration in the process of their creation for given terminologies. If we can identify 

families of terminologies that are similar in their properties and models, then it is likely that 

we can also devise a common technique for the automatic derivation of an abstraction 
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network for each member of a family. This is the next challenge in our efforts to facilitate 

terminology usage and maintenance. A promising test-bed for such research is the NCBO’s 

BioPortal [26] containing a large number of OWL-based ontologies [24]. Preliminary work 

was done for several such ontologies including the Ontology of Clinical Research (OCRe) 

[95,96], SDO [97], the Cancer Chemoprevention Ontology (CanCO) [98, 99], and the 

Ontology for Drug Discovery Investigations (DDI) [100, 101].

A related research problem is whether an abstraction network characterization that can 

identify a subset of concepts as having a higher likelihood of errors in one terminology will 

be effective in doing the same for another terminology in the same family. For example, 

overlapping concepts of partial-areas were shown [59, 102] to have statistically significantly 

more errors than a control sample in the context of SNOMED. Will the same be true, say, in 

the NCIt which is in the same family?

7 Conclusion

The “big knowledge” challenge is dealing with the use and maintenance of terminological 

structures that comprise tens of thousands to millions of concepts and their attendant 

complexity. It is a pressing problem because terminologies have become integral parts of 

biomedical information processing environments, providing common sets of concepts and 

terms that facilitate standardization and interoperability. The typical scope of a terminology 

can certainly hinder its accuracy, usability, comprehensibility, and maintainability. In this 

paper, we have presented the general notion of abstraction network, a higher level network 

that sits above a terminology and offers compact—and more easily understandable—views 

of its conceptual content. Various characteristics pertaining to abstraction networks were 

introduced. A number of existing abstraction networks along with aspects of their derivation 

techniques were surveyed. As it happened, many of their features were not fully understood 

at the time the specific abstraction networks were derived for their respective terminologies. 

These features and the networks’ utility are now discussed in the perspective of a 

methodological review that is presented here for the first time. Furthermore, examples of an 

even higher level type of network, a meta-abstraction network, sitting on top of other 

abstraction networks—and two levels above a terminology—were described. Overall, an 

abstraction network can be seen as another kind of structural view helping to overcome the 

“big knowledge” challenge and promoting the use of terminologies.

Acknowledgments

This work was partially supported by the NLM under grant R-01-LM008912-01A1.

References

1. Jacobs A. The pathologies of big data. Commun ACM. 2009; 52(8):36–44.

2. the New York Times, Thursday. Jun 20. 2013 Bits: A special section on big data. 

3. Bollier, D. Tech rep. The Aspen Institute; Washington, DC: 2010. The promise and peril of big data. 

4. Bryant, R.; Katz, RH.; Lazowska, ED. Tech rep. Computing Community Consortium; Washington, 
DC: 2008. Big-data computing: Creating revolutionary breakthroughs in commerce, science, and 
society. 

Halper et al. Page 19

Artif Intell Med. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Margolis R, Derr L, Dunn M, Huerta M, Larkin J, Sheehan J, Guyer M, Green ED. The National 
Institutes of Health’s Big Data to Knowledge (BD2K) initiative: Capitalizing on biomedical big 
data. JAMIA. 2014; 21(6):957–958. [PubMed: 25008006] 

6. NIH Big Data to Knowledge (BD2K). [Accessed November 6, 2014] available at http://
bd2k.nih.gov

7. Howe D, Costanzo M, Fey P, Gojobori T, Hannick L, Hide W, et al. Big data: The future of 
biocuration. Nature. 2008; 455(7209):47–50. [PubMed: 18769432] 

8. [Accessed August 29, 2014] The Gene Ontology. available at http://www.geneontology.org

9. Gene Ontology Consortium. Creating the Gene Ontology resource: Design and implementation. 
Genome Res. 2001; 11:1425–1433. [PubMed: 11483584] 

10. Chemical Entities of Biological Interest, available at [26]. Accessed November 4, 2014.

11. IHTSDO. [Accessed June 25, 2014] SNOMED CT. available at http://www.ihtsdo.org/snomed-ct

12. Sioutos N, de Coronado S, Haber MW, Hartel FW, Shaiu W-L, Wright LW. NCI Thesaurus: A 
semantic model integrating cancer-related clinical and molecular information. Journal of 
Biomedical Informatics. 2007; 40(1):30–43. [PubMed: 16697710] 

13. Fragoso G, de Coronado S, Haber M, Hartel FW, Wright L. Overview and utilization of the NCI 
thesaurus. Comparative and Functional Genomics. 2004; 5(8):648–654. [PubMed: 18629178] 

14. McDonald CJ, Huff SM, Suico JG, et al. LOINC, a universal standard for identifying laboratory 
observations: A 5-year update. Clinical Chemistry. 2003; 49(4):624–633. [PubMed: 12651816] 

15. Cimino JJ, Clayton PD, Hripcsak G, Johnson SB. Knowledge-based approaches to the maintenance 
of a large controlled medical terminology. JAMIA. 1994; 1(1):35–50. [PubMed: 7719786] 

16. Baorto DM, Li L, Cimino JJ. Practical experience with the maintenance and auditing of a large 
medical ontology. Journal of Biomedical Informatics. 2009; 42(3):494–503. [PubMed: 19285569] 

17. Brown SH, Elkin PL, Rosenbloom ST, Husser C, Bauer BA, Lincoln MJ, Carter J, Erl-baum M, 
Tuttle MS. VA National Drug File Reference Terminology: A cross-institutional content coverage 
study. Studies in Health Technology and Informatics. 2004; 107(Pt 1):477–481. [PubMed: 
15360858] 

18. [Accessed June 25, 2014] Unified Medical Language System (UMLS). available at http://
www.nlm.nih.gov/research/umls

19. Humphreys BL, Lindberg DAB, Schoolman HM, Barnett GO. The Unified Medical Language 
System: An informatics research collaboration. JAMIA. 1998; 5(1):1–11. [PubMed: 9452981] 

20. McCray AT, Miller RA. Making the conceptual connections: The UMLS after a decade of research 
and development. JAMIA. 1998; 5(1):129–130. [PubMed: 9471340] 

21. IHTSDO. SNOMED CT Abstract Logical Models and Representational Forms (draft document). 
Jan.2008 

22. Baader, F.; Nutt, W. Basic description logics. In: Baader, F.; Calvanese, D.; McGuinness, DL.; 
Nardi, D.; Patel-Schneider, PF., editors. The Description Logic Handbook: Theory, 
Implementation, and Applications. 2. Cambridge University Press; Cambridge, UK: 2007. p. 
47-104.

23. [Accessed February 6, 2015] Resource Description Framework (RDF). available at http://
www.w3.org/RDF

24. [Accessed Sept. 18, 2014] OWL Web Ontology Language Reference. available at http://
www.w3.org/TR/owl-ref

25. Smith B, Ashburner M, Rosse C, et al. The OBO Foundry: Coordinated evolution of ontologies to 
support biomedical data integration. Nature Biotechnology. 2007; 25:1251–1255.

26. NCBO BioPortal. [Accessed September 2, 2014] available at http://bioportal.bioontology.org/

27. Bagui, S.; Earp, R. Database Design Using Entity-Relationship Diagrams. 2. CRC Press; Boca 
Raton, FL: 2011. 

28. Elmasri, R.; Navathe, S. Fundamentals of Database Systems. 6. Addison-Wesley; Boston, MA: 
2011. 

29. Hay, DC.; Lynott, MJ. [Accessed February 6, 2015] UML as a data modeling tool, part 2, The Data 
Administration Newsletter –TDAN.com. available at http://www.tdan.com/view-articles/8589

Halper et al. Page 20

Artif Intell Med. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bd2k.nih.gov
http://bd2k.nih.gov
http://www.geneontology.org
http://www.ihtsdo.org/snomed-ct
http://www.nlm.nih.gov/research/umls
http://www.nlm.nih.gov/research/umls
http://www.w3.org/RDF
http://www.w3.org/RDF
http://www.w3.org/TR/owl-ref
http://www.w3.org/TR/owl-ref
http://bioportal.bioontology.org/
http://www.tdan.com/view-articles/8589


30. Bodenreider, O. In: Overhage, JM., editor. A semantic navigation tool for the UMLS; Proc. 2000 
AMIA Annual Symposium; Los Angeles, CA. 2000. p. 971

31. [Accessed June 24, 2014] RxNav Home Page. available at http://rxnav.nlm.nih.gov/index.html

32. [Accessed June 21, 2014] RxNorm. available at http://www.nlm.nih.gov/research/umls/rxnorm/
index.html

33. [Accessed June 13, 2014] FlexViz. available at http://www.thechiselgroup.org/flexviz

34. Bodenreider O. The Unified Medical Language System (UMLS): Integrating biomedical 
terminology. Nucleic Acids Research. 2004; 32(suppl 1):D267–D270. [PubMed: 14681409] 

35. The UMLS Semantic Network. [Accessed July 18, 2014] available at http://
semanticnetwork.nlm.nih.gov

36. McCray AT. An upper level ontology for the biomedical domain. Comparative and Functional 
Genomics. 2003; 4:80–84. [PubMed: 18629109] 

37. Gu, H.; Cimino, JJ.; Halper, M.; Geller, J.; Perl, Y. In: Cimino, JJ., editor. Utilizing OODB schema 
modeling for vocabulary management; Proc. 1996 AMIA Annual Fall Symposium; Washington, 
DC. 1996. p. 274-278.

38. Gu H, Halper M, Geller J, Perl Y. Benefits of an object-oriented database representation for 
controlled medical terminologies. JAMIA. 1999; 6(4):283–303. [PubMed: 10428002] 

39. Oliver, DE.; Shortliffe, EH. InterMed Collaboratory. In: Cimino, JJ., editor. Collaborative model 
development for vocabulary and guidelines; Proc. 1996 AMIA Annual Fall Symposium; 
Washington, DC. 1996. p. 826

40. Cimino JJ. Desiderata for controlled medical vocabularies in the twenty-first century. Methods of 
Information in Medicine. 1998; 37:394–403. [PubMed: 9865037] 

41. Cimino JJ. In defense of the Desiderata. Journal of Biomedical Informatics. 2006; 39(3):299–306. 
[PubMed: 16386470] 

42. Liu, L.; Halper, M.; Gu, H.; Geller, J.; Perl, Y. In: Barker, K.; Özsu, MT., editors. Modeling a 
vocabulary in an object-oriented database; CIKM-96, Proc. 5th Int’l Conference on Information 
and Knowledge Management; Rockville, MD. 1996. p. 179-188.

43. Liu L, Halper M, Geller J, Perl Y. Controlled vocabularies in OODBs: Modeling issues and 
implementation. Distributed and Parallel Databases. 1999; 7(1):37–65.

44. Oliver, DE. Section on Medical Informatics. Stanford University; Aug. 1995 Collaborative 
development of the InterMed vocabulary model, Internal technical report. 

45. Shortliffe, EH.; Barnett, GO.; Cimino, JJ.; Greenes, RA.; Huff, SM.; Patel, VL. In: Cimino, JJ., 
editor. Collaborative medical informatics research using the Internet and the World Wide Web; 
Proc. 1996 AMIA Annual Fall Symposium; Washington, DC. 1996. p. 125-129.

46. [Accessed June 25, 2014] UMLS - Metathesaurus. available at http://www.nlm.nih.gov/research/
umls/knowledgesources/-metathesaurus/index.html

47. Lindberg, DAB.; Humphreys, BL. In: Miller, RA., editor. The UMLS knowledge sources: Tools 
for building better user interfaces; Proc. 14th Annual SCAMC; Washington, DC. 1990. p. 
121-125.

48. McCray, AT. UMLS semantic network. Proc. 13th Annual SCAMC; 1989. p. 503-507.

49. McCray AT, Nelson SJ. The representation of meaning in the UMLS. Methods of Information in 
Medicine. 1995; 34:193–201. [PubMed: 9082131] 

50. Gu H, Perl Y, Geller J, Halper M, Liu L, Cimino JJ. Representing the UMLS as an OODB: 
Modeling issues and advantages. JAMIA. 2000; 7(1):66–80. selected for reprint in: R. Haux and 
C. Kulikowski, editors, Yearbook of Medical Informatics: Digital Libraries and Medicine 
(International Medical Informatics Association), pages 271–285, Schattauer, Stuttgart, Germany, 
2001. [PubMed: 10641964] 

51. Geller J, Gu H, Perl Y, Halper M. Semantic refinement and error correction in large terminological 
knowledge bases. Data & Knowledge Engineering. 2003; 45(1):1–32.

52. He Z, Morrey CP, Perl Y, Elhanan G, Chen L, Chen Y, Geller J. Sculpting the UMLS Refined 
Semantic Network. Online Journal of Public Health Informatics. 2014; 6(2):e181. [PubMed: 
25422719] 

Halper et al. Page 21

Artif Intell Med. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://rxnav.nlm.nih.gov/index.html
http://www.nlm.nih.gov/research/umls/rxnorm/index.html
http://www.nlm.nih.gov/research/umls/rxnorm/index.html
http://www.thechiselgroup.org/flexviz
http://semanticnetwork.nlm.nih.gov
http://semanticnetwork.nlm.nih.gov
http://www.nlm.nih.gov/research/umls/knowledgesources/-metathesaurus/index.html
http://www.nlm.nih.gov/research/umls/knowledgesources/-metathesaurus/index.html


53. Morrey CP, Perl Y, Halper M, Chen L, Gu H. A chemical specialty semantic network for the 
Unified Medical Language System. Journal of Cheminformatics. 4(2)10.1186/1758-2946-4-9

54. Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, Alcántara R, Darsow 
M, Guedj M, Ashburner M. ChEBI: A database and ontology for chemical entities of biological 
interest. Nucleic Acids Research. 2008; 36(Database issue):D344–D350. [PubMed: 17932057] 

55. Wang, AY.; Sable, JH.; Spackman, KA. In: Kohane, IS., editor. The SNOMED Clinical Terms 
development process: Refinement and analysis of content; Proc. 2002 AMIA Annual Symposium; 
San Antonio, TX. 2002. p. 845-849.

56. Wang Y, Halper M, Min H, Perl Y, Chen Y, Spackman KA. Structural methodologies for auditing 
SNOMED. Journal of Biomedical Informatics. 2007; 40(5):561–581. [PubMed: 17276736] 

57. Min H, Perl Y, Chen Y, Halper M, Geller J, Wang Y. Auditing as part of the terminology design 
life cycle. JAMIA. 2006; 13(6):676–690. [PubMed: 16929044] 

58. Wang Y, Halper M, Wei D, Perl Y, Geller J. Abstraction of complex concepts with a refined 
partial-area taxonomy of SNOMED. Journal of Biomedical Informatics. 2012; 45(1):15–29. 
[PubMed: 21878396] 

59. Wang Y, Halper M, Wei D, Gu H, Perl Y, Xu J, et al. Auditing complex concepts of SNOMED 
using a refined hierarchical abstraction network. Journal of Biomedical Informatics. 2012; 45(1):
1–14. [PubMed: 21907827] 

60. Dolin, RH.; Mattison, JE.; Cohn, S., et al. In: Fieschi, M.; Coiera, E.; Li, Y-C., editors. Kaiser 
Permanente’s Convergent Medical Terminology; Proc. Medinfo 2004; San Francisco, CA. 2004. 
p. 346-350.

61. Lincoln, MJ.; Brown, SH.; Nguyen, V.; Cromwell, T.; Carter, J.; Erlbaum, M.; Tuttle, MS. In: 
Fieschi, M.; Coiera, E.; Li, Y-C., editors. US Department of Veterans Affairs Enterprise Reference 
Terminology strategic overview; Proc. Medinfo; 2004; San Francisco, CA. 2004. p. 391-395.

62. Geller, J.; Ochs, C.; Perl, Y.; Xu, J. New abstraction networks and a new visualization tool in 
support of auditing the SNOMED CT content. Proc. 2012 AMIA Annual Symposium; Chicago, 
IL. 2012. p. 237-246.

63. Fowler, M. UML Distilled. 3. Addison-Wesley; Boston, MA: 2004. 

64. Rumbaugh, J.; Jacobson, I.; Booch, G. The Unified Modeling Language Reference Manual. 2. 
Addison-Wesley; Boston, MA: 2005. 

65. Halper M, Liu L, Geller J, Perl Y. Frameworks for incorporating semantic relationships into 
object-oriented database systems. Concurrency and Computation: Practice and Experience. 2003; 
15(15):1337–1362.

66. Perl Y, Chen Z, Halper M, Geller J, Zhang L, Peng Y. The cohesive metaschema: A higher-level 
abstraction of the UMLS Semantic Network. Journal of Biomedical Informatics. 2003; 35(3):194–
212. [PubMed: 12669983] 

67. McCray, AT.; Burgun, A.; Bodenreider, O. Aggregating UMLS semantic types for reducing 
conceptual complexity. Proc. Medinfo; 2001; London, UK. 2001. p. 171-175.

68. Zhang L, Perl Y, Halper M, Geller J, Hripcsak G. A lexical metaschema for the UMLS semantic 
network. Artificial Intelligence in Medicine. 2005; 33(1):41–59. [PubMed: 15617981] 

69. Chen Y, Perl Y, Geller J, Hripcsak G, Zhang L. Comparing and consolidating two heuristic 
metaschemas. Journal of Biomedical Informatics. 2008; 41(2):293–317. [PubMed: 18158275] 

70. Bodenreider O, McCray AT. Exploring semantic groups through visual approaches. Journal of 
Biomedical Informatics. 2003; 36(6):414–432. [PubMed: 14759816] 

71. Mougin F, Bodenreider O, Burgun A. Analyzing polysemous concepts from a clinical perspective: 
Application to auditing concept categorization in the UMLS. Journal of Biomedical Informatics. 
2009; 42(3):440–451. [PubMed: 19303057] 

72. Zhang L, Perl Y, Halper M, Geller J, Cimino JJ. An enriched Unified Medical Language System 
Semantic Network with a multiple subsumption hierarchy. JAMIA. 2004; 11(3):195–206. 
[PubMed: 14764611] 

73. Zhang L, Perl Y, Halper M, Geller J. Designing metaschemas for the UMLS Enriched Semantic 
Network. Journal of Biomedical Informatics. 2003; 36(6):433–449. [PubMed: 14759817] 

74. McCray, AT.; Hole, WT. In: Miller, RA., editor. The scope and structure of the first version of the 
UMLS Semantic Network; Proc. 14th Annual SCAMC; Washington, DC. 1990. p. 126-130.

Halper et al. Page 22

Artif Intell Med. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



75. Reeve LH, Han H, Brooks AD. Biomedical text summarisation using concept chains. International 
Journal of Data Mining and Bioinformatics. 2007; 1(4):389–407. [PubMed: 18402049] 

76. Delbecque T, Jacquemart P, Zweigenbaum P. Indexing UMLS semantic types for medical 
question-answering. Studies in Health Technology and Informatics. 2005; 116:805–810. [PubMed: 
16160357] 

77. Sadeghi S, Barzi A, Smith JW. Ontology driven construction of a knowledgebase for Bayesian 
decision models based on UMLS. Studies in Health Technology and Informatics. 2005; 116:223–
228. [PubMed: 16160263] 

78. Burgun, A.; Bodenreider, O. In: Rogers, R.; Haux, R.; Patel, VL., editors. Methods for exploring 
the semantics of the relationships between co-occurring UMLS concepts; Proc. Medinfo; 2001; 
London, UK. 2001. p. 171-175.

79. Gu H, Elhanan G, Perl Y, Hripcsak G, Cimino JJ, Xu J, Chen Y, Geller J, Morrey CP. A study of 
terminology auditors’ performance for UMLS semantic type assignments. Journal of Biomedical 
Informatics. 2012; 45(6):1042–1048. [PubMed: 22687822] 

80. Gu H, Perl Y, Elhanan G, Min H, Zhang L, Peng Y. Auditing concept categorizations in the 
UMLS. Artificial Intelligence in Medicine. 2004; 31(1):29–44. [PubMed: 15182845] 

81. Halper, M.; Wang, Y.; Min, H.; Chen, Y.; Hripcsak, G.; Perl, Y.; Spackman, KA. In: Teich, JM.; 
Suermondt, J.; Hripcsak, G., editors. Analysis of error concentrations in SNOMED; Proc. 2007 
AMIA Annual Symposium; Chicago, IL. 2007. p. 314-318.

82. Ochs, C.; Perl, Y.; Geller, J.; Halper, M.; Gu, H.; Chen, Y.; Elhanan, G. Scalability of abstraction-
network-based quality assurance to large SNOMED hierarchies. Proc. 2013 AMIA Annual 
Symposium; Washington, DC. 2013. p. 1071-1080.

83. Ochs C, Perl Y, Halper M, Geller J, Lomax J. Gene Ontology summarization to support 
visualization and quality assurance. submitted for publication. 

84. Liu L, Halper M, Geller J, Perl Y. Using OODB modeling to partition a vocabulary into 
structurally and semantically uniform concept groups. IEEE Trans Knowledge & Data 
Engineering. 2002; 14(4):850–866.

85. Niles, I.; Pease, A. Towards a standard upper ontology. Proc. FOIS; 2001; Ogunquit, ME. 2001. 

86. Niles, I.; Pease, A. Linking lexicons and ontologies: Mapping WordNet to the Suggested Upper 
Merged Ontology. Proc. 2003 Int’l Conference on Information and Knowledge Engineering 
(IKE’03); Las Vegas, NV. 2003. 

87. Fellbaum, C. WordNet: An Electronic Lexical Database. The MIT Press; Cambridge, MA: 1998. 

88. Whetzel PL, Noy NF, Shah NH, Alexander PR, Nyulas C, Tudorache T, et al. BioPortal: Enhanced 
functionality via new Web services from the National Center for Biomedical Ontology to access 
and use ontologies in software applications. Nucleic Acids Research. 2011; 39(Web server 
issue):W541–W545. [PubMed: 21672956] 

89. Grenon P, Smith B, Goldberg L. Biodynamic ontology: Applying BFO in the biomedical domain. 
Ontologies in Medicine. 2004:20–38.

90. Beisswanger E, Schulz S, Stenzhorn H, Hahn U. BioTop: An upper domain ontology for the life 
sciences – a description of its current structure, contents, and interfaces to OBO ontologies. 
Applied Ontology. 2008; 3(4):205–212.

91. Stenzhorn, H.; Schulz, S.; Beisswanger, E.; Hahn, U.; van den Hoek, L.; van Mulligen, E. BioTop 
and ChemTop – top-domain ontologies for biology and chemistry. Proc. 7th Int’l Semantic Web 
Conference (ISWC 2008); Karlsruhe, Germany. 2008. p. 401

92. [Accessed June 7, 2014] OGMS – Ontology for General Medical Science. available at http://
code.google.com/p/ogms

93. Cowell LG, Smith B. Infectious Disease Ontology. Infectious Disease Informatics. 2010:373–395.

94. Arabandi, S.; Ogbuji, C.; Redline, S.; Chervin, R.; Boero, J.; Benca, R., et al. Developing a Sleep 
Domain Ontology. Proc. AMIA Clinical Research Informatics Summit; 2010. 

95. Sim I, Tu SW, Carini S, Lehmann HP, Pollock BH, Peleg M, Wittkowski KM. The Ontology of 
Clinical Research (OCRe): An informatics foundation for the science of clinical research. Journal 
of Biomedical Informatics. In press. 

Halper et al. Page 23

Artif Intell Med. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://code.google.com/p/ogms
http://code.google.com/p/ogms


96. Ochs, C.; Agrawal, A.; Perl, Y.; Halper, M.; Tu, SW.; Carini, S.; Sim, I.; Noy, N.; Musen, M.; 
Geller, J. Deriving an abstraction network to support quality assurance in OCRe. Proc. 2012 
AMIA Annual Symposium; Chicago, IL. 2012. p. 681-689.

97. Ochs, C.; He, Z.; Perl, Y.; Arabandi, S.; Halper, M.; Geller, J. Refining the granularity of 
abstraction networks for the Sleep Domain Ontology. Proc. Fourth Int’l Conference on Biomedical 
Ontology (ICBO 2013); Montreal, Canada. 2013. p. 84-89.

98. Zeginis D, Hasnain A, Loutas N, Deus HF, Fox R, Tarabanis KA. A collaborative methodology for 
developing a semantic model for interlinking Cancer Chemoprevention linked-data sources. 
Semantic Web. 2014; 5(2):127–142.

99. He, Z.; Ochs, C.; Agrawal, A.; Perl, Y.; Zeginis, D.; Tarabanis, K.; Elhanan, G.; Halper, M.; Noy, 
N.; Geller, J. A family-based framework for supporting quality assurance of biomedical ontologies 
in BioPortal. Proc. 2013 AMIA Annual Symposium; Washington, DC. 2013. p. 581-590.

100. Qi D, King RD, Hopkins AL, Bickerton GR, Soldatova LN. An ontology for description of drug 
discovery investigations. Journal of Integrative Bioinformatics. 7(3)

101. He, Z.; Ochs, C.; Soldatova, L.; Perl, Y.; Arabandi, S.; Geller, J. Auditing redundant import in 
reuse of a top level ontology for the Drug Discovery Investigations ontology. Proc. Int’l 
Workshop on Vaccine and Drug Ontology Studies (VDOS-2013); Montreal, Canada. 2013. 

102. Ochs C, Geller J, Perl Y, Chen Y, Xu J, Min H, Case JT, Wei Z. Scalable quality assurance for 
large SNOMED CT hierarchies using subject-based subtaxonomies. JAMIA. 10.1136/
amiajnl-2014-003151

Halper et al. Page 24

Artif Intell Med. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• The “big knowledge” challenge is managing terminologies with large concept 

networks.

• An abstraction network denotes a high-level compact network for a 

terminology.

• Characteristics and the derivation of abstraction networks are discussed.

• Example abstraction networks for some leading terminologies are surveyed.

• Meta-abstraction networks, representing further layers of abstraction, are 

presented.
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Figure 1. 
Association between a terminology and an abstraction network
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Figure 2. 
Excerpt of MED concepts
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Figure 3. 
Excerpt of the MED abstraction network (schema) derived from Figure 2
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Figure 4. 
Excerpt of the MED abstraction network hierarchy
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Figure 5. 
Excerpt of the UMLS Semantic Network
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Figure 6. 
Excerpt of the Refined Semantic Network. Pure semantic types are above the dashed line; 

intersection types are below it. Bold boxes indicate pure semantic types not involved in any 

intersections
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Figure 7. 
An excerpt of the area taxonomy of SNOMED’s Specimen hierarchy (July 2011)
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Figure 8. 
Partial-area taxonomy corresponding to Figure 7, with child-of ’s only from descendants and 

to ancestors of Cyst fluid sample
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Figure 9. 
Excerpt of the disjoint partial-area taxonomy of SNOMED’s Specimen hierarchy’s 

{substance} area
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Figure 10. 
Association between a terminology, an abstraction network, and a meta-abstraction network
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Figure 11. 
The cohesive metaschema hierarchy. The first tree is rooted at Entity; the second tree 

(drawn below) is rooted at Event. Each number in parentheses indicates the number of 

semantic types in the respective meta-semantic type
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Table 1

Example abstraction networks and their characteristics

Name Underlying terminology Disjoint Intrinsic/extrinsic Abstraction ratio

MED schema MED ✓ intrinsic 478:1

InterMed schema InterMed ✓ intrinsic 89:1

Semantic Network (SN) UMLS extrinsic 19500:1

Refined SN UMLS ✓ intrinsic 5400:1

Area taxonomy SNOMED ✓ intrinsic 58:1

Partial-area taxonomy SNOMED intrinsic 3.26:1

Disjoint partial-area taxonomy SNOMED ✓ intrinsic 2.73:1
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