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Abstract
In an ageing world population more citizens are at risk of cognitive im-

pairment, with negative consequences on their ability of independent living,
quality of life and sustainability of healthcare systems. Ubiquitous comput-
ing and intelligent data analysis can provide innovative methods and tools
for detecting early symptoms of the onset of cognitive impairment and for
monitoring its evolution. In this paper we present SmartFABER, an activity
recognition system integrated with a novel method to detect abnormal activ-
ity routines of elderly people living at home. The method relies on medical
models, provided by cognitive neuroscience researchers, describing some of
the anomalies in carrying out daily activities that may indicate the onset of
early symptoms of mild cognitive impairment. A non-intrusive sensor-based
infrastructure acquires low-level data about the interaction of the individ-
ual with the home environment including objects, appliances and furniture.
Based on those data, a novel hybrid statistical and knowledge-based tech-
nique is used to detect the abnormal behaviors of the senior, which are stored
by the system and presented through a dedicated dashboard to the clinicians.
Differently from related works, our method can detect abnormal behaviors
at a fine-grained level, thus providing an important tool to support the med-
ical diagnosis. We have fully implemented the system and we evaluated our
method with significant datasets, partly generated by performing activities in
a smart home laboratory, and partly acquired during several months of moni-
toring of the instrumented real home of a senior diagnosed with MCI. We re-
port the output of extensive experiments confirming the superiority of Smart-
FABER with respect to previously published methods; Qualitative feedback
from clinicians also confirms the validity of the approach.
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1 Introduction

Independent living and pro-active healthcare are becoming strategic application
areas for major research programmes all over the world, considering that the senior
population (aged over 65) is projected to double as a percentage over the whole
population in the next decades [1]. Among the most frequent threats to independent
living is cognitive decline, whose early symptoms often lead to a Mild Cognitive
Impairment (MCI) diagnosis. According to the International Working Group on
MCI, there are evidences of subtle differences in performing instrumental activities
of daily living (IADLs) among MCI patients compared to both healthy older adults
and individuals with dementia [2]. Hence, monitoring of daily living activities and
recognition of abnormal behaviors may help practitioners to early detect the onset
of cognitive impairment.

Ubiquitous computing technologies coupled with intelligent data analysis have
a recognized potential in the automatic recognition of IADLs. Indeed, several re-
search projects, and numerous research papers have tried to detect behavioral mark-
ers of MCI onset through ubiquitous computing technologies, obtaining a correla-
tion between the predicted and actual cognitive status of the patient. Some of these
approaches require the execution of ability tests about the performance of IADLs
in an instrumented smart home of a medical institution; hence, they incur in high
costs and cannot be applied on a continuous basis. Some of them deploy cam-
eras and sensor networks in controlled environments and use video and audio for
activity recognition: these systems are often perceived as too invasive for the el-
derly’s privacy. Other works rely on continuous monitoring of low-level behavioral
markers (steps taken, walking speed, . . . ) and trigger alarms whenever they detect
situations sufficiently distant from the expected (modeled) behavior: they provide
little support to the diagnosis, since they do not report fine-grained descriptions
of the anomalies occurred during the execution of IADLs. Moreover, very few
systems have been deployed and tested effectively in the elderly’s home. In the
following section we provide a short overview of the relevant literature.

In this paper we describe SmartFABER, a novel technique for Fine-grained
Abnormal BEhavior Recognition aimed to overcome the limitations of existing
techniques in supporting early detection of mild cognitive impairment (MCI) for
elderly people living independently at home. SmartFABER exhibits the following
features: a) it heavily relies on indicator models built by cognitive neuroscience ex-
perts, b) it continuously acquires data from non-intrusive sensors deployed in the
senior’s home, c) it features an effective abnormal behavior recognition technique
coupling state-of-the-art machine learning with knowledge-based inferencing, d)
it provides clinicians with a dashboard identifying fine-grained short-term abnor-
mal behaviors (e.g., inappropriate timing in assuming food or medicine intake,
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improper use of equipment, unnecessary repetitions of actions).
Our main contributions can be summarized as follows:

• SmartFABER is an innovative hybrid activity and anomaly recognition frame-
work. It overcomes the shortcomings of purely statistical methods and it has
major improvements over the state-of-the-art hybrid systems [3] in terms of
accuracy of activity recognition, and enhanced reporting features;

• SmartFABER has been experimented on real datasets, including a three months
deployment in the house of a senior diagnosed with MCI. The results show
that SmartFABER is able to detect most anomalies that we have targeted
while producing a small number of false positives;

• We show the superiority of SmartFABER with respect to the only other hy-
brid system we are aware of through a direct comparison over the same
datasets.

The rest of the paper is structured as follows. Section 2 discusses related
work. Section 3 reports our model of activities and abnormal behaviors. Sec-
tion 4 presents the SmartFABER method. Section 5 reports experimental results.
Finally, Section 6 concludes the paper.

2 Related work

Activity recognition systems proved to be effective for supporting the diagnosis
and improving healthy ageing [4, 5]. In the literature, various strategies have been
proposed to devise effective and unobtrusive activity monitoring systems by ex-
ploiting pervasive computing technologies [6]. A popular research direction for
activity recognition consists in exploiting audio-visual information recorded by
cameras and microphones with the help of sound, image and scene recognition
software. However, those methods are considered too invasive in a home environ-
ment, due to the privacy issues that they determine. Hence, in the following we
restrict our attention to non-invasive sensor-based techniques.

2.1 Recognition of simple activities

Several techniques were proposed to recognize simple activities, which rely on
data acquired from body-worn sensors and on the application of supervised learn-
ing methods [7, 8]. Early attempts in this sense were mainly based on the use
of data acquired from multiple body-worn accelerometers [9], possibly coupled
with biometrical sensors and integrated in clothes [10], to recognize locomotion
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types and simple physical activities. A major limitation of these early systems is
that they did not consider contextual information, such as current location, envi-
ronmental conditions, and surrounding objects, that could be usefully exploited to
improve the accuracy of recognition. Hence, other activity recognition approaches
take into account the user’s context by acquiring environmental data from several
sensors [11]. For instance, in [12] the authors proposed the use of machine learn-
ing and data acquired from body-worn sensors (an ear microphone, sensor collar
integrating electromyogram and microphone, and four upper body accelerometers)
to accurately monitor food intake activities (movement, chewing and swallowing).
However, being mainly based on body-worn sensors, those methods are not well
suited to recognize more complex activities, like IADLs executed at home, which
are characterized by the interaction of the individual with several objects and fur-
niture.

2.2 Recognition of complex activities

The recognition of complex activities, like ADLs that we consider in our work,
relies on the usage of sensors to detect the interaction of the individual with ob-
jects and furniture. However, even when those sensors are available, the recog-
nition of complex activities turns out to be challenging using solely supervised
learning methods. Indeed, complex activities are characterized by large inter- and
intra-personal variability of execution, and it is very hard to acquire a sufficiently
comprehensive training set to include most of the possible ways of executing ac-
tivities. Hence, different frameworks for knowledge representation and reasoning
have been investigated to appropriately model complex human activities by means
of ontologies. In particular, description logics [13] have emerged among other
symbolic formalisms, mostly because they provide complete reasoning supported
by optimized automatic tools. However, as illustrated in [14], both expressive-
ness and efficiency issues strongly limit the feasibility of ontological approaches to
activity recognition. Moreover, the recognition of complex activities through on-
tological reasoning has to start from some basic observations (e.g., “the user is in a
given room”, “he is sitting on a chair”, etc.); this task requires the use of statistical
methods to derive semantic information from raw sensor data.

2.3 Hybrid activity recognition techniques

Given the limitations of both statistical and symbolic approaches, a few hybrid ac-
tivity recognition systems have been proposed in the literature, which vary on the
adopted reasoning techniques and on their interaction mechanisms. An interesting
instance of those approaches is Markov Logic Networks (MLN) [15], a proba-
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bilistic first-order logic. Given a training set, and a set of probabilistic formulas,
with MLN it is possible to learn a weight for each grounded formula by iteratively
optimizing a pseudo-likelihood measure. Those weights represent the confidence
value of the formula. Deterministic formulas can be added to probabilistic ones to
express deterministic knowledge about the domain of interest. Different reasoning
tasks can be executed to infer additional information based on formulas and facts.
MLN has been used in a previous version of our work [3]. A similar approach was
adopted in [16] to model and recognize activities at different levels of complexity
using probabilistic description logic. Hybrid ontological and statistical reasoning
is proposed in [17] to continuously assess the fall risk of a senior at home, by
integrating data acquired from different fall detection systems and environmental
sensors. In this work, we propose a hybrid method to recognize the start- and end-
time of ADLs based on a combination of supervised learning and knowledge-based
conditions to refine the statistical predictions.

2.4 Applications of activity recognition to MCI diagnosis

Several studies in the neuropsychology research field show that it is possible to
distinguish between cognitively healthy adults and cognitively impaired individu-
als based on subtle differences in their behavioral patterns [2]. There is a growing
interest in exploiting pervasive computing technologies to automatically capture
and measure those differences [5]. For instance, motion sensors and contact sen-
sors have been used in [18] to measure low-level activity patterns, such as walk-
ing speed and activity level in the home; results have shown that the coefficient
of variation in the median walking speed is a statistically significant measure to
distinguish MCI subjects from healthy seniors. More recently, a sensor-based in-
frastructure has been used to unobtrusively monitor the execution of IADLs by
older adults in a smart-home [19]; the results have shown a significant correlation
between the cognitive health status of the subject and the level of assistance that he
needs to complete the activities.

Based on this line of research, different works have proposed to apply machine
learning techniques on data acquired in sensor-rich environments, for assessing the
cognitive health status of an individual performing a set of ADLs. In the work of
Dawadi et al. [20], patients were invited to execute a list of routines (e.g., write
a letter, prepare lunch) inside a hospital smart-home. Different kinds of sensors
were used to detect movements inside the home and to track the use of furniture
and appliances. Based on data coming from the home sensors, supervised learn-
ing methods were used to assign a score to each performed activity; the score
measures the ability of the subject to perform the activity correctly. The achieved
scores were used to predict the cognitive status of the patient (cognitive health or
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dementia). The supervised learning approach has been applied in other works,
including [21, 22, 23], using several other learning methods. However, while a
significant correlation exists between the inferred activity scores and the cognitive
health status of the individual, those methods do not provide a description of the
observed behavioral anomalies. On the contrary, the medical assessment would
benefit from detailed knowledge of the abnormal behavior of the patient. For this
reason, in our approach we do not rely on statistical deviations from the “normal”
behavior; instead, we aim at recognizing fine-grained anomalies, modeled accord-
ing to neuroscience experts as possible indicators of MCI, using a hybrid statistical
and knowledge-based approach. To the best of our knowledge, this work is the first
one (except our preliminary results presented in [3]) that applies this approach to
cognitive health assessment.

2.5 Long-term analysis of activity data

In the aforementioned works, the detection of abnormal behaviors is mostly done
on a short-term basis and does not take into account the patient’s personal habits.
Other works have proposed methods to model the patient’s usual behavior from the
activities performed in the past and use this model to detect anomalies as changes
from his/her usual behavior. In [24], a method has been proposed to monitor the
circadian (24-hours) variability of the patient’s activities using location sensors
and statistical calculations were performed regularly on sensors data to recognize
possible deviations in the patient’s behavior. In [25] in-home activities and sleep
restlessness were captured using different sensors and a simple alert system was
implemented to detect changes in the activity patterns and generate health alerts
that were sent to clinicians to be rated for their clinical relevance. These ratings
were then used as ground truth in developing classifiers to recognize relevant alerts.
In [26], the authors propose a technique to detect recurrent ADLs patterns, as well
as their variations, by mining heterogeneous multivariate time-series from sensor
data acquired in a smart home. Another approach based on temporal data mining
was presented in [27]. Frequently-occurring temporal relationships between activ-
ities were extracted from the observed history of sensor events and used to model
the probability that a particular event should or should not occur on a given day. A
technique based on unsupervised learning is proposed in [28] to automatically dis-
cover ADL patterns and their variations. That technique is coupled with an activity
recognition module and with visualization tools to allow practitioners inspecting
the trend of activity patterns. Visualization of spatio-temporal data extracted from
the long-term observation of elderly’s activities at home is used in [29] to identify
potential risk situations. In our work, we also aim at monitoring the elderly’s be-
havior on the long term. However, as explained before, we do not rely on statistical
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measures about activity patterns, but we consider specific anomalies modeled by
neuroscience experts.

3 Modeling activities and abnormal behaviors

In the following, we explain how we model human activities and fine-grained ab-
normal behaviors.

3.1 Human activities

In order to model activities, we adopt the multilevel framework proposed in [16].
In particular, each IADL consists of a sequence of simple actions. For instance,
a patient could perform the IADL “taking medicines” by executing this sequence
of actions: open the medicine repository, retrieve the medicine box, return the
medicine box, and close the medicine repository. Of course, the same activity can
be performed by executing different sequences of actions. For instance, “taking
medicines” can be performed by these actions: open the medicine repository, re-
trieve the medicine box, and return the medicine box (leaving the medicine repos-
itory open). Since we concentrate on IADLs, we assume that each action cor-
responds to a manipulative gesture or other body movement involving an object
(e.g., “open the silverware drawer”, “sit on the kitchen chair’).

3.2 Fine-grained abnormal behaviors

By fine-grained abnormal behaviors (also called anomalies for short) we define
those behaviors, observed within a relatively short time period (from a few sec-
onds to a day), which diverge from the expected ones, according to a given model
provided by clinicians. In general, a fine-grained abnormal behavior can be de-
tected based on the observation of: the sequence of actions composing a performed
activity; the sequence of performed activities; the duration of individual activities
and actions; the execution of an improper activity, or the non-execution of some
expected activities.

In particular, in this work we consider models of abnormal behaviors that may
indicate the onset of MCI, and more generally of a cognitive decline. In order to
acquire those models, we collaborated with cognitive neuroscience experts from
the Institute Fatebenefratelli1, Lombardy –a leading center in the field of mental

1IRCCS (Research and Care Institute) St John of God Clinical Research Centre, Brescia – http:
//www.irccs-fatebenefratelli.it
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health research and research on neurodegenerative disorders– within the SECURE2

research project funded by Lombardy region and MIUR Italian ministry. A list of
fine-grained abnormal behaviors has been identified during different project meet-
ings among the technical and medical partners of the project, based on the medical
practice and relevant literature [30]. For the sake of this work, we have considered
anomalies related to food preparation, food consumption, and compliance to med-
ical prescriptions. The anomalies are defined in natural language by the clinicians;
e.g., “an anomaly occurs when the patient prepares a meal but forgets to consume
it”.

In order to facilitate their analysis, we classified anomalies in the following
categories:

• Non-critical anomaly. An anomaly is considered as non-critical when the
patient skips a relevant action while performing a IADL, or spends too much
time to perform the activity, but still he is able to complete the activity cor-
rectly. For instance, we consider a non-critical anomaly to occur when the
patient forgets to close a repository after taking something from it.

• Critical anomaly. A critical anomaly occurs when the patient skips some nec-
essary action while performing an activity, forgets to execute a required ac-
tivity, or performs the activity more times than expected. Critical anomalies
are stronger indicators of possible MCI onset than non-critical ones. These
anomalies are further divided into four categories:

– Omission: there are some actions in each IADL which are necessary
and it is mandatory for the patient to perform them in order to com-
plete the activity correctly: a critical omission occurs when the patient
skips any of such actions. For instance, a critical omission related to
the activity “taking medicines” is: “the patient forgets to retrieve the
prescribed medicine during the prescribed time’.

– Replacement: this anomaly occurs when, during a IADL, a patient re-
places a correct action with a wrong one; for instance, “the patient has
placed the butter inside a non-refrigerated cabinet”.

– Improper activity: it occurs when the patient performs an activity that
is not consistent with the model. For instance, this anomaly occurs
when the patient takes a medicine that was not prescribed.

– Repetition: this anomaly occurs when the patient repeats the same ac-
tivity more times than expected; for instance, when the patient con-
sumes the morning breakfast twice in a day.

2SECURE: Intelligent System for Early Diagnosis and Follow-up at Home, http://secure.
ewlab.di.unimi.it/
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Of course, human behaviors are characterized by wide variability; factors such
as contextual conditions, individual habits and personality traits may determine
the execution of various anomalies that are not necessarily due to cognitive im-
pairment. This is especially true for non-critical anomalies, as leaving repositories
open, which may be normally done by cognitively healthy people for negligence
or hastiness. Hence, while the considered anomalies are indicators of possible ab-
normal behaviors, they are not intended to provide an automatic diagnosis of the
patient’s cognitive status. For instance, consider the aforementioned example of
improper activity: the fact that the patient takes a medicine that was not prescribed
is critical if he does it unintentionally (e.g., for a memory disorder). In other cases
it may be a normal behavior; e.g., if the patient intentionally takes an over-the-
counter drug that does not interfere with his medical prescriptions. Therefore,
the frequency of detected anomalies and their temporal trend are used as a mean
to trigger alarms to the practitioners for further inspecting the history of detected
anomalies and their fine-grained descriptions.

4 The SmartFABER hybrid technique

In this section, we illustrate the SmartFABER method to recognize fine-grained
abnormal behaviors. The overall framework is shown in Figure 1. The hybrid rea-
soning framework of SmartFABER, shown in Figure 2, exploits both statistical and
knowledge-based methods. In particular, knowledge-based methods are used by
the SEMANTIC INTEGRATION LAYER to recognize simple events from raw sensor
data; by the SMART AGGREGATION module to identify activity instances; and by
the KNOWLEDGE-BASED INFERENCE ENGINE to detect the anomalies according
to the clinicians’ models. Statistical reasoning, taking into account temporal fea-
tures, is used to classify events into activities and to recognize activity instances.
In the following, we describe in detail the main components of SmartFABER.

4.1 Sensor data acquisition

A non-invasive sensor network system including environmental, presence, and con-
tact sensors is deployed at the elderly’s home. The smart-home monitoring system,
running on a mobile device (e.g., a tablet) within the home, collects in real-time
the raw sensed events data from the sensor nodes in order to execute the Smart-
FABER recognition algorithms. The SEMANTIC INTEGRATION LAYER module
is in charge of applying simple inference methods to derive pre-processed events
from raw sensor data. For instance, a rule states that “if the presence sensor de-
tects a presence near the kitchen table, and the sensor on the kitchen’s chair de-
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Figure 1: The framework to recognize short-term abnormal behaviors

tects a weight of more than 40Kg, then the current event is sitting on a chair at
the kitchen table”. We define E as the set of all the considered event types (e.g.
E = {Door is opened, Door is closed}). We adopt a simple temporal model for
the events. We denote as T the set of all the possible timestamps. A sequence of
events is represented as follows:

〈 ev(E1, t1), ev(E2, t2), . . . , ev(Em, tm) 〉,

where ev(Ei, ti) indicates that the event Ei ∈ E occurred at timestamp ti ∈ T. A
unique timestamp is assigned to each event, based on the time at which the related
raw sensor events are received by the central mobile device. In this way we impose
a total order on event timestamps 〈 t1, t2, . . . , tm 〉. The sequence of high-level
events is then provided to the SmartFABER recognition algorithms.

4.2 Modeling activity classes and instances

We define A = {A1, A2, . . . , Ak} as the set of k considered high-level activ-
ity classes (e.g.: A = {Preparing Meal, Eating Meal, Taking Medicines}). An
instance a of an activity A ∈ A is an occurrence of A during a timespan. Intu-
itively, a timespan is a particular time interval represented by a start time and an
end time, where not every timestamp between the boundaries necessarily belongs
to the timespan. This representation allows us to consider activities performed in
an interleaved fashion. More formally, we define a timespan ts as a non-convex
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Figure 2: The SmartFABER technique to recognize short-term abnormal behaviors

time interval characterized by a finite set of non overlapping temporal intervals
{[x1, y1], [x2, y2] . . . , [xn, yn]} where ∀i xi, yi ∈ T. Given a timestamp t ∈ T
and a timespan ts, we say that t belongs to the timespan ts if it belongs to one of
its intervals. We denote with aAts an instance of an activity A ∈ A occurred dur-
ing a timespan ts. Given a sensor-equipped environment, an activity instance aAts
generates a sequence of events that we call “aAts observations”, formally denoted
by Obs(aAts) = 〈ev(E1, t1), ev(E2, t2), . . . , ev(Ek, tk)〉, where ∀i Ei ∈ E and
ti ∈ ts.

4.3 Activity recognition

At each pre-processed event, SmartFABER applies a time-based supervised learn-
ing technique to assign the most probable activity class. The classified events are
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then post-processed in order to identify the most probable activity instances.

4.3.1 Classification of events

The events produced by the SEMANTIC INTEGRATION LAYER are communicated
to the TIME-BASED FEATURE EXTRACTION module. For each event ev(Ei, ti),
this module is in charge of building a feature vector vi representing the n most
recent events 〈 ev(Ei−n+1, ti−n+1), . . . , ev(Ei−1, ti−1), ev(Ei, ti) 〉. In particular,
we adopt the feature extraction technique proposed in [31], since it takes into ac-
count temporal aspects, and proved to be effective in recognizing activities based
on streams of sensor events. The produced feature vectors are given as input to a
supervised MACHINE LEARNING ALGORITHM to infer for each vi the most proba-
ble class of the activity instance carried out at ti. The algorithm is trained using a
dataset of activities and generated events.

4.3.2 Naive aggregation

The next step is to infer the actual activity instances from the output of the MA-
CHINE LEARNING ALGORITHM by grouping together those events which can be
considered observations generated by the same activity instance. Intuitively, tem-
porally close events classified with the same activity class are most likely generated
by the same activity instance. We first discuss the baseline approach, named naive
aggregation. The basic idea of this algorithm is the following: if two consecutive
events occurred respectively at ti and ti+1 are classified with the same activity class
Ai = Ai+1, they are considered as observations generated by the same instance of
an activity of class Ai. Otherwise, they are considered observations generated by
different activity instances. Consider, for instance, the case illustrated in Table 1.
This table illustrates in the first three columns a sequence of events associated with
activity classes predicted by the MACHINE LEARNING ALGORITHM; in the fourth
column, the ground truth about activity instances; and in the last column the output
of the naive aggregation method. The algorithm produces 5 different instances of
activities. However, it is easy to see that this aggregation is not correct. Indeed, the
events E2, E4 and E6 share the same activity class and are temporally close. With
high probability, the inferred activity classes for the events E3 and E5 are mis-
predictions, since the “Eating meal” and the “Preparing meal” activity instances
would have a too short duration. Moreover, consider the case where events E1 and
E2 correspond respectively with Presence in the kitchen and Open the medicine
repository. These two events alone can not be considered as the only observations
generated by an instance of a Taking Medicines activity: the medicine repository
can possibly contain items not related with medicines and it is also possible that it
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may be opened just to check the content. Another issue of this technique is that two
consecutive events labeled with the same activity class but temporally distant (like
E6 and E7) would be grouped together, while they most likely belong to separate
activity instances. Hence, the particular sequence of events illustrated in Table 1
should identify a single instance of “Taking medicines” that generated the events
from E1 to E6.

Table 1: An example of naive aggregation based on a sequence of classified events
Event type Timestamp Predicted activity class Actual instances Predicted instances

E1 08:32:31 Taking medicines
E2 08:32:48 Taking medicines takingMedicines1
E3 08:32:55 Eating meal takingMedicines1 eatingMeal1
E4 08:33:02 Taking medicines takingMedicines2
E5 08:34:11 Preparing meal preparingMeal1
E6 08:34:13 Taking medicines
E7 11:34:27 Taking medicines takingMedicines3
. . . . . . . . . takingMedicines2
. . . . . . . . .

4.3.3 Smart aggregation

To overcome the problems of the approach illustrated in 4.3.2, we refined our
recognition method. We introduce for each activity class A ∈ A a set of con-
ditions that are necessary for a sequence of events to be considered observations
generated by an instance of that class. For example, assuming that the infrastruc-
ture includes sensors to detect the stove usage, any instance of the activity Prepar-
ing a hot meal should generate some observations related to the usage of the stove.
Other examples of conditions may be constraints on the duration of the activity
instance or on the number of generated events. Among those conditions, we con-
sider the upper bound about the duration of activity interruptions: the time distance
between every pair of consecutive events within the observations generated by an
activity instance aAts must be lower than maxGapA. The value of the upper bound
maxGapA depends on the activity class A. Those values are determined statisti-
cally; as a result, for example, “Preparing meal” will have a higher maxGap than
“Taking medicines”. Formally, let C(A) = {c1, c2, . . . , ck} be a set of necessary
conditions expressed in logic over a sequence of events that are observations of any
instance of a class A ∈ A (e.g. {”The sequence of events must last more than 3
minutes”, “The sequence of events must contain an event regarding the usage of the
stove”, . . . }). A sequence of events s = 〈ev(E1, t1), ev(E2, t2), . . . , ev(Ek, tk)〉
can be considered as observations generated by an activity instance aAts if it satisfies
every condition in C(A). The set of conditions for each class are determined after
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a detailed analysis of the semantics of the activity class and on statistics about the
available observations acquired from the sensor infrastructure. For instance, the
previously discussed condition about the duration of the interruption of an activity
A ∈ A over a sequence of events s can be expressed as:

∀i : ev(Ei, ti), ev(Ei+1, ti+1) ∈ s→ (ti+1 − ti < maxGapA)

We now introduce the SMART AGGREGATION algorithm, a refined activity in-
stance recognition method. The pseudo-code is shown in Algorithm 1. The first
step of the algorithm is a segmentation over the output of the MACHINE LEARNING

ALGORITHM: all the events associated with the same activity class A and tempo-
rally close (according to maxGapA) are grouped together. For each group g of
events classified with an activity A, it is checked if it satisfies all the conditions in
C(A). If all the conditions are satisfied, an activity instance aAts that generated the
observations contained in g is recognized. All the events contained in those groups
which did not satisfy the conditions of their class are considered as mispredictions.
Hence, the algorithm tries to include them in one of the activity instances recog-
nized at the previous step. For each misprediction ev(E, t), the algorithm builds a
set I of activity instances aAts (that have been recognized in the previous step) such
that t lies between the boundaries of the timespan ts and {ev(E, t)}

⋃
Obs(aAts)

satisfies all the conditions in C(A). When |I| > 1 we choose the most probable in-
stance based on a function freq, which computes the frequency of an event being
an observation of the instances of a particular activity class. The values of freq
for each possible combination of event type and activity class are computed offline
based on the annotated dataset. The event ev(E, t) is added to the observations of
the instance aAts ∈ I , where A is the most frequent activity class. If I is empty,
ev(E, t) is considered an observation of an “other activity” instance.

4.4 Anomaly detection

We remind that we denote as “anomalies” the deviations from the “normal” way
of carrying out activities. Anomalies are described in natural language by cog-
nitive neuroscience experts. In order to automatically reason with anomalies, we
represent them in propositional logic. Anomalies are represented by the predicate
anomaly(Categ, Obj, Time). Categ defines the category of the anomaly. Obj de-
fines the objects or activities involved in the anomaly; for example, in case of a
critical omission, the missed medicine may be the object related to that anomaly.
Time defines the time instant at which the anomaly is detected.

Table 2 shows the representation of a few anomalies. The semantics of not
is the one of negation as failure [32]. Predicate prescribed(m,t1,t2) states that
the patient must take medicine m from time t1 to time t2 of the current day.
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ALGORITHM 1: Smart aggregation
Input: A set S = {(ev(E1, t1), A1), (ev(E2, t2), A2), . . . , (ev(En, tn), An)} of

events associated with the predicted current activity classes, where ∀i
Ei ∈ E, ti ∈ T and Ai ∈ A.

Output: A set A of activity instances.

A ← ∅;
mispredictions← ∅;
foreach A ∈ A do

X ← the events in S predicted with A;
G← segmentation(X,maxGapA);
foreach g ∈ G do

if g satisfies all the conditions in C(A) then
a← an activity instance of class A that generated the observations g;
A ← A

⋃
{a};

else
mispredictions← mispredictions

⋃
g;

end
end

end
foreach ev(E, t) ∈ mispredictions do

I ← ∅;
foreach aAts ∈ A do

if t lies between the boundaries of ts then
x = Obs(aAts)

⋃
{ev(E, t)};

if x satisfies all the conditions in C(A) then
I ← I

⋃
{aAts};

end
end

end
if I 6= ∅ then

a′ = argmax
aA
ts∈I

freq(E,A);

add ev(E, t) to the observations of a′;
else

consider ev(E, t) as observation of an activity instance of class “other
activity”;

end
end
return A;

Medicine(o) (resp. Food(o)) states that object o is a medicine box (resp. food
item). Action(a, o, o′, t) states that the patient executed action a on objects o and
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ALGORITHM 2: Segmentation of activity instances
Input: A set of events X = {ev(E1, t1), ev(E2, t2), . . . , ev(En, tn)} and the

threshold maxGap.
Output: A partition of X according to maxGap.

groups← ∅;
currGroup← {ev(E1, t1)};
for i← 2 to n do

if ti − ti−1 < maxGap then
currGroup← currGroup

⋃
{ev(Ei, ti)};

else
groups← groups

⋃
{currGroup};

currGroup← {ev(Ei, ti)};
end

end
return groups

⋃
{currGroup};

Table 2: Examples of rules modeling abnormal behaviors
No. Rule Anomaly type

1 anomaly(cr, fridge, T2) ←
action(return,RF, S, T1) ∧
action(close, door, S, T2) ∧ RefFood(RF ) ∧
NonRefStorage(S) ∧ (T1 < T2).

Critical replacement: the pa-
tient has placed a food item that
needs refrigeration inside a non-
refrigerated cabinet.

2 anomaly(nca, prepBF, T1+45 minutes) ←
startActivity(prepBreakfast, T1) ∧
endActivity(prepBreakfast, T2)∧((T2−T1) > 45
minutes).

Non-critical anomaly: the pa-
tient spent too much time to pre-
pare breakfast.

3 anomaly(co,medicine, T2) ←
prescribed(M,T1, T2) ∧
not((action(retrieve,M,C, T ) ∧
MedCabinet(C) ∧ (T1 ≤ T ≤ T2).

Critical omission: the patient
has not retrieved a prescribed
medicine in due time.

4 anomaly(wa,medicine, T ) ←
not(prescribed(M,T1, T2)) ∧
action(retrieve,M,C, T ) ∧ MedCabinet(C) ∧
Medicine(M).

Wrong activity: the patient has
taken a medicine that was not
prescribed.

o′ at time t. Holds(s,o,t1,t2) states that the status of object o has been “s” from t1
to t2 (for instance, “the microwave oven has been on from 11:30 to 11:55”). The
Holds predicate allows us to express temporal conditions that are useful in the def-
inition of different anomalies. Temporal expressions that we use in our rule-based
definitions include the interval of time during which an action is performed, the
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temporal distance between two actions, the temporal duration of an activity, the
temporal order among activities.

Abnormal behaviors are recognized by the KNOWLEDGE-BASED INFERENCE

ENGINE, which periodically (e.g., at the end of each day) evaluates the rule-based
anomaly definitions considering the data acquired and inferred during the con-
sidered time period: inferred activity instances and preprocessed events, as well
as external knowledge including the medical prescriptions of the patient and the
classification of objects in categories. Those data are represented by the aforemen-
tioned predicates, and added to the propositional logic knowledge base.

Example 1 Consider an elderly person living independently at home. Suppose
that furniture and devices, including food cabinets and the fridge, are equipped
with a magnetic sensor to detect the open and close actions. An RFID tag is at-
tached to some food boxes to identify their content (e.g., rice, milk, coffee, sugar).
RFID readers in the proximity of the cabinets and fridge are in charge of detecting
which item has been retrieved or returned. Suppose that at 08:05 AM the patient
opens the fridge f and retrieves the milk box m to prepare breakfast. After a few
minutes, he mistakenly puts the milk box in the non-refrigerated food cabinet c
and closes its door. Hence, based on the sensed events, the following axioms are
automatically added to the knowledge base:

action(open, door, f , 8:05:00 AM).

action(retrieve, m, f , 8:05:07 AM).

action(return, m, c, 8:12:30 AM).

action(close, door, c, 8:12:35 AM).

Since the knowledge base contains the axioms RefFood(m) (stating that the milk
box contains a food item that must be kept refrigerated) and NonRefStorage(c)
(stating that c is a non-refrigerated storage), Rule 1 in Table 2 fires, recognizing
an abnormal behavior.

5 Experimental evaluation

We have developed a prototype of SmartFABER, and we have extensively evalu-
ated our techniques with two large datasets of both normal and abnormal behaviors:
one acquired in a smart home lab with actors simulating the daily routines of 21
patients, and one acquired during three months of experimentation in the home of
an elderly diagnosed with MCI.
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Figure 3: The SmartFABER app.

5.1 Hardware and software implementation

A prototype implementation of the whole system has been developed within the
activities of the SECURE project. Since the SmartFABER system is intended to
run on a mobile device at the patient’s home, the core software modules have been
implemented in Java for the Android platform. Figure 3 shows the application run-
ning the SmartFABER software. In particular, in order to implement the technique
for activity recognition we have used the machine learning libraries of Weka3.
In order to evaluate the rule-based definitions of anomalies we used the APIs of
TuProlog [33], a lightweight Java implementation of an inference engine for the
well-known Prolog logic programming language.

For this prototype, we use sensor motes available on the market, which com-
municate using the ZigBee protocol. Since currently there is no standard interface
for that protocol on most Android devices, we use a gateway installed in the home
to receive ZigBee messages from sensors and forward them via Bluetooth to the
Android device. Sensor motes have been programmed in the C++ language to
communicate new data to the gateway at the occurrence of each sensor event. For
instance, the pressure sensor attached to the kitchen chair seat communicates the

3http://www.cs.waikato.ac.nz/ml/weka/
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Figure 4: SmartFABER Clinicians’ dashboard.
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measured pressure when it exceeds or falls behind given thresholds, to detect when
the patient stands up or sits down on the chair. Such thresholds have been deter-
mined empirically. The sensor event message includes the timestamp of the sensor
reading, the sensor ID and the detected value. A C++ application running on the
gateway is in charge of: receiving data from sensors, assigning the unique times-
tamps, locally storing the data in a PostgreSQL database, and periodically commu-
nicating the data to the Android application. At the end of each day, the Android
app runs the SmartFABER algorithms for activity boundary detection and anomaly
recognition, and communicates the results through the Internet to the backend of
the hospital center, where the data are stored.

We have also developed a Web-based dashboard, shown in Figure 4, to allow
practitioners analyzing the history and trends of IADLs as well as the anomalies’
history.

5.2 Datasets

We experimented our method using two datasets; one acquired in a smart home
laboratory, and one acquired in the instrumented home of a senior with an MCI
diagnosis.

5.2.1 Smart home lab dataset

We have acquired a dataset of IADLs and anomalies, asking to voluntary actors
to reproduce the daily routine of 21 elderly persons in our smart home lab. Ex-
ecuted IADLs and anomalies have been carefully designed in collaboration with
neuroscience experts to realistically mimic the behavior of two groups: 7 healthy
seniors (group 1), and 14 elderly persons with early symptoms of MCI (group 2).
We assume that individuals of both groups live alone and independently in their
respective homes. During their one-day routine, individuals in group 1 do not ex-
ecute any critical anomaly, but may execute a few non-critical ones. Individuals
in group 1 are mainly used to evaluate the number of false positives produced by
our anomaly recognition method. Group 2 individuals may perform several non-
critical and critical anomalies during the day.

During the execution of the daily routines, we have acquired the timestamped
data coming from the sensors deployed in the smart home and manually annotated
the dataset with the start- and end-time of specific activities and anomalies. The
following IADLs have been selected to validate our method:

• Preparing food: the patient has to prepare the daily meals (breakfast, lunch,
dinner) at appropriate times.
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(a) Magnetic sensor attached to a drawer (b) Presence sensor above the kitchen ta-
ble

(c) RFID reader for medicine boxes and food items

Figure 5: Some sensors used in the smart home lab.
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• Consuming meal: when the patient prepares a meal, he has to consume it
within a reasonable time period.

• Taking medicines: the patient has to take the prescribed medicines in the due
time. We assume that no smart dispenser is used; instead, we assume that
the patient keeps all the medicines in a dedicated cabinet.

We have considered the following anomalies:

• Non-critical anomalies. They happen when the individual: (NC1) forgot
a repository open; (NC2) did not return a medicine to its cabinet; (NC3)
retrieved a food item which must be cooked, but did not use the stove burner;
(NC4) does not prepare a meal.

• Critical anomalies. They happen when the individual: (C1) did not retrieve a
prescribed medicine in the due time; (C2) took a medicine that was not pre-
scribed; (C3) took a prescribed medicine in the due time but multiple times,
resulting in inappropriate dosage; (C4) did not turn off the stove burner after
finishing to prepare a hot meal; (C5) did not take the silverware before con-
suming meal; (C6) did not consume the meal after having prepared it; (C7)
turned the stove burner on but did not take any cooking pan.

Overall, our dataset contains 21 days of IADLs and anomalies. Group 1 individuals
did 7 non-critical and 0 critical anomalies; group 2 individuals did 24 non-critical
anomalies and 36 critical ones.

5.2.2 Real home dataset

As a first step towards the evaluation of our methods in the actual home of elderly
persons, we took advantage of our cooperation with a medical institution and a tele-
medicine company as partners of the SECURE project, and deployed our prototype
inside the home of an elderly woman aged 74, with a diagnosis of MCI and medical
co-morbidities, who lives alone. We will call her Mary in the following. Details
about the technical implementation of the system in Mary’s home are reported
in [34].

We acquired a dataset consisting of 55 days of IADLs performed by Mary. In
that period of time, we collected data for about 200 instances of activities. We
considered the same type of IADLs as for the smart home lab dataset. For this
experimentation, the clinicians provided us with a set of fine-grained abnormal
behaviors to be detected, together with Mary’s time prescriptions for meals (i.e.,
breakfast, lunch, and dinner) and medicines intakes. These anomalies are divided
in three levels of seriousness:
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(a) Magnetic contact sensor on the fridge door (b) Passing a tagged medicine box
over the RFID reader

(c) A board with temperature
sensor over the stove

(d) Passive infrared presence sen-
sor over the kitchen table

Figure 6: Part of the sensors deployed at the elderly’s home
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Figure 7: Smart home lab dataset. Accuracy of activity boundary detection; n is
the length of the considered temporal sequence of sensor events

• Green anomalies (low level). This type of anomalies occur when the in-
dividual: prepares (G1) or consumes (G2) a meal at a different time than
prescribed.

• Yellow anomalies (medium level). This type of anomalies occur when the in-
dividual: misses to consume (Y1) or prepare (Y2) a meal; takes a prescribed
medicine outside the prescribed time (Y3); consumes (Y4) or prepares (Y5)
the same meal multiple times during the same day.

• Red anomalies (high level). This type of anomalies occur when the individ-
ual: does not take a prescribed medicine (R1); takes a medicine that was not
prescribed (R2).

Totally, 605 anomalies were detected, most of them being green and yellow ones.
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Figure 8: Real home dataset. Accuracy of activity boundary detection; n is the
length of the considered temporal sequence of sensor events

For the sake of this project, it was not feasible to directly observe the execution
of the activities, except for limited periods of time during the setup of the system,
due to obvious privacy reasons. Hence, we manually labeled most of the activi-
ties offline, based on the observation of raw sensor data; this was possible since
the considered activities are relatively easy to distinguish by a human observer
based on the collected sensor readings. We labeled the anomalies by executing
their respective rule-based definitions on the dataset of sensor events and labeled
activities.

5.3 Recognition of activity boundaries

Recognizing (possibly approximate) activity boundaries is a prerequisite to detect
anomalies. We performed an extensive experimental evaluation to compare Smart-
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FABER with the preliminary method –named FABER– that was proposed in [3].
For both datasets, we applied those activity recognition techniques:

• The method used in FABER, which was based on Markov Logic Network
(MLN) [35];

• The machine learning algorithm used in SmartFABER with the naive aggre-
gation algorithm;

• The machine learning algorithm used in SmartFABER with the smart aggre-
gation algorithm.

For each technique, we performed a leave-one-day-out cross-validation, evalu-
ating the prediction’s quality in terms of the standard measures of precision, recall
and F1 score (the latter is the harmonic mean of precision and recall). This type
of cross-validation has also been preliminarily performed to select the most appro-
priate classifier for the machine learning module of SmartFABER. We selected a
Random Forests classifier [36].

Since the anomaly recognition technique relies on detected activity boundaries,
we first needed to experimentally choose the value of parameter n, corresponding
to the length of the temporal sequence of sensor events to be used by our algo-
rithms. The results of activity boundary recognition on the smart home lab and real
home datasets are shown in Figures 7 and 8, respectively. With the smart home lab
dataset, very positive results have been achieved (with F1 score that exceeds 0.96)
with all the three considered methods. With the MLN-based technique used in
FABER, the highest recognition rate is achieved with n = 3. This means that, with
this dataset, the temporal sequence of the 3 most recent sensor events is sufficient
to reliably detect the start or end of an activity. This is due to the quite repetitive
way in which activities have been executed in the lab; longer sequences of sensor
events may be needed when activities are executed in more variable ways. Values
of n lower than 3 produce worse results, while larger values strongly increase the
execution times of the learning phase, without increasing recognition rates. With
the new boundary detection method used in SmartFABER, the highest recognition
rates are achieved using with n = 2 or n = 3. The naive aggregation and the
smart aggregation methods achieve similar recognition rates; however, the former
produces a larger number of false positives (i.e., detection of activity instances that
did not actually occur), which may result in the recognition of several anomalies
(especially repetitions of activities) that did not actually happen. On the contrary,
the smart aggregation method provides more balanced and slightly higher values
of precision and recall.

In general, with the real home dataset we achieve lower recognition rates. This
is due to the intrinsic variability of activity execution in a real-world situation,
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with respect to the relatively stable activity execution patterns reproduced in the
smart home lab. Moreover, the level of sensor noise due to missing or incorrect
sensor readings is inevitably larger in a real home environment than in the lab.
With the real home dataset, the MLN-based method used in FABER is the least
effective among the ones that we evaluated. The highest recognition rates with
MLN are achieved with n = 5. We were not able to test the performance with
larger values of n, since the execution of the learning algorithm did not terminate
in a reasonable amount of time. Independently from the value of n, the FABER
method achieved particularly low values of recall; this could result in the detection
of several false anomalies related to missed execution of expected activities. The
technique used in SmartFABER achieves better results. In particular, the smart
aggregation method leads to the highest values of F1 score (slightly above 0.8
with n = 4), and very well balanced values of precision and recall. The naive
aggregation method achieves lower recognition rates, producing a large number of
false positives.

Summarizing, with both datasets, the smart aggregation algorithm of Smart-
FABER reduces the number of false positives with respect to the FABER method,
and improves the overall accuracy.

5.4 Recognition of fine-grained anomalies

We performed experiments about anomaly recognition using the activity bound-
aries detected by the different techniques with the most effective value of n.

Table 3: Smart home lab dataset. Accuracy of abnormal behavior recognition with
FABER

ANOMALY GROUP 1 GROUP 2
TP FP FN TP FP FN

NC1: Repository left open 5 0 2 18 0 0
NC2: Medicine not returned 0 0 0 4 0 0
NC3: Food item not cooked 0 0 0 2 0 0
NC4: Meal not prepared 0 2 0 0 1 0
C1: Missed a prescr. medicine 0 2 0 10 0 0
C2: Took a wrong medicine 0 0 0 7 0 0
C3: Repeated medicine intake 0 0 0 3 0 0
C4: Stove burner left on 0 0 0 0 0 0
C5: Had meal with no silverware 0 0 0 7 0 0
C6: Prepared meal not consumed 0 0 0 1 1 0
C7: Burner turned on by mistake 0 0 0 8 0 0
TOTAL 5 4 2 60 2 0
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Table 4: Smart home lab dataset. Accuracy of abnormal behavior recognition with
SmartFABER and smart aggregation

ANOMALY GROUP 1 GROUP 2
TP FP FN TP FP FN

NC1: Repository left open 7 0 0 18 1 0
NC2: Medicine not returned 0 0 0 4 0 0
NC3: Food item not cooked 0 0 0 2 0 0
NC4: Meal not prepared 0 0 0 0 0 0
C1: Missed a prescr. medicine 0 0 0 10 0 0
C2: Took a wrong medicine 0 0 0 7 0 0
C3: Repeated medicine intake 0 0 0 3 0 0
C4: Stove burner left on 0 0 0 0 0 0
C5: Had meal with no silverware 0 0 0 7 0 0
C6: Prepared meal not consumed 0 0 0 1 0 0
C7: Burner turned on by mistake 0 0 0 8 1 0
TOTAL 7 0 0 60 2 0

Table 5: Smart home lab dataset. Results of fine-grained abnormal behavior recog-
nition based on different boundary detection methods

TECHNIQUE PRECISION RECALL F1 SCORE
FABER (MLN) 0.915 0.97 0.942
SmartFABER-SmartAggregation 0.971 1 0.985

Detailed results with the smart home lab dataset are shown in Tables 3 and 4.
The results of SmartFABER with the naive aggregation method are identical to the
ones obtained with the smart aggregation method; hence, we omit them. Each row
of the table corresponds to a specific anomaly considered in our experiments. The
TP column reports the number of true positives for that anomaly; i.e., the number
of actual occurrences of that anomaly that were recognized by the technique. FP
reports the number of false positives; i.e., the number of anomalies reported by the
technique that did not actually occur. FN reports the number of actual occurrences
of that anomaly that were not recognized by the technique.

As anticipated, group 1 individuals performed a few non-critical anomalies
(NC) and no critical anomaly (C). FABER correctly recognized 5 NCs out of 7.
During the 7 days activities of group 1 individuals, the system did 4 false positives.
Two of them regarded NC4 (meal not prepared), while the other two regarded
C1 (missed a prescribed medicine). Those errors were due to mispredictions of
the MLN-based activity boundary detection technique, which in two cases did not
recognize the occurrence of activity “preparing meal” and in two cases did not
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recognize the occurrence of “taking medicine”. With SmartFABER we were able
to avoid the occurrence of both false positives and false negatives. This result was
due to the high accuracy of activity recognition in the smart home lab environment.

Group 2 individuals performed a larger number of NCs and several Cs. For this
group, FABER correctly recognized all the occurrence of both critical and non-
critical anomalies; i.e., no false negatives happened. During the 14-days activities
of that group, the system reported only 2 false positives: one was related to NC4
(meal not prepared) and the other one to C6 (prepared meal not consumed). Even
in these cases, false positives were due to mispredictions of the activity boundary
detection technique. The performance of SmartFABER was comparable: all the
anomalies were recognized, and only two false positives occurred.

Overall, FABER produced 6 false positives during the 21-days activities, while
SmartFABER produced only 2 false positives. We claim that the number of false
positives is compliant with the requirements of clinicians, especially considering
that the individuals totally performed more than 150 instances of activities during
the experimentation. Table 5 summarizes the results in terms of precision, recall
and F1 score.

Table 6: Real home dataset. Accuracy of abnormal behavior recognition with
FABER

ANOMALY TP FP FN PREC. REC. F1 SCORE
G1 37 10 68 0.787 0.352 0.487
G2 36 21 51 0.632 0.414 0.5
Y1 60 46 7 0.566 0.896 0.694
Y2 41 69 0 0.373 1 0.543
Y3 73 4 15 0.948 0.83 0.885
Y4 1 3 5 0.25 0.167 0.2
Y5 0 2 0 0 /0 /0
R1 29 4 14 0.879 0.674 0.763
R2 164 16 4 0.911 0.976 0.943
TOTAL 441 175 164 0.716 0.729 0.722

Results regarding the real home dataset are shown in Tables 6, 7, and 8, and
summarized in Table 9. The SmartFABER method with smart aggregation achieves
the best results in terms of F1; moreover, the measures of precision and recall
are well balanced. Those measures are less balanced using the naive aggregation
method, which achieves high recall (only a few actual anomalies were not recog-
nized) at the price of low precision (several anomalies have been predicted by mis-
take). This result depends on the fact that the naive aggregation method produces
a relatively large number of false positives, which fire the recognition of several
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Table 7: Real home dataset. Accuracy of abnormal behavior recognition with
SmartFABER and naive aggregation

ANOMALY TP FP FN PREC. REC. F1 SCORE
G1 81 22 24 0.786 0.771 0.779
G2 64 54 23 0.542 0.736 0.624
Y1 57 9 10 0.864 0.851 0.857
Y2 29 8 12 0.784 0.707 0.744
Y3 84 3 4 0.966 0.955 0.96
Y4 5 182 1 0.027 0.833 0.052
Y5 0 40 0 0 /0 /0
R1 40 1 3 0.976 0.93 0.952
R2 167 3 1 0.982 0.994 0.988
TOTAL 527 322 78 0.621 0.871 0.725

Table 8: Real home dataset. Accuracy of abnormal behavior recognition with
SmartFABER and smart aggregation

ANOMALY TP FP FN PREC. REC. F1 SCORE
G1 70 59 35 0.543 0.667 0.598
G2 47 38 40 0.553 0.54 0.547
Y1 60 17 7 0.779 0.896 0.833
Y2 32 17 9 0.653 0.78 0.711
Y3 75 6 13 0.926 0.852 0.888
Y4 0 0 6 /0 0 /0
Y5 0 0 0 /0 /0 /0
R1 39 0 4 1 0.907 0.951
R2 167 17 1 0.908 0.994 0.949
TOTAL 490 154 115 0.761 0.81 0.785

Table 9: Real home dataset. Results of fine-grained abnormal behavior recognition
based on different boundary detection methods

TECHNIQUE PRECISION RECALL F1 SCORE
FABER (MLN) 0.716 0.729 0.722
SmartFABER-SimpleAggregation 0.62 0.871 0.725
SmartFABER-SmartAggregation 0.76 0.81 0.785

anomalies about repetition of activities (Y4 and Y5). The F1 results with FABER
and the MLN-based method are comparable with those of SmartFABER with naive
aggregation, but precision and recall are better balanced with the former.

Overall, we can conclude that SmartFABER with smart aggregation achieves
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the best results in terms of F1, obtaining a good balance between precision and
recall. A preliminary clinicians’ assessment of our system can be found in [34].

6 Conclusions and future work

In this paper, we addressed the challenging issue of unobtrusively recognizing be-
haviors exhibited by elderly persons at home that have been identified by clinicians
as relevant for the early diagnosis of MCI. Our SmartFABER hybrid technique
to recognize abnormal behaviors differs from previous approaches for combining
supervised learning with knowledge-based reasoning to more precisely recognize
specific anomalies in carrying out daily living activities. We designed the models
of anomalies collaborating with cognitive neuroscience experts. Hence, instead of
identifying only generic deviations from normal behavior as most related works
do, we provide clinicians with a fine-grained description of the recognized abnor-
mal behaviors identified as indicators of MCI. We implemented a prototype of the
system in both a smart home lab and in the real home of an elderly person. Exper-
iments with datasets of activities and anomalies show that SmartFABER achieves
high recall while generating a small number of false positives.

The achieved results are promising, but we plan to improve this work in several
directions. Our current anomaly recognition method is based on logic rules that
strictly determine the detection of an abnormal behavior based on a user-defined
set of observations. We consider extending this rigid system with probabilistic
reasoning. We are working on integrating data analysis tools in the dashboard
offered by the system to clinicians to automatise some of the reasoning that they
currently do by looking at long term activity data. Other future work also includes
addressing the case of multi-inhabitants. Finally, we plan to work closely with
clinicians to extend the set of activities and associated significant anomalies to be
monitored, and to extend the experiments to multiple real homes.
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