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Abstract

Objective: The aim of this paper is to provide an improved method for solving the so-called

dynamic patient admission scheduling (DPAS) problem. This is a complex scheduling problem

that involves assigning a set of patients to hospital beds over a given time horizon in such a way

that several quality measures reflecting patient comfort and treatment efficiency are maximized.

Consideration must be given to uncertainty in the length of stays of patients as well as the

possibility of emergency patients.

Method: We develop an adaptive large neighborhood search (ALNS) procedure to solve the prob-

lem. This procedure utilizes a Simulated Annealing framework.

Results: We thoroughly test the performance of the proposed ALNS approach on a set of 450

publicly available problem instances. A comparison with the current state-of-the-art indicates

that the proposed methodology provides solutions that are of comparable quality for small and

medium sized instances (up to 1000 patients); the two approaches provide solutions that differ in

quality by approximately 1% on average. The ALNS procedure does, however, provide solutions

in a much shorter time frame. On larger instances (between 1000-4000 patients) the improvement

in solution quality by the ALNS procedure is substantial, approximately 3-14% on average, and

as much as 22% on a single instance. The time taken to find such results is, however, in the

worst case, a factor 12 longer on average than the time limit which is granted to the current

state-of-the-art.

Conclusion: The proposed ALNS procedure is an efficient and flexible method for solving the

DPAS problem.
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1. Introduction

Providing high quality health care is one of the most important challenges worldwide. To

efficiently, and perhaps even safely, manage the day-to-day activities of a hospital requires a

thorough understanding of the hospital’s patient flow. In many countries, the admission of patients
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to hospitals is administered from a central unit, its responsibility being to facilitate the best

possible assignment of patients to beds in the hospital. This is indeed a non-trivial task. No

two patients are identical. Each patient’s expected length of stay at the hospital, not to mention

the specific treatment they require, is likely to be different. Furthermore, in addition to having a

finite capacity, a hospital only has a finite set of resources with which all required services can be

performed. Coordinating the diverse set of patient requests with the hospital’s available resources

is thus an important, combinatorial optimization problem and is termed the patient admission

scheduling (PAS) problem. Despite its complexity, however, the problem, is typically still solved

manually by an experienced nurse or planner.

Patient admission scheduling is a problem that arises at all planning levels within a hospital.

On a strategic (i.e. long term) planning, level, historical data is used to forecast the future arrival

patterns of patients and determine whether or not the hospital’s available resources and their

configuration will perform satisfactorily. Examples of research addressing strategic level variants

can be found in Hutzschenreuter et al. [1] and Chen et al. [2]. The former presents a simulation tool

that is used to find good, long term policies, where the aim is to maximize the yearly throughput

of the hospital. The latter develops a genetic algorithm for an admission scheduling problem for

a single department. This algorithm exploits historical data and optimizes a long-term admission

strategy. Other examples include, among others, Kusters and Groot [3], Harper [4], and Jittamai

and Kangwansura [5].

The PAS problem also arises at the tactical planning level. This variant of the problem

considers a medium to long term planning horizon, i.e. from a few weeks to some months ahead

of time, and attempts to assign upcoming patients to beds in such a way that several quality

measures reflecting patient comfort and treatment efficiency are maximized. Almost always is

the data assumed to be known with certainty, i.e. a static offline problem is solved. As such, it

typically only considers elective patients, whose admission and discharge dates are stated exactly;

doctors can, in the absence of complications, usually state with a high degree of accuracy the

length of stay needed by a patient for a given treatment. Emergency patients, i.e. those that

arrive unexpectedly, are normally implicitly considered by simply reserving a certain number of

beds. The work by Demeester et al. [6] formalized an academic version of this problem, and was

accompanied with 14 publicly available data sets, which are based on real-life instances of the

problem. The authors proposed a hybrid tabu search algorithm to solve this problem. The same

instances have subsequently been considered by Ceschia and Schaerf [7], Bilgin et al. [8], and Range

et al. [9]. The first two contributions also consider local search based heuristics, while the last

describes a column generation based heuristic approach combined with constraint aggregation.

The general consensus is that exact methods are only tractable for small problem instances (a two

week horizon with around at most 150 rooms and 780 patients).

Due to the dynamic setting in which hospitals operate, it is extremely unlikely that a tactical

level plan will be executed unchanged in practice. On an operational level, modifications to

planned schedules may be required whenever unforeseen events occur. In an effort to better

reflect the real-life characteristics of the problem, Vancroonenburg et al. [10], and Ceschia and

Schaerf [11] have independently introduced variants of the tactical level problem which attempt

to consider operational level uncertainty; these variants are collectively known as the dynamic

patient admission scheduling (DPAS) problem under uncertainty (henceforth referred to as simply
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the DPAS problem). Both studies extend the static PAS problem presented in Demeester et al.

[6] in similar ways and attempt to capture several practical uncertainties encountered in the day-

to-day running of a hospital. In particular, the assumption that all patient admission dates are

known a priori is no longer made; these dates sporadically reveal themselves over time. In other

words, associated with each patient is a registration date. This is the time at which the patient’s

planned admission date becomes known to the hospital and it does not necessarily need to be the

start of the planning horizon. Other dynamic extensions include the possibility to delay a patient’s

expected admission date, the possibility for patients to stay longer than expected, and emergency

patients. Ceschia and Schaerf [11] test and compare an exact integer linear programming (ILP)

formulation, solved using the commercial solver Cplex, and a simulated annealing (SA) approach

on a set of 450 self-generated instances, which have since been made public. Results suggest

the exact approach is only tractable for small instances of the problem, while the metaheuristic

approach can at least find feasible solutions for all instance sizes. As no comparison with the exact

approach is possible for the larger instances, and as no bound from the ILP’s linear programming

relaxation is considered, it is difficult for the authors to vouch for the quality of the solutions

obtained in these cases. Vancroonenburg et al. [10] present two ILPs for dynamic versions of the

six smallest data sets given in Demeester et al. [6], and consider the impact of emergency patients

and patient length of stay estimates. More recently, Ceschia and Schaerf [12] have extended the

work of Ceschia and Schaerf [11] to also consider the scheduling of operating theaters.

In this paper we also focus on the DPAS problem and devise an adaptive search (ALNS) pro-

cedure embedded within a simulated annealing (SA) framework to solve it. We concern ourselves

with the variant proposed by Ceschia and Schaerf [11]. While this problem may not perfectly

reflect reality, we believe it has many aspects that are consistent with what is found in practice.

We are therefore motivated to not only develop algorithms that can quickly provide good solutions

to these problems, but also to, through the algorithmic development, gradually solve larger and

more realistic data sets. Currently there is definitely a difference in what can be solved in the

academic world and what can be implemented in practice. There is therefore exciting potential

in the application of Operations Research techniques to PAS problems, and we hope to inspire

others by researching in this area. In this work we focus on providing a tool that can be used on

a tactical planning level, where information about patients is gradually revealed over time.

We test and compare the proposed methodology on the large set of instances from Ceschia and

Schaerf [11]. Through a direct comparison with their algorithm, not only can we say something

about the performance of our algorithm, but we can also comment on the quality of the solutions

found in Ceschia and Schaerf [11]. An exhaustive computational study on the 450 available

instances shows that the proposed methodology is extremely competitive. On small instances

solutions of similar quality are obtained, much faster. On medium to large instances our approach

is consistently better. For the large instances the difference in solution quality is sometimes

substantial; the algorithm finds better solutions in all cases, and is, on average, 3-14% better.

However, the time needed to find such solutions is significantly longer, a factor 12 on average

longer than the time limit which is granted to the algorithm in Ceschia and Schaerf [11]. Despite

the increase in running time, these results, to some degree, benchmark the quality of the solutions

found in Ceschia and Schaerf [11].

An outline of this paper is as follows. In Section 2 we introduce some required terminology
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and provide a more formal definition of the problem at hand. Section 3 gives an overview of the

proposed ALNS procedure, while Section 4 details our computational study and, in particular,

the comparison with Ceschia and Schaerf [11]. Finally, the main conclusions from this study are

drawn in Section 5.

2. Problem definition

In this section we formalize the definition of the DPAS problem considered. This follows the

original problem description given in Ceschia and Schaerf [11]. To avoid confusion all terminology

from Ceschia and Schaerf [11] is retained. Furthermore, we refer the reader to the appendix for a

list of the notation used throughout the paper. In any instance of the DPAS problem it is assumed

that there is a set of patients P = {1, 2, . . . , P} requiring admission to a hospital over a pre-specified

time horizon of known length. This patient set is partitioned into a set of male patients,M, and a

set of female patients, F . The planning horizon is divided into a set of consecutive days, denoted

by the set D = {1, 2, . . . , D}, and indicates for how long the admission schedule is required. The

problem is dynamic in the sense that not all patients are known beforehand and information is

revealed gradually. It is possible to reschedule patients each day within the planning horizon when

new information is available. Associated with each patient p ∈ P are several important dates, and

these are known in advance. The first, dregp ∈ D, states the day on which patient p is registered in

the hospital’s administrative records. Although a patient’s registration date is known in advance,

knowledge of this cannot be used prior to this date.1 The second, dplanp ∈ D, indicates the day

on which patient p is expected to be admitted to the hospital. We consider this date as the first

possible day of admission. Finally, dmaxp ∈ D, gives the last possible day patient p can be admitted

where dplanp ≤ dmaxp . Thus the patient p can be admitted into the hospital on any day between

dplanp and dmaxp , both days included. One can think of dplanp as the preferable day to admit patient

p, while dmaxp can be thought of as the latest date to which we can postpone patient p. Obviously,

by setting dplanp = dmaxp = dregp , the DPAS problem can incorporate emergency patients as these

patients cannot be postponed. Additionally, a patient’s age, required treatment(s), length of stay,

lp (given in number of nights)2, and whether the patient possesses a so-called overstay risk are

estimated beforehand. The latter indicates that there is the risk that the patient will stay one day

longer. If a patient has an overstay risk, then it is desirable for their assigned room to have an

empty bed on their planned discharge date. The problem takes it’s offset in Ceschia and Schaerf

[11] and does not consider overstays of arbitrary length. Finally, in order to be consistent, we

assume that D ≥ maxp∈P{dmaxp + lp + 1}.
A hospital is assumed to consist of several departments, where each department itself further

consists of several rooms. Departments typically specialize in the treatment of one or more illnesses.

We denote the set of all rooms available at the hospital as R = {1, 2, . . . , R}. Each room r ∈ R
has a certain capacity κr; this indicates the number of beds in the room. Room capacity is

typically one, two, or four beds. Each room is assumed to be equipped with a set of features.

1The registration dates are given in the available data instances. However, in a real-life situation these dates
will only be available when the patient arrives in the system.

2The length of stay is the number of nights the patient needs the bed. Only in-patients are considered as they
need a bed for at least a single night.
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Features indicate the presence of specific equipment or properties, which can be necessary (or only

preferable) for patients. Finally, each room is also assumed to have a gender policy. There are

four possible gender policies, and these are listed in Table 1. The Same Gender (SG) policy is

the most used policy in many hospitals. An illustration of a patient admission schedule is given

in Figure 1. For this fictitious hospital, the rooms in Department 1 have the SG, Department 2

has the All (A) policy, Department 3 has the Male (Ma) policy, and Department 4 has the Female

(Fe) policy. Note that the gender policy does not necessarily have to be the same for all rooms

of a department. Rooms with the SG policy are solution wise of interest and we let RSG be the

subset of rooms having the SG policy.

Policy Description

SG Both genders are allowed, but not at the same time.
A There is no gender restriction.
Ma Only male patients are allowed.
Fe Only female patients are allowed.

Table 1: The available gender policies

Figure 1: An example schedule for a hospital. The black beds are assigned to male patients, while gray beds are
assigned to female patients. White beds are empty

When finding a solution to the DPAS problem a variety of constraints, some hard and some

soft, exist. Hard constraints must be respected and concern things like room capacity, patient age,

department specialism, and required room features. The capacity of a room is stated in terms of
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beds and indicates how many patients can be assigned to the room on a given day. Furthermore,

a patient can only be treated in a department if the age of the patient satisfies the age limit of the

department. This is a crude attempt to model things such as a pediatric department. Similarly, a

patient must be treated in a department which has the specialism the patient requires, and cannot

be assigned to a room not equipped with properties the patient needs.

Soft constraints, on the other hand, are used to model preferences or desirable properties of

the solution. Ideally, they should be enforced, but it is not necessary; they can be violated at a

cost. These include things such as: department main specialism, preferred room feature, transfers,

gender, room size, admission delay, and overstay risk. To elaborate, ideally a patient should be

assigned a department whose main specialism is in the treatment the patient needs; preferred

properties for a patient should be in the room they receive; the transferring of a patient between

rooms should be avoided; the patients assigned to a room should be consistent with the room’s

gender policy; a patient should receive a room with capacity in line with their preferences; and if

any of the patients assigned to a room have an overstay risk, the room should have an available

bed on their expected discharge date (just in case). Table 2 summarizes the different constraints

of the problem, their type and, if it is a soft constraint, the penalty incurred when violating the

given constraint once. The values of the weights are taken directly from Ceschia and Schaerf [11].

This is to allow an accurate comparison of the solutions obtained. The highest weight is given to

transferring the patient. This is in line with common practice, where transfers are really only used

as a last option to maintain or gain feasibility. The two last constraints, concerning delaying the

admission and the overstay risk, are extensions of the static version of the problem. The former

penalizes delaying a patient’s admission to the hospital; for the admission date this can, however,

not be higher than dmaxp . The latter concerns the overstay risk. This tries to ensure that patients,

who have the potential to stay longer than expected, are assigned to a room that has a surplus

capacity on their discharge dates. If such patients do stay longer than is planned, and an attempt

has not been made to reserve capacity, so-called overcrowding may occur.

Constraints Type Weight

Room capacity hard -
Patient age (PA) hard -
Department specialism (DS1) hard -
Department main specialism (DS2) soft 20
Needed room feature (RF1) hard -
Preferred room feature (RF2) soft 20
Transfer (Tr) soft 100
Gender (Gr) soft 50
Room size preference (RS) soft 10
Admission delay (De) soft 2
Overcrowd risk (OvR) soft 1

Table 2: Constraints and their weights3

Given the constraints defined above, the objective of the DPAS problem is to find an assign-

3Values taken directly from Ceschia and Schaerf [11].
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ment of patients to rooms that minimizes the sum of the penalties incurred from soft constraint

violations. Violating hard constraints is not permitted. As such, any (patient, room) combinations

that would result in a hard constraint violation can obviously be removed from consideration. For

example, if a patient needing a certain treatment is placed in a room which is in a department

that does not specialize in the treatment of that specific illness, this particular (patient, room)

combination can be eliminated.

3. Solution approach

The size and complexity of the DPAS problem makes the application of exact mathematical

programming procedures difficult. A few ILP based exact procedures have been proposed in the

literature for both the static and dynamic variants of the PAS problem, and all have concluded

that only small instances of the problem are tractable with such approaches, see e.g. Ceschia and

Schaerf [7, 11], Range et al. [9]. Metaheuristic approaches are therefore an attractive alternative

as they can overcome such tractability issues. Being heuristic in nature they are, however, unable

to independently provide a certificate of quality on the obtained solution. Nonetheless, they make

it possible to consider large problem instances and, if designed well, can produce good solutions.

In this section we present and describe such an approach for solving the DPAS problem. The

developed methodology repeatedly applies a SA-based ALNS algorithm throughout the planning

horizon. To aid the exposition, this section has been divided into four parts. To have a concise de-

scription of the problem we begin with a mathematical model for the static version in Section 3.1.

In Section 3.2 we continue with a short discussion on the dynamic nature of the problem. Sec-

tion 3.3 provides a general description of a SA-based ALNS algorithm, while Section 3.4 elaborates

on the application of the technique to the DPAS problem.

3.1. A mathematical model for the static PAS

We introduce a mathematical formulation of a static version of the DPAS problem, not to be

able to solve it as such, but rather as a means to state the problem precisely. The mathematical

formulation presented is a static model including all patients in the solution, and it does not

exclude patients who have not been registered yet. Hence, in this static model we have all future

information available. It is, however, possible to apply this to the dynamic setting where some

variables are then fixed. We describe this application of the model in Section 3.2.

Each patient p ∈ P has a window of dates in which (s)he can be admitted. We denote this

window as Dp = {dplanp , . . . , dmax
p } ⊆ D. A patient p ∈ P can be allocated to a room r ∈ R if the

hard constraints PA, DS1, and RF1 are satisfied for the patient. We let Rp be the set of feasible

rooms for patient p ∈ P. For each patient p ∈ P and room r ∈ R we denote the daily cost of

admitting the patient into the room as cpr. This cost corresponds to the sum of the soft constraint

penalties DS2, RF2, RS, and Gr (for the policies Ma and Fe) from Table 2, if any of these are

violated when assigning patient p ∈ P to room r ∈ Rp. If r /∈ Rp, then we set cpr = ∞. This

cost is independent of the day on which the patient occupies the room. For gender-segregated

rooms, i.e. rooms following the SG policy, we denote cG the daily cost of admitting patients of

both genders into the room. We let this cost be equal to the penalty Gr given in Table 2. We

use cD to denote the cost per day of delaying a patient. This corresponds to the penalty incurred
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when violating soft constraint De from Table 2. The parameter Op ∈ {0, 1} is used to indicate

whether or not patient p ∈ P has a risk of staying an additional day, where Op = 1 if and only

if patient p has a risk of staying an additional day, while cO denotes the unit overcrowd cost

for having potentially more patients in the room than the room’s capacity. This unit overcrowd

penalty is associated with violation of soft constraint OvR in Table 2. Finally, cT denotes the cost

of a transfer and corresponds to violation of soft constraint Tr from Table 2.

Binary decision variables xprd ∈ {0, 1} are used to indicate whether or not patient p ∈ P
occupies a bed in room r ∈ R on the night following day d ∈ D, where xprd = 1 if the patient p

occupies a bed in room r on the night following day d and xprd = 0 if not. An auxiliary set of

variables xprd ∈ {0, 1} indicates that the patient p ∈ P may occupy a bed in room r ∈ R on the

night following day d ∈ D after discharge due to the overstay risk, and this set is used to calculate

the potential overcrowding of a room. That is, if the patient p has an overstay risk Op = 1 then

the patient may stay an extra night in the room in which (s)he resides, thus xprd = 1 if patient

patient p is admitted on day d−lp and resides in the room r on day d. In addition, binary variables

tpd ∈ {0, 1} are equal to one if patient p ∈ P is transferred from one room to another, from day

d− 1 ∈ D to day d ∈ D, and zero otherwise. For consistency we define tp1 = 0 for all p ∈ P. The

day of admission for patient p ∈ P is controlled by the binary variable ypd ∈ {0, 1}; this equals

one if and only if patient p ∈ P has day d ∈ D as their day of admission. For each room and each

day we let the binary variables frd,mrd ∈ {0, 1} indicate whether or not at least one female or

at least one male is present in the room, respectively, i.e. frd = 0 only if no female is present in

room r ∈ R on day d ∈ D and mrd = 0 only if no male is present in room r ∈ R on day d ∈ D.

The binary variable brd ∈ {0, 1} indicates that both genders are present in the room r ∈ R on day

d ∈ D, where brd = 0 only if either no females are present or no males are present in the room.

Finally, zrd ≥ 0 measures the potential number of patients beyond the capacity of the room r ∈ R
on day d ∈ D.

Some of the variables can be fixed to zero. As it is only possible to admit a patient p ∈ P
during the days in Dp, ypd = 0 for all d /∈ Dp. Likewise, xprd = 0 if r /∈ Rp or if the day d is either

before dplanp or after dmax
p + lp − 1.

For a solution to be feasible it has to satisfy the set of hard constraints. These are listed below.

First of all, the rooms can only accommodate as many patients as the room has beds for:∑
p∈P

xprd ≤ κr, r ∈ R, d ∈ D. (1)

This set of constraints measures the occupation of the room by patients within the length of

stay for the patient, but does not take the potential occupation of patients having an overstay

risk into account. The potential overcrowding of a room due to the overstay risk is calculated in

constraints (9). Next, the individual patients have to be admitted on precisely one day within the

planning horizon:4 ∑
d∈Dp

ypd = 1, p ∈ P. (2)

4In real-life problems wards may be working close to capacity with regards to beds and, as a consequence, it
may not be possible to admit the patient at all. It is possible to penalize this by adding a variable playing the role
of an explicit artificial variable making it unattractive to not being able to admit the patient.
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If patient p is admitted on day d, the patient must appear in a room the following lp − 1 nights∑
r∈Rp

xprd ≥ ypd, p ∈ P, d ∈ Dp, d = d, . . . , d+ lp − 1. (3)

Constraints (1)-(3) constitute the core of the model. The remaining constraints serve different

purposes. These include indicating the presence of male and female patients in rooms (to calculate

the violation of the gender constraints in rooms with the SG policy), identifying when transfers

happen, and calculating the potential overcrowding of rooms.

The first set of constraints is used to segregate genders in rooms having the SG gender policy.

The presence of a female patient is determined by

frd ≥ xprd, p ∈ F , r ∈ Rp ∩RSG, d ∈ Dp, (4)

while the presence of a male patient is determined by

mrd ≥ xprd, p ∈M, r ∈ Rp ∩RSG, d ∈ Dp. (5)

This allows us to calculate when both genders are present using the following constraints:

brd ≥ frd +mrd − 1, r ∈ RSG, d ∈ D. (6)

Thus, brd is calculated for all same-gender policy rooms on all days. The transfer of patients is

enforced using the following constraints:

tpd ≥ xprd − xprd−1 − ypd, p ∈ P, r ∈ Rp, d = 2, . . . , D. (7)

In other words, a transfer is recorded if patient p ∈ P does not stay in the same r ∈ R on

consecutive stays during their stay. Without the ypd term the constraint would also record a

transfer when admitting patient p to the hospital (since the patient would not have been assigned

the same room on the previous day).

If a patient p has an overstay risk, i.e Op = 1, then the patient potentially occupies a bed for

an extra day in the last room of their planned stay. This is modeled as follows:

ypd +Opxprd+lp−1 ≤ 1 + xprd+lp , p ∈ P, r ∈ Rp, d ∈ Dp. (8)

Having settled the potential occupation of a bed in room r the day after the planned discharge,

the potential overcrowding of any room can be recorded with the following constraints:∑
p∈P

(xprd + xprd) ≤ κr + zrd, r ∈ R, d ∈ D. (9)
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The domain of each of the decision variables is given below.

ypd, tpd ∈ {0, 1}, p ∈ P, d ∈ D (10)

xprd, xprd ∈ {0, 1}, p ∈ P, r ∈ R, d ∈ D (11)

frd,mrd, brd ∈ {0, 1}, r ∈ R, d ∈ D (12)

zrd ≥ 0, r ∈ R, d ∈ D (13)

The objective consists of five terms. The first measures the time-independent penalty of as-

signing a patient to a room for one night. The second term calculates the cost of all transfers of

patients, while the third term determines the penalty given for gender violations of rooms having

the same-gender policy. The fourth term penalizes the potential overcrowding, and finally the fifth

term penalizes the admission delay of patients. The objective can be stated as:

minimize
∑
p∈P

∑
d∈Dp

∑
r∈Rp

cprxprd + cT
∑
p∈P

∑
d∈D

tpd + cG
∑
d∈D

∑
r∈RSG

brd

+cO
∑
d∈D

∑
r∈R

zrd + cD
∑
p∈P

∑
d∈Dp

dypd − dplanp

 (14)

The overall aim of the problem is to minimize the penalties incurred from violations of soft

constraints, while satisfying the constraints (1)-(9) and the domain of the variables (10)-(13).

The model presented above corresponds to the problem verbally stated and solved by Ceschia

and Schaerf [11]. Ceschia and Schaerf [11] also present a mathematical formulation, but only for

a simplified version of the problem, where it is not possible to delay patients’ admission, nor is it

possible to transfer patients. This greatly simplifies their mathematical formulation. In addition

their mathematical formulation only checks whether or not there is a risk of overcrowding in

a room, which is in contrast to the model they actually solve, where the amount of potential

overcrowding is penalized. The authors clearly state that the mathematical formulation is a

simplified version of a more elaborate formulation, and briefly devise directions for setting up a

full mathematical formulation. The mathematical formulation we present should be viewed as

such a full mathematical formulation of the problem.

In practice this model suffers from severe degeneracy and standard integer linear programming

solvers are typically not able to solve the problem in reasonable time – see e.g. Ceschia and

Schaerf [7]. Recall that we do not intend to solve this formulation directly by mixed integer linear

programming, but instead we use a heuristic approach.

3.2. The dynamic setup

The DPAS problem is a dynamic problem and as such it calls for continual optimization based

on the available information. We assume that the information on registered patients is made

available once each day, after which an optimization problem is solved to identify which rooms

patients will be assigned to in the future. Patients who are already admitted can only stay in

the room from the day before or be moved to other rooms, resulting in a transfer, and naturally

they cannot be postponed. Other registered patients can freely be moved by the optimization
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approach. Formally, on each day d ∈ D we must optimize the assignment of the set of patients

Pd = {p ∈ P|dregp ≤ d, p not discharged}

to rooms. We refer to Pd as the set of active patients on day d. The number of active patients on

day d ∈ D is denoted by Ad := |Pd|. As each patient p ∈ P has a last possible day of admission,

dmaxp , the planning horizon for the optimization on day d is given by max{dmax
p |p ∈ Pd}.

Suppose that we have solved all the days until day d−1 and want to solve the problem for day

d. In terms of the model from Section 3.1 we exclude all patients (and corresponding variables)

from P \Pd, as they have been discharged or have not been registered yet. We obtain the solution

from the day before and fix all patients p ∈ Pd−1 ∩ Pd with ypd′ = 1 for a day d′ ≤ d − 1 to

be admitted on day d′. For these patients we also fix the rooms in which they have stayed up

until day d − 1. For patients who are not fixed we state that their earliest day of admission will

be max{d, dplanp }. Fixing these variables corresponds to setting up boundary conditions for the

optimization of day d which depends on the irreversible decisions made on previous days.

When optimizing the assignment of patients Pd on a given day d ∈ D, we must first construct

an initial solution where newly registered patients, i.e. patients having dregp = d, are included.

To do this we use a simple greedy insertion algorithm. For the first day there are no previous

daily assignments we must respect; however, for all subsequent days, we must respect the previous

day’s final patient to room assignment for the already admitted patients when constructing the

solution. This greedy insertion heuristic is explained in more details in Section 3.4 as it is used

extensively in the metaheuristic framework.

It is important to note that this constructive heuristic does not guarantee feasibility; a patient’s

admission date cannot be delayed indefinitely if infeasibility persists. The admission date of patient

p ∈ P can only be delayed up until, and including, dmax
p . When this does occur, the search for a

compatible room for the patient is postponed until the algorithm has assigned all other patients.

The admission date of the patient is then set to a date which exceeds the current day and for

which a compatible room can be found. This results in an infeasible solution, violating either the

requirement that a patient be admitted before his/her maximal admission date or the requirement

that there is a fixed number of days in the planning horizon. To be comparable to Ceschia and

Schaerf [12], these infeasibilities receive an extra penalty of 200 per occurrence to ensure that they

are quickly remedied during the optimization process.

3.3. Simulated annealing based adaptive large neighborhood search

The main principle of local search is to iteratively move from one feasible solution x to a

neighboring feasible solution x′. The set of neighboring solutions to a given solution is termed a

neighborhood and each neighboring solution is obtained from the given solution by making a set

of local changes. If the neighboring feasible solution has a better objective value, it is accepted

and its neighbors are then considered, otherwise a different neighbor of the given solution is

generated. The downside with this approach is that a solution that is only locally optimal is

ultimately reached, and this halts the exploration of better solutions. Metaheuristics attempt

to overcome local optima by allowing the search to move to worse solutions in an attempt to

introduce some diversification. One well known approach for this is the SA approach described
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originally in Metropolis et al. [13], but first adopted for optimization by Kirkpatrick et al. [14].

In a SA metaheuristic better solutions are always accepted; however, worse solutions are also

accepted with a certain probability. This acceptance probability is continually decreased during

the execution of the algorithm, ensuring that worse solutions are less likely to be accepted late in

the process.

The process of decreasing the acceptance probability is often described as lowering the tem-

perature of an annealing process (hence the name). We start out with an initial temperature

T := Tstart and then decrease this temperature to T := α·T at the end of each iteration, where

α ∈ (0, 1). The acceptance probability of a new but worse solution x′ is then calculated as

ρacc := exp

(
−f(x′)− f(x)

T

)
The algorithm terminates when the temperature reaches a lower temperature Tend. For a more

detailed description on the practical implementation of SA refer the reader to Aarts et al. [15].

Instead of making minor changes in moving from one solution to the next, it is possible to

make more dramatic changes by destroying a significant part of the solution and then repairing it

again by applying a constructive heuristic. This is the fundamental idea of so-called destroy and

repair methods and large neighborhood search, see Shaw [16]. Destroying a part of the solution

and then repairing it again tremendously enlarges a solution’s neighborhood. This makes a full

search of all neighboring solutions impractical, and consequently a SA framework is applied.

Pisinger and Ropke [17] observed that not all destroy and repair methods remain equally good

throughout the course of a SA algorithm. In other words, some tend to improve the solution

more in the beginning of the solution process, while others are better suited towards the end.

The authors therefore suggest to assign modifiable weights to each of the destroy methods as well

as weights to each of the repair methods. These weights are then continually updated over the

course of the algorithm and are decided using an exponential smoothing of the performance of

the individual methods. This gives rise to the so-called ALNS metaheuristic, which adapts its

selection of the destroy and repair methods based on the respective performances of each of them.

The set of all such destroy and repair methods is given as H = I∪J , where I is the set of repair

methods and J is the set of destroy methods. For each method h ∈ H a weight wh is defined

and is based on the performance of the method; the better it performs the higher its weight.

Well-performing methods should have a higher probability of being chosen than worse-performing

methods. The probability of choosing a repair method h ∈ I is given as

πh :=
wh∑
i∈I wi

, h ∈ I,

while the probability of choosing a destroy method h ∈ J is denoted

πh :=
wh∑
j∈J wj

, h ∈ J.

The performance of the methods is based on observing the changes in objective value over a given

number of iterations, niter. For each method, sh defines the accumulated score for method h ∈ H,

and vh states the number of times a method has been used. For an iteration where method h is
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chosen to move from solution x to solution x′ the following is added to sh (assuming a minimization

problem)

σ :=


σ1, if f(x′) < f(x∗)

σ2, if f(x∗) ≤ f(x′) < f(x)

σ3, if f(x) ≤ f(x′) and x′ accepted

0, otherwise

where σ1 ≥ σ2 ≥ σ3 ≥ 0. Note that f(x) gives the objective value of solution x, and x∗ is the

best found solution so far. In the case where a new best solution is found σ1 is added, while in

the case where an improvement over the current solution is found, σ2 is added. If the neighboring

solution is not an improvement but is still accepted, then σ3 is added to the score.

After niter iterations the weights are updated as follows

wh :=

 (1− γ) · wh + γ · sh
vh
, if vh > 0

wh, if vh = 0

after which sh and vh are reset to zero.The reaction factor, γ ∈ [0, 1], indicates how much emphasis

is placed on the score of the most recent niter iterations. If γ = 0, then the weights are kept

constant at their initial levels, while γ = 1 only uses the score of the most recent niter iterations.

The update procedure for wh resembles the reward function often found in reinforcement learning

(see e.g. Sutton [18]), a well known machine learning technique, which utilizes a trial-and-error

search and a delayed reward. Here, each method is rewarded based on its ability to find a good

solution. Using adaptive weights for the methods, the algorithm self determines the likelihood

with which each destroy and repair method is chosen at a given iteration. A similar procedure is

described in [19] for operator selection within a metaheuristic framework.

3.4. Application of ALNS to the DPAS problem

In what follows we describe an application of the ALNS methodology to the DPAS problem.

We present a framework consisting of three destroy methods and two repair methods, and describe

each of these in detail. Note that when we remove a patient from a solution, the patient is removed

for all days it occupies the assigned room from the current day and into the future. Consequently,

when repairing the solution, by inserting the patient again, the patient will be inserted into a

room for the remaining part of his/her admission. The proposed ALNS algorithm is run for each

day d ∈ D of the planning horizon. We solve each day in turn, considering only the patients in

the active set Pd.
Given a solution to a particular day, the destroy methods focus on identifying a number of

patients, N ∈ Z+
0 , to be removed from the solution and subsequently reinserted. If N is small

(say close to one or two), then the method will resemble a standard local search approach. If, on

the other hand, N is large (close to |P|), then the resulting solution could become quite different,

essentially running a reinsertion heuristic for all the patients. We choose the value of N to be

within 4 ≤ N ≤ min{100, ξ ·Ad} using a uniform distribution, where ξ ∈]0; 1] and Ad is the number

of active patients in the problem. The value 100 is chosen to limit the computational time used.

The parameter ξ depends on the instance size.

The first destroy method we use is termed Random Removal. As the name suggests, this method
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randomly selects N patients using a uniform distribution and removes them from the solution, the

aim being to simply randomize the selection in order to explore other parts of the solution space.

The second removal heuristic aims at removing patients with the highest cost in the solution,

and is termed Worst Removal. Such patients have obviously not received their most favorable

room, and we are therefore interested in finding them another room. To ensure that we do not

always select the worst positioned patients, we apply the following randomization which favors

the selection of the worst cost patients. Let p1, . . . , pAd
be a list of patients sorted in decreasing

order of patient cost, which corresponds to the cost of soft constraint violation directly related to

the patient, i.e. the penalty for the patient being placed in a given room, the penalty for violation

of the gender policy, the penalty from the admission delay, and the penalty for not having a bed

when there is an overcrowd risk. Suppose that r is uniformly distributed on the interval [0, 1[, and

that β ≥ 1 is the randomization factor, we determine 1 ≤ n ≤ Ad to be

n :=
⌊
rβ ·Ad

⌋
+ 1,

and select patient pn for removal. After removing patient pn we decrease the size of Ad by one

and reset the indices of p1, . . . , pAd
accordingly. This is repeated until N patients are removed.

We use the above formula to set n in order to have some flexibility in the number of patients to

remove. For example, if β = 1, this selection corresponds to the random removal; however, when

we increase β, the likelihood of selecting patients with lower indices increases. If, in the extreme

case, β → ∞, we would always select the first element of Pd. We thereby have a compromise

between always selecting the worst patient and selecting a patient at random.

As patients have different characteristics, removing two patients at random does not necessarily

mean that their respective room assignments can be feasibly swapped. Patient differences can

arise in admission timing or in treatment requirements. Consequently, the third removal heuristic

– inspired by Shaw [16] – is based on trying to remove related patients. This is termed Related

Removal. A patient is randomly selected and the remaining N−1 patients are sorted in decreasing

order of relatedness. We define relatedness as a weighted sum of four factors:

1. rel1(p1, p2) : The number of days the stays of patients p1 and p2 overlap divided by the

number of days the patient with shorter stay has.

2. rel2(p1, p2) : The proportion of all rooms that are feasible for patients p1 and p2.

3. rel3(p1, p2) : This is equal to one if patients p1 and p2 have the same gender and is zero

otherwise.

4. rel4(p1, p2) : A room is related cost-wise for the patients if the room has the exact same cost

for these, i.e. cp1r = cp2r. The relatedness based on a given room is then the cost of the lowest

cost patient divided by the cost of the highest cost patient i.e. min{cp1r, cp2r}/max{cp1r, cp2r},
where we use the convention that the relatedness is 1 if max{cp1r, cp2r} = 0. Thus the aver-

age room-based relatedness over feasible rooms is considered a relatedness measure. This is

expressed mathematically as:

rel4(p1, p2) :=
1

|Rp1 ∩Rp2 |
∑

r∈Rp1
∩Rp2

min{cp1r, cp2r}
max{cp1r, cp2r}

.

Each of these measures is normalized and has a value on the interval [0, 1]. Their relative im-
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portance does, however, differ. For example, two patients who are not admitted in overlapping

periods are not related, nor are two patients who have no feasible rooms in common. Our final

measure of relatedness is hence

rel(p1, p2): =


0, if rel1(p1, p2) = 0 or rel2(p1, p2) = 0
4∑
i=0

%i · reli(p1, p2), otherwise

where %i reflects the relative importance of relatedness measure i.

After the solution has been destroyed through the removal of N patients, the removed patients

must be reinserted into the resulting partial solution. The first repair method is very simple and

is termed Greedy Insertion. In this method patients are greedily inserted based on the cheapest

insertion. The second, termed Regret Insertion, attempts to minimize the cost that will be

incurred from not yet admitted patients when inserting a given patient. Recall that it is possible

to postpone the admission of a not yet admitted patient p by up to dmax
p − dplanp days.

Given a partial solution in which N of the Ad active patients are not yet inserted, for each

of the removed patients a set of triples can be generated. Each triple is of the form (p, r, k) and

states an insertion possibility for patient p. In particular, it states that patient p is assigned room

r with k days of delay from the dplanp . Associated with each such triple is an assignment cost, cprk,

reflecting the increase in cost that would be incurred if the corresponding insertion were made. If

the assignment indicated by a given triple is not feasible, then its cost is assumed to be infinitely

large. The Greedy Insertion sorts all such triples in increasing order of cost and iteratively

considers them. At any given insertion, the triple resulting in the smallest immediate increase in

cost is considered. Due to the overstay risk and gender constraints, the cost of all triples needs

to be updated after an insertion has been made. This process is repeated until either no more

patients can be inserted or all patients have been feasibly inserted.

Greedily inserting patients has the potential to spoil the possibility of placing other patients

later in the insertion process. The Regret Insertion is an attempt to combat this. In other

words, this method iteratively inserts the patient that leaves the greatest number of possibilities

for the remaining patients. Ties are broken arbitrarily. Essentially, the Regret Insertion method

focuses on patients that we would regret the most if not inserted immediately. We define cpr :=

mink{cprk} to be the cheapest day to insert patient p in room r. If we then sort the cpr values

(there is at most one for each room) in increasing order and let r(j) be the room at position j in

the sorted list, we obtain the following general regret cost

vkp :=

k∑
j=2

(
cpr(j) − cpr(1)

)
.

This is an indication of how much worse it will be to insert patient p in his/her k’best room

compared to his/her best room. Selecting the patient p to insert with the largest value of vkp will

try to minimize the regret by reducing the ill-effect caused by not being able to place patients in

good rooms towards the end of the algorithm.

Algorithm 1 provides an overview of the full SA based ALNS metaheuristic. For each temper-

ature, we execute a certain number of trials (ntrials in Algorithm 1). Each trial itself consists
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Algorithm 1 Adaptive Large Neighborhood Search with Simulated Annealing

1: Input: Tstart, Tend, n, ξ, α, d
2: x0 ← runGreedyConstruction()

3: x← x0
4: xbest ← x0
5: T ← Tstart
6: w ← initializeMethodWeights()

7: while T > Tend do
8: for i← 1, ntrials do
9: s← resetMethodScores()

10: for j ← 1, 100 do
11: N ← random([4,min(100, ξ ·Ad)])
12: selectDestroyMethod(w)
13: P ′ ← remove(x,N)
14: selectRepairMethod(w)
15: x′ ← repair(x,P ′)
16: δ ← f(x′)− f(x)
17: ρacc ← exp

(−δ
T

)
18: r ← Random([0,1])
19: if δ < 0 or r < ρacc then
20: x← x′

21: if f(x) < f(xbest) then
22: xbest ← x′

23: end if
24: s← updateMethodScores()
25: end if
26: end for
27: w ← updateMethodWeights(s)

28: end for
29: T ← α · T
30: end while
31: return xbest

of 100 iterations. In other words, we allow exactly 100 solutions to be considered on any trial.

Again the value of 100 has been chosen to limit the run time of the algorithm. The value of

ntrials, on the other hand, varies with problem size; we set it to e · R, where e is a parame-

ter we tune. The function runGreedyConstruction() (line 2) provides an initial solution using

the Greedy Insertion repair method, while the functions initializeMethodWeights() (line 6),

resetMethodScores() (line 9) are used to initialize the method weights, wh, and the scores sh

for each destroy and repair method. Initially, the weights are chosen such that probability of

choosing any destroy and repair method is equally likely. The functions updateMethodScores()

(line 24) and updateMethodWeights(score s) (line 27) simply update the method weights and

scores during the course of the algorithm. The former is updated after observing the changes in

objective function value (see Section 3.3), while the latter is updated using the scores obtained

after 100 iterations. The selection of the destroy and repair methods is controlled by the func-

tions selectDestroyMethod(weights ω) (line 12) and selectRepairMethod(weights ω) (line 14),

respectively. Each function takes the method weights as an argument. The actual removal and

reinsertion of the patients occurs in functions remove(x,N) (line 13) and repair(x,P ′) (line 15).

The set P ′ contains the patients which are first removed and subsequently reinserted.
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4. Computational results

In this section we test and compare the performance of the proposed metaheuristic on the set

of publicly available instances provided by Ceschia and Schaerf [11]5. These artificially generated

instances attempt to reflect reality and are divided into nine families of 50 instances. Each family

is characterized by a size (small, medium, or large) and a horizon length (short, mid, or long).

The size of the instance stipulates the number of departments, the number of rooms, the number

of features, and the number of specialisms, while the horizon length indicates the number of days

in the planning horizon. In particular, the short instances consider 14 days, the mid instances

look at 28 days, and the long instances include 56 days. The number of patients in an instance

depends on the horizon length; it doubles if the horizon length doubles. An overview of the

instance families is provided in Table 3. Comparing the performance of our algorithm on the same

data sets as those used in Ceschia and Schaerf [11] allows us to not only conclude something about

the efficiency of the proposed algorithm, but also to benchmark the quality of the results obtained

using the SA approach of Ceschia and Schaerf [11].

The ALNS framework is programmed in C++, and all experiments have been performed on a

dedicated Intel(R) Xeon(R) CPU X5550 @ 2.67GHz with 24 gigabytes of main memory running

Ubuntu Linux version 14.04. The framework has several parameters. We omit an extensive

discussion on the parameter tuning of the algorithm here, and simply state that the best parameter

values are obtained through a direct comparison of the average objective value (together with its

standard deviation) for multiple runs of the algorithm over a range of initially specified values for

each parameter. The chosen values for each parameter are the following: Tstart = 30, Tend = 0.5,

e = 1.5, and α = 0.5. Depending on the instance size, the parameter ξ is equal to 0.3 (small), 0.2

(medium), or 0.075 (large). The reaction factor γ is set to 0.1, and the weights on the relatedness

measures are %1 = 4, %2 = 3, %3 = 2, and %4 = 1, respectively. We reward routines that produce

solutions that are accepted with scores of σ1 = 25, σ2 = 15, and σ3 = 5, respectively. Finally, the

randomness factor for worst removal, β, is set to 0.2.

Family Instances Departments Rooms Features Patients Specialisms Days

small-short 50 4 8 4 50 3 14
small-mid 50 4 8 4 100 3 28
small-long 50 4 8 4 200 3 56

medium-short 50 6 40 5 250 10 14
medium-mid 50 6 40 5 500 10 28
medium-long 50 6 40 5 1000 10 56

large-short 50 8 160 6 1000 15 14
large-mid 50 8 160 6 2000 15 28
large-long 50 8 160 6 4000 15 56

Table 3: Instance overview

The results for each of the instance families are summarized in Table 4. Each instance of each

5Available at http://satt.diegm.uniud.it/projects/pasu/ and last accessed on August 18th, 2016.
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family has been run 10 times, and each row of the table provides descriptive statistics for the

50 instances which comprise the family. Comparing to the results in Ceschia and Schaerf [11],

for each family we report the largest improvement of any instance, the worst improvement of

any instance, and the average improvement (all three given as a percentage). We also report the

number of feasible solutions found by both approaches (CS refers to the approach in [11], while

ALNS refers to the approach presented in this paper). For the ALNS approach we also report, in

parentheses, the number of instances for which it produced a new best known solution. Finally,

we also report the average time taken to solve each family size, as well as the average time taken

to solve a day of the planning horizon (both in seconds). The latter is simply the average time

divided by the number of days in the planning horizon. Note that in Ceschia and Schaerf [11] all

tests were run on an Intel Core i7 @ 1.60 GHz. We estimate that this is a factor 1.8 times slower6

than our processor. To account for this difference and allow an accurate comparison between the

two algorithms we therefore also report adjusted times (Adj.) in Table 4.

Improvement (%) Solutions Time (s)
Family Best Worst Avg. CS ALNS Avg. Per Day Adj.

small-short −16,54 5,11 −1,35 50 50 (27) 2,11 0,15 3,80
small-mid −3,57 12,46 1,27 50 50 (13) 8,55 0,31 15,39
small-long −4,81 7,02 1,74 49 50 ( 8) 39,52 0,71 71,14

medium-short −6,99 3,37 −0,51 50 50 (25) 61,84 4,42 111,31
medium-mid −5,37 2,72 −0,48 47 49 (31) 273,69 9,77 492,64
medium-long −4,30 2,95 −1,25 49 50 (41) 1384,60 24,73 2492,28

large-short −7,56 −0,24 −3,46 48 48 (48) 2252,28 160,90 4054,10
large-mid −16,00 −0,55 −8,06 49 49 (49) 5346,35 190,94 9623,43
large-long −21,95 −7,16 −13,90 48 49 (49) 22 407,49 400,13 40 333,48

Table 4: Summary of results on benchmark instances

Three noticeable trends can be observed from the results in Table 4. The first is that the ALNS

approach appears to perform better the larger the instance size gets. For all instances, other than

the small instances, the ALNS algorithm finds, on average, better quality solutions. In some

cases the improvement is substantial. For example, on the large-long family we report objective

values that are up to 22% better in some cases and on average 14% better. Furthermore, on the

large-long instances we find new best known solutions for all instances. The second obvious

trend is that the computation time drastically increases as the problem size grows. The solution

times range from seconds on the small-short instances to hours on the large-long instances.

A run time of 60 seconds per day of the planning horizon is permitted by Ceschia and Schaerf

[11]. No artificial time limit is imposed in our algorithm. The results for the small and medium

families adhere to this (even considering the adjusted run times); however, the same is not true

for the large families. In the worst case, i.e. the large-long, the algorithm spends nearly seven

minutes per day. It was a conscious decision not to enforce an artificial limit as we wanted to

6According to http://www.cpubenchmark.net, viewed on 21.06.2016, our processor has a benchmark of 5416,
while that used in Ceschia and Schaerf [11] has a rating of 3049.
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verify the quality of the solutions proposed in Ceschia and Schaerf [11]. It is not trivial how best

to enforce the 60 second limit per day. Should all days have the same limit? Or should the days

early in the time horizon be allocated more time? Naturally, the daily problems get easier to solve

towards the end of the horizon as the number of registered patients decreases. Also, 60 seconds

per day, irrespective of problem size, seems rather unrealistic. There are significantly more feasible

solutions for the large-long instances than the medium-long instances. As such, a 60 second

limit seems too general. Regardless of time limits, we have shown that solutions obtained on the

large-long instances by Ceschia and Schaerf [11] can, in some cases, be significantly improved

in terms of objective value. Finally, the third observation is that the ALNS approach is always

at least as good at finding feasible solutions as the approach by Ceschia and Schaerf [11]. For

example, on the medium-mid instances the ALNS approach finds a feasible solution on 49 of the

50 instances, while the approach by Ceschia and Schaerf [11] finds 47.

ALNS∗ CS∗ ALNS (Avg.) CS (Avg.) ∆ Best ∆ Avg.

small-short 2694,26 2723,02 2763,82 2761,07 −1,06 0,10
small-mid 6119,52 6058,18 6269,55 6165,21 1,01 1,69
small-long 12 394,14 12 179,73 12 627,70 12 383,17 1,76 1,97

medium-short 12 350,88 12 398,46 12 658,08 12 662,78 −0,38 −0,04
medium-mid 26 617,96 27 670,66 27 107,11 27 203,34 −0,53 −0,35
medium-long 61 816,90 62 616,82 62 530,64 63 483,94 −1,29 −1,43

large-short 38 931,65 40 302,35 39 589,10 41 099,36 −3,40 −3,67
large-mid 100 436,55 108 864,84 101 773,81 111 176,49 −6,51 −8,46
large-long 192 537,25 223 225,35 195 431,73 227 118,07 −13,75 −13,95

Table 5: Summary of best and average solutions on benchmark instances

Similar observations can be seen in Table 5. As a means to directly compare our metaheuristic

(ALNS in the table) to that of Ceschia and Schaerf [11], we compute two different average objective

values for both approaches across the 50 instances of each family. The first gives the average best

objective value (*), while the second refers to the average of the mean objective values (Avg.).

Recall that each instance is solved 10 times. The table also reports the percentage change between

the best solutions and the average solutions for the two different methods (∆ Best and ∆ Avg.).

Table 5 shows that the best objective value is around 0.5% to 14% better, while the same is true

for the mean objective values. For the large families the fact that the ALNS approach is better

on average, compared to the best solution, indicates that the method consistently finds good

solutions. For the small instances the solutions provided by the two approaches are comparable;

however, the ALNS provides them in a fraction of the time. The apparent improvement on

the small-short family is, however, somewhat misleading. This is due to the ALNS approach

producing a significantly better solution on one of the instances (approximately 16.5% better).

Finally, all solutions have been validated using the publicly available solution validator provided

by Ceschia and Schaerf [11]7. This validator takes the solution for a given instance as input (i.e.

7Available online at https://bitbucket.org/satt/pasu-instances/raw/master/validator.cc and last ac-
cessed on August 18th, 2016.
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the room assignment for each patient) and computes an objective value for the solution based

on the definition of the problem by Ceschia and Schaerf [11]. Our results are therefore directly

comparable to those of Ceschia and Schaerf [11] and our best found solution for each instance is

available online at http://www.ms.man.dtu.dk/Research/Instances.

5. Conclusions

In this paper we have devised a metaheuristic for the DPAS problem. The method uses a SA

framework and the ALNS procedure. This has resulted in an efficient and flexible method that

can solve problems of different sizes and with different time horizons. For small problems solutions

are found within 40 seconds, while for medium sized instances solutions are obtained within 25

minutes. Larger instances take somewhat longer, on average a few hours. However, it should be

stressed that in reality the time taken to solve the problem on a given day of the planning horizon

is more relevant since in a dynamic setting the problem only needs to be solved on a daily basis.

For this, the times are much shorter, fractions of a second for the small instances and up to around

seven minutes for the larger instances are needed. In most cases our method is superior to the

method suggested by Ceschia and Schaerf [11]. For the large instances we report improvements

in the range of 3-14% on average, but as large as 22% for individual instances. The taken to find

these results is, however, significantly longer than the time limit which is granted to the method

in Ceschia and Schaerf [11]. In the worst case, this is on average an increase by a factor of 12.

Furthermore, the proposed approach finds solutions to more instances than Ceschia and Schaerf

[11]. Out of the 450 instances used in the computational experiments the ALNS approach finds a

feasible solution to 445 of them, five more than the method proposed in Ceschia and Schaerf [11].

If this work should be brought closer to a real-life implementation it is necessary to reduce run-

ning times for the large instances in order to get a tool that could work within the planning cycles

seen at hospitals. Furthermore, ideas from the mathematical programming could be integrated

into the heuristic framework in order to derive a matheuristic method.
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Appendix A. Notation

Table A.6 lists all introduced sets and subsets. Table A.7 lists all parameters for the described

models. Table A.8 provides a list of all decision variables for the described models. Table A.9

summarizes the parameters for the algorithms described in the paper.

Set Description
P = {1, . . . , P}, the index set of all patients
D = {1, . . . , D}, the index set of all days in the problem
R = {1, . . . , R}, the index set of all rooms.
Pd ⊆ P, the subset of patients which can be admitted on day d ∈ D.
Dp ⊆ D, the subset of days in which patient p ∈ P can be admitted into the

hospital i.e. the potential set of first days at the hospital for the patient.
Rp ⊆ R, the subset of rooms which are feasible for patient p ∈ P
RSG ⊆ R, the subset of rooms which are gender segregated.
F ⊆ P, the subset of patients which are female.
M ⊆ P, the subset of patients which are male.

Table A.6: List of sets

Parameter Description
dregp ∈ D, the day on which patient p is registered in the hospital’s administrative

records.
dplanp ∈ D, the day on which patient p is expected to be admitted to the hospital.
dmaxp ∈ D, the last possible day patient p can be admitted.
lp the length of stay for patient p ∈ P corresponding to the number of nights the

patient has to be admitted.
Op ∈ {0, 1}, overstay risk for patient p ∈ P, which is equal to 1 if and only if

patient p has a risk of staying one day longer than the length of stay lp.
κr the capacity (i.e. the number of beds) of room r ∈ R.
cpr the daily cost of admitting the patient p ∈ P into the room r ∈ R. If patient

p and room r are not compatible then cpr =∞.
cG the cost per day a gender-segregated room (i.e. following the SG policy) in-

cludes patients of both genders.
cD the cost per day of delaying a patient.
cO the unit overcrowd cost for having potentially more patients in the room than

the room’s capacity.
cT the cost of a transfer.

Table A.7: List of model parameters
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Variable Description
xprd ∈ {0, 1}, is equal to 1 if patient p ∈ P occupies a bed in room r ∈ R on the

night following day d ∈ D. The variable is fixed to zero for all days in which
the patient cannot be present at the hospital i.e. xprd = 0 if r /∈ Rp or if the
day d is either before dplanp or after dmax

p + lp − 1.
xprd ∈ {0, 1}, is equal to 1 if the patient p ∈ P may occupy a bed in room r ∈ R

on the night following day d ∈ D after planned discharge (i.e. stay one day
longer than anticipated) due to the overstay risk.

ypd ∈ {0, 1}, is equal to 1 if patient p ∈ P is admitted into the hospital on day
d ∈ D. The variable is fixed to zero for all days in which it is not possible to
admit patient p i.e. ypd = 0 for all d /∈ Dp.

tpd ∈ {0, 1}, is equal to one if patient p ∈ P is transferred from one room to
another from day d− 1 ∈ D to day d ∈ D. For day 1 we define tp1 = 0.

frd ∈ {0, 1}, is equal to 1 if at least one female is occupying a bed in room r ∈ R
on day d ∈ D.

mrd ∈ {0, 1}, is equal to 1 if at least one male is occupying a bed in room r ∈ R
on day d ∈ D.

brd ∈ {0, 1}, is equal to one if both genders are present in room r ∈ R on day
d ∈ D.

zrd ≥ 0, measures the number of potential patients beyond the capacity, κr (i.e.
the overcrowd), the room r ∈ R may have due to patients with overstay risk.

Table A.8: List of decision variables
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Parameter Description
Ad = |Pd|, the number of active patients on day d ∈ D.
T the current temperature in the SA.
Tstart the initial temperature of the SA.
Tend the ending temperature for which the SA is terminated.
α the cooling factor of the SA.
ρacc the acceptance probability of the SA.
I the index set of repair methods for the ALNS.
J the index set of destroy methods for the ALNS.
H = I ∪ J the joined set of repair and destroy methods for the ALNS.
wh the weight given to method h ∈ H.
πh the probability of choosing method h ∈ H.
sh the accumulated score given to method h ∈ H.
vh the number of times method h ∈ H has been chosen.
σ the additional score given to a method if chosen. It takes the value of either

0, σ1, σ2, and σ3.
σ1 if the new solution is the best observed so far.
σ2 if the new solution is better than the previous solution.
σ3 if the new solution is accepted but no better than the previous solution.
niter the number of iterations over which the evaluation of the methods is performed

(the weights wh are recalculated each niter iteration).
γ the reaction factor of the weights of the ALNS.
N the number of patients removed and subsequently reinserted in ALNS.
ξ is the percentage of active patients which can maximally be removed in an

iteration of the ALNS.
pj the j’th patient in a sorted list of patients where j = 1, . . . , Ad for d ∈ D.
β a randomization factor.
reli(p1, p2) the i’th measure of relatedness between patients p1 and p2, (i = 1, 2, 3, 4)
%i a value indicating the relative importance of relatedness measure i.
vkp the regret cost of inserting patient p ∈ P in his/her k’best room compared to

his/her best possible room.
ntrials the number of trials performed for each temperature of the ALNS algorithm.
e a parameter influencing the number of trials to perform (ntrials = e ·R).
n the number of patients to remove in the Worst Removal destroy method.

Table A.9: List of algorithm parameters
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