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Abstract

Objective—This study aims at developing and introducing a new algorithm, called direct causal 

learner (DCL), for learning the direct causal influences of a single target. We applied it to both 

simulated and real clinical and genome wide association study (GWAS) datasets and compared its 

performance to classic causal learning algorithms.

Method—The DCL algorithm learns the causes of a single target from passive data using 

Bayesian-scoring, instead of using independence checks, and a novel deletion algorithm. We 

generate 14400 simulated datasets and measure the number of datasets for which DCL correctly 

and partially predicts the direct causes. We then compare its performance with the constraint-based 

path consistency (PC) and conservative PC (CPC) algorithms, the Bayesian-score based fast 

greedy search (FGS) algorithm, and the partial ancestral graphs algorithm fast causal inference 

(FCI). In addition, we extend our comparison of all five algorithms to both a real GWAS dataset 

and real breast cancer datasets over various time-points in order to observe how effective they are 

at predicting the causal influences of Alzheimer’s disease and breast cancer survival.

Results—DCL consistently outperforms FGS, PC, CPC, and FCI in discovering the parents of 

the target for the datasets simulated using a simple network. Overall, DCL predicts significantly 

more datasets correctly (McNemar’s test significance: p ≪ 0.0001) than any of the other 

algorithms for these network types. For example, when assessing overall performance (simple and 

complex network results combined), DCL correctly predicts approximately 1400 more datasets 

than the top FGS method, 1600 more datasets than the top CPC method, 4500 more datasets than 

the top PC method, and 5600 more datasets than the top FCI method. Although FGS did correctly 
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predict more datasets than DCL for the complex networks, and DCL correctly predicted only a 

few more datasets than CPC for these networks, there is no significant difference in performance 

between these three algorithms for this network type. However, when we use a more continuous 

measure of accuracy, we find that all the DCL methods are able to better partially predict more 

direct causes than FGS and CPC for the complex networks. In addition, DCL consistently had 

faster runtimes than the other algorithms. In the application to the real datasets, DCL identified 

rs6784615, located on the NISCH gene, and rs10824310, located on the PRKG1 gene, as direct 

causes of late onset Alzheimer’s disease (LOAD) development. In addition, DCL identified ER 
category as a direct predictor of breast cancer mortality within 5 years, and HER2 status as a direct 

predictor of 10-year breast cancer mortality. These predictors have been identified in previous 

studies to have a direct causal relationship with their respective phenotypes, supporting the 

predictive power of DCL. When the other algorithms discovered predictors from the real datasets, 

these predictors were either also found by DCL or could not be supported by previous studies.

Conclusion—Our results show that DCL outperforms FGS, PC, CPC, and FCI in almost every 

case, demonstrating its potential to advance causal learning. Furthermore, our DCL algorithm 

effectively identifies direct causes in the LOAD and Metabric GWAS datasets, which indicates its 

potential for clinical applications.
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1. Introduction

In medical applications, we often identify variables that are associated with diseases or 

outcomes. For example, in genome wide association studies (GWAS) we look for single 
nucleotide polymorphisms (SNPs) that are associated with a particular disease. A SNP 

results when a nucleotide that is typically present at a specific location on the genomic 

sequence is replaced by another nucleotide [1]. These high dimensional GWAS datasets can 

concern over a million SNPs. By looking at single-locus associations, researchers have 

identified over 150 risk loci associated with 60 common diseases and traits [2-4]. However, 

most of these studies do not identify actual causative loci. For example, a locus could be 

associated with the disease due to linkage disequilibrium. Jiang et al. [5] analyzed a late 

onset Alzheimer’s disease (LOAD) GWAS dataset, and discovered that both APOE and 

APOC1 are strongly associated with LOAD. However, these genes are in linkage 

disequilibrium. Although it is well-known that APOE is causative of LOAD [6], without 

further analysis we cannot say whether this dataset supports that APOC1 is also causative of 

LOAD. As another example, Curtis et al. [7] developed and analyzed the Metabric breast 

cancer dataset, which contains data on breast cancer patients, genomic and clinical features 

of those patients, and survival outcomes. They found, for example, that tumor size, the 

number of positive Lymph nodes, and tumor grade are all associated with breast cancer-

related death. However, perhaps tumor size is associated with survival outcome only due to 

its association with grade. If we can further analyze such datasets to identify the direct 

causal influences, it would be helpful both at the level of understanding the mechanisms of 
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disease initiation and propagation, and at the level of patient treatment (i.e. develop and 

provide treatments that address the causes).

Bayesian networks (BNs) are an effective architecture for modeling causal relationships 

from passive observational data. Passive observational data is collected without controlling 

for factors or perturbing the system in question. In contrast, experimental data involves a 

researcher’s intervention to either control for factors, such as a treatment given or subject 

groups. Observational data and experimental data are both collected objectively but the 

former does so in an uncontrolled setting (not subject to controlled experimentation) making 

it traditionally more difficult to determine causality [8].

We developed a new algorithm, direct causal learner (DCL), for learning causal influences, 

which concentrates on learning the direct causes of a single target using Bayesian-scoring 

rather than independence checks. We applied the algorithm to 14,400 simulated datasets, a 

GWAS LOAD dataset that concerns disease status (present or absent) [6], and to the 

Metabric breast cancer datasets that concern breast cancer survival outcome over various 

time-points [7]. We compared the performance of our DCL algorithm to the constraint-based 

path consistency (PC) and conservative PC (CPC) algorithms, the score-based fast greedy 

search (FGS) algorithm, and the partial ancestral graphs (PAGs) algorithm fast causal 

inference (FCI), which are all implemented in the Tetrad package [9].

2. Methods

2.1. Overview of BNs

Since our algorithm concerns BNs, we first review them. BNs [10-12] are increasingly being 

used for uncertainty reasoning and machine learning in many domains including biomedical 

informatics [13-18]. A BN consists of a directed acyclic graph (DAG) G = (V, E), whose 

nodeset V contains random variables, whose edges E represent relationships among the 

variables, and whose conditional probability distribution of each node X ∈ V is given for 

each combination of values of its parents. Each node V in a BN is conditionally independent 

of all its non-descendants given its parents in the BN. Often the DAG in a BN is a causal 

DAG [11]. Figure 1 shows a BN modeling relationships among variables related to 

respiratory diseases.

Using a BN, we can determine probabilities of interest with a BN inference algorithm [11]. 

For example, using the BN in Figure 1, if a patient has a smoking history (H = yes), a 

positive chest X-ray (X = pos), and a positive CAT scan (CT = pos), we can determine the 

probability of the patient having lung cancer (L = yes). That is, we can compute P(L = yes∣ 
H = Yes, X = pos, CT = pos). Inference in BNs is NP-hard. So, approximation algorithms 

are often employed [11]. Additionally, learning a BN from data concerns learning both the 

parameters and the structure (called a DAG model).

2.2. Constraint-based pattern learning

In constraint-based structural learning, a DAG is learned from the conditional 

independencies suggested by the data [11]. The best known example of a structural learning 

algorithm which applies a standard statistical method to find variable dependencies is the 
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inductive causation (IC) algorithm, of which the PC algorithm is a refined version [19]. All 

constraint-based learning algorithms share a similar three-step process based on the IC 

algorithm. The first step is to learn the Markov blanket of each node in order to reduce the 

number of possible DAGs. Once all the Markov blankets have been learned, they are 

checked for symmetry—if node X is an element of the Markov blanket for node Y, then 

node Y is also an element of the Markov blanket for node X. Asymmetric nodes are then 

removed from each corresponding node’s Markov blanket. The second step learns the 

neighbors of each node in the DAG, identifying the arcs connecting pairs of nodes but not 

their directions. With the exception of the PC algorithm, all other constraint-based 

algorithms enforce symmetry of the neighbors found. The last step then learns the arcs’ 

directions [20].

The PC algorithm, one of the classic constraint-based algorithms in causal discovery, 

assumes that the data’s underlying causal structure is an acyclic graph and contains no latent 

or unmeasurable variables [21]. PC allows for the specification of a maximum number of 

parent nodes to reduce the structural learning task’s complexity. Furthermore, PC employs a 

chi square test to check for independence. The chosen test relies on a pre-specified 

significance level to learn edges and construct the underlying BN. The PC algorithm tends to 

output false positive bidirectional edges between pairs of nodes, which indicate uncertainty 

in their causal relationship, on small samples. Additionally, it is unstable when an error 

occurs in the early stages of search because it can have a sequential effect on the next 

iteration of search and can, in turn, result in an extremely different graph than the actual 

underlying graph representing the data [22].

Conservative PC (CPC), which is a modified version of the PC algorithm, runs under the 

same assumptions but determines causal relationships in a much more cautious manner than 

PC [23]. CPC, unlike PC, avoids the tendency to produce many false positives because of its 

more faithful causal relationship conditions. However, CPC performs the same steps as PC 

to learn the data’s underlying structure if the data set is large enough. The runtime of CPC is 

very similar to that of PC.

2.3. Constraint-based learning for PAGs

A Pattern, also known as a Partial DAG or essential graph, is an equivalence class of a DAG, 

meaning, by definition, every element in a Pattern represents the same set of conditional 

independence assertions [24]. On the other hand, a PAG represents an equivalence class of 

Maximal Ancestral Graphs, which is a mixed graph (directed and undirected edges) that 

contains no directed cycles or almost directed cycles (ancestral) and no inducing paths 

between any two non-adjacent variables (maximal) [25]. Unlike traditional graphical 

models, ancestral graphical models are able to represent data that may involve latent 

confounders and/or selection bias [25].

The fast causal inference (FCI) algorithm, a constraint-based learning algorithm for PAGs, 

assumes that the underlying causal network is represented by a DAG, similar to the PC 

algorithm’s assumption, but allows discovery of a model with latent common causes [8]. 

The FCI algorithm begins with a complete undirected graph of the variables in the data and 

then deletes edges between non-adjacent vertices. Then the algorithm determines the 
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directionality of the edges and finally deletes edges to remove any existing d-separations 

within the graph. FCI produces a partially oriented inducing path graph over the data’s 

variables but, since the algorithm is not complete, we do not know if it produces a 

maximally informative partially oriented inducing path graph in every case [8]. The FCI 

algorithm is feasible in datasets with a large number of features if the true graph is sparse 

and there are not many bidirectional edges.

2.4. Score-based pattern learning

Score-based learning, with respect to constraint-based learning, has often been found to be 

more effective in learning the network structure from data [11]. In score-based structural 

learning, we assign a score to a DAG based on how well the DAG fits the data. Cooper and 

Herskovits [26] introduced the Bayesian score, which is the probability of the data given the 

model G. A popular variation of the Bayesian score is the Bayesian Dirichlet equivalent 

uniform (BDeu) score [27], which allows the user to specify priors for the conditional 

probability distributions using a single hyperparameter α, called the prior equivalent sample 

size. That score is as follows:

(1)

where ri is the number of states of node Xi, qi is the number of different instantiations of the 

parents of Xi, and Sijk is the number of times in the data that Xi took its k th value when the 

parents of Xi had their j th instantiation. The BN learning problem is NP-hard. So, heuristic 

search algorithms are often used [11].

The fast greedy search (FGS) algorithm is a modified version of the classic greedy 

equivalence search (GES) algorithm, which is a score-based structural learning methods. 

GES defines a scoring function and greedily maximizes the score by first adding and then 

removing one edge at a time to evaluate how well a BN model fits the data [28, 29]. The 

GES algorithm, as implemented by David Chickering, performs well in real-world complex 

problems, such as analyzing television viewer behavior and internet usage [28]. However, its 

scoring process is extremely redundant and adding n edges to the graph is cubic with respect 

to the number of variables, even in which the degree of the model is bounded. If the degree 

of the model is not well bounded, the operation of adding a single edge will be an 

exponential time complexity and is impractical when there are a large number of variables in 

the data.

The FGS algorithm improves upon GES’s scalability issues; adding and scoring of the first 

edge, which is a very expensive step especially for large models, is quadratic in FGS but 

adding additional edges is linear in the number of variables, enabling the FGS algorithm to 

run much faster than the GES algorithm. In addition, the scoring of the algorithm has been 

sped up through parallelization of particular steps that do not rely on the order in which 

operations are performed [30]. These improvements lead to faster runtimes and more 

accurate learning in highly complex datasets. We used Tetrad’s command line interface to 
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run the FGS algorithm, which analyzes discrete variables using a discretely analyzable 

score, such as the BDeu Score.

2.5. A new algorithm for identifying direct causal influences

Our new algorithm, which is designed to discover direct causes of a single pre-specified 

target and use Bayesian-scoring, follows:

Direct_Causal_Learning(DCL)

 procedure remove_ parents(var PA);

i = 0;

repeat

  for each Y∈PA

   S = set of all sets A∈ PA{Y} such that | A|= i ; // S contains the empty set Ø when i = 0;

   A = first set in S;

   while A is not null and Y ∈ PA // A is null if there are no sets in S.

     B = A ∪ {Y};

   if deleting some node from B increase score(B;Z)

    X = node whose deletion increases score the most;

    if Y = X

     remove Y from PA;

    endif

   endif

   A = next set in S; // A is null if there are no sets left in S.

  endwhile

 endfor

 i=i + 1;

until | PA |≤ i or i > R;

Procedure remove_parents removes indirect causes from PA. When i = 2, it checks each two 

cause model of the form X→Z←Y. If deleting any parent node from this model increases 

the score, we delete the parent such that the deletion increases the score the most. Variable Y 
is deleted if and only if there is no edge from Y to Z in the BN model containing the three 

variables (based on the data). This is the case if and only if X shields Y from Z. By “shield” 

we mean Y and Z are conditionally independent given X. Next we check each model with 

three parents (i=3) X, Y, and W of Z. Again if deleting any parent node from this model 

increases the score, we delete the parent such that the deletion increases the score the most. 

Variable Y is deleted if and only if there is no edge from Y to Z in the BN model containing 

the four variables (based on the data). This is the case if and only if X and W together shield 

Y from Z. We continue in this manner until we have exhausted all possible subsets of PA or 

until we have checked subsets of size R+1, where R is the assumed maximum number of 

variables shielding and variable from Z.
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3. Experiments

3.1. Simulated data

We developed two simple and two complex BNs, all of which have a single target T, and 

generated 6 different parameterizations for each network. Figure 2 shows one of the simple 

and one of the complex structures. For each simple structure, we generated six non-random 

parameterizations based on a weak-strong schedule. This schedule designated six separate 

models that vary the strength of the direct and indirect nodes’ relationships to the target. In 

these models, the direct nodes had either a strong or weak relationship to the target and the 

indirect nodes had either a strong, weak, or mixed, meaning a combination of strong and 

weak, relationship to the target. A weak relationship relative to variable X is one in which 

the conditional probabilities specified for X are close in value, while a strong relationship is 

one in which the conditional probabilities specified for X vary considerably. We named all 

direct nodes as Z, Y, X … and all indirect nodes as P1, P2, P3… As for the complex 

networks, we used TETRAD to randomly generate 6 sets of parameters for each of the 

complex network structures. We used Hugin Expert’s data simulation function along with its 

Java application programming interface (API) to implement a mass data generation program, 

which uses each network parameterization as an input, to generate a pre-specified number of 

datasets corresponding to the input network parameterization and pre-specified case size.

For each parameterization we generated 100 datasets with 300, 600, 1200, 2400, 4800, and 

9600 cases. This makes a total of 6 x 6 × 100 = 3600 datasets for each BN and a total of 

14,400 datasets for all four networks (Supplementary Information S1 provides more details 

on how the datasets were generated).

We used the BDeu [27] score in the DCL algorithm, which has a score parameter α called 

the prior equivalent sample size. We ran DCL with BDeu α = 1, 9, 15, 54, and 108. 

Similarly, the PC, CPC, and FCI algorithms have a significance parameter β. We ran the 

each of these algorithms with significance β = 0.01, 0.05, 0.1, and 0.2 (Note: PC, CPC, and 

FCI call the parameter α, but we do not want to confuse it with BDeu α). We ran FGS with 

sample prior (smp) = {1, 2} and structure prior (stp) = {1, 2}, leading to four different 

learning methods.

The accuracy was analyzed in two ways. The first way, called Exact Correct (EC), provides 

the number of datasets for which the method discovered the direct causes exactly. That is, all 

true direct causes were discovered, and no other causes were discovered. EC was calculated 

separately for every 100 datasets of a particular case size and parameterization. The second 

method uses the Jaccard Index (JI), which is as follows:

This index is 1 if the two sets are identical and is 0 if they have no items in common. For 

each data set, we computed the JI of the set of true causal parents with the set of learned 

causes. The JI penalizes a scoring method for including additional, incorrect predictors but 

rewards a scoring method for predicting some, if not all, of the correct predictors.
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We also measured the average runtime of each method by averaging all 1200 (all six 

parameterizations for two networks) runtimes for each case size and then calculated a total 

runtime by finding the sum of these six average runtimes.

3.2. Real data

3.2.1. LOAD dataset—We ran DCL, FGS, PC, CPC, and FCI on a LOAD dataset 

(312,316 SNPs and 1,411 samples) developed by Reiman et al. [6] in order to discover the 

causal influences of LOAD and compare the predictors found among the algorithms. The 

LOAD dataset was pre-processed and had APOE ε4 carrier status added. Before running the 

algorithms, we checked the association of each individual SNP with the disease using a chi-

square test, and kept those SNPs with p-values < 0.0001 (no Bonferroni correction used). We 

then ran all five algorithms with these selected SNPs with LOAD status specified as the 

target.

3.2.2. Metabric dataset—We developed six clinical datasets that predict 5-year, 10-year, 

and 15-year breast cancer survival and overall breast cancer survival [7]. For each time-

point, there are two datasets: breast death and survival death. The former, breast death, 

contains only cases for breast cancer related morbidities along with those who survived, 

whereas survival death contains cases for all patients who died along with those who 

survived. The sample sizes for each of the six datasets are as follows: 5-year breast death 

(1645), 5-year survival death (1776), 10-year breast death (1146), 10-year survival death 

(1414), 15-year breast death (677), 15-year survival death (1026). The 13 predictors present 

in each of these six datasets are age at diagnosis, size, Lymph nodes position, overall grade, 
histological type, ER category, PR category, HER2 status, inferred menopausal status, 
overall stage, axillary nodes removed, P53 mutation status, and percent nodes positive. Since 

the Metabric dataset contained a moderate amount of missing values, we used multivariate 

imputation by chained equations (MICE) to impute these missing values (see Supplement 

for more information) [31]. We disregarded overall stage and P53 mutation status in all the 

datasets and overall grade in only the15-year breast survival death dataset since these 

predictors had too many missing values to be imputed (> 5%). A summary of the 

percentages of missing values and brief descriptions for the 13 predictors across all 6 

datasets can be found in the Supplementary Material (Tables S3 and S4). For each of the 6 

datasets, we ran DCL, FGS, PC, CPC, and FCI and a chi-square test. The MICE imputation 

and chi-square feature selection were performed using R (version 3.2.3) [32].

3.3. Selecting algorithm parameters

In our summary tables, we included DCL scoring methods using α values of 1, 9, 15, 54, 

and 108 and PC, CPC, and FCI methods using β values of 0.01, 0.05, 0.1, and 0.2. Since the 

optimal parameters for each scoring method vary depending on the dataset, we first tested 

each scoring method using several different parameters on the 2400 case size datasets only, 

since nearly all of our real datasets had sample sizes between 1200 and 2400. We decided to 

choose the upper-bound so as to better isolate changes in performance with respect to 

changes in the parameters’ values, since it is commonly known that performance will 

increase with larger sample data. We then chose the aforementioned values based on their 
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performance and their coverage of values. Please refer to the Supplementary Material S1 for 

details.

The FGS algorithm has two parameters: smp, which is required for the Dirichlet prior 

distribution, and stp, which takes into account the number of parents of a variable in a model 

[33] We tested values between 1 and 4 for smp and stp on our simulated datasets. We 

observed that FGS performed optimally at an smp of 1 or 2 and an stp of 1 or 2.

4. Results

4.1. Simulated data results

4.1.1. EC—Table 1 shows the EC values for each method when analyzing the datasets 

concerning the simple networks. All five DCL learning methods outperformed PC, CPC, 

FGS, and FCI, with the best and worst DCL methods correctly predicting 4275 (DCLα=54, 

59.38%) and 3942 (DCLα=9, 54.75%) datasets. After DCL, FGS was the next leading 

learning method, which correctly predicted 2724 (FGSsmp2 stp2, 37.83%) datasets, followed 

by CPC, PC, and FCI, with each algorithm’s top learning method predicting 2580 

(CPCβ=0.1, 35.83%), 1166 (PCβ=0.01, 16.19%), and 54 (FCIβ=0.2, 0.75%) datasets correctly, 

respectively. When taking into account the strength of the direct predictors’ relationships to 

the target, all the DCL methods correctly predicted more datasets than any of the other 

learning methods. For example, in the case of the networks with strong direct predictor 

relationships to the target, the top non-DCL method correctly predicted 2560 (CPCβ=0.1, 

71.11%) datasets, whereas even the lowest performing DCL method, for these same strong-

networks, performed better by predicting 3032 datasets (DCLα=108, 84.22%) correctly. 

When we consider the EC values for the weak-networks, the relative results are similar; the 

best and worst performing DCL method in the weak networks correctly predicted 974 

(DCLα=108, 27.06%) and 250 (DCLα=1, 6.94%) datasets correctly, respectively, whereas the 

top non-DCL method was only able to predict 223 (FGSsmp2 stp2, 6.19%) datasets correctly.

When we look at Table 2, which shows the EC value for each learning method when 

analyzing the datasets concerning the complex networks, we see that FGS is actually the top 

method by predicting 1552 (FGSsmp2 stp2, 21.56%) datasets correctly and that the top DCL 

method follows closely by correctly predicting 1502 (DCLα=15, 20.86%) datasets. In fact, 

three FGS learning methods are in the top five performing algorithms for the complex 

networks. However, the top DCL method did outperform the best CPC method, which 

predicted 1434 (CPCβ=0.2, 19.92%) datasets correctly, and greatly outperformed the best PC 

and FCI methods, which correctly predicted only 13 (PCβ=0.2, 0.18%) and 10 (FCIβ=0.2, 

0.14%) datasets, respectively.

When we pooled the results from the simple and complex results, which are shown in Table 

3, we found that all five DCL learning methods outperformed the other methods, with the 

best and worst DCL methods predicting 5657 (DCLα=54, 39.28%) and 4393 (DCLα=1, 

30.51%) datasets correctly. On the other hand, the top FGS, CPC, PC, and FCI methods 

correctly predicted 4276 (FGSsmp2 stp2, 29.69%), 3966 (CPCβ=0.1, 27.54%), 1166 (PCβ=0.01, 

8.10%), and 64 (FCIβ=0.2, 0.44%) datasets correctly, respectively.
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4.1.2. JI—Since EC is a “black and white” method for evaluating accuracy, we decided to 

use the JI as a measure of how close each learning method was to discovering the direct 

causes of a target. For the simple networks (Table 4), we found that all five DCL methods 

were in the top five, with the best and worst DCL methods having total JIs of 5581.87 

(DCLα=54, 77.53%) and 5011.75 (DCLα=1, 69.61%), respectively. Furthermore, the total JIs 

for all five DCL methods were much higher than the best FGS, CPC, PC, and FCI methods, 

each of which had total JIs of only 3178.17 (FGSsmp2 stp2, 44.14%), 3172.25 (CPCβ=0.2, 

44.06%), 2284.13 (PCβ=0.1, 31.72%), and 487.38 (FCIβ=0.2, 6.77%), respectively.

For the complex network data (Table 5), we found all five DCL methods again having the 

best results, with the best and worst DCL methods having total JIs of 4869.41 (DCLα=15, 

67.63%) and 4441.28 (DCLα=1, 61.68%), respectively. The best CPC and FGS methods had 

JIs of 4185.19 (CPCβ=0.2, 58.13%) and 3951.18 (FGSsmp2 stp2, 54.88%), respectively, both 

of which are close to the lowest performing DCL method’s result, but the best PC and FCI 

methods’ JIs, which were 1035.18 (PCβ=0.2, 14.38%) and 768.32 (FCIβ=0.2, 10.67%), 

respectively, fell far behind the results of the other three algorithms.

The combined results in Table 6 once again show all five DCL methods in the top five, with 

the best and worst DCL methods having overall JIs of 10400.58 (DCLα=54, 72.22%) and 

9453.03 (DCLα=1, 65.65%), respectively. Similar to the results from the simple networks, 

the best CPC, FGS, PC, and FCI methods trailed far behind, each of which had overall JIs of 

7357.44 (CPCβ=0.2, 51.09%), 7129.34 (FGSsmp2 stp2, 49.51%), 3264.73 (PCβ=0.2, 22.67%), 

and 1255.71 (FCIβ=0.2, 8.72%).

4.1.3 Runtime—As mentioned before, we used two high-level characteristics, accuracy 

and runtime, to assess the performance of each scoring method. Accuracy has already been 

addressed with the EC and JI results. With respect to runtime, we found that for every 

analysis, DCL had, by far, the fastest runtime. The average runtimes, in seconds, for the 

fastest and slowest DCL method for the simple network datasets (Table S5) was 0.088 

(DCLα=1) and 0.181 (DCLα=108), respectively, whereas the fastest CPC, FGS, PC, and FCI 

methods were 4.522 (CPCβ=0.01), 7.418 (FGSsmp1 stp2), 4.991 (PCβ=0.01), and 4.483 

(FCIβ=0.05). Similar runtime performances were observed for the complex networks (Table 

S6), where the fastest and slowest average DCL runtimes were 2.410 (DCLα=1) and 5.487 

(DCLα=15), respectively, the latter of which was still faster than the quickest non-DCL 

methods: 7.627 (FGSsmp2 stp1), 8.806 (PCβ=0.01), 15.887 (CPCβ=0.01), and 10.326 

(FCIβ=0.01). Overall (Table S7), all five DCL methods were a great deal faster than any of 

the other learning methods. Additionally, when we separated the simple network results by 

direct predictor relationship strength (Table S8), we found DCL to once again have the 

fastest runtime among all the learning methods for the strong-datasets—0.096 (DCLα=1), 

4.708 (CPCβ=0.01), 5.565 (PCβ=0.01), 7.535 (FGSsmp1 stp2), and 4.432 (FCIβ=0.05)—and also 

among all the methods for the weak-datasets—0.077 (DCLα=9), 4.337 (CPCβ=0.01), 4.418 

(PCβ=0.01), 7.302 (FGSsmp1 stp2), and 4.535 (FCIβ=0.05).

4.1.4. Statistical comparison of the best scoring methods—In order to statistically 

compare our algorithm’s performance to that of FGS, CPC, PC, and FCI, we performed 

McNemar’s Test for paired nominal data on how many datasets the best scoring method for 
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each algorithm correctly predicted within each network type. When comparing the best DCL 

scoring method to that for the other four algorithms for the simple networks and overall, we 

consistently found a significant difference in accuracy (p ≪ 0.001), as shown in Table 7. 

However, in the complex networks, when we compared the best FGS method to the best 

DCL method, the former of which slightly outperformed the latter, we found that there was 

not a significant different in accuracy (p > 0.05) between FGS and DCL for the complex 

networks. We also found that there was no significant different in accuracy (p > 0.05) 

between DCL and CPC for the complex networks even though DCL correctly predicted 

more datasets than CPC. For PC and FCI, however, DCL performed significantly better in 

all the network types.

4.2. Real data results

4.2.1. LOAD dataset—Out of 312,316 SNPs and APOE ε4carrier status (1,411 samples) 

in the Reiman’s LOAD data, we narrowed down our list of predictors to 77 SNPs and APOE 

ε4carrier status using a chi-square test with a significant criterion of 0.0001. Then, we ran 

DCL with α = 1, 9, 15, 54, and 108 to learn which SNPs, from those selected using the chi-

square test, are directly causal of LOAD. Table 8 shows the discovered SNPs and their 

associated genes. APOE is a well-known genetic risk predictor of LOAD. The results from 

running DCL on the LOAD dataset found APOE at every alpha value. In addition, APOE 

had the highest BDeu score of any other SNP found as a predictor. At α values of 9, 15 and 

54, DCL predicted rs7335085, rs4356530, and rs4394475, found on Chromosomes 13, 17, 

and 9, respectively, as direct causes of LOAD. At alpha = 1 and 108, DCL discovered two 

new SNPs as direct causes that were not found at α = 15 or 54: rs6784615 and rs10824310. 

The former is located on the gene NISCH and the latter on the gene PRKG1 (cGMP-

dependent protein kinase type I).

We also ran FGS, PC, CPC, and FCI on the LOAD dataset. PCβ=0.01, PCβ=0.05, and PCβ=0.2 

all predicted APOE and each predicted rs732549 (chromosome 3), rs4356530 (chromosome 

17), and rs6094514 (EYA2), respectively, as direct causes of LOAD (Table 9). FCI at a beta 

value of 0.2 predicted just APOE. All the other learning methods were unable to find any 

predictors of LOAD.

4.2.2. Metabric dataset—We ran the chi-Square test with significance levels of 0.05 and 

0.01 on the six Metabric datasets. As shown in Table 10, the chi-Square test returned almost 

all the variables as significantly associated with breast cancer at a significant level of 0.05. 

Even when we reduced the significance level to 0.01, our list of predictors was only reduced 

by one or two variables. For example, in the results for the 10-year breast cancer death 

dataset, histological type and axillary nodes removed were significant only at a level of 0.05 

but not at 0.01. When we ran DCL on these datasets, we found a much shorter list of 

predictors. For example, with DCL, we found that Lymph nodes pos was found as a direct 

cause at every α value and for every dataset. In addition, there were some direct causes 

found that were unique to specific time points. For example, ER category was found by all 

the DCL learned methods for both 5-year datasets but was not present in the 10-year or 15-

year dataset. In the 10-year breast death dataset, HER2 status was found as a direct cause for 

every learning method except DCLα=1 but not found as a direct cause for any other dataset.
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When we ran FGS, PC, CPC, and FCI on the Metabric datasets (Table 11), we also found a 

smaller number of results than when we ran the Chi-Square test. However, the latter three 

algorithms found no predictors for a few of the datasets. Moreover, FCIβ=0.01 and FCIβ=0.05 

were unable to find any predictors across all the datasets. All the FGS learning methods 

found Lymph nodes pos for every dataset and the FCI, PC, and CPC methods that did learn 

predictors found only Lymph nodes pos in many cases. However, PCβ=0.2, CPCβ=0.1, and 

FCIβ=0.2 were able to find HER2 status as a predictor of 10-year breast cancer survival 

which DCL found. In addition, CPCβ=0.05 found PR category as a predictor for 5-year 

survival death and CPCβ=0.05, CPCβ=0.1, and CPCβ=0.2 all found Hormone as a predictor of 

the 15-year breast death dataset.

5. Discussion

5.1. Simulated data

In the majority of our analyses, the DCL algorithm is the most accurate causal discovery 

algorithm using the EC criterion. Viewing the overall performance of each scoring method, 

we find that the top DCL scoring method correctly discovers the exact causal influences in 

approximately 1400 more datasets than the top FGS method, 1600 more datasets than the 

top CPC method, 4500 more datasets than the top PC method, and 5600 more datasets than 

the top FCI method, while also having the highest EC value for each case size for the simple 

networks.

When we separated the simple network results based on direct predictor strength, we find 

that every DCL method, except DCLα=108, correctly predicts most, if not all, of the strong 

datasets at case sizes 1200 and above, whereas FGS, CPC, PC, and FCI were unable to 

correctly predict all the strong datasets for any case size. It is also surprising to see that 

many of the CPC methods perform better than FGS for the strong datasets since, overall, 

nearly all the FGS methods correctly predicted more datasets than even the top CPC method 

(CPCβ=0.1). For example, CPCβ=0.1 and CPCβ=0.05 correctly predicted more datasets than 

any of FGS methods at case sizes 600 and above, except at 2400 cases where CPCβ=0.1 only 

predicts more than FGSsmp2 stp1. However, CPC falls short of FGS for the weak direct 

predictors where it correctly predicted no more than 1% of the weak datasets whereas FGS 

and DCL, both of which performed expectedly worse in the weak datasets than in the strong 

datasets, were able to correctly predict 4% and 7%, of the weak datasets, respectively, in 

their least accurate methods. We also see that at every case size, DCLα=108 correctly 

predicted the most weak direct predictor datasets than any other method (see Supplement for 

more information on performance trends with varying alpha values). We also compared the 

highest scoring DCL method to the highest scoring FGS, CPC, PC, and FCI methods using 

McNemar’s test, and found that DCL significantly outperforms these four methods for the 

simple networks and overall.

Even though DCL outperforms FGS for the simple networks and overall, we do find that 

FGS slightly outperforms DCL for the complex networks according to the total number of 

correctly predicted datasets. This is consistent with what we know about the FGS algorithm. 

In our description of FGS, we mention that it performs very well with complex problems. 

However, if we look closely at the number of datasets correctly predicted across case size, 
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we find that the method correctly predicting the most datasets varies. At case sizes 300 and 

600, it is DCLα=15; at case sizes 1200 and 2400, it is FGSsmp2 stp2; and at case sizes 4800 

and 9600, it is CPCβ=0.1. Finding the predictors when the dataset is small is a much harder 

task since it is typically difficult to find real datasets with more than 1200 and 2400 cases, 

where even these can be quite uncommon. Thus, we find that DCL has a unique advantage 

in that it is able to correctly predict more datasets than either CPC or FGS at small case 

sizes. Ultimately, we find that the differences in performance between the best DCL, CPC, 

and FGS algorithms for the complex networks are not significant, meaning that, overall, 

these three algorithms perform similarly when given complex datasets.

DCL’s results according to JI are much better (relative to the EC results) as, for every 

network type, all five DCL methods have the highest total JIs. In addition, contrary to the EC 

results, the JI results show that CPCβ=0.2 performs almost as well as the best FGS method 

(FGSsmp2 stp2) for the simple networks and performs better than this method for the complex 

models and overall. Although CPC cannot correctly find all the predictors for the simulated 

datasets as well as FGS can, it does better than FGS in partially predicting them. For the 

complex networks, at every case size below 4800, a DCL method has the highest JI but at 

4800 and 9600, CPCβ=0.1 has the highest JI, similar to the EC results. This adds to our 

previous claim that DCL performs better than FGS or CPC at lower case sizes and also that 

CPC performs better than DCL or FGS at higher case sizes.

For the weak direct predictor datasets in the simple networks, all the DCL methods tend to 

discover nearly 50% of the predictors, whereas the best FGS and CPC methods are both only 

able to discover approximately 10% of the predictors. These results indicate that DCL is a 

substantial advancement in our ability to partially discover the causal influences of a target 

when the direct predictor strength is weak.

It is clear from our runtime results that the DCL algorithm is much faster than PC, CPC, 

FGS, and FCI regardless of the parameter or case size. With PC and CPC, there is a clear 

trend of slower runtimes with larger β values, but there does not seem to be a clear trend 

between DCL’s runtime and α since, in the complex networks and overall, DCLα=15 seems 

to be the slowest DCL method. However, the runtime of a DCL method may in fact be 

associated with its performance. For example, we can see from the EC and JI results that 

DCLα=15 found more predictors than any of the other DCL methods. Additionally, the 

runtime results show that all DCL methods take, on average, longer to run on the strong 

datasets than on the weak datasets even though we know DCL performs better on the former 

than the latter. Discovering more predictors may cause DCL to undergo additional loops, 

thereby increasing its runtime. This association between performance and runtime is also 

observed in the FCI runtime results. Since runtime by itself does not necessarily mean an 

algorithm is performing well, the combination of the fastest runtimes and, in almost all the 

cases, the most accurate results does show that DCL performs exceptionally well when 

compared to FGS, CPC, PC, and FCI.

5.2. Real data

5.2.1. LOAD dataset—DCL, PC, and FCI discovered several SNPs to be direct predictors 

of LOAD. Some of these SNPs, such as rs732549, rs4356530 and rs4394475, are not located 
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on specific genes, but are, more generally, found on chromosome 3, chromosome 17 and 

chromosome 9, respectively. The PC algorithm also predicted rs6094514, found on the gene 

of EYA2, as a direct cause of LOAD. However, there are no previous studies that indicate 

that these SNPs have an effect on LOAD so further study is necessary to investigate whether 

or not these SNPs are causally linked to Alzheimer’s disease. On the other hand, off the 

three SNPs found using DCLα=108, two of them are located on the noteworthy genes NISCH 

and PRKG1. Two previous studies have indicated that SNP rs6784615, found on NISCH, is 

associated with LOAD [34, 35]. Furthermore, many GWAS studies have found that PRKG1 

is also strongly associated with Alzheimer’s disease [36, 37]. In addition, other GWAS 

studies have found that PRKG1 (cGMP-dependent protein kinase type I) is associated with 

neurological diseases, such as onset age of Parkinson’s disease and attention deficit 

hyperactivity disorder [38, 39]. This is due to PRKG1’s role in regulating neocortical 

development, brain development, and signal transduction [40-42].

The SNP rs7115850, located on the GRB-associated binding protein 2 (GAB2) gene, has 

been reported to interact with the APOE gene to have a causal effect on LOAD [6, 43]. Our 

DCL algorithm did not identify any SNPs on GAB2 as direct causes for LOAD status, as no 

SNPs on GAB2, including rs7115850, were present in the 77 remaining SNPs after using a 

chi-square test with a significance criterion of 0.0001. We purposefully included rs7115850 

with the 77 SNPs and then ran the DCL algorithm again, but still found that rs7115850 was 

not identified as a direct cause of LOAD status. This result illustrates the limitations and role 

of the DCL algorithm. Previous research [6, 43] indicates that APOE and GAB2 interact 

epistatically to affect LOAD, but GAB2 has little marginal effect. Thus, GAB2 would be 

eliminated as a cause in the first iteration of the DCL algorithm. In general, the DCL 

algorithm does not discover a cause with little marginal effect but other causal discovery 

algorithms such as PC also have this same limitation. The DCL algorithm should be used 

synergistically with an interaction discovery algorithm. The latter algorithm would first 

discover interacting variables, and then each set of interacting variables would be 

transformed to a single variable before running the DCL algorithm.

SNP rs4420638 on APOC1 was the second highest scoring individual SNP after APOE in 

our previous study [43]. However, it was not discovered as a direct cause by DCL. This 

result indicates that it may not have a causal effect on LOAD, but rather its strong individual 

correlation with LOAD is due to its known linkage disequilibrium with APOE.

5.2.2. Metabric dataset—Table 9 shows the various direct causes of breast cancer 

survival status found by the DCL algorithm, and the predictors learned using chi-square test. 

We see that DCL found far fewer causes for each dataset and for each α than the number of 

predictors found using the chi-square test. In addition, the chi-square test found most if not 

all the variables to be predictors. These results speak to the precision of the DCL algorithm 

on real data. We see that there are direct causes, as found by DCL, that are distinct to 

specific datasets or specific time points. One such cause is ER Category, which is found in 

both 5-year datasets at all five BDeu α values. ER Category refers to the presence or absence 

(ER+ or ER-, respectively) of estrogen receptors found in breast cancer cells. According to 

previous studies, five-year survival is about 10 percent better for women with ER+ tumors 

than for those with ER- tumors. However, after five years, this survival difference begins to 
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decrease and may even disappear [24-25]. In addition, we find that HER2 status is found as 

a direct cause at every α value for the 10-year breast death dataset. HER-2 is a proto-

oncogene whose amplification in breast cancer has been associated with increased cell 

mortality, cell proliferation, tumor invasiveness, and additional oncogenic cell characteristics 

[44]. Some studies have shown that only about 60% of patients with HER-2 positive status 

invasive breast cancer are disease free after ten years, and about 65% survive overall 

[45-47]. However, patients with negative HER-2 status tumors tend to be disease free at a 

rate of 75% over ten years and have a slightly higher overall survival rate. As these findings 

suggest, HER2 status highly have a direct causal effect on breast cancer mortality, and, more 

so, within the first ten years of acquiring the illness. These previous findings not only 

substantiate the results of the DCL algorithm, but also highlight the potential DCL has in 

directing clinical research. The results of DCL give researchers a list of proposed direct 

causes to experimentally investigate, which could channel resources towards better 

understanding and possibly tailoring treatments to target the likely direct causes of a disease.

When we ran FGS, PC, CPC, and FCI on the Metabric datasets, we found FGS discovered 

only Lymph nodes pos across all the datasets and parameter combinations, which DCL also 

found across all the datasets and alpha values. This may indicate that Lymph nodes pos is a 

very strong predictor of breast cancer survival across all the time-points but because FGS is 

unable to learn any other predictors, it gives no additional insight into the predictors of 

breast cancer survival. Additionally, PC, CPC, and FCI learn no predictors for a large 

number of the datasets and beta values. In the cases where these three algorithms did learn 

predictors, a majority of the learned predictors are Lymph nodes pos or predictors that were 

also found by DCL. However, they do find HER2 status as a predictor, which agrees with the 

results from previous studies, in the 10-year Breast Death dataset. In contrast, DCL was able 

to find HER2 status at all alpha values, implying that DCL more confidently determines that 

HER2 status is a direct predictor of 10-year breast cancer survival. CPC does, in some cases, 

find predictors that DCL did not find. For example, CPC found PR category and Hormone as 

a predictor of 5-year and 15-year breast cancer survival, respectively, but we are unable to 

find previous literature to support these unique findings.

If we assume that the Metabric datasets can be represented by simple BNs, then, taking into 

account the results from the simulated datasets, DCL’s findings are the most reliable since it 

had the highest EC and JI for each case size. On the other hand, if we assume that the 

Metabric datasets are represented by complex BNs, then the results for FGS, CPC, and DCL 

could be considered the most reliable, and especially FGS and DCL since they performed 

the best for 600, 1200, and 2400 cases, which most closely resemble the sample sizes for the 

Metabric datasets. Since FGS is unable to find anything other than Lymph nodes pos, we can 

only confidently interpret the results of DCL and CPC in this case. However, DCL correctly 

and partially predicts more simulated datasets at case sizes close to the sample sizes of the 

Metabric datasets than CPC. In addition, every learning method for CPC found no predictors 

for at least two of the Metabric datasets, which may suggest that there are no predictors, but 

more likely suggests that CPC was unable to learn the predictors. Based on these 

comparisons, we believe that DCL has the highest potential among the learning methods we 

discuss to effectively learn direct predictors from real datasets.
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6. Conclusions

We compared DCL to PC and CPC, the classic constraint-based pattern search algorithms, 

FGS, another Bayesian-score-based pattern search algorithm, and FCI, a constraint-based 

PAG search algorithm. DCL performed significantly better on the simple network datasets 

than all of its counterparts but about equal to FGS and CPC on the complex network datasets 

when we consider the total number of datasets correctly predicted. However, at small case 

sizes, DCL performs better than FGS and CPC on complex datasets, which we consider to 

be a bigger achievement than performing well at large case sizes due to the abundance of 

small sample-sized real datasets. Additionally, when using a more continuous measurement 

(JI), we found that DCL performs much better than its counterparts, showing that it can 

partially discover predictors better than any non-DCL method. Furthermore, DCL had 

notably faster runtimes than its counterparts, indicating that it improves upon not only the 

accuracy of popular causal learning algorithms but also the computational speed.

When we applied DCL to a real Alzheimer’s disease dataset, we learned SNPs that were 

previously determined to have a strong link to LOAD. We also applied DCL to real breast 

cancer datasets across different time-points and learned clinical predictors proven to be 

directly causal of breast cancer survival for patients at these specific time-points. It is 

important to note, however, that DCL may not able to find every predictor known to be 

linked with the particular target and does find predictors that we are unable to verify through 

the results of previous studies. Thus, we must approach our real dataset results with caution, 

understanding that the causes discovered may not all be direct predictors of the specified 

target. Despite these limitations, we conclude that DCL can still be effective and informative 

when applied to real data.

DCL makes significant advances in solving the problem of learning causal influences from 

data, thereby making strides towards the confident use of causal discovery algorithms in 

practical applications, such as designing medical BN models for decision support. We aim to 

further develop DCL so that a future version may be able to include expert information, 

account for latent confounders, and even improve upon its runtime. Nonetheless, our study 

highlights DCL’s promise in advancing the field of causal discovery and its applications to 

medicine.
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Highlights

• We propose a new algorithm (DCL) to learn the direct causal influences of a 

target such as a disease outcome.

• DCL uses Bayesian network scoring and a novel deletion algorithm

• Results show DCL clearly outperforms PC with respect to accuracy and 

runtime

• Found SNPs directly causal of LOAD on NISCH & PRKG1 and validated by 

prior studies

• Further Validated ER cat. & HER2 status causal of 5 & 10-year breast cancer 

survival/death, resp.
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Figure 1. 
A BN representing relationships among variables related to respiratory diseases.
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Figure 2. 
Pictorial representation of the BN parameterizations and models. (A) Detailed outline of the 

14,400 datasets. There are two different simple and complex networks, with each simple 

network having six different parameterizations based on the strong-weak schedule (see 

supplement S1 for more details) and each complex network having six random 

parameterizations. Furthermore, each model has 6 different case sizes, and each case size 

has 100 datasets. The simple and complex networks each have a total of 7200 datasets. (B) 

A sample diagram of a model of one of the simple networks. X and Y are the parents of T 

and have a strong causal relationship. P1 and P2 are indirect nodes to T and have a weak 

relationship to their children, X and Y. (C) A randomly parameterized model of one of the 

complex networks. V, W, X, Y, and Z are the parents of T, and P1-P12 are indirect nodes to 

T.
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Table 7

Pairwise comparison of each algorithm’s best learning method to DCL’s best learning method using 

McNemar’s test

Network type Learning methods compared p-value

Simple DCLα=54 vs FGSsmp2 stp2 0.000

Simple DCLα=54 vs CPCβ=0.1 0.000

Simple DCLα=54 vs PCβ=0.01 0.000

Simple DCLα=54 vs FCIβ=0.2 0.000

Complex FGSsmp2 stp2 vs DCLα=15 0.269

Complex DCLα=15 vs CPCβ=0.2 0.053

Complex DCLα=15 vs PCβ=0.2 0.000

Complex DCLα=15 vs FCIβ=0.2 0.000

Overall DCLα=54 vs FGSsmp2 stp2 0.000

Overall DCLα=54 vs CPCβ=0.1 0.000

Overall DCLα=54 vs PCβ=0.01 0.000

Overall DCLα=54 vs FCIβ=0.2 0.000
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Table 8

Direct predictors found running DCL on Reiman’s LOAD data

Learning method SNP Gene or chromosome BDeu score

DCLα=1

rs6784615 NISCH -937.6

APOE APOE -837.8

DCLα=9

rs7335085 Chromosome 13 -939.0

rs4356530 Chromosome 17 -937.0

APOE APOE -836.0

DCLα=15

rs4356530 Chromosome 17 -936.6

APOE APOE -836.3

DCLα=54

rs4394475 Chromosome 9 -939.5

APOE APOE -839.9

DCLα=108

rs6784615 NISCH -938.7

rs10824310 PRKG1 -935.3

rs4394475 Chromosome 9 -940.2

APOE APOE -845.5
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Table 9

Direct predictors found running PC or FCI on Reiman’s LOAD data

Learning method SNP Gene or chromosome

PCβ=0.01

APOE APOE

rs732549 Chromosome3

PCβ=0.05

APOE APOE

rs4356530 Chromosome17

PCβ=0.2

APOE APOE

rs6094514 EYA2

FCIβ=0.2 APOE APOE
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