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Abstract

Objective—This study aims at developing and introducing a new algorithm, called direct causal
learner (DCL), for learning the direct causal influences of a single target. We applied it to both
simulated and real clinical and genome wide association study (GWAS) datasets and compared its
performance to classic causal learning algorithms.

Method—The DCL algorithm learns the causes of a single target from passive data using
Bayesian-scoring, instead of using independence checks, and a novel deletion algorithm. We
generate 14400 simulated datasets and measure the number of datasets for which DCL correctly
and partially predicts the direct causes. We then compare its performance with the constraint-based
path consistency (PC) and conservative PC (CPC) algorithms, the Bayesian-score based fast
greedy search (FGS) algorithm, and the partial ancestral graphs algorithm fast causal inference
(FCI). In addition, we extend our comparison of all five algorithms to both a real GWAS dataset
and real breast cancer datasets over various time-points in order to observe how effective they are
at predicting the causal influences of Alzheimer’s disease and breast cancer survival.

Results—DCL consistently outperforms FGS, PC, CPC, and FCI in discovering the parents of
the target for the datasets simulated using a simple network. Overall, DCL predicts significantly
more datasets correctly (McNemar’s test significance: p << 0.0001) than any of the other
algorithms for these network types. For example, when assessing overall performance (simple and
complex network results combined), DCL correctly predicts approximately 1400 more datasets
than the top FGS method, 1600 more datasets than the top CPC method, 4500 more datasets than
the top PC method, and 5600 more datasets than the top FCI method. Although FGS did correctly
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predict more datasets than DCL for the complex networks, and DCL correctly predicted only a
few more datasets than CPC for these networks, there is no significant difference in performance
between these three algorithms for this network type. However, when we use a more continuous
measure of accuracy, we find that all the DCL methods are able to better partially predict more
direct causes than FGS and CPC for the complex networks. In addition, DCL consistently had
faster runtimes than the other algorithms. In the application to the real datasets, DCL identified
rs6784615, located on the NISCH gene, and rs10824310, located on the PRKG1 gene, as direct
causes of late onset Alzheimer’s disease (LOAD) development. In addition, DCL identified £R
category as a direct predictor of breast cancer mortality within 5 years, and HERZ status as a direct
predictor of 10-year breast cancer mortality. These predictors have been identified in previous
studies to have a direct causal relationship with their respective phenotypes, supporting the
predictive power of DCL. When the other algorithms discovered predictors from the real datasets,
these predictors were either also found by DCL or could not be supported by previous studies.

Conclusion—Our results show that DCL outperforms FGS, PC, CPC, and FCI in almost every
case, demonstrating its potential to advance causal learning. Furthermore, our DCL algorithm
effectively identifies direct causes in the LOAD and Metabric GWAS datasets, which indicates its
potential for clinical applications.

Keywords

Bayesian-score based learning; constraint-based learning; causal discovery; simulated data;
predictive medicine; clinical decision support

1. Introduction

In medical applications, we often identify variables that are associated with diseases or
outcomes. For example, in genome wide association studies (GWAS) we look for single
nucleotide polymorphisms (SNPs) that are associated with a particular disease. A SNP
results when a nucleotide that is typically present at a specific location on the genomic
sequence is replaced by another nucleotide [1]. These high dimensional GWAS datasets can
concern over a million SNPs. By looking at single-locus associations, researchers have
identified over 150 risk loci associated with 60 common diseases and traits [2-4]. However,
most of these studies do not identify actual causative loci. For example, a locus could be
associated with the disease due to linkage disequilibrium. Jiang et al. [5] analyzed a late
onset Alzheimer’s disease (LOAD) GWAS dataset, and discovered that both APOE and
APOCL1 are strongly associated with LOAD. However, these genes are in linkage
disequilibrium. Although it is well-known that APOE is causative of LOAD [6], without
further analysis we cannot say whether this dataset supports that APOC1 is also causative of
LOAD. As another example, Curtis et al. [7] developed and analyzed the Metabric breast
cancer dataset, which contains data on breast cancer patients, genomic and clinical features
of those patients, and survival outcomes. They found, for example, that tumor size, the
number of positive Lymph nodes, and tumor grade are all associated with breast cancer-
related death. However, perhaps tumor size is associated with survival outcome only due to
its association with grade. If we can further analyze such datasets to identify the direct
causal influences, it would be helpful both at the level of understanding the mechanisms of
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disease initiation and propagation, and at the level of patient treatment (i.e. develop and
provide treatments that address the causes).

Bayesian networks (BNs) are an effective architecture for modeling causal relationships
from passive observational data. Passive observational data is collected without controlling
for factors or perturbing the system in question. In contrast, experimental data involves a
researcher’s intervention to either control for factors, such as a treatment given or subject
groups. Observational data and experimental data are both collected objectively but the
former does so in an uncontrolled setting (not subject to controlled experimentation) making
it traditionally more difficult to determine causality [8].

We developed a new algorithm, direct causal learner (DCL), for learning causal influences,
which concentrates on learning the direct causes of a single target using Bayesian-scoring
rather than independence checks. We applied the algorithm to 14,400 simulated datasets, a
GWAS LOAD dataset that concerns disease status (present or absent) [6], and to the
Metabric breast cancer datasets that concern breast cancer survival outcome over various
time-points [7]. We compared the performance of our DCL algorithm to the constraint-based
path consistency (PC) and conservative PC (CPC) algorithms, the score-based fast greedy
search (FGS) algorithm, and the partial ancestral graphs (PAGSs) algorithm fast causal
inference (FCI), which are all implemented in the Tetrad package [9].

2. Methods

2.1. Overview of BNs

Since our algorithm concerns BNs, we first review them. BNs [10-12] are increasingly being
used for uncertainty reasoning and machine learning in many domains including biomedical
informatics [13-18]. A BN consists of a directed acyclic graph (DAG) G = (V, E), whose
nodeset V/contains random variables, whose edges £ represent relationships among the
variables, and whose conditional probability distribution of each node X € Vis given for
each combination of values of its parents. Each node Vin a BN is conditionally independent
of all its non-descendants given its parents in the BN. Often the DAG in a BN is a causal
DAG [11]. Figure 1 shows a BN modeling relationships among variables related to
respiratory diseases.

Using a BN, we can determine probabilities of interest with a BN inference algorithm [11].
For example, using the BN in Figure 1, if a patient has a smoking history (H = yes), a
positive chest X-ray (X'= pos), and a positive CAT scan (C7 = pos), we can determine the
probability of the patient having lung cancer (L = yes). That is, we can compute AL = yesl
H=Yes, X=pos, CT=pos). Inference in BNs is NP-hard. So, approximation algorithms
are often employed [11]. Additionally, learning a BN from data concerns learning both the
parameters and the structure (called a DAG model).

2.2. Constraint-based pattern learning

In constraint-based structural learning, a DAG is learned from the conditional
independencies suggested by the data [11]. The best known example of a structural learning
algorithm which applies a standard statistical method to find variable dependencies is the
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inductive causation (IC) algorithm, of which the PC algorithm is a refined version [19]. All
constraint-based learning algorithms share a similar three-step process based on the IC
algorithm. The first step is to learn the Markov blanket of each node in order to reduce the
number of possible DAGs. Once all the Markov blankets have been learned, they are
checked for symmetry—if node X is an element of the Markov blanket for node Y, then
node Y is also an element of the Markov blanket for node X. Asymmetric nodes are then
removed from each corresponding node’s Markov blanket. The second step learns the
neighbors of each node in the DAG, identifying the arcs connecting pairs of nodes but not
their directions. With the exception of the PC algorithm, all other constraint-based
algorithms enforce symmetry of the neighbors found. The last step then learns the arcs’
directions [20].

The PC algorithm, one of the classic constraint-based algorithms in causal discovery,
assumes that the data’s underlying causal structure is an acyclic graph and contains no latent
or unmeasurable variables [21]. PC allows for the specification of a maximum number of
parent nodes to reduce the structural learning task’s complexity. Furthermore, PC employs a
chi square test to check for independence. The chosen test relies on a pre-specified
significance level to learn edges and construct the underlying BN. The PC algorithm tends to
output false positive bidirectional edges between pairs of nodes, which indicate uncertainty
in their causal relationship, on small samples. Additionally, it is unstable when an error
occurs in the early stages of search because it can have a sequential effect on the next
iteration of search and can, in turn, result in an extremely different graph than the actual
underlying graph representing the data [22].

Conservative PC (CPC), which is a modified version of the PC algorithm, runs under the
same assumptions but determines causal relationships in a much more cautious manner than
PC [23]. CPC, unlike PC, avoids the tendency to produce many false positives because of its
more faithful causal relationship conditions. However, CPC performs the same steps as PC
to learn the data’s underlying structure if the data set is large enough. The runtime of CPC is
very similar to that of PC.

2.3. Constraint-based learning for PAGs

A Pattern, also known as a Partial DAG or essential graph, is an equivalence class of a DAG,
meaning, by definition, every element in a Pattern represents the same set of conditional
independence assertions [24]. On the other hand, a PAG represents an equivalence class of
Maximal Ancestral Graphs, which is a mixed graph (directed and undirected edges) that
contains no directed cycles or almost directed cycles (ancestral) and no inducing paths
between any two non-adjacent variables (maximal) [25]. Unlike traditional graphical
models, ancestral graphical models are able to represent data that may involve latent
confounders and/or selection bias [25].

The fast causal inference (FCI) algorithm, a constraint-based learning algorithm for PAGs,
assumes that the underlying causal network is represented by a DAG, similar to the PC
algorithm’s assumption, but allows discovery of a model with latent common causes [8].
The FCI algorithm begins with a complete undirected graph of the variables in the data and
then deletes edges between non-adjacent vertices. Then the algorithm determines the
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directionality of the edges and finally deletes edges to remove any existing d-separations
within the graph. FCI produces a partially oriented inducing path graph over the data’s
variables but, since the algorithm is not complete, we do not know if it produces a
maximally informative partially oriented inducing path graph in every case [8]. The FCI
algorithm is feasible in datasets with a large number of features if the true graph is sparse
and there are not many bidirectional edges.

2.4. Score-based pattern learning

Score-based learning, with respect to constraint-based learning, has often been found to be
more effective in learning the network structure from data [11]. In score-based structural
learning, we assign a score to a DAG based on how well the DAG fits the data. Cooper and
Herskovits [26] introduced the Bayesian score, which is the probability of the data given the
model G. A popular variation of the Bayesian score is the Bayesian Dirichlet equivalent
uniform (BDeu) score [27], which allows the user to specify priors for the conditional
probability distributions using a single hyperparameter a, called the prior equivalent sample
size. That score is as follows:

scoreo(G:Data)=P(Data|G) ﬁﬁ I'(a/gi) r (a/mqfrsijk).
i=1j=1 O‘/QL"‘ZI@ 1SZ]/€) k— D(a/rigi) (1)

where r;is the number of states of node Xj, g;is the number of different instantiations of the
parents of Xj and Sjj is the number of times in the data that Xjtook its kA'th value when the
parents of Xjhad their jth instantiation. The BN learning problem is NP-hard. So, heuristic
search algorithms are often used [11].

The fast greedy search (FGS) algorithm is a modified version of the classic greedy
equivalence search (GES) algorithm, which is a score-based structural learning methods.
GES defines a scoring function and greedily maximizes the score by first adding and then
removing one edge at a time to evaluate how well a BN model fits the data [28, 29]. The
GES algorithm, as implemented by David Chickering, performs well in real-world complex
problems, such as analyzing television viewer behavior and internet usage [28]. However, its
scoring process is extremely redundant and adding 77 edges to the graph is cubic with respect
to the number of variables, even in which the degree of the model is bounded. If the degree
of the model is not well bounded, the operation of adding a single edge will be an
exponential time complexity and is impractical when there are a large number of variables in
the data.

The FGS algorithm improves upon GES’s scalability issues; adding and scoring of the first
edge, which is a very expensive step especially for large models, is quadratic in FGS but
adding additional edges is linear in the number of variables, enabling the FGS algorithm to
run much faster than the GES algorithm. In addition, the scoring of the algorithm has been
sped up through parallelization of particular steps that do not rely on the order in which
operations are performed [30]. These improvements lead to faster runtimes and more
accurate learning in highly complex datasets. We used Tetrad’s command line interface to
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run the FGS algorithm, which analyzes discrete variables using a discretely analyzable
score, such as the BDeu Score.

2.5. A new algorithm for identifying direct causal influences

Our new algorithm, which is designed to discover direct causes of a single pre-specified
target and use Bayesian-scoring, follows:

Direct_Causal_Learning(DCL)
procedure remove_ parents(var PA);

i=0;

repeat

for each YEPA

S=set of all sets AE PA{Y} such that| A= 7; /I S contains the empty set @ when /=0;

A=firstsetin S,

while Ais notnull and Y€ PA /I Aiis null if there are no sets in S.
B=AU{Y}

if deleting some node from B increase score(B,2)
X = node whose deletion increases score the most;
ify=Xx
remove Yfrom PA;
endif
endif
A=nextsetin S, /I Ais null if there are no sets left in S.
endwhile
endfor
Fi+1;

until | PAls jor i> R,

Procedure remove_parents removes indirect causes from PA. When 7= 2, it checks each two
cause model of the form X—2Z<— Y. If deleting any parent node from this model increases
the score, we delete the parent such that the deletion increases the score the most. Variable Y
is deleted if and only if there is no edge from Y'to Zin the BN model containing the three
variables (based on the data). This is the case if and only if X'shields Y from Z. By “shield”
we mean Yand Zare conditionally independent given X. Next we check each model with
three parents (i=3) X, Y; and Wof Z Again if deleting any parent node from this model
increases the score, we delete the parent such that the deletion increases the score the most.
Variable Yis deleted if and only if there is no edge from Y'to Zin the BN model containing
the four variables (based on the data). This is the case if and only if X'and Wtogether shield
Yfrom Z. We continue in this manner until we have exhausted all possible subsets of PA or
until we have checked subsets of size R+1, where R is the assumed maximum number of
variables shielding and variable from Z
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3. Experiments

3.1. Simulated data

We developed two simple and two complex BNs, all of which have a single target T, and
generated 6 different parameterizations for each network. Figure 2 shows one of the simple
and one of the complex structures. For each simple structure, we generated six non-random
parameterizations based on a weak-strong schedule. This schedule designated six separate
models that vary the strength of the direct and indirect nodes’ relationships to the target. In
these models, the direct nodes had either a strong or weak relationship to the target and the
indirect nodes had either a strong, weak, or mixed, meaning a combination of strong and
weak, relationship to the target. A weak relationship relative to variable X is one in which
the conditional probabilities specified for X are close in value, while a strong relationship is
one in which the conditional probabilities specified for X vary considerably. We named all
direct nodes as Z, Y, X ... and all indirect nodes as P1, P2, P3... As for the complex
networks, we used TETRAD to randomly generate 6 sets of parameters for each of the
complex network structures. We used Hugin Expert’s data simulation function along with its
Java application programming interface (API) to implement a mass data generation program,
which uses each network parameterization as an input, to generate a pre-specified number of
datasets corresponding to the input network parameterization and pre-specified case size.

For each parameterization we generated 100 datasets with 300, 600, 1200, 2400, 4800, and
9600 cases. This makes a total of 6 x 6 x 100 = 3600 datasets for each BN and a total of
14,400 datasets for all four networks (Supplementary Information S1 provides more details
on how the datasets were generated).

We used the BDeu [27] score in the DCL algorithm, which has a score parameter a. called
the prior equivalent sample size. We ran DCL with BDeu a =1, 9, 15, 54, and 108.
Similarly, the PC, CPC, and FCI algorithms have a significance parameter . We ran the
each of these algorithms with significance g = 0.01, 0.05, 0.1, and 0.2 (Note: PC, CPC, and
FCI call the parameter a,, but we do not want to confuse it with BDeu a). We ran FGS with
sample prior (smp) = {1, 2} and structure prior (stp) = {1, 2}, leading to four different
learning methods.

The accuracy was analyzed in two ways. The first way, called Exact Correct (EC), provides
the number of datasets for which the method discovered the direct causes exactly. That is, all
true direct causes were discovered, and no other causes were discovered. EC was calculated
separately for every 100 datasets of a particular case size and parameterization. The second
method uses the Jaccard Index (J1), which is as follows:

#(AN B)

JaCCGTd(A7 B):W

This index is 1 if the two sets are identical and is O if they have no items in common. For
each data set, we computed the JI of the set of true causal parents with the set of learned
causes. The JI penalizes a scoring method for including additional, incorrect predictors but
rewards a scoring method for predicting some, if not all, of the correct predictors.
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We also measured the average runtime of each method by averaging all 1200 (all six
parameterizations for two networks) runtimes for each case size and then calculated a total
runtime by finding the sum of these six average runtimes.

3.2. Real data

3.2.1. LOAD dataset—We ran DCL, FGS, PC, CPC, and FCI on a LOAD dataset
(312,316 SNPs and 1,411 samples) developed by Reiman et al. [6] in order to discover the
causal influences of LOAD and compare the predictors found among the algorithms. The
LOAD dataset was pre-processed and had APOE &4 carrier status added. Before running the
algorithms, we checked the association of each individual SNP with the disease using a chi-
square test, and kept those SNPs with p-values < 0.0001 (no Bonferroni correction used). We
then ran all five algorithms with these selected SNPs with LOAD status specified as the
target.

3.2.2. Metabric dataset—We developed six clinical datasets that predict 5-year, 10-year,
and 15-year breast cancer survival and overall breast cancer survival [7]. For each time-
point, there are two datasets: breast death and survival death. The former, breast death,
contains only cases for breast cancer related morbidities along with those who survived,
whereas survival death contains cases for all patients who died along with those who
survived. The sample sizes for each of the six datasets are as follows: 5-year breast death
(1645), 5-year survival death (1776), 10-year breast death (1146), 10-year survival death
(1414), 15-year breast death (677), 15-year survival death (1026). The 13 predictors present
in each of these six datasets are age at diagnosis, size, Lymph nodes position, overall grade,
histological type, ER category, PR category, HERZ status, inferred menopausal status,
overall stage, axillary nodes removed, P53 mutation status, and percent nodes positive. Since
the Metabric dataset contained a moderate amount of missing values, we used multivariate
imputation by chained equations (MICE) to impute these missing values (see Supplement
for more information) [31]. We disregarded overall stage and P53 mutation status in all the
datasets and overall grade in only thel5-year breast survival death dataset since these
predictors had too many missing values to be imputed (> 5%). A summary of the
percentages of missing values and brief descriptions for the 13 predictors across all 6
datasets can be found in the Supplementary Material (Tables S3 and S4). For each of the 6
datasets, we ran DCL, FGS, PC, CPC, and FCI and a chi-square test. The MICE imputation
and chi-square feature selection were performed using R (version 3.2.3) [32].

3.3. Selecting algorithm parameters

In our summary tables, we included DCL scoring methods using a values of 1, 9, 15, 54,
and 108 and PC, CPC, and FCI methods using p values of 0.01, 0.05, 0.1, and 0.2. Since the
optimal parameters for each scoring method vary depending on the dataset, we first tested
each scoring method using several different parameters on the 2400 case size datasets only,
since nearly all of our real datasets had sample sizes between 1200 and 2400. We decided to
choose the upper-bound so as to better isolate changes in performance with respect to
changes in the parameters’ values, since it is commonly known that performance will
increase with larger sample data. We then chose the aforementioned values based on their
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performance and their coverage of values. Please refer to the Supplementary Material S1 for
details.

The FGS algorithm has two parameters: smp, which is required for the Dirichlet prior
distribution, and stp, which takes into account the number of parents of a variable in a model
[33] We tested values between 1 and 4 for smp and stp on our simulated datasets. We
observed that FGS performed optimally at an smp of 1 or 2 and an stp of 1 or 2.

4.1. Simulated data results

4.1.1. EC—Table 1 shows the EC values for each method when analyzing the datasets
concerning the simple networks. All five DCL learning methods outperformed PC, CPC,
FGS, and FCI, with the best and worst DCL methods correctly predicting 4275 (DCL =54,
59.38%) and 3942 (DCL =g, 54.75%) datasets. After DCL, FGS was the next leading
learning method, which correctly predicted 2724 (FGSgmpz stp2, 37.83%) datasets, followed
by CPC, PC, and FCI, with each algorithm’s top learning method predicting 2580
(CPCp=0.1, 35.83%), 1166 (PCpg=0 .01, 16.19%), and 54 (FClg=q 2, 0.75%) datasets correctly,
respectively. When taking into account the strength of the direct predictors’ relationships to
the target, all the DCL methods correctly predicted more datasets than any of the other
learning methods. For example, in the case of the networks with strong direct predictor
relationships to the target, the top non-DCL method correctly predicted 2560 (CPCg=0 1,
71.11%) datasets, whereas even the lowest performing DCL method, for these same strong-
networks, performed better by predicting 3032 datasets (DCLy=1gg, 84.22%) correctly.
When we consider the EC values for the weak-networks, the relative results are similar; the
best and worst performing DCL method in the weak networks correctly predicted 974
(DCL =108, 27.06%) and 250 (DCL-1, 6.94%) datasets correctly, respectively, whereas the
top non-DCL method was only able to predict 223 (FGSsmp2 stp2, 6.19%) datasets correctly.

When we look at Table 2, which shows the EC value for each learning method when
analyzing the datasets concerning the complex networks, we see that FGS is actually the top
method by predicting 1552 (FGSgmp; stp2, 21.56%) datasets correctly and that the top DCL
method follows closely by correctly predicting 1502 (DCL =15, 20.86%) datasets. In fact,
three FGS learning methods are in the top five performing algorithms for the complex
networks. However, the top DCL method did outperform the best CPC method, which
predicted 1434 (CPCp=o 2, 19.92%) datasets correctly, and greatly outperformed the best PC
and FCI methods, which correctly predicted only 13 (PCg=.2, 0.18%) and 10 (FClg=q.2,
0.14%) datasets, respectively.

When we pooled the results from the simple and complex results, which are shown in Table
3, we found that all five DCL learning methods outperformed the other methods, with the
best and worst DCL methods predicting 5657 (DCL =54, 39.28%) and 4393 (DCL-1,
30.51%) datasets correctly. On the other hand, the top FGS, CPC, PC, and FCI methods
correctly predicted 4276 (FGSsmp2 stp2, 29.69%), 3966 (CPCg=0.1, 27.54%), 1166 (PCp=0.01,
8.10%), and 64 (FClg=0.2, 0.44%) datasets correctly, respectively.
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4.1.2. JI—Since EC is a “black and white” method for evaluating accuracy, we decided to
use the JI as a measure of how close each learning method was to discovering the direct
causes of a target. For the simple networks (Table 4), we found that all five DCL methods
were in the top five, with the best and worst DCL methods having total JIs of 5581.87

(DCL =54, 77.53%) and 5011.75 (DCL=1, 69.61%), respectively. Furthermore, the total JIs
for all five DCL methods were much higher than the best FGS, CPC, PC, and FCI methods,
each of which had total JIs of only 3178.17 (FGSsmp2 stp2, 44.14%), 3172.25 (CPCg=0.2,
44.06%), 2284.13 (PCp=0.1, 31.72%), and 487.38 (FClg=0 2, 6.77%), respectively.

For the complex network data (Table 5), we found all five DCL methods again having the
best results, with the best and worst DCL methods having total JIs of 4869.41 (DCL =15,
67.63%) and 4441.28 (DCL =1, 61.68%), respectively. The best CPC and FGS methods had
JIs of 4185.19 (CPCg=q 2, 58.13%) and 3951.18 (FGSsmp2 stp2, 94.88%), respectively, both
of which are close to the lowest performing DCL method’s result, but the best PC and FCI
methods’ JIs, which were 1035.18 (PCg=q 2, 14.38%) and 768.32 (FClg=0 2, 10.67%),
respectively, fell far behind the results of the other three algorithms.

The combined results in Table 6 once again show all five DCL methods in the top five, with
the best and worst DCL methods having overall JIs of 10400.58 (DCL =54, 72.22%) and
9453.03 (DCL =1, 65.65%), respectively. Similar to the results from the simple networks,
the best CPC, FGS, PC, and FCI methods trailed far behind, each of which had overall Jis of
7357.44 (CPCg=q 2, 51.09%), 7129.34 (FGSsmp2 stp2, 49.51%), 3264.73 (PCp=q 2, 22.67%),
and 1255.71 (FClg=q.2, 8.72%).

4.1.3 Runtime—As mentioned before, we used two high-level characteristics, accuracy
and runtime, to assess the performance of each scoring method. Accuracy has already been
addressed with the EC and JI results. With respect to runtime, we found that for every
analysis, DCL had, by far, the fastest runtime. The average runtimes, in seconds, for the
fastest and slowest DCL method for the simple network datasets (Table S5) was 0.088
(DCLg4=1) and 0.181 (DCL=10g), respectively, whereas the fastest CPC, FGS, PC, and FCI
methods were 4.522 (CPCﬁZO.Ol)v 7.418 (FGSsmpl Stp2)1 4.991 (PC[_J,:()_Ol), and 4.483
(FClg=0.05)- Similar runtime performances were observed for the complex networks (Table
S6), where the fastest and slowest average DCL runtimes were 2.410 (DCL-1) and 5.487
(DCL=15), respectively, the latter of which was still faster than the quickest non-DCL
methods: 7.627 (FGSsmpz stp1), 8.806 (PCp=0,01), 15.887 (CPCp=0,01), and 10.326
(FClg=0.01)- Overall (Table S7), all five DCL methods were a great deal faster than any of
the other learning methods. Additionally, when we separated the simple network results by
direct predictor relationship strength (Table S8), we found DCL to once again have the
fastest runtime among all the learning methods for the strong-datasets—0.096 (DCL=1),
4.708 (CPCﬁZO.Ol)v 5.565 (PCﬁzo_()l), 7.535 (FGSsmpl Stp2)l and 4.432 (FC|ﬁ:0_05)—and also
among all the methods for the weak-datasets—0.077 (DCL=9), 4.337 (CPCg=0.01), 4.418
(PCB:O.()]_), 7.302 (FGssmpl Sth)a and 4.535 (FC|ﬁ:0.05).

4.1.4. Statistical comparison of the best scoring methods—In order to statistically

compare our algorithm’s performance to that of FGS, CPC, PC, and FCI, we performed
McNemar’s Test for paired nominal data on how many datasets the best scoring method for
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each algorithm correctly predicted within each network type. When comparing the best DCL
scoring method to that for the other four algorithms for the simple networks and overall, we
consistently found a significant difference in accuracy (p < 0.001), as shown in Table 7.
However, in the complex networks, when we compared the best FGS method to the best
DCL method, the former of which slightly outperformed the latter, we found that there was
not a significant different in accuracy (p > 0.05) between FGS and DCL for the complex
networks. We also found that there was no significant different in accuracy (p > 0.05)
between DCL and CPC for the complex networks even though DCL correctly predicted
more datasets than CPC. For PC and FCI, however, DCL performed significantly better in
all the network types.

4.2. Real data results

4.2.1. LOAD dataset—Out of 312,316 SNPs and APOE e4carrier status (1,411 samples)
in the Reiman’s LOAD data, we narrowed down our list of predictors to 77 SNPs and APOE
edcarrier status using a chi-square test with a significant criterion of 0.0001. Then, we ran
DCL with a =1, 9, 15, 54, and 108 to learn which SNPs, from those selected using the chi-
square test, are directly causal of LOAD. Table 8 shows the discovered SNPs and their
associated genes. APOE is a well-known genetic risk predictor of LOAD. The results from
running DCL on the LOAD dataset found APOE at every alpha value. In addition, APOE
had the highest BDeu score of any other SNP found as a predictor. At a values of 9, 15 and
54, DCL predicted rs7335085, rs4356530, and rs4394475, found on Chromosomes 13, 17,
and 9, respectively, as direct causes of LOAD. At alpha = 1 and 108, DCL discovered two
new SNPs as direct causes that were not found at a = 15 or 54: rs6784615 and rs10824310.
The former is located on the gene NISCH and the latter on the gene PRKG1 (cGMP-
dependent protein kinase type I).

We also ran FGS, PC, CPC, and FCI on the LOAD dataset. PCg=0.01, PCg=0.05, and PCg=0.2
all predicted APOE and each predicted rs732549 (chromosome 3), rs4356530 (chromosome
17), and rs6094514 (EYAZ2), respectively, as direct causes of LOAD (Table 9). FCI at a beta
value of 0.2 predicted just APOE. All the other learning methods were unable to find any
predictors of LOAD.

4.2.2. Metabric dataset—We ran the chi-Square test with significance levels of 0.05 and
0.01 on the six Metabric datasets. As shown in Table 10, the chi-Square test returned almost
all the variables as significantly associated with breast cancer at a significant level of 0.05.
Even when we reduced the significance level to 0.01, our list of predictors was only reduced
by one or two variables. For example, in the results for the 10-year breast cancer death
dataset, Aistological type and axillary nodes removed were significant only at a level of 0.05
but not at 0.01. When we ran DCL on these datasets, we found a much shorter list of
predictors. For example, with DCL, we found that Lymph nodes poswas found as a direct
cause at every a value and for every dataset. In addition, there were some direct causes
found that were unique to specific time points. For example, £ER category was found by all
the DCL learned methods for both 5-year datasets but was not present in the 10-year or 15-
year dataset. In the 10-year breast death dataset, HERZ status was found as a direct cause for
every learning method except DCL =1 but not found as a direct cause for any other dataset.
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When we ran FGS, PC, CPC, and FCI on the Metabric datasets (Table 11), we also found a
smaller number of results than when we ran the Chi-Square test. However, the latter three
algorithms found no predictors for a few of the datasets. Moreover, FClg=g o1 and FClg=0 05
were unable to find any predictors across all the datasets. All the FGS learning methods
found Lymph nodes pos for every dataset and the FCI, PC, and CPC methods that did learn
predictors found only Lymph nodes pos in many cases. However, PCg=q 2, CPCg=,1, and
FClg=0.2 were able to find HERZ status as a predictor of 10-year breast cancer survival
which DCL found. In addition, CPCg=.05 found PR category as a predictor for 5-year
survival death and CPCp=q,05, CPCg=0 .1, and CPCg=( 7 all found Hormone as a predictor of
the 15-year breast death dataset.

5. Discussion

5.1. Simulated data

In the majority of our analyses, the DCL algorithm is the most accurate causal discovery
algorithm using the EC criterion. Viewing the overall performance of each scoring method,
we find that the top DCL scoring method correctly discovers the exact causal influences in
approximately 1400 more datasets than the top FGS method, 1600 more datasets than the
top CPC method, 4500 more datasets than the top PC method, and 5600 more datasets than
the top FCI method, while also having the highest EC value for each case size for the simple
networks.

When we separated the simple network results based on direct predictor strength, we find
that every DCL method, except DCL4=10g, correctly predicts most, if not all, of the strong
datasets at case sizes 1200 and above, whereas FGS, CPC, PC, and FCI were unable to
correctly predict all the strong datasets for any case size. It is also surprising to see that
many of the CPC methods perform better than FGS for the strong datasets since, overall,
nearly all the FGS methods correctly predicted more datasets than even the top CPC method
(CPCg=0.1). For example, CPCg=0 ; and CPCg=q g5 correctly predicted more datasets than
any of FGS methods at case sizes 600 and above, except at 2400 cases where CPCg=q 1 only
predicts more than FGSgsmp2 stp1. However, CPC falls short of FGS for the weak direct
predictors where it correctly predicted no more than 1% of the weak datasets whereas FGS
and DCL, both of which performed expectedly worse in the weak datasets than in the strong
datasets, were able to correctly predict 4% and 7%, of the weak datasets, respectively, in
their least accurate methods. We also see that at every case size, DCL4-1gg correctly
predicted the most weak direct predictor datasets than any other method (see Supplement for
more information on performance trends with varying alpha values). We also compared the
highest scoring DCL method to the highest scoring FGS, CPC, PC, and FCI methods using
McNemar’s test, and found that DCL significantly outperforms these four methods for the
simple networks and overall.

Even though DCL outperforms FGS for the simple networks and overall, we do find that
FGS slightly outperforms DCL for the complex networks according to the total number of
correctly predicted datasets. This is consistent with what we know about the FGS algorithm.
In our description of FGS, we mention that it performs very well with complex problems.
However, if we look closely at the number of datasets correctly predicted across case size,
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we find that the method correctly predicting the most datasets varies. At case sizes 300 and
600, it is DCLq=15; at case sizes 1200 and 2400, it is FGSsmpy stp2; and at case sizes 4800
and 9600, it is CPCp=.1. Finding the predictors when the dataset is small is a much harder
task since it is typically difficult to find real datasets with more than 1200 and 2400 cases,
where even these can be quite uncommon. Thus, we find that DCL has a unique advantage
in that it is able to correctly predict more datasets than either CPC or FGS at small case
sizes. Ultimately, we find that the differences in performance between the best DCL, CPC,
and FGS algorithms for the complex networks are not significant, meaning that, overall,
these three algorithms perform similarly when given complex datasets.

DCL’s results according to JI are much better (relative to the EC results) as, for every
network type, all five DCL methods have the highest total JlIs. In addition, contrary to the EC
results, the JI results show that CPCp— > performs almost as well as the best FGS method
(FGSsmp2 stp2) for the simple networks and performs better than this method for the complex
models and overall. Although CPC cannot correctly find all the predictors for the simulated
datasets as well as FGS can, it does better than FGS in partially predicting them. For the
complex networks, at every case size below 4800, a DCL method has the highest JI but at
4800 and 9600, CPCg=q 1 has the highest JI, similar to the EC results. This adds to our
previous claim that DCL performs better than FGS or CPC at lower case sizes and also that
CPC performs better than DCL or FGS at higher case sizes.

For the weak direct predictor datasets in the simple networks, all the DCL methods tend to
discover nearly 50% of the predictors, whereas the best FGS and CPC methods are both only
able to discover approximately 10% of the predictors. These results indicate that DCL is a
substantial advancement in our ability to partially discover the causal influences of a target
when the direct predictor strength is weak.

It is clear from our runtime results that the DCL algorithm is much faster than PC, CPC,
FGS, and FCI regardless of the parameter or case size. With PC and CPC, there is a clear
trend of slower runtimes with larger B values, but there does not seem to be a clear trend
between DCL’s runtime and a since, in the complex networks and overall, DCL =15 Seems
to be the slowest DCL method. However, the runtime of a DCL method may in fact be
associated with its performance. For example, we can see from the EC and JI results that
DCL =15 found more predictors than any of the other DCL methods. Additionally, the
runtime results show that all DCL methods take, on average, longer to run on the strong
datasets than on the weak datasets even though we know DCL performs better on the former
than the latter. Discovering more predictors may cause DCL to undergo additional loops,
thereby increasing its runtime. This association between performance and runtime is also
observed in the FCI runtime results. Since runtime by itself does not necessarily mean an
algorithm is performing well, the combination of the fastest runtimes and, in almost all the
cases, the most accurate results does show that DCL performs exceptionally well when
compared to FGS, CPC, PC, and FCI.

5.2. Real data

5.2.1. LOAD dataset—DCL, PC, and FCI discovered several SNPs to be direct predictors
of LOAD. Some of these SNPs, such as rs732549, rs4356530 and rs4394475, are not located
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on specific genes, but are, more generally, found on chromosome 3, chromosome 17 and
chromosome 9, respectively. The PC algorithm also predicted rs6094514, found on the gene
of EYAZ2, as a direct cause of LOAD. However, there are no previous studies that indicate
that these SNPs have an effect on LOAD so further study is necessary to investigate whether
or not these SNPs are causally linked to Alzheimer’s disease. On the other hand, off the
three SNPs found using DCL=10g, two of them are located on the noteworthy genes NISCH
and PRKG1. Two previous studies have indicated that SNP rs6784615, found on NISCH, is
associated with LOAD [34, 35]. Furthermore, many GWAS studies have found that PRKG1
is also strongly associated with Alzheimer’s disease [36, 37]. In addition, other GWAS
studies have found that PRKG1 (cGMP-dependent protein kinase type 1) is associated with
neurological diseases, such as onset age of Parkinson’s disease and attention deficit
hyperactivity disorder [38, 39]. This is due to PRKG1’s role in regulating neocortical
development, brain development, and signal transduction [40-42].

The SNP rs7115850, located on the GRB-associated binding protein 2 (GAB2) gene, has
been reported to interact with the APOE gene to have a causal effect on LOAD [6, 43]. Our
DCL algorithm did not identify any SNPs on GAB2 as direct causes for LOAD status, as no
SNPs on GAB2, including rs7115850, were present in the 77 remaining SNPs after using a
chi-square test with a significance criterion of 0.0001. We purposefully included rs7115850
with the 77 SNPs and then ran the DCL algorithm again, but still found that rs7115850 was
not identified as a direct cause of LOAD status. This result illustrates the limitations and role
of the DCL algorithm. Previous research [6, 43] indicates that APOE and GAB?2 interact
epistatically to affect LOAD, but GAB2 has little marginal effect. Thus, GAB2 would be
eliminated as a cause in the first iteration of the DCL algorithm. In general, the DCL
algorithm does not discover a cause with little marginal effect but other causal discovery
algorithms such as PC also have this same limitation. The DCL algorithm should be used
synergistically with an interaction discovery algorithm. The latter algorithm would first
discover interacting variables, and then each set of interacting variables would be
transformed to a single variable before running the DCL algorithm.

SNP rs4420638 on APOC1 was the second highest scoring individual SNP after APOE in
our previous study [43]. However, it was not discovered as a direct cause by DCL. This
result indicates that it may not have a causal effect on LOAD, but rather its strong individual
correlation with LOAD is due to its known linkage disequilibrium with APOE.

5.2.2. Metabric dataset—Table 9 shows the various direct causes of breast cancer
survival status found by the DCL algorithm, and the predictors learned using chi-square test.
We see that DCL found far fewer causes for each dataset and for each a than the number of
predictors found using the chi-square test. In addition, the chi-square test found most if not
all the variables to be predictors. These results speak to the precision of the DCL algorithm
on real data. We see that there are direct causes, as found by DCL, that are distinct to
specific datasets or specific time points. One such cause is ER Category, which is found in
both 5-year datasets at all five BDeu a values. ER Category refers to the presence or absence
(ER+ or ER-, respectively) of estrogen receptors found in breast cancer cells. According to
previous studies, five-year survival is about 10 percent better for women with ER+ tumors
than for those with ER- tumors. However, after five years, this survival difference begins to
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decrease and may even disappear [24-25]. In addition, we find that HERZ status is found as
a direct cause at every a value for the 10-year breast death dataset. HER-2 is a proto-
oncogene whose amplification in breast cancer has been associated with increased cell
mortality, cell proliferation, tumor invasiveness, and additional oncogenic cell characteristics
[44]. Some studies have shown that only about 60% of patients with HER-2 positive status
invasive breast cancer are disease free after ten years, and about 65% survive overall
[45-47]. However, patients with negative HER-2 status tumors tend to be disease free at a
rate of 75% over ten years and have a slightly higher overall survival rate. As these findings
suggest, HER?Z status highly have a direct causal effect on breast cancer mortality, and, more
so, within the first ten years of acquiring the illness. These previous findings not only
substantiate the results of the DCL algorithm, but also highlight the potential DCL has in
directing clinical research. The results of DCL give researchers a list of proposed direct
causes to experimentally investigate, which could channel resources towards better
understanding and possibly tailoring treatments to target the likely direct causes of a disease.

When we ran FGS, PC, CPC, and FCI on the Metabric datasets, we found FGS discovered
only Lymph nodes pos across all the datasets and parameter combinations, which DCL also
found across all the datasets and alpha values. This may indicate that Lymph nodes pos is a
very strong predictor of breast cancer survival across all the time-points but because FGS is
unable to learn any other predictors, it gives no additional insight into the predictors of
breast cancer survival. Additionally, PC, CPC, and FCI learn no predictors for a large
number of the datasets and beta values. In the cases where these three algorithms did learn
predictors, a majority of the learned predictors are Lymph nodes pos or predictors that were
also found by DCL. However, they do find HERZ status as a predictor, which agrees with the
results from previous studies, in the 10-year Breast Death dataset. In contrast, DCL was able
to find HERZ status at all alpha values, implying that DCL more confidently determines that
HER?Z status is a direct predictor of 10-year breast cancer survival. CPC does, in some cases,
find predictors that DCL did not find. For example, CPC found PR category and Hormone as
a predictor of 5-year and 15-year breast cancer survival, respectively, but we are unable to
find previous literature to support these unique findings.

If we assume that the Metabric datasets can be represented by simple BNs, then, taking into
account the results from the simulated datasets, DCL’s findings are the most reliable since it
had the highest EC and JI for each case size. On the other hand, if we assume that the
Metabric datasets are represented by complex BNs, then the results for FGS, CPC, and DCL
could be considered the most reliable, and especially FGS and DCL since they performed
the best for 600, 1200, and 2400 cases, which most closely resemble the sample sizes for the
Metabric datasets. Since FGS is unable to find anything other than Lymph nodes pos, we can
only confidently interpret the results of DCL and CPC in this case. However, DCL correctly
and partially predicts more simulated datasets at case sizes close to the sample sizes of the
Metabric datasets than CPC. In addition, every learning method for CPC found no predictors
for at least two of the Metabric datasets, which may suggest that there are no predictors, but
more likely suggests that CPC was unable to learn the predictors. Based on these
comparisons, we believe that DCL has the highest potential among the learning methods we
discuss to effectively learn direct predictors from real datasets.
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6. Conclusions

We compared DCL to PC and CPC, the classic constraint-based pattern search algorithms,
FGS, another Bayesian-score-based pattern search algorithm, and FCI, a constraint-based
PAG search algorithm. DCL performed significantly better on the simple network datasets
than all of its counterparts but about equal to FGS and CPC on the complex network datasets
when we consider the total number of datasets correctly predicted. However, at small case
sizes, DCL performs better than FGS and CPC on complex datasets, which we consider to
be a bigger achievement than performing well at large case sizes due to the abundance of
small sample-sized real datasets. Additionally, when using a more continuous measurement
(J1), we found that DCL performs much better than its counterparts, showing that it can
partially discover predictors better than any non-DCL method. Furthermore, DCL had
notably faster runtimes than its counterparts, indicating that it improves upon not only the
accuracy of popular causal learning algorithms but also the computational speed.

When we applied DCL to a real Alzheimer’s disease dataset, we learned SNPs that were
previously determined to have a strong link to LOAD. We also applied DCL to real breast
cancer datasets across different time-points and learned clinical predictors proven to be
directly causal of breast cancer survival for patients at these specific time-points. It is
important to note, however, that DCL may not able to find every predictor known to be
linked with the particular target and does find predictors that we are unable to verify through
the results of previous studies. Thus, we must approach our real dataset results with caution,
understanding that the causes discovered may not all be direct predictors of the specified
target. Despite these limitations, we conclude that DCL can still be effective and informative
when applied to real data.

DCL makes significant advances in solving the problem of learning causal influences from
data, thereby making strides towards the confident use of causal discovery algorithms in
practical applications, such as designing medical BN models for decision support. We aim to
further develop DCL so that a future version may be able to include expert information,
account for latent confounders, and even improve upon its runtime. Nonetheless, our study
highlights DCL’s promise in advancing the field of causal discovery and its applications to
medicine.
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Highlights

. We propose a new algorithm (DCL) to learn the direct causal influences of a
target such as a disease outcome.

. DCL uses Bayesian network scoring and a novel deletion algorithm
. Results show DCL clearly outperforms PC with respect to accuracy and
runtime

. Found SNPs directly causal of LOAD on NISCH & PRKG1 and validated by
prior studies

. Further Validated ER cat. & HER? status causal of 5 & 10-year breast cancer
survival/death, resp.
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History of smoking
P(H=yes)=0.2

Lung cancer
P(L=yes | H=yes) = 0.0003
P(L=yes | H=no) = 0.00005

Bronchitis
P(B=yes | H=yes) =0.25
P(B=yes | H=no) = 0.05

Tuberculosis
P(T=yes) =0.0001

Mediastinal metastasizes
P(M=yes | L=yes) = 0.46
P(M=yes | L=no) = 0.0

Chest X-ray

P(X=pos | L=yes, T=yes) = 0.8
P(X=pos | L=yes, T=n0) = 0.6
P(X=pos | L=no, T=yes) = 0.5
P(X=pos | L=no, T=no) = 0.02

Computed tomography Mediastinoscopy

P(CT=pos | M=yes) = 0.82 P(MT=pos | M=yes) = 0.82

P(CT=pos | M=no)=0.19 P(MT=pos | M=no) = 0.005
Figure 1.

A BN representing relationships among variables related to respiratory diseases.
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(A)

(B)

P(X=0[PI=0) = 0.55
P(X=0|PI=1)=0.45

Page 22

Simple network (2 total) Complex network (2 total)

’

6 non-random models (12 total)

6 random models (12 total)

| , |

6 case sizes (72 total) 6 case sizes (72 total)
100 datasets (7200 total) | 100 datasets (7200 total)

14400 datasets total

P(Y=0|P1=0,P2=0) = 0.40
P(Y=0/P1=0.P2=1) = 0.50
P(Y=0|P1=1,P2=0) = 0.52
P(Y=0|P1=1.P2=1) = 0.54

P(T=0|X=0,Y=0) = 0.20
P(T=0/X=0,Y=1) = 0.60
P(T=0|X=1.Y=0) = 0.50 —p Strong
P(T=0lX=1.Y=1)=0.95

p Weak

Figure 2.
Pictorial representation of the BN parameterizations and models. (A) Detailed outline of the

14,400 datasets. There are two different simple and complex networks, with each simple
network having six different parameterizations based on the strong-weak schedule (see
supplement S1 for more details) and each complex network having six random
parameterizations. Furthermore, each model has 6 different case sizes, and each case size
has 100 datasets. The simple and complex networks each have a total of 7200 datasets. (B)
A sample diagram of a model of one of the simple networks. X and Y are the parents of T
and have a strong causal relationship. P1 and P2 are indirect nodes to T and have a weak
relationship to their children, X and Y. (C) A randomly parameterized model of one of the
complex networks. V, W, X, Y, and Z are the parents of T, and P1-P12 are indirect nodes to
T.
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Pairwise comparison of each algorithm’s best learning method to DCL’s best learning method using

McNemar’s test

Table 7

Network type  Learning methods compared  p-value
Simple DCL g=54 VS FGSymp2 stp2 0.000
Simple DCL y=54 Vs CPCp=0 1 0.000
Simple DClL =54 Vs PCg=0.01 0.000
Simple DCL g=54 VS FClg=o2 0.000
Complex FGSsmp2 stp2 VS DCLg=15 0.269
Complex DClLqg=15vs CPCp=0 2 0.053
Complex DCL =15 Vs PCp=o.2 0.000
Complex DClLqg=15 vs FClg=g2 0.000
Overall DCL =54 V8 FGSsmp stp2 0.000
Overall DCL y=54 Vs CPCp=g 1 0.000
Overall DClL =54 Vs PCg=0,01 0.000
Overall DCL =54 VS FClg=o2 0.000
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Direct predictors found running DCL on Reiman’s LOAD data

Table 8

Learning method  SNP Gene or chromosome  BDeu score

rs6784615 NISCH -937.6
DCLg=1

APOE APOE -837.8

rs7335085 Chromosome 13 -939.0
DCLg-9 rs4356530 Chromosome 17 -937.0

APOE APOE -836.0

rs4356530 Chromosome 17 -936.6
DCLg=15

APOE APOE -836.3

rs4394475 Chromosome 9 -939.5
DCL =54

APOE APOE -839.9

rs6784615 NISCH -938.7

rs10824310 PRKG1 -935.3
DCLg-=108

rs4394475 Chromosome 9 -940.2

APOE APOE -845.5
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Table 9

Direct predictors found running PC or FCI on Reiman’s LOAD data

Learning method  SNP Gene or chromosome
APOE APOE

PCg=0.01
rs732549 Chromosome3
APOE APOE

PCg=0.05
rs4356530  Chromosomel7
APOE APOE

PCg=0.2
rs6094514 EYA2

FClp=02 APOE APOE
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