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Abstract

Background and Objectives—Labeling instances by domain experts for classification is often 

time consuming and expensive. To reduce such labeling efforts, we had proposed the application 

of active learning (AL) methods, introduced our CAESAR-ALE framework for classifying the 

severity of clinical conditions, and shown its significant reduction of labeling efforts. The use of 

any of three AL methods (one well known [SVM-Margin], and two that we introduced 

[Exploitation and Combination_XA]) significantly reduced (by 48% to 64%) condition labeling 

efforts, compared to standard passive (random instance-selection) SVM learning. Furthermore, our 

new AL methods achieved maximal accuracy using 12% fewer labeled cases than the SVM-

Margin AL method.

However, because labelers have varying levels of expertise, a major issue associated with learning 

methods, and AL methods in particular, is how to best to use the labeling provided by a committee 

of labelers. First, we wanted to know, based on the labelers’ learning curves, whether using AL 

methods (versus standard passive learning methods) has an effect on the Intra-labeler variability 

(within the learning curve of each labeler) and inter-labeler variability (among the learning curves 

of different labelers). Then, we wanted to examine the effect of learning (either passively or 

actively) from the labels created by the majority consensus of a group of labelers.
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Methods—We used our CAESAR-ALE framework for classifying the severity of clinical 

conditions, the three AL methods and the passive learning method, as mentioned above, to induce 

the classifications models. We used a dataset of 516 clinical conditions and their severity labeling, 

represented by features aggregated from the medical records of 1.9 million patients treated at 

Columbia University Medical Center. We analyzed the variance of the classification performance 

within (intra-labeler), and especially among (inter-labeler) the classification models that were 

induced by using the labels provided by seven labelers. We also compared the performance of the 

passive and active learning models when using the consensus label.

Results—The AL methods produced, for the models induced from each labeler, smoother Intra-
labeler learning curves during the training phase, compared to the models produced when using 

the passive learning method. The mean standard deviation of the learning curves of the three AL 

methods over all labelers (mean: 0.0379; range: [0.0182 to 0.0496]), was significantly lower (p = 

0.049) than the Intra-labeler standard deviation when using the passive learning method (mean: 

0.0484; range: [0.0275 to 0.0724).

Using the AL methods resulted in a lower mean Inter-labeler AUC standard deviation among the 

AUC values of the labelers’ different models during the training phase, compared to the variance 

of the induced models’ AUC values when using passive learning. The Inter-labeler AUC standard 

deviation, using the passive learning method (0.039), was almost twice as high as the Inter-labeler 

standard deviation using our two new AL methods (0.02 and 0.019, respectively). The SVM-

Margin AL method resulted in an Inter-labeler standard deviation (0.029) that was higher by 

almost 50% than that of our two AL methods. The difference in the inter-labeler standard 

deviation between the passive learning method and the SVM-Margin learning method was 

significant (p = 0.042). The difference between the SVM-Margin and Exploitation method was 

insignificant (p = 0.29), as was the difference between the Combination_XA and Exploitation 

methods (p = 0.67).

Finally, using the consensus label led to a learning curve that had a higher mean intra-labeler 

variance, but resulted eventually in an AUC that was at least as high as the AUC achieved using 

the gold standard label and that was always higher than the expected mean AUC of a randomly 

selected labeler, regardless of the choice of learning method (including a passive learning method). 

Using a paired t-test, the difference between the intra-labeler AUC standard deviation when using 

the consensus label, versus that value when using the other two labeling strategies, was significant 

only when using the passive learning method (p = 0.014), but not when using any of the three AL 

methods.

Conclusions—The use of AL methods, (a) reduces intra-labeler variability in the performance 

of the induced models during the training phase, and thus reduces the risk of halting the process at 

a local minimum that is significantly different in performance from the rest of the learned models; 

and (b) reduces Inter-labeler performance variance, and thus reduces the dependence on the use of 

a particular labeler. In addition, the use of a consensus label, agreed upon by a rather uneven group 

of labelers, might be at least as good as using the gold standard labeler, who might not be 

available, and certainly better than randomly selecting one of the group’s individual labelers. 

Finally, using the AL methods when provided by the consensus label reduced the intra-labeler 

AUC variance during the learning phase, compared to using passive learning.
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1. INTRODUCTION

Active learning (AL), a form of machine learning in which the learning method actively 

requires labels for specific instances in which knowing the label seems most beneficial to the 

learning process, has been at the focus of a substantial amount of research over the last 

decades. AL has been shown to be successful in decreasing the amount of labeling 

requirements, compared to a traditional passive learning method, in many domains including 

the cyber security (25–27, 37–41, 68–71) and biomedical domains (30–33, 53–54). While 

labeling and learning with an active learner is often much more efficient and achieves higher 

classification accuracy with a smaller labeled training set, the learning curve may vary 

greatly according to the labeler’s expertise in the domain. The clinical domain is an 

excellent example of a domain in which there is a large number of potential experts with 

varying levels of expertise, depending on their training and experience. However, physicians, 

and particularly experts, are often very busy, and their time is expensive. Thus, the focus of 

our current study is to examine the use of labelers with varying levels of clinical training and 

experience.

We have previously examined the effect of various learning methods on the specific task of 

determining the severity level of medical conditions. The severity level is an important 

aspect of each medical condition, which is expected to be useful for discriminating between 

sets of conditions or phenotypes. For the purposes of our research, we define severe 

conditions as those that are life threatening or permanently disabling. Such conditions would 

be considered as high priority in terms of the need to generate phenotype definitions for 

tasks such as pharmacovigilance (44, 45, and 47). Condition level severity classification can 

distinguish acne (mild condition) from myocardial infarction (severe condition). The bulk of 

the literature focuses on patient level severity, which generally requires individual condition 

metrics (8, 9, 10, 11), although whole-body methods exist (11, 12, 13).

Severity level is also useful for prioritizing conditions that are important for specialized 

phenotyping algorithms. Although several consortiums and partnerships, including the 

Observational Medical Outcomes Partnership (1) and the Electronic Medical Records and 

Genomics Network (2, 3), have developed methods for extracting conditions and their 

related characteristics from Electronic Health Records (EHRs), only a little more than 100 

conditions/phenotypes have been successfully defined. Unfortunately, this represents just a 

small fraction of the approximately 401,2001 conditions recorded in EHRs. Hurdles faced 

by experts when defining phenotype-extraction algorithms include overcoming definition 

discrepancies (4), data sparseness, data quality (5), bias (6), and healthcare process effects 

1The number of SNOMED-CT codes as of September 9, 2014. Accessed via: http://bioportal.bioontology.org/ontologies/
SNOMEDCT
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(7). Condition severity can be one way of identifying conditions worthy of developing a 

specialized phenotype-extraction algorithm.

In our previous work, we developed an algorithm that we refer to as Classification Approach 

for Extracting Severity Automatically from Electronic Health Records (CAESAR) (13, 47), 

which uses standard machine learning (also referred to as passive learning) to classify 

condition severity based on metrics extracted from EHRs (13) and requires medical experts 

to manually review and assign a severity status to each condition (i.e., severe or mild) 

independently from EHR metrics. We have recently developed and assessed an Active 
Learning Enhancement version of CAESAR, called CAESAR-ALE, which was initially 

published as a preliminary study (49), and was then extended into a more detailed paper 

(76). Using three different AL methods, including two new AL methods that we developed, 

we demonstrated that the labeling burden on medical experts can be significantly reduced. 

All three AL methods decreased the labelers’ efforts, compared to the passive learning 

methods applied by the original CAESER framework in which the classifier was trained on 

the entire set of conditions; depending on the AL strategy used in that study (13), the 

reduction ranged from 48% to 64%, which can result in significant savings, both in time and 

money.

Several labelers participated in our original study, and a separate learning curve was created 

for each labeler, depicting the classification model induced by using the labels provided by 

each labeler. The variance between the learning curves observed might be a result of the 

varying levels of clinical training and experience of the labelers. In the current study, we 

delve deeply into the Intra-labeler and Inter-labeler variance in the labelers’ learning curves 

and investigate this variance in detail, including the effect of using passive or active learning 

methods on that variance. We also examine the effect of using the consensus of the whole 

group of labelers as a single label. The implications of such an investigation are quite 

important, especially in clinical domains, since the optimal use of the labels created by 

individual labelers is at the core of any attempt to create effective classifiers based on a 

committee of expert labelers. It is therefore crucial to understand how that performance 

varies and what steps can be taken to reduce such variance, and in particular, the effect of 

using AL methods, consensus labeling, or both.

A previous study we performed (17) involving the task of determining the eventual severity 

level of patients, given their initial emergency room record encompassing their triage 

process, before being seen by a physician, demonstrates the motivation for our in depth 

investigation of inter-labeler variability. The results showed that inducing a classification 

model using several standard passive (Random selection) learning methods resulted in a 

reasonable performance compared to each of the clinicians. However, a model induced only 

by the cases in which there was an agreement (a consensus) regarding the severity level 

between two physicians subsequently examining the records to assign a severity level to 

each record, was preferable to learning a model from either of the physicians’ separate 

judgments. Nevertheless, the learning process in our previous study ignored cases in which 

there was a disagreement between the two labelers; a true committee tasked with coming to 

a consensus and making a majority decision on each case might have resulted in an even 

better performance.
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In the current study, we examine the implications of using various AL methods on the Intra-
labeler variability, i.e., within the learning curve of each labeler, and on the Inter-labeler 

variability, i.e., between the learning curves of different labelers, when training a classifier 

using a group of seven labelers. (The intra-labeler variability can be viewed as the volatility 
of the learning curve). In both cases, we compute the variability among the performance of 

the models induced using the provided labels, measured by the Area Under the ROC Curve 
(AUC). Our previous results, combined with the intriguing issue of Inter-labeler and Intra-

labeler variability, had raised the following three research questions: (a) what is the Intra-
labeler and Inter-labeler variance of the seven labelers’ learning curves for each learning 

method, and in particular, for the AL methods versus for the passive learning method? (b) 

Does the difference in the Inter-labeler variance between the AL methods, and the baseline 

passive (Random selection) learning method, change during the learning process? How? and 

(c) what is the classification performance of the model induced when using the labelers as a 

committee and using the label having the majority votes (i.e., the consensus label), 

compared to the option of using the gold standard label, or even a random individual labeler 

picked from the potential labelers’ group?

Note that on one hand, reducing intra-labeler variability in the performance of the models 

induced during a training process, which might not have any clear-cut stopping point, 

reduces the risk of halting the process at a local minimum that is significantly different in 

performance from the rest of the learned models. On the other hand, reducing Inter-labeler 

performance variance reduces the dependence on the use of a particular labeler. Finally, it 

would be highly useful if using a consensus label that is agreed upon by a rather uneven 

group of labelers, might be a reasonable alternative to using a gold standard expert labeler, 

who might not be available.

The rest of the paper is structured as follows. In Section 2 we provide background and 

related work to this study. In Section 3 we describe our new methods; this is followed by 

Section 4, in which we present the evaluation methods and the experimental design aimed at 

proving or disproving our hypotheses. In Section 5 we present a very brief summary of our 

main results from the previous study, which serves as the baseline for the analysis, and the 

detailed results of our new experiments. We discuss our new results and present our 

conclusions in Sections 6 and 7, respectively.

2. BACKGROUND

As the current study deals with Inter-Labeler variability of condition severity classification 

models using active and passive learning methods, we start by providing some important 

background information regarding active learning: what AL is, current approaches to AL, 

and existing studies that apply AL learning methods and algorithms to biomedical tasks 

(subsection 2.1 Active Learning Applications in Biomedical Data). The active learning 

algorithms are based on data mining and machine learning algorithms which are presented in 

subsection 2.2: Mining Electronic Health Records. Finally, since this study is about 

classifying the severity of conditions from ICD-9 and SNOMED-CT, we also introduce 

these ontologies/vocabularies (subsection 2.3: Biomedical Ontologies and Classification).
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2.1 Active Learning Applications in Biomedical Data

Labeled examples, crucial for classification, are generally expensive to acquire, since they 

require medical experts for annotation. Active learning (AL) approaches are useful for 

selecting (for labeling) the most discriminative and informative conditions from a dataset 

during the learning process. This selection is expected to decrease the number of conditions 

that experts need to manually review and label. Studies in several domains have successfully 

applied AL to reduce the resources (i.e., time and money) required for labeling examples 

(25, 26, 27,68,69,70,71,81,82, 83). AL is divided roughly into two major approaches: 1) 

membership queries (28) in which examples are artificially generated from the problem 

space; and 2) selective-sampling (29) in which examples are selected from a pool, which is 

the focus of this paper. AL algorithms have been relatively widely utilized in multiple 

domains, although applications in the biomedical domain, including text (30, 32, 33), drug 

discovery (31), cell image pathology (53), and cell assay image classification (54), remain 

limited. Liu described a method similar to relevance feedback for cancer classification (30). 

Warmuth et al. used a similar approach to separate compounds for drug discovery (31). 

More recently, AL was applied in biomedicine for text (32) and radiology report 

classification (33).

2.2 Mining Electronic Health Records

Secondary use of EHRs through data mining (57) has become a trendy research topic in 

biomedical informatics (58, 80) and data mining literature (59, 60, 67). Learning predictive 

models in clinical medicine through data mining is an important and developing field (58, 

72, 79). Ng et al. (61) introduced a distributed platform for healthcare analytics for EHR 

data which is based on MapReduce principles and parallels the entire process of cohort 

construction, feature construction, and selection and classification in a cross-validation 

fashion. Sun et al. (62) used this framework to predict hypertension transition points in EHR 

data without temporal representation. Until recently, very little temporal analysis has been 

introduced regarding various predictive events (63). Rana et al. (64) introduced a useful 

framework that models the change in interventions over time in order to predict outcome, 

and their framework considers the temporal evolution of the events. To handle temporal data, 

a comprehensive framework was introduced that enables learning patients’ behavior over 

time, including the discovery of frequent temporal patterns (60), learning classification 

models (65), and acquiring cutoffs to discretize the variables into states to increase 

classification performance (66).

2.3 Biomedical Ontologies and Classification

In this study we used the SNOMED-CT ontology (14, 15). Each coded clinical event is 

considered a “condition” or “phenotype,” with the knowledge that this is a broad definition 

(4). In biomedicine, condition classification follows two main approaches: 1) manual 

approaches in which experts manually assign labels to conditions; and 2) passive 

classification approaches that require a labeled training set. Manual approaches include the 

development of a Chronic Condition Indicator (CCI) (18) involving expert assignment of 

chronicity categories (acute versus chronic) to International Classification of Diseases, Ninth 
Revision (ICD-9) codes. Other researchers employed standard learning approaches in the 
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biomedical domain, including a classification approach that leveraged the ICD-9 hierarchy 

for improved performance (21). Another study classified conditions into chronicity 

categories (22). Other machine learning approaches have been used in biomedicine for text 

classification into condition hierarchies (48) to better enable subsequent retrieval (74, 55), as 

well as in full-text context-sensitive search engines (56). Torii et al. (23) showed that 

performance improved when trained on a dataset based on multiple data sources and noted 

that having more documents available during training improved performance (23). Nguyen 

et al. built an algorithm for classifying lung cancer stages using pathology reports and 

SNOMED-CT (24).

3. METHODS

This paper is based on the CAESAR-ALE framework which we developed in our recent 

study (49, 76). In this study, we aimed at comparing our AL methods to existing AL 

methods. Because we also wanted the CASAER-ALE framework to be practical for actual 

online use, it was important that the AL methods also be quite fast. Although general (i.e., 

not based on an SVM classifier) and high performing AL methods do exist, their 

effectiveness is limited; for example, the “Error-Reduction” method (75) is reportedly not 

practical enough, and many alternatives which are lighter-weight variants (yet not optimal) 

have been proposed in order to make it more useful.

In this section we present the methods and techniques upon which our framework is based. 

We aim to provide a solution to an existing challenge in the area of efficient condition 

severity classification, and our framework is based on a combination of methods and 

techniques derived from previous research (ours and research conducted by others) that we 

believe will be most appropriate for achieving the goals of this study.

One of the leading AL methods, fast enough for practical use and considered very stable, is 

the SVM-Simple-Margin method. This method is based on the SVM classification principles 

and is known for its agility, efficiency, and high performance. It is thus a highly suitable 

methodology to use, and in our previous study was a very strong baseline to which we could 

compare our enhancements. Additionally, the CASEAR-ALE framework is not restricted to 

any particular AL method; it is a modular framework for practical use and research, and the 

results of using one AL method can be easily generalized to other AL methods. Thus, in the 

current study we continued to work with the AL methods and SVM classifier that we had 

previously integrated in the CAESAR-ALE framework. Finally, this strategy proved to be 

quite efficient, since the goal of the current study was to analyze the Inter-labeler variability 

of condition severity classification, given a proven set of AL methods, rather than to 

compare different AL methods. Such a comparison was partially performed in our previous 

work, in which we compared three AL methods and a passive learning method.

3.1 Random Selection

The passive (Random selection) learning method is not an active learning method, but it is 

the “lower bound” of the selection methods that will be discussed. Based on our knowledge, 

no biomedical machine learning based solution has used an active learning method to reduce 

the labeling efforts of medical doctors in the task of condition severity classification. The 
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passive (Random selection) learning method doesn’t have a sophisticated selection strategy; 

consequently, we expect that all of the AL methods we examine will perform better than a 

selection process based on the random selection of conditions. In the context of our 

framework, the passive (Random selection) learning method will feed the SVM classifier 

with conditions that were randomly selected from the pool of unlabeled conditions. In our 

experiments we refer to this method as Random selection or just Random.

3.2 The SVM-Simple-Margin AL Method (SVM-Margin)

The SVM-Simple-Margin method (35) (or SVM-Margin) is based on SVM classifier 

principles, and the most significant elements of this classifier are presented in order to 

properly describe the AL methods which are based on it.

The support vector machines (SVM) classifier is a binary classifier that finds a linear 

hyperplane that separates given examples into two specific classes, yet is also capable of 

handling multiclass classification (50). As Joachims (51) demonstrated, the SVM is widely 

known for its ability to handle a large amount of features, a capability which is useful in the 

textual domain.

Given a training set in which an example is a vector xi = <f1,f2…fm>, in which fi is a feature 

labeled by yi = {−1,+1}, the SVM attempts to specify a linear hyperplane with the maximal 

margin defined by the maximal (perpendicular) distance between the examples of the two 

classes. Figure 1 illustrates a two-dimensional space where the examples are positioned 

according to their features. The hyperplane splits them based on their labels.

The examples lying closest to the hyperplane are the “supporting vectors.” W, the Normal of 

the hyperplane, is a linear combination of the most important examples (supporting vectors) 

multiplied by LaGrange multipliers (α), as can be seen in Equation 3. Since the dataset in 

the original space cannot always be linearly separated, a kernel function K is used. SVM 

actually projects the examples into a higher dimensional space in order to create a linear 

separation of the examples. Note that when the kernel function satisfies Mercer’s condition, 

as Burges (52) explained, K can be presented using Equation 1, where Φ is a function that 

maps the example from the original feature space into a higher dimensional space, while K 
relies on the “inner product” between the mappings of examples x1, x2. For the general case, 

the SVM classifier will be in the form shown in Equation 2, where n is the number of 

examples in the training set, K is the kernel function, α is the LaGrange multiplier that 

defines the linear combination of the Normal W, and yi is the class label of support vector 

Xi.

K x1, x2 = Φ x1 Φ x2 (1)

f x = sign w ⋅ Φ x = sign ∑
1

n
αiyiK xix (2)
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w = ∑
1

n
αiyiΦ xi (3)

Two commonly used kernel functions are utilized: 1) the polynomial kernel, as shown in 

Equation 4, creates polynomial values of degree p, where the output depends on the 

direction of the two vectors, examples x1, x2, in the original problem space (note that a 

private case of a polynomial kernel, where p=1, is actually the linear kernel), and 2) the 

radial basis function (RBF), as shown in Equation 5, in which a Gaussian function is used as 

the RBF, and the output of the kernel depends on the Euclidean distance of examples x1, x2.

K x1, x2 = x1 ⋅ x2 + 1 P (4)

K x1, x2 = e −
x1 − x2

2

2σ2 (5)

After the principles of SVM are clearer, we now delve into our AL method itself. Using a 

kernel function (such as the polynomial or RBF), the SVM implicitly projects the training 

examples into a different (usually higher dimensional) feature space. In this space there is a 

set of hypotheses that are consistent with the training set, creating a linear separation of the 

training set. The SVM identifies the best hypothesis with the maximal margin from among 

the consistent hypotheses (referred to as the version space [VS]). To achieve a situation in 

which the VS contains the most accurate and consistent hypothesis, the SVM-Margin AL 

method, selects examples from a pool of unlabeled examples, sends them to a human expert 

for accurate labeling, and then adds them to the training set. Adding additional labeled 

examples to the training set creates further constraints for the SVM separating hyperplane, 

thus thereby ultimately reducing the number of hypotheses, since a smaller number of 

hypotheses are now consistent with all of the labeled examples. Note that adding informative 

examples to the training set will result in a reduction in the number of hypotheses for any 

SVM classifier, yet SVM-Margin is aimed at selecting the most informative ones, so that the 

maximal number of hypotheses will be achieved.

The SVM-Margin method selects examples according to their distance from the separating 

hyperplane to explore and acquire informative conditions, disregarding their labels. 

Examples that lie closest to the separating hyperplane (see Figure 2 in which the selected 

examples from both classes are colored in red and lie inside the margin) are more likely to 

be informative (may improve the classifier’s capabilities) and therefore are acquired and 

labeled. SVM-Margin is fast; yet, as its authors indicate (35), this agility is achieved because 

of its rough approximation and assumptions that the VS is fairly symmetric and the 

hyperplane’s Normal, W (Equation 3), is centrally placed. These assumptions have been 
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shown to fail significantly (36), because SVM-Margin may query instances whose 

hyperplane does not intersect with the VS and therefore may not be informative.

3.4 The CAESAR-ALE Framework

The purpose of our enhanced method, CAESAR-ALE, is to decrease the experts’ labeling 

efforts using AL methods. CAESAR-ALE does this by only asking experts to label 

informative conditions. Figure 3 illustrates the process of labeling and acquiring new 

conditions by maintaining the updatability of the classification model within CAESAR-

ALE. Conditions are introduced to the classification model, which is induced by an SVM 

algorithm on which AL methods are based. The classification model scrutinizes conditions 

and provides two values for each condition: a classification decision using the SVM 

classification algorithm and a calculation of the distance from the separating hyperplane. 

Informative conditions are defined as conditions that are expected to improve the 

classification model’s predictive capabilities when added to the training set. A condition that 

is identified as potentially informative by the AL method is sent to a human expert for 

labeling. In this manner, most potentially informative conditions are labeled and added to the 

training set so that a new and updated model will be induced.

The CAESAR-ALE framework includes several AL methods that use different strategies for 

considering informative conditions. One of the strategies that will be described further 

consists of acquiring conditions that are located deep within the positive (severe conditions) 

sub-space of the SVM classifier’s separating hyperplane, i.e., as far as possible from the 

hyperplane on the positive side.

By selecting the most informative conditions, the use of an AL method leads to a theoretical 

decrease in the labeling efforts, as compared to learning from the entire set of conditions. 

Using the AL approach, we can maintain an accurate model while decreasing the labeling 

efforts, since the induction method requires fewer examples, i.e., conditions, because the 

input instances are more informative. Accordingly, in our context, there are two types of 

conditions that may be considered informative. The first type includes conditions that the 

classifier has identified with a low level of confidence. Here, the probability of being mild is 

close to the probability of being severe. The calculation of probability in based on the 

distance of the example from the separating hyperplane of the SVM classifier – thus a 

maximal distance from the separating hyperplane represents a high level of confidence, 

while minimal distance from the separating hyperplane represents low confidence. Equation 

6 represents the distance of example x from the separating hyperplane of the SVM classifier 

(note that Equation 2 makes use of this distance and provides a classification decision 

regarding the sign of the distance, in which a positive sign means a positive class 

classification, while a negative sign means a negative class classification).

f x = w ⋅ Φ x = ∑
1

n
αiyiK xix (6)
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In order to calculate this probability using the distance of example x from the separating 

hyperplane according to the given classifier’s knowledge, we use a transformation function 

that converts distance value into probability (42), see Equation 7:

P y x = 1
1 + e−y ⋅ f x (7)

Where y is an optional label of example x. {+1,-1}, h(x) is the decision value provided by 

Equation 6. An illustration can be seen in Figure 4, which shows two examples for which the 

SVM produced classification decision values.

For instance: P (y=-1 | X2) = 0.8 means that the classifier is quite confident that x2 belongs 

to class (-1). While P (y= +1 | X2) = 0.2 means that the classifier is quite confident that X2 

does not belong to class (+1); if P is (y=-1 | X2) = (y= +1 | X2) = 0.5, the classifier has a 

severe lack of confidence regarding the class of X2. A graphical analysis of Equation 7 can 

be seen in Figure 5.

The second type of informative condition includes conditions that are at a maximal distance 

from the separating hyperplane; these conditions are deep within the severe instances sub-

space of the SVM’s separating hyperplane. Nevertheless, some mild conditions may still 

exist within this space of otherwise severe conditions (although, of course, their being mild 
is unknown to the algorithm, until they are selected and labeled). Consequentially, 

presenting these mild conditions to the induction algorithm is expected to greatly inform and 

improve the resulting classification model.

The overall CAESAR-ALE framework includes a repetition of two main phases: training 

and classification/updating, which includes the selection of potentially informative examples 

(i.e., conditions), labeling them, and then training the model with the new labeled 

conditions.

Training—The model is trained using an initial pool of severe and mild conditions. The 

model is evaluated against a test set consisting of conditions that were not used during 

training to estimate the classification accuracy.

Classification and Updating—The AL method estimates and ranks how potentially 

informative each condition is within the pool of unlabeled conditions left, based on the 

classification model’s prediction. Only the most informative are selected and labeled by the 

expert. These conditions are added to the training set and removed from the pool. The model 

is then retrained using the updated training set, and this process repeats iteratively until a 

sufficient level of accuracy is reached, or alternatively, until the entire pool of conditions 

have been acquired.

We employed the SVM classification algorithm using the radial basis function (RBF) kernel 

in a supervised learning approach. This combination has been shown to be very efficient 

when combined with AL methods (26, 27). We use the Lib-SVM implementation (34) and 

modify it to implement our AL methods.
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Although our focus in this prior study is on reducing the condition labeling efforts while 

maintaining similar or enhanced classification performance, the detection of severe 
conditions - even during the learning phase (as opposed to the detection of mild conditions) - 

has some advantages, due to their value for training and insurance reporting purposes.

3.5 CAESAR-ALE’s Active Learning Methods

CAESAR-ALE includes two AL methods (Exploitation and Combination_XA), which we 

now describe in detail.

3.5.1 Exploitation—One of the AL methods implemented in CAESAR-ALE is called 

Exploitation, referred to as such because it exploits the current separating hyperplane to find 

condition instances that are most likely to be severe. Exploitation has demonstrated 

efficiency at detecting unknown malicious code content, files (37–40), and documents (41). 

Exploitation is based on SVM classifier principles and selects examples more likely to be 

severe, those lying further from the separating hyperplane, as can be seen in Figure 2. Thus, 

this method aims at boosting the classification capabilities of the model through the 

acquisition of as many new severe conditions as possible. For every condition x, 

Exploitation measures its distance from the separating hyperplane using Equation 8, based 

on the Normal (W) of the separating hyperplane of the SVM classifier. The separating 

hyperplane of the SVM is represented by W, which is a linear combination of the most 

important examples (supporting vectors), multiplied by LaGrange multipliers (α) and by the 

kernel function K that assists in achieving linear separation in higher dimensions. 

Accordingly, the distance in Equation 8 is calculated between example x and the Normal 

(W) presented in Equation 3. The distance calculation required for each instance in 

Exploitation is equal to the time it takes to classify an instance using SVM-Margin.

Dist X = ∑
1

n
αiyiK xix (8)

Acquiring several severe conditions that are highly similar to each other (i.e., which have 

similar values for all of the meaningful features, and of course, belong to the same target 

class) would waste labeling resources, while not contributing much to the future 

classification capabilities (generality) of the induced classifier; therefore, acquiring one 

representative condition from this set is preferable. In the Exploitation method, conditions 

are acquired if they are classified as severe and have maximal distance from the separating 

hyperplane (marked with a red circle in Figure 6.1).

To enhance the training set as much as possible, we also check the similarity among selected 

conditions using the kernel farthest-first (KFF) method suggested by Baram et al. (42), 

enabling us to avoid acquiring similar conditions. Consequently, only potentially informative 

conditions likely to be labeled as severe are selected. In Figure 6.1, it can be seen that there 

are several sets of highly similar conditions, based on their distance in the kernel space. 

However, only representative conditions that are more likely to be severe are acquired. 
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Contrary to SVM-Margin, Exploitation explores the “severe space” to discover potentially 

more informative severe conditions, a process which enables further detection of severe 

conditions. Figure 6.1 also illustrates an additional ability of Exploitation, as it sometimes 

discovers conditions located far inside the severe side (i.e., class) that were ultimately 

labeled by the expert as mild. Finding such a surprise is highly useful - this type of 

confusing condition will become a new support vector of the SVM classifier and update the 

classification model with the new discovery and knowledge; thus, these “surprises” play an 

important role in increasing the accuracy of the resultant classifier.

3.5.2 Combination_XA: A Combined Active Learning Method—The 

“Combination_XA” method is a hybrid of SVM-Margin and Exploitation. It conducts a 

cross acquisition (XA) of potentially informative conditions. That means that during the first 

trial (and all odd-numbered trials) it acquires conditions according to the SVM-Margin 

method’s criteria, while during the next trial (and all even-numbered trials) it selects 

conditions using the Exploitation method’s criteria. This strategy alternates between the 

exploration phases (conditions acquired using SVM-Margin) and the exploitation phase 

(conditions acquired using Exploitation) to select the most informative conditions, both mild 

and severe, while boosting the classification model with severe conditions or very 

informative mild conditions that lie deep inside the severe side of the SVM’s hyperplane.

4. EVALUATION

In this section we describe our dataset and the label creation process that serves as the basis 

of our experimental design, which we present in detail later.

4.1 Dataset

We obtained a dataset of 516 conditions, along with six severity-related metrics associated 

with each condition. These metrics or features consist of: average number of comorbidities, 
average number of procedures, average number of medications, average cost of procedures, 
average treatment time, and a proportion term (47). Each of the severity-related metrics was 

computed using an underlying dataset of over 1.9 million patients. Each of the 516 

conditions was labeled as either severe or benign by the gold standard labeler as was defined 

in our previous work (13).

Our dataset, called the “CAESAR dataset,” was created from the medical records of 1.9 

million patients treated at Columbia University Medical Center (CUMC). A proportion term 

was calculated to normalize each severity metric using the entire corpus and to combine all 

five metrics into one weighted term. Each condition’s proportion term was calculated 

previously as part of CAESAR’s construction, additional details are found in that study (47). 

The method for calculating the proportion term is as follows. To calculate the proportion 

term we first calculate a proportion for each of the five measures. We then sum these 

individual proportions and divide by the total (i.e., five). It is easiest to illustrate this with an 

example. Let us assume the condition “myocardial infarction” has an average procedure cost 
of $10,000, an average treatment length of 30 days, an average number of medications of 

ten, an average number of procedures of six, and an average number of comorbidities of 

three. Each of these values would be divided by their respective maximums. Therefore, the 
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proportions are as follows: average procedure cost - $10,000/$50,000; average treatment 
length - 30/1406 days; average number of medications - 10/25; average number of 
procedures - 6/15; and average number of comorbidities - 3/100. Each of these proportions 

are then summed:

10, 000
50, 000 + 30

1406 + 10
25 + 6

15 + 3
100

5 = 1.051
5 = 0.210

This yields the proportion index term for this condition.

The proportion terms are the features used by the various learning methods we explored.

Of the 516 conditions included in the above mentioned dataset, 100 conditions were also 

labeled by seven additional labelers (three of the labelers were medical doctors who had 

completed their residency training, and the remaining four were informatics experts with at 

least a master’s degree). The 100 training conditions were presented to the seven labelers in 

the same order. Each of the labelers provided a label for each of the cases, and their labeling 

time was not limited. Typically, they returned the labels within a week or two. These 100 

conditions served as the basis for the three main experiments in the current study in which 

we examined the various implications of using AL methods on the learning curve and its 

Intra-labeler (during the training phase) and Inter-labeler variance (between labelers) when 

training the classifier using a group of different labelers.

4.2 Experimental Setup

4.2.1 The Basic Experiment—It is important to understand the basic experiment that 

served as the core of our previous study in order to appreciate the motivation and 

contribution of the current study; thus, we briefly explain our original experimental setup. 

This basic experiment was aimed at evaluating and comparing the selection (learning) 

methods in the task of efficiently creating an accurate severity classification model, while 

reducing the labeling efforts of medical experts.

We used a repository of 516 conditions (the CAESAR dataset) consisting of 372 mild and 

144 severe conditions. Ten randomly selected datasets were created in order to perform 10-

fold cross-validation evaluation. Each fold contains three elements: 1) an initial set of six 

conditions that are used to induce the initial classification model, 2) a test set of 200 

conditions on which the induced classifier is tested and evaluated in each active learning 

iteration, and 3) a pool of 310 unlabeled conditions from which the conditions are selected 

to be labeled by each of the examined selection methods. The process is repeated, 

throughout the iterative acquisition steps, until the entire pool of training conditions is 

acquired. The performance of the classification models was averaged over the ten runs of the 

10-fold cross-validation.

The experiment’s steps follow, along with Figure 6.2 illustrating the workflow based on 

these steps.
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1) Induce the initial classification model from the initial training set containing six 

seed conditions.

2) Evaluate the classification model using the 200 conditions test set to measure its 

initial performance.

3) Introduce the pool of 310 unlabeled conditions to the sampling methods. During 

every trial, the five most informative conditions are selected according to the 

selection method’s preferences, and their labels are revealed by the single gold 

standard labeler used in the original CAESAR system (in a non-experimental 

system, the selected conditions will be labeled by an expert when needed, but in 

our dataset all of the conditions are already labeled). We used a low acquisition 

amount of five conditions per trial, because our primary goal was to minimize 

the number of conditions sent to medical experts for manual labeling and 

thereby reduce costs.

4) Add the acquired conditions to the training set and remove them from the pool.

5) Induce an updated classification model using the updated training set and apply 

the updated model to the conditions remaining in the pool.

6) This process (stages 2–6) iterates until the entire pool of training conditions is 

acquired.

We now present the experimental design of the three core experiments in the current study. 

We have designed and conducted specific experiments (Experiments 1, 2, and 3) for each of 

the new research questions (A, B, and C) which were previously mentioned.

4.2.2 Experiment 1 – Assessing the Intra-Labeler and Inter-Labeler Learning 
Curve Variance—This experiment attempts to provide insight regarding the variance 

within and among the learning curves induced as follows: 1) when learning from the labels 

provided by each of the seven labelers, and 2) when using different instance selection 

methods, i.e., active and passive learning. Thus, this experiment is aimed at assessing the 

differences between the various learning methods, by examining the variance within the 

learning curves of each labeler for all learning methods, as well as the Inter-labeler variance 

across all labelers. The conditions to be labeled are selected by either the three AL methods 

or by the Random selection (passive) learning method for each of the seven different 

labelers, in order to better compare the AL and random methods for different labelers. Thus, 

here we use the part of the dataset containing the 100 conditions labeled by seven different 

labelers as our pool. We follow the same steps outlined in the basic experiment of our 

previous study (having a seed of six randomly selected conditions, and iteratively acquiring 

a chunk of conditions out of the one hundred left to label); the initial set of six seed 

conditions was again labeled by the gold standard labeler. After each acquisition step we 

evaluated the performance of each of the labelers using the remaining 410 conditions labeled 

by the gold standard labeler, according to the following calculation:

(516 conditions – 6 seed conditions) – (100 conditions labeled by all seven labelers) = 410 

remaining [test set] conditions labeled by the gold standard labeler. In addition, in each 

iteration we compare the variance among the different labelers after each acquisition step. 
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We performed this experiment using a 10-fold cross-validation process. During the training 

phase of each of the active learning algorithms, the labels for the 100 condition instances 

were queried by the algorithm in a different order for each set of instances labeled by each 

of the labelers. This is due to the nature of active learning, depending on the particular 

model being induced dynamically, and based on the labels provided by that labeler.

4.2.3 Experiment 2 – The Labelers’ Learning Curves’ Inter-Labeler Variance—
This experiment was designed to address the issue of the difference, during the training 

process, between the Inter-labeler variance when using classifiers induced by the different 

AL based learning models, and the variance when using the passive learning (Random 

selection) method.

For each selection (learning) method (the Random selection and an additional AL method 

from the three: Combination_XA, Exploitation, SVM-Margin), we measured the 

performance for each labeler across the various selection methods, and the variance among 

the labelers at each point in the training phase. We then calculated the difference in the 

variance of the models induced by the seven labelers, focusing on the difference between the 

AL methods and the passive (Random selection) learning method.

In addition, we examined the same AL-passive learning difference in Inter-labeler variance 

when using the gold standard label and the single consensus label assigned by a majority of 

the labelers.

4.2.4 Experiment 3 – Examining the Effect of Learning Only from the 
Consensus Label—This experiment aimed to address the question of how the 

performance (AUC) of the classifier changes over time during the training phase, when 

learning is performed using all three AL methods and the passive learning method, using 

two different labels: (1) the gold standard label (originally defined by the CAESER 

framework) (13), versus (2) the consensus label (the label determined by the majority of the 

seven labelers). Note that the consensus label was created only retrospectively, after all of 

the instances were labeled by each of the seven labelers. Thus, each labeler labeled the 

conditions independently and the consensus was not achieved as a committee, but rather 

based on the majority of their retrospective labels.

In addition to comparing the performance of the two models induced using either of these 

two labels, we compared them to the performance of a third model induced by a randomly 

selected labeler, which was represented by the mean AUC of the labelers. (This situation 

might occur when a labeler is selected at random from a group of labelers, without prior 

notion of any skill differences among labelers). We represented the expectation of the AUC 

of the random labeler model by the mean AUC of the seven models induced by using the 

labels provided by the seven different labelers.

5. RESULTS

To better understand our new Inter-labeler variability experiments with the CAESER-ALE 

framework, we first summarize the results of our original basic experiment, which are 
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presented in greater detail in our previous papers (49, 76) and have been significantly 

expanded in the current work. We present a summary of the results for the accuracy, 

although in our previous paper additional evaluation measures were used including: TPR, 

FPR, and AUC, as well as the number of new severe conditions discovered and acquired into 

the training set during each trial (49, 76).

We now briefly present the results (in figures 7,8 and 9) of our basic experiment from the 

previous study. Figure 7 presents the accuracy levels and their trends in the 62 trials. In most 

trials, all of the AL methods outperformed the Random selection method, when provided 

with the same number of labeled instances. Summarizing the results for the accuracy rate, 

the performance of the model induced using Combination_XA represents a reduction of 

48% in labeling efforts compared to the use of the passive (Random-selection) method, 

achieving an accuracy rate of 0.95 after 23 trials compared to the 44 trials acquired by the 

passive (Random selection) method. Considering the overall learning phase, after 35 trials, 

the model induced using the Combination_XA method performed slightly better than the 

model induced using the Exploitation method, indicating that the cross-acquisition strategy 

is superior over the long run. Additional details regarding these experiments, including other 

aspects, such as the rate of acquisition of severe conditions, are presented in our previous 

papers (49, 76).

Figure 8 shows the TPR levels (severe is the positive class) and their trends over 62 trials. 

Both Exploitation and Combination_XA outperformed the other selection methods, 

achieving a TPR rate of 0.85 after only 17 trials (85/310 conditions), while the passive 

(Random selection) method achieved the same TPR rate after 47 trials. Summarizing the 

results for the TPR rates, the performance of Exploitation and Combination_XA represents a 

reduction of 64% in labeling efforts compared to the passive learning method.

Figure 9 shows that by the fifth trial, CAESAR-ALE’s methods, Exploitation and 

Combination_XA, outperformed the other selection methods with respect to the rate of 

acquiring severe condition instances (both lines overlap in Figure 9). After 23 trials (115 

conditions), both of CAESAR-ALE’s methods acquired 73 out of the 82 severe conditions in 

the pool, compared to 42 trials (210 conditions) for the SVM-Margin method and 60 trials 

(300 conditions) for the passive (Random selection) method. This represents a 46% 

reduction in the number of trials required to acquire the same number of severe condition 

instances compared to the SVM-Margin method, and a 62% reduction in the labeling efforts 

compared to the passive learning method.

Note that Exploitation and Combination_XA overlap only in the number of severe 

conditions acquired, and not in the number of mild conditions acquired. This observation is 

supported by Figure 7, in which the accuracy rate achieved by each of the methods is 

different. Due to the strategy of SVM-Margin, which acquires instances located within the 

SVM margin, using the SVM-Margin method will not contribute to the acceleration of the 

learning process when larger numbers of mild conditions exist. The reason for this is that 

most of the severe conditions are not located inside the margin, but rather are located deep 

inside the positive side of the SVM – which is the reason for the effectiveness of the 

proposed AL methods. Note that the Combination_XA method is slightly more stable than 
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the Exploitation method with regard to accuracy, yet their results are comparable; however 

the comparison of different AL methods, and especially these two in particular, is not the 

focus of the current study.

We now present the results of the three core experiments of the current study.

5.1 Experiment 1 – Examining the Variance in the Intra-Labeler and Inter-Labelers’ 
Learning Curves

Figure 10 (A–D) displays the results for each of the four learning methods. Each figure 

presents, the seven learning curves for one of the learning methods induced by the labels 

provided by the seven labelers, measured by AUC. The model induced by using the gold 

standard label is shown as well. As can be seen, several of the labelers consistently 

performed poorly, both in terms of their internal AUC variance over time (i.e., their intra-
labeler variance), as well as their overall classification performance. The differences might 

stem from some of the labelers being less experienced, or less knowledgeable, in the task of 

condition severity classification. Using the gold standard label led to consistent, smooth, 

high performance curves in all four cases, although not necessarily the highest performance 

curve. However, it should be noted that such a situation is not uncommon in medical 

domains and reducing less desirable implications is one of our objectives. Thus, in the three 

experiments, we wanted to learn which learning method and learning strategy result in less 

learning curve performance variance, and thus reduce the dependence on using a specific 

labeler, or on stopping the learning process at a particular, arbitrary point in time.

Figure 11 displays the standard deviation among the models induced by each of the labelers, 

for each acquisition trial, for the four learning methods (11.A), and the mean standard 

deviation over all of the acquisition trials for these methods (11.B).

In figure 11(A), the standard deviation of the seven labelers’ learning curves for each 

method is presented for each trial acquisition. The standard deviation increases slightly with 

the acquisition of additional conditions for the Combination_XA and Exploitation AL 

methods, but is larger for the SVM-Margin in the beginning and decreases as more labels are 

acquired; the random method follows the same pattern, but in this case the standard 

deviation was even larger. Note that after 20 trials the standard deviation of all of the 

methods is identical, as expected.

Figure 11(B) shows a box-plot visualization of the distribution of the Inter-labeler standard 

deviation values, for each of the four selection methods, among the seven different labelers, 

across all 20 trials. Combination_XA resulted in classification models that had the lowest 

Inter-labeler standard deviation (0.0197), followed closely by Exploitation, which resulted in 

models that had an inter-labeler standard deviation of 0.0209. At the same time, the Inter-
labeler standard deviation of the models induced by SVM-Margin was the highest among the 

AL methods (0.029, almost 50% more than the standard deviation of the models induced by 

Combination_XA). However, the passive (Random selection) learning method resulted in an 

Inter-labeler standard deviation of 0.039, almost twice as much as the Inter-labeler standard 

deviation of the models induced using our advanced AL methods.
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These results suggest that it is indeed possible to reduce the variance among the labelers’ 

learning curves by using AL methods, and that the Exploitation and Combination_XA AL 

methods seem to be even less sensitive to the quality of the labeling than the established 

SVM-Margin AL method. We also examined the statistical differences between the learning 

curves of the active and passive learning methods. A single factor ANOVA statistical test on 

the standard Inter-labeler deviation for the Random selection method versus the SVM-

Margin learning method resulted in a statistically significant difference (p = 0.042). A 

similar statistical test comparing the SVM-Margin and Exploitation methods resulted in a 

statistically insignificant difference (p = 0.29). The difference between Combination_XA 

and Exploitation was similarly insignificant (p = 0.67). To sum up, it seems that active 

learning methods are much more robust to the differences in clinical training and/or 

experience among the labelers, than the standard, passive learning method.

Figure 12-A presents the learning curves induced by the four selection methods from eight 

series of labels: from the labels provided by the seven labelers (L1, L2….L7), as well as the 

gold standard label. Note that in general, the AL methods demonstrated visibly smoother 

learning curves, compared to those produced when using the passive (Random selection) 

learning method. The curves induced when using the gold standard label also seem 

smoother, even when using the Random selection (passive) learning method. We examine 

these curves quantitatively in the next figure.

Figure 12-B displays the mean intra-labeler variance, over the 20 acquisition trials of the 

training phase, of the performance of the models induced from the labels provided by each 

labeler, for the seven labelers, as well as for the gold standard label, comparing the variance 

of the models induced using the passive learning method to the mean variance of the models 

induced using the three active learning methods.

Note that in cases in which the variance of the learning curves by the Random selection 

method was lower than the variance of the learning curves of the active learning, the 

differences are quite small; however when the variance of the AL method was lower than 

that of the Random selection method, the differences often manifested themselves as a 

variance that was greater by 30% to 100% than the variance of the models induced when 

using AL methods.

Our next figure focuses more explicitly on the difference in intra-labeler variance when 

using the three active learning methods and the passive learning method.

Figure 12-C presents a box-plot visualization of the Intra-labeler learning curves variance 

when using the passive (Random selection) learning method, and when using each of the 

three active learning methods. The box-plot integrates the models induced from the labels 

provided by the seven labelers and the gold standard label. Note that the Intra-labeler 

standard deviation of the Random selection learning method (mean: 0.0484; range: 0.0341to 

0.0724) is much higher than the standard deviation values of the models induced when using 

the three AL methods (means: 0.0373, 0.0381, and 0.0383; range: 0.0128 to 0.0502).

A single factor ANOVA statistical test comparing the Intra-labeler standard deviation of the 

passive (Random selection) learning method and the three AL methods provided p-values of 
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10% and 6.9% for Exploitation and SVM-Margin, respectively, which was not statistically 

significant at the 5% alpha value we have set, despite the relatively high absolute differences 

between the standard deviations of the Intra-labeler AUC values. The difference in the Intra-
labeler AUC standard deviation between the Combination_XA AL method and the Random 

selection method was, however, statistically significant (p = 0.047).

Finally, Figure 12-D displays explicitly, using a box-plot visualization, the distribution of the 

intra-labeler variance for all of the three AL methods (mean: 0.0379; range: [0.0182 to 

0.0496]), compared to the variance when using the passive (Random selection) learning 

method (mean: 0.0484; range: [0.0275 to 0.0724]). Clearly, the Intra-labeler variance in the 

models’ performance when using the AL methods is greatly decreased, compared to the 

variance when using passive learning.

A single factor ANOVA statistical test on the standard Inter-labeler standard deviation 

between the Random selection method and the AL methods demonstrated a statistically 

significant difference (p = 0.049).

5.2 Experiment 2 – Comparing the Differences in Inter-Labeler Variance between the Active 
and Passive Learning Methods during the Training Process

Figure 13 shows that the absolute differences in the Inter-labeler AUC standard deviation, 

between the AL methods and the passive (Random selection) learning method, increase and 

then decrease during the label acquisition process. These results support our original 

expectation, namely, that the difference (in standard deviation) between the AL methods and 

the passive (Random selection) learning method will initially grow. This might be expected, 

since AL methods converge faster towards the “real” classification model, so that the 

difference in the inter-labeler standard deviation of the AL methods compared to the passive 

learning method is expected to increase; then, however, the AL methods-passive learning 

method difference in inter-labeler variance should gradually decrease, as more and more 

data instances are acquired by both types of methods. Finally, both method types (AL and 

passive learning) converge when the model is fully knowledgeable, for all of the methods. 

Thus, the results demonstrate a U-shaped curve, in which the maximal difference occurs in 

the middle of the learning phase, and the gap eventually narrows to zero when all of the 

training instances have been acquired by each of the learning methods.

Understanding this behavior might be beneficial when trying to optimize the reduction in 

variance among models induced by different labelers.

5.3 Experiment 3 – Assessing the Effect of Using the Labelers’ Group Consensus Label

Figure 14(A-D) shows the results of the three labeling strategies, namely using the gold 

standard label, versus the consensus (majority) label, to train the various learning methods, 

versus the expected AUC for a model induced by picking at random one of the labelers (as 

might happen when we have no prior notion of any differences among labelers, and decide 

to use one of them at random).

It is worthwhile to note that typically, using the gold standard labeler to train the model 

initially results, for all learning methods, in a model that has the highest AUC. However, 
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using the consensus (majority) label during the training phase eventually resulted in the 
highest AUC, regardless of the choice of learning method (including the standard passive 

learning method). This was followed by the AUC of the models induced by using the gold 

standard label, and finally, by the mean AUC of the seven labelers, representing the expected 

AUC of a model induced using a randomly selected single labeler.

Thus, it seems that ultimately, in the later stages of learning, the learning methods leveraged 

the consensus of the seven labelers and resulted in models whose AUC value was even 

slightly higher than that of the models learned from the gold standard labeler, and certainly 

always higher than the mean AUC of the classifiers induced using the seven labelers. Note 

that the passive (Random selection) learning method exploited the consensus of the labelers 

for a better performance only at the very end of the training phase. In the early training 

phase, the best learning curve was always obtained using the gold standard labeler, while the 

next best AUC usually resulted from using the consensus of the labelers.

In Figure 15 we can see another view of the results presented in Figure 14, in which the four 

selection methods were compared for each of the different labeler setups. This view directly 

compares the various learning methods, for each label type. We can see that when using 

labels provided by the gold standard labeler, Exploitation achieved the highest (by a small 

margin) AUC rate (92.6%) after 14 trials (60 conditions). For this label type, the passive 

(Random selection) learning method provided surprisingly good results compared with the 

AL methods. When using the consensus label, and when using a random labeler represented 

by the mean AUC of the seven labelers, we can see that the classifier induced by the passive 

(Random selection) learning method suffered from inconsistency, while the AL method 

induced models were characterized by a more consistent performance.

Figure 16-A shows the mean variance, for the four learning methods, of the model induced 

from the labels provided by the three labeling strategies (gold standard, consensus label, and 

a “random” labeler represented by the mean AUC of the seven labelers). Using the 

consensus label induced models with a much higher mean standard deviation (0.0499) of the 

AUC during the training phase, compared to the standard deviation when using the gold 

standard label (0.0388) and the standard deviation of the mean AUC of the seven labelers 

(0.0377).

The distribution of the standard deviation, when compared among the three labeling 

strategies for each of the four learning methods, demonstrates a similar pattern (Figure 16-

B): For each learning method, and in particular, the Random selection (passive) method, the 

variance when using the consensus label is the highest, compared to the other two labeling 

strategies.

Using a paired t-test, the difference between the intra-labeler AUC standard deviation of the 

consensus labeling strategy and that of the other two labeling strategies was significant only 

when using the Random selection method (p = 0.014), but was insignificant when using any 

of the three AL methods.

However, much of the high intra-labeler variance in the performance of the models induced 

by using the consensus label seen in Figure 16A, might perhaps be due to the rather high 
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variance produced when inducing, from that label, a model by using the passive learning 

method, as shown in Figure 16-C. There was, in fact, a significant difference, found only 

when using the consensus label, between the AUC standard deviation of the Random 

selection method and that of the SVM-Margin AL method, using a t-test (p = 0.039).

6. DISCUSSION

In the current study, we focused on the issue of reducing the variance among the models 

induced using the various learning methods – both active and passive – and in particular, 

reducing the variance among those induced using the labels provided by different labelers 

for all of the instances used during the learning processes.

The use of AL in combination with the use of multiple labelers has recently become the 

focus of several preliminary investigations. In a recent study (77) performed by Zhang and 

Chaudhuri, the authors presented interesting ideas based on their comparison of using weak 

and strong labelers for medical images, in which they used strong but costly labelers, and 

also attempted to exploit weak labelers that occasionally misclassify images. Yan et al. (78) 

investigated the use of multiple labelers in cases in which an oracle is not available. Based 

on their strategy, which included several experts, the authors were able to consider which 

data sample should be labeled next, and which annotator should be queried to most benefit a 

learning model. Note, however, that in the current study we focused on the investigation of 

the integration of labels provided by several labelers, unlike the use of several classifiers that 

form a committee of classifiers, as used by the Query by Committee (QBC) methodology 

(78), which is a different AL approach.

Our current study focused on the rigorous analysis of one passive and several active learning 

processes, all based on the labels provided by seven different labelers, an investigation that, 

as far as we know, has not previously been performed. We analyzed the variance of the 

learning curves induced by the three AL methods and by the passive learning process, for 

the seven different labelers. In addition to the established SVM-Margin AL method, we 

again used the two novel AL methods that we developed as part of the CAESAR-ALE 
framework, and we used the standard passive learning method (Random selection) as a 

baseline.

We focused on the analysis of the Intra-labeler and Inter-labeler AUC variance, when using 

different learning methods and different types of labels.

The use of the AL methods, as was demonstrated in Experiment 1, resulted, as we 

conjectured, as follows (a) significantly reduced intra-labeler variance in the performance of 

the induced models during the training phase, as measured by their AUC, reduces the 

dependence on stopping at the right point in time during a lengthy learning process, since it 

reduces the concern about halting the process at a local minimum that is significantly 

different in performance from the rest of the models; and (b) significantly reduced Inter-
labeler performance variance reduces the dependence on the use of a particular labeler when 

an expert labeler is selected at random. Both results might stem from the fact that, as shown 
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in our previous experiments, classification models induced using AL methods converge 

faster to the “true” classification model that has the maximal AUC.

The results of Experiment 2 supported our original conjecture, namely, that the difference 

between the inter-labeler variance of the AL methods and the inter-labeler variance of the 

passive learning method during the training phase will initially grow, since AL methods 

converge faster towards the “true” classification model; but the difference in variance will 

start to decrease, as more and more data is shown to both types of methods. Ultimately, of 

course, the variance values of both the active and passive learning methods converge, when 

all of the data is known for all types of learning methods and labelers. Thus, the results 

demonstrated an inverse U-shaped curve, in which the maximal gap occurs in the middle of 

the learning phase, and eventually narrows to zero when all of the training instances have 

been acquired by all learning methods.

Finally, using the consensus (majority) label during the training phase produced a learning 

curve with higher mean variance across all four learning methods, especially when using the 

passive (Random selection) learning method, but eventually resulted (during the training 

phase) in the highest AUC, regardless of the choice of learning method (including the 

standard passive learning method). This value was at least as high as the AUC of the 

classifier that resulted from using (during the training phase) the gold standard label, and 

was certainly higher than the mean AUC of the seven labelers. One could consider the mean 

AUC of the labelers as representing the expectation of the AUC of a model induced by a 

labeler who is randomly selected from the labelers’ group. (It might be worthwhile to view 

this expectation as representing the common case of using one expert, whose labeling 

performance is unknown).

This somewhat surprising “crowdsourcing” result when using a consensus label, might mean 

that although the different labelers had varying levels of medical training and experience 

with labeling conditions, their majority consensus label was eventually at least as useful, and 

possibly even slightly better, than the gold standard label, for the practical purpose of 

classifying the severity of a set of new medical conditions.

It might be surprising that using a consensus label can result in a model that can classify 

new, unseen instances (whose label is determined by the gold standard labeler), even slightly 

better than the model learned by only using the gold standard label. However, the difference 

in our experiments was very slight; and it might well be due to a few borderline training 

cases in which using the consensus labels during the learning phase (instead of the actual 

“true” label) actually had a “smoothing” effect on the resulting induced model, which 

slightly enhanced its accuracy on the testing set.

In any case, the effectiveness of using the consensus label during the training phase is highly 

encouraging, since it might mean (a) that the use of the consensus label agreed upon by a 

rather uneven group of labelers might be at least as good as using a gold standard labeler, 

who might not be available, and (b) that using the consensus label will certainly be better 

than randomly selecting one of the group’s individual labelers (when nothing is known about 
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the individual labeler’s quality) whose expected performance was represented by the mean 

AUC of the labeling committee.

The difference between the intra-labeler AUC standard deviation of the consensus labeling 

strategy and that of the other two labeling strategies was significant only when using the 

Random selection method, but was insignificant when using any of the three AL methods. 

Furthermore, a significant difference between the AUC standard deviation of the Random 

selection method and that of the SVM-Margin AL method was found only when using the 

consensus label and not the other two labeling strategies. This result suggests that the use of 

AL methods can reduce the variance between models induced using different labeling 

strategies, and in particular, between models induced using the consensus label and models 

induced using the gold standard label. It might also provide more flexibility in the common 

practical situation, in which a gold standard labeler, such as the established medical expert in 

some domain, is unavailable, and using the consensus of a committee of labelers of an 

uneven composition is preferable.

Finally, the effectiveness of using the consensus label during the learning phase also raises 

an intriguing option for handling the common situation in which several training instances 

that display the same set of features are labeled differently at different times during the 

learning phase, even by the same labeler. Instead of discarding such instances as manifesting 

a human error, or using a probabilistic interpretation of their label, one could consider the 

single labeler to have represented, at different points of time, several differing domain expert 

opinions, perhaps representing several different schools of thought, and thus use his/her 

“consensus” (majority) label, possibly with the same useful effect.

7. CONCLUSIONS AND FUTURE WORK

The CAESAR-ALE framework, which uses active learning methods, and more particularly, 

our two new AL methods, were found to be more efficient in reducing the Intra-labeler and 

Inter-labeler variance among the models induced by using the labels of different experts, 

compared to the use of an existing AL method, and in particular, to the use of a passive 

(Random selection) learning method.

Our experiments also suggest that although it leads to greater volatility of the performance 

of the learned model, using the consensus of a highly uneven labeling committee eventually 

results in a classifier with the highest AUC, regardless of the choice of learning method 

(including the standard passive learning method), compared to the use of the gold standard 

label and the mean AUC of the seven labelers. Thus, using the consensus label to induce a 

model during the training phase proved, in our experiments, to always be better than using a 

randomly selected individual labeler, and was at least as effective for this purpose as using 

the gold standard labeler.

In our future work, we would like to examine the effect of using a majority consensus to 

perform the actual classification of new cases, as opposed to the labeling, by using the 

multiple models induced by different labelers in a manner similar to ensemble classification. 

We also intend to apply our CAESAR-ALE multiple labeler framework to additional 
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important medical domains, in order to reduce the labeling efforts of medical experts and to 

better leverage the efforts of a group of experts to improve the classification performance of 

the induced classifier. To assess the full value of this methodology we would also like to use 

our framework for larger datasets and with a larger number of labelers.
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Figure 1. 
An SVM with a maximal margin which separates the training set into two classes in a two-

dimensional space (two features).
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Figure 2. 
The examples (colored in red) that will be selected according to the SVM-Margin AL 

method’s criteria.
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Figure 3. 
The process of using AL methods to detect discriminative conditions requiring medical 

expert labeling.
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Figure 4. 
Decision values given to two examples.
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Figure 5. 
Analysis of Equation 7 - the larger the distance the example is from the separating 

hyperplane, the higher the probability and the more confidence of the classifier.
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Figure 6.1. 
An illustration showing the Exploitation method’s criteria for acquiring new severe 

conditions.
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Figure 6.2. 
The process and steps (1–5) of CAESAR-ALE - using AL methods to detect discriminative 

conditions requiring medical expert labeling.
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Figure 7. 
The accuracy of the CAESAR-ALE models induced using the two new active learning 

methods versus the models induced using the SVM-Margin and the passive (Random 

selection) method, over 62 trials (five conditions acquired during each trial).
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Figure 8. 
TPR for active learning and random selection methods over 62 trials.
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Figure 9. 
The accumulated number of severe conditions acquired in the training set by each AL 

method over 62 trials.
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Figure 10. 
The learning curves of the three active learning methods and of the passive (Random 

selection) learning method, by using the labels provided by the labelers and the gold 

standard (GS) label.
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Figure 11. 
Inter-labeler variability of the four learning methods. The standard deviation among the 

seven models induced by each of the seven labelers after each data acquisition trial is plotted 

across the 20 acquisition trials, for each of the four learning methods (11-A). A box-plot 

visualization displays the distribution of the standard deviation values, among the seven 

labelers, over the 20 acquisition trials for these methods (11-B). Each box’s lower and upper 

boundaries denote the 25th and 75th percentiles; the whiskers denote the absolute minimal 

and maximal values. The mean Inter-labeler standard deviation value across the 20 trials, for 

each of the four methods, appears in parentheses below the name of each of the methods 

shown in the box-plot visualization.
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Figure 12-A. 
The learning curves, measured as the area under the curve (AUC) values, of the models 

induced from the labels provided by each of the seven labelers and gold standard label, for 

each selection method (three AL methods and the passive [Random selection] method) and 

the Intra-labelers’ variance, represented by the mean standard deviation of the models 

induced from every labeler across each of the four selection methods, over his/her 

performance during the acquisition phase.
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Figure 12-B. 
The mean intra-labeler variance, for the 20 acquisition trials, in the performance of the 

models induced from the labels provided by each labeler, for the seven labelers and the gold 

standard label. For each labeler (and for the gold standard label), the mean variance over 

time of the models induced using the passive learning method is compared to the mean 

variance of all of the models induced over time using the three active learning methods.
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Figure 12-C. 
The intra-labeler variance of the models induced using each of the three active learning 

methods and the passive (Random selection) method, across the models induced from the 

labels provided by the seven labelers and from the gold standard label. The mean values of 

the standard deviation, across all labelers, appear in parentheses under each method.
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Figure 12-D. 
The distribution of the Intra-labeler variance of the models induced using all of the three 

active learning methods, compared to the Intra-labeler variance of the models induced using 

the passive (Random selection) method, across the models induced from the labels provided 

by the seven labelers and from the gold standard label. The mean values of the standard 

deviation, across all labelers and learning methods, appear in parentheses under each method 

type.
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Figure 13. 
The difference in standard deviation (absolute value) of the AUC among the classifiers 

induced by the AL methods and the passive (Random selection) learning method.
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Figure 14. 
The learning curves of the models induced by using the three AL methods and the passive 

(Random selection) learning method, for the three different labeling setups: gold standard 

labeler, consensus (majority) labeler, and mean AUC of the seven labelers, representing a 

randomly selected labeler.

Nissim et al. Page 47

Artif Intell Med. Author manuscript; available in PMC 2018 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 15. 
The learning curves of the models induced from the labels provided by the three different 

labeling setups: gold standard labeler, consensus (majority) labeler, and mean AUC of the 

seven labelers, for each of the selection methods: the passive (Random selection) learning 

method and the three AL methods.
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Figure 16-A. 
A [25th, 75th percentile] box-plot of the mean Intra-labeler standard deviation of the AUC, 

and its minimal and maximal ranges, for the four learning methods, during the training 

phase, for the three labeling strategies. The mean values of the standard deviation, appear in 

parentheses under each method type.
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Figure 16-B. 
The mean Intra-labeler standard deviation of the AUC, comparing, for each of the four 

selection methods, the three labeling strategies
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Figure 16-C. 
A comparison of the mean standard deviation of the AUC among the four leaning methods, 

for each of the three labeling strategies.
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