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Abstract

Deep learning research on relation classification has achieved solid performance in the general domain. This study proposes a

convolutional neural network (CNN) architecture with a multi-pooling operation for medical relation classification on clinical

records and explores a loss function with a category-level constraint matrix. Experiments using the 2010 i2b2/VA relation corpus

demonstrate these models, which do not depend on any external features, outperform previous single-model methods and our best

model is competitive with the existing ensemble-based method.
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1. Introduction

Relation classification, a natural language processing (NLP)

task identifying the relation between two entities in a sentence,

is an important technique used in many subsequent NLP appli-

cations such as question answering and knowledge base com-

pletion. This task has been widely studied in the general do-

main due to the large number of accessible datasets such as the

SemEval-2010 task 8 dataset [1], which aims to classify the re-

lation between two nominals in the same sentence.

In the clinical domain, Informatics for Integrating Biology

and the Bedside (i2b2) released an annotated relation corpus on

clinical records, attracting considerable attention [2]. Identify-

ing relations in clinical records is more challenging than rela-

tions in the general domain because one sentence from clinical

records may contain more than two medical concepts and con-

cepts may be comprised of several words. For example, the

sentence “at that time , she also had cat scratch fever and she

had resection of an abscess in the left lower extremity” contains

three concepts, two of which contain more than two words. The
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annotated information given in the 2010 i2b2/VA relation cor-

pus thus differs from that in the SemEval-2010 task 8 dataset.

In the former, the category to which a concept pair belongs is

given, and the classification objective is to identify the subcate-

gory, also known as the relation type.

Deep neural networks have become a research trend in recent

years due to powerful learning ability features without man-

ual feature engineering. Various neural architectures have been

proposed for classifying relations in general [3–6], biomedi-

cal [7–12] and clinical text [13, 14]. Conventional convolu-

tional neural network (CNN) models use max-pooling opera-

tions to extract the most significant feature in a convolutional

filter; however, information regarding feature positioning rela-

tive to the concepts cannot be captured. Responding to this is-

sue, Chen et al. [15] designed a dynamic multi-pooling method

to extract features from each part of a sentence in the argument

classification task. A chunk-based max-pooling algorithm, pro-

posed by [16], splits each sentence into a fixed number of seg-

ments to retain more semantics from the sentence for the sta-

tistical machine translation model. The position of features rel-

ative to concepts is vital for medical relation classification on

clinical records. Based on the above studies, this study pro-

posed a CNN-based method (without any external features) for
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recognizing medical concept relations in clinical records. Its

contributions are as follows:

• A multi-pooling operation was introduced into the pro-

posed CNN architecture, which aims to capture the po-

sition information of local features relative to the concept

pair.

• A novel loss function with a category-level constraint ma-

trix was explored.

• The proposed models achieved improved performance

compared to previous single-model methods, and the best

model is competitive with the ensemble-based method for

classifying relations between medical concepts.

2. Corpus and data preprocessing

The relation corpus1 used in this study was released in the

2010 i2b2/VA challenge, and is comprised of 426 discharge

summaries. Of these, 170 were used for training, and the re-

maining 256 for testing2. This dataset contains three types of

concepts (medical problem, treatment, and test), and each con-

cept pair in the same sentence was assigned one relation type.

Medical concept relations in this corpus can be grouped into 3

categories: medical problem-treatment, medical problem-test,

and medical problem-medical problem relations. Table 1 de-

scribes the definitions3 and statistics of these relation types.

Although words within sentences were already separated by

spaces, additional splits were required for some specific strings.

This study employed the Natural Language Toolkit4 (NLTK) to

tokenize sentence strings in clinical records, then realigned con-

cept boundaries to avoid concept information errors. Tokens5

were lowercase, and numbers were replaced by zero.

1The relation dataset is available at https://www.i2b2.org/NLP/

Relations/.
2This follows the official data split in the 2010 i2b2/VA challenge.
32010 i2b2/VA Challenge Evaluation Relation Annotation Guidelines:

http://www.i2b2.org/NLP/Relations/assets/Relation%

20Annotation%20Guideline.pdf.
4Natural Language Toolkit: http://www.nltk.org/.
5Definition of token: http://nlp.stanford.edu/IR-book/

html/htmledition/tokenization-1.html.

Table 1

Relation type statistics.

Relation Definition Train Test

Medical problem-Treatment relations

TrIP Treatment improves medical problem 51 152

TrWP Treatment worsens medical problem 24 109

TrCP Treatment causes medical problem 184 342

TrAP Treatment is administered for medical prob-

lem

885 1732

TrNAP Treatment is not administered because of

medical problem

62 112

NTrP No relation between treatment and problem 1702 2759

Medical problem-Test relations

TeRP Test reveals medical problem 993 2060

TeCP Test conducted to investigate medical prob-

lem

166 338

NTeP No relation between test and problem 993 1974

Medical problem-Medical problem relations

PIP Medical problem indicates medical problem 755 1448

NPP No relation between two medical problems 4418 8089

Eight positive relation types were annotated in this relation corpus, and samples

of three negative relation types (starting with “N” in this table) were extracted

for model training to ensure each concept pair within a sentence could be clas-

sified into a certain relation type.

Fig. 1. Frequency distribution of token count in medical concepts. Concept

lengths appearing less than five times were filtered.

Fig. 1 lists the frequency distribution of token count in med-

ical concepts, showing over half the concepts contained more

than one token. According to these statistics, the average token

count for all concepts in the corpus was 2.09 (medical problem

2.42, treatment 1.85, and test 1.86, respectively). Considering

2

https://www.i2b2.org/NLP/Relations/
https://www.i2b2.org/NLP/Relations/
http://www.i2b2.org/NLP/Relations/assets/Relation%20Annotation%20Guideline.pdf
http://www.i2b2.org/NLP/Relations/assets/Relation%20Annotation%20Guideline.pdf
http://www.nltk.org/
http://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html
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Fig. 2. Architecture of CNN-based model for medical relation classification. Concept contents in the sample sentence “she was treated with [steroids]treatment

for [this swelling]medical problem at the outside hospital , and these were continued .” are replaced by their concept types.

concepts containing more than one token were detrimental to

n-gram feature extraction in the proposed model, the concept

pair contents were replaced by their concept types to make lo-

cal features more apparent. The details of the replacement are

shown in Fig. 2.

3. Methodology

Fig. 2 describes the architecture of the proposed CNN-based

model for medical relation classification on clinical records.

This model learns a distributed representation for each relation

sample. A feature vector is generated to represent each sen-

tence sample x containing two concepts, and final scores are

calculated with relation type representations. Further details

are discussed in the following subsections.

3.1. Word representation

In this relation classification task, the following information

was given for each sample sentence x = (x1, x2, . . . , xn): (1)

concept position indexes in the sentence cindex1 and cindex2 ; (2)

concept contents c1 = (c11, . . . , c1l1) and c2 = (c21, . . . , c2l2);

(3) concept types ctype1 and ctype2 ; and (4) y is the sample’s re-

lation type.

Previous studies on relation classification [4–6, 13] utilized

word position features to capture information on the proxim-

ity of words to target concepts. Therefore, an word embedding

matrix Ww ∈ Rdw×|V w| and an word position embedding ma-

trix Wwp ∈ Rdp×|V p| were utilized in this study, where V w

represented the vocabulary, V p represented the word position

set, and dw and dp were pre-set embedding sizes. For each

sample sentence, every word was mapped to a column vector

xwi ∈ Rdw

representing the word feature. Additionally, the

relative distances between the current word and concepts were

mapped to the position vectors xp1

i ∈ Rdp

and xp2

i ∈ Rdp

.

Based on these features, each word could be represented as

x′i = [(xwi )
T , (xp1

i )T , (xp2

i )T ]T ∈ Rdx

, where dx was the word

vector size and dx = dw + 2dp.

3.2. Convolutional multi-pooling

Semantic representations of n-grams are valuable features in

relation classification tasks, and convolution operation can cap-
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ture this information by combining word representations in a

fixed window. Given a sample sentence x = (x1, x2, . . . , xn)

and a context window size k, the concatenation of successive

words in this window size could be defined as:

xi:i+k−1 = [(x′i)
T , . . . , (x′i+k−1)

T ]T ,

and xi:i+k−1 ∈ Rdxk. The representation of this sentence

could be reformatted as X = (x1:k, . . . , xn−k+1:n) and X ∈

Rdxk×(n−k+1). The input X would then be fed into the con-

volutional layer to generate local features. Given W conv as the

weight matrix of the convolutional filters and a linear bias B1,

a linear transformation followed by a non-linear function are

calculated:

Z = f(W conv ·X +B1),

where W conv ∈ Rdc×dxk, B1 ∈ Rdc

, f is the relu function,

and the convolutional result is Z ∈ Rdc×(n−k+1).

Max-pooling operations are generally used to extract the

most significant feature in a convolutional filter [4]; how-

ever, these are insufficient for relation classification on clinical

records. The dataset used here contains ∼3.3 concepts in one

sentence, making the position of features relative to the concept

pair necessary for relation classification. A multi-pooling oper-

ation was introduced in the proposed method to achieve more

local features in each sentence. Although word position in-

formation was included in word representations, multi-pooling

strengthened the significance of the relative position informa-

tion.

Given the concept position index of a concept pair described

in Section 3.1, the convolutional result Z can be split into three

parts: Z1 = Z1:(cindex
1 −1), Z

2 = Zcindex
1 :(cindex

2 −1), and Z3 =

Zcindex
2 :(n−k+1), where Zp:q = [Zp, . . . , Zq] ∈ Rdc×(q−p+1).

Max-pooling operations are then performed on each part to ex-

tract the most valuable features, defined as rlj = max[Zl]j ,

rl ∈ Rdc

, and l ∈ {1, 2, 3}. These three vectors can be con-

catenate into the single vector

rx = [(r1)T , (r2)T , (r3)T ]T ∈ R3dc

,

creating an informative semantic representation of the sentence.

3.3. Concept feature representation

As described in Section 2, the concept types in a concept pair

are given, allowing their relation category to be known directly.

In response to this situation, concept type information is typi-

cally used in two ways: to train multiple independent models,

or to train one model by adding the concept types as features.

Both methods have distinct advantages and disadvantages: the

former cannot maintain unified word representation, and each

model loses some samples to update the word embedding ma-

trix; the latter may produce misclassifications across categories.

In order to maintain unified word representation and tend

to model simplicity, the latter method was selected here for

model building, and two vectors were used to represent two

concept types mapped from a concept type embedding ma-

trix W ct ∈ Rdct×|V ct|. In the matrix, V ct represents con-

cept type set and dct represents a pre-set concept type embed-

ding size. This concept type feature representation was for-

malized as xct = [(cct1 )
T , (cct2 )

T ]T ∈ R2dct

. Concept con-

tent, in addition to the n-gram and concept type features de-

scribed above, is also necessary for the relation classification

model. Word embeddings of the concept contents were added

to supplement concept feature representation, which can be for-

malized as cfx = [(xct)T , (cw1 )
T , (cw2 )

T ]T ∈ Rdcf

, where

cwi = [(cwi1)
T , . . . , (cwili)

T ]T is the concept content represen-

tation, i ∈ {1, 2}, cwij is the word representation of the jth word

in the ith concept, and dcf = 2dct + dw × (l1 + l2).

3.4. Class embeddings and scoring

The n-gram feature representation and concept feature rep-

resentation were concatenated into the single vector rc =

[(rx)T , (cfx)T ]T , and the confidence of each relation type with

a class embedding matrix W classes ∈ Rm×(3dc+dcf ) was com-

puted as

s =W classes · rc,

where each row vector W classes
l can be viewed as the repre-

sentation of relation type l and m equals the number of relation

types.

4



Training with logsoftmax. After obtaining relation type scores,

a softmax operation was applied to obtain the probability of

each relation type:

p(y|x, θ) = esy∑
l∈Y e

sl
,

where sy is the score for the relation type y, Y is the relation

type set, and θ = (Ww,Wwp,W conv, B1,W
ct,W classes).

Based on this probability, the loss function could be defined

as

L =− log p(y|x, θ) + β(||Ww||2 + ||Wwp||2 + ||W conv||2

+ ||W ct||2 + ||W classes||2),

and β was the L2 regularization parameter.

Category-level constraint. Training one model to cover all cat-

egories may cause cross-category misclassifications. It would

also be inappropriate to regard samples in other categories as

negative samples. Therefore, a loss function with a category-

level constraint matrix was proposed:

LC = log(
∑
l∈Y

Cx
l′l′ · esl)− sy + β(||Cx ·W classes||2

+ ||Ww||2 + ||Wwp||2 + ||W conv||2 + ||W ct||2),

Cx
ij =

1, if i = j and i ∈ Categoryx;

0, otherwise.

Here, Cx represents the constraint matrix of relation type in-

dexes, l′ represents the index number of relation type l, and

Categoryx represents the relation type index set for the cat-

egory that sample x belongs to. After using this loss func-

tion during the training of sample x, only the class vectors

W classes
l (l′ ∈ Categoryx) will be updated, and the other class

vectors remain unchanged. This avoids treating samples in

other categories as negative.

4. Experiments

4.1. Experimental setup

Evaluation metric. As shown in Table 1, there are eight posi-

tive relation types and three negative relation types. Precision,

recall, and F1-measure were used to evaluate the performance

of each positive relation type. Simultaneously, as stipulated in

the official evaluation metric [2], model performance was de-

fined based on the micro-averaged F1 score across all positive

relation types.

Parameter settings. Initial word representations were trained

using the word2vec tool [17] and de-identified notes from the

MIMIC-III database [18]. The other matrices in the proposed

method were randomly initialized by normalized initialization

[19]. The word embedding size was set to 50 and the concept

type embedding size to 5, equal to those in [13]. The dropout

technique [20] was used in the concatenated representation rc

to avoid overfitting, and this value was set to 0.5. One fifth

of the training set was randomly selected as the development

set during experiments, and the model hyperparameters were

tuned using a grid search: word position embedding size (5, 10,

20, 30); convolutional filter size (100, 200, 300, 400); learning

rate (0.01, 0.025, 0.05, 0.075, 0.1); L2 regularization parameter

(0.00005, 0.0001, 0.0005, 0.001). The selected hyperparameter

values were 10, 200, 0.075, and 0.0005, respectively.

4.2. Experimental results

Three method comparisons were designed: (1) CNN-Max,

the CNN-based model using max-pooling in the convolutional

layer; (2) CNN-Multi, the CNN-based model using multi-

pooling in the convolutional layer; and (3) CNN-Multi-C,

where the CNN-Multi model was trained with category-level

constraint.

4.2.1. Filter window sizes and word embedding initializations

The efficacy of different filter window sizes and word em-

bedding initializations was investigated using the CNN-Multi

model. For each filter window size, model performance was

evaluated under two word embedding initializations: (1) pre-

trained, where word embeddings are initialized by pre-trained

word embeddings as described in Section 4.1; and (2) randomly

initialized, where word embeddings are randomly initialized by

5



normalized initialization [19]. Table 2 shows the system perfor-

mance by measures of precision, recall, and F1 score.

Table 2

CNN-Multi model performance using various convolutional window sizes and

different word embedding initializations.

Pre-trained Randomly initialized

Window size P R F1 P R F1

[3] 73.7 64.1 68.5 73.2 65.8 69.3

[4] 72.2 63.6 67.6 73.1 66.7 69.7

[5] 72.7 62.7 67.3 74.5 62.3 67.9

[3,4] 73.9 61.6 67.2 71.0 67.5 69.2

[3,5] 73.2 62.1 67.2 71.2 67.1 69.1

[4,5] 71.7 65.6 68.5 75.3 61.7 67.8

[3,4,5] 70.7 67.0 68.8 70.8 67.7 69.2

Pre-trained word embeddings demonstrated lower F1 scores

in most window sizes. The highest F1 score was achieved us-

ing a window size 4 and randomly initialized word embeddings.

Therefore, all proposed models were trained using a filter win-

dow size 4 and randomly initialized word embeddings.

4.2.2. Comparison with baselines

Previous methods [13, 14, 21] followed inconsistent data

split schemes. To compare these to the proposed methods, all

methods were reimplemented and evaluated using the official

data split of the 2010 i2b2/VA relation corpus [2], as shown in

Table 1. All model hyperparameters remained unchanged dur-

ing the reimplementation. To maintain a fair comparison, the

part-of-speech and chunk features used in [13] were removed,

and word position embeddings were added to Raj et al. [14]’s

models. The performance results are displayed in Table 3, in-

cluding 95% confidence intervals for each performance metric

derived via bootstrapping [22]. The same bootstrapping method

described in [23] was used.

System performance. Rink et al. [24] presented a support vec-

tor machine (SVM) method and achieved the best result in the

2010 i2b2/VA challenge. As the relation corpus available to

the research community is a subset of that used during the

2010 i2b2/VA challenge, Souza and Ng [21] re-implemented

this method using the accessible dataset and obtains a F1 score

of 62.1. They also proposed an improved single-model method

and an ensemble-based method within an integer linear pro-

gramming (ILP) framework, which became the new single-

model and ensemble-based state-of-the-art methods, respec-

tively. CNN achieves a slightly lower F1 score than SVM.

CRNN-Max improved upon SVM, but still lags behind the

single-model state-of-the-art method SVM+ILP. The models

proposed in this paper outperformed SVM+ILP. CNN-Multi

achieved a very similar result to Ensemble+ILP without de-

pending on external features, and was significantly less com-

plex to implement.

Table 3

System performance comparison with other models using the 2010 i2b2/VA

relation corpus.

Classifier
External

features
P R F1

Single-model methods

SVM [24] Set1 66.7 58.1 62.1

SVM+ILP [21] Set2 58.9 75.0 66.0

CNN [13] None 72.2

(70.9, 73.5)

54.1

(52.8, 55.3)

61.8

(60.7, 62.9)

CRNN-Max [14] None 62.0

(60.8, 63.1)

64.6

(63.4, 65.7)

63.3

(62.2, 64.3)

CRNN-Att [14] None 64.7

(63.4, 65.9)

56.5

(55.3, 57.7)

60.3

(59.2, 61.4)

CNN-Max None 73.4

(72.2, 74.6)

62.4

(61.2, 63.6)

67.5

(66.4, 68.5)

CNN-Multi None 73.1

(71.9, 74.2)

66.7

(65.4, 67.8)

69.7

(68.7, 70.6)

CNN-Multi-C None 72.8

(71.7, 74.0)

65.9

(64.7, 67.0)

69.2

(68.2, 70.2)

Ensemble-based method

Ensemble+ILP [21] set2 72.9 66.7 69.6

Set1: POS, chunk, semantic role labeler, word lemma, dependency parse, as-

sertion type, sentiment category, Wikipedia;

Set2: POS, chunk, semantic role labeler, word lemma, dependency parse, as-

sertion type, sentiment category, Wikipedia, manually labeled patterns.
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Fig. 3. Training progress of the CNN-Multi model.

Category-wise performance. Table 4 shows the performance

of the neural network methods in the three relation categories.

All methods demonstrated a better performance on medical

problem-test relations, potentially due to two conditions: (1)

the relation type number of medical problem-treatment rela-

tions is twice that of medical problem-test relations; and (2)

as shown in Table 1, medical problem-medical problem rela-

tions have a high relation type imbalance, which is adverse

for classification. Compared with CNN-Max, CNN-Multi ob-

tained significantly higher F1 scores for both medical problem-

treatment and medical problem-medical problem relations, but

improved much less for medical problem-test relations. This

may indicate the relative position information of features, ex-

tracted via multi-pooling operation, works well for relatively

complex relation classifications whereas max-pooling is suf-

ficient for simpler relation classifications. Among these neu-

ral network methods, CNN-Multi performed best for medi-

cal problem-treatment and medical problem-medical problem

relations, whereas CNN-Multi-C performed best in medical

problem-test relations.

Class-wise performance. Table 5 shows the performance of

neural network methods for each positive relation type. In com-

bination with Table 1, this demonstrates that relation types with

Table 4

Category-wise performance comparison with other neural network models

using the 2010 i2b2/VA relation corpus.

Classifier TrP relations TeP relations PP relations

P R F1 P R F1 P R F1

CNN [13] 64.5 47.5 54.7 79.5 68.6 73.7 70.6 41.0 51.9

CRNN-Max [14] 53.9 60.2 56.9 68.7 77.1 72.7 65.3 51.4 57.5

CRNN-Att [14] 62.8 46.7 53.6 66.0 75.7 70.5 64.3 41.2 50.2

CNN-Max 67.1 54.3 60.0 80.3 76.4 78.3 70.4 53.2 60.6

CNN-Multi 68.1 60.0 63.8 77.9 79.3 78.6 72.0 56.9 63.6

CNN-Multi-C 67.9 58.3 62.7 79.3 78.3 78.8 68.9 58.1 63.1

TrP, Medical problem-Treatment; TeP, Medical problem-Test; PP, Medical

problem-Medical problem.

a small training size (TrIP, 51; TrWP, 24; TrNAP, 62) provided

poor performance, and class-wise performance improved as the

training size increased.

4.3. More analysis

Model training progress. Fig. 3(a) shows accuracy curves of

the CNN-Multi model. The accuracy curve of the training set

maintained high values, indicating the model fit the dataset

well. The accuracy of the development set generally tends to

stabilize after 15 iterations. In Fig. 3(b), the F1 score curves of

the development and test sets show similar trends; these curves

appear less smooth because the training set was shuffled for

7
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each iteration. F1 score on the development set reached its op-

timal value at the 41st iteration, after which system parameters

were maintained to evaluate system performance on the test set.

Errors. Table 6 contains no cross-category misclassification,

and relation samples are evidently more often misclassified as

the relation type whose training size is larger. This is due to the

fact that during multi-class model training, models have more

offset for classes with larger training sizes. Considering this

situation, sampling methods can be considered as a strategy to

improve model performance in future works.

Effect of category-level constraint. As shown in Table 3, sys-

tem performance declined after adding a category-level con-

straint into the CNN-Multi model, whereas advantages of this

constraint were not reflected. There are two potential rea-

sons for this: (1) the CNN-Multi model was well trained and

no cross-category misclassifications existed; and (2) the sam-

ple number of each relation type was too small for updat-

ing only the class vectors W classes
l (l′ ∈ Categoryx) during

training to improve the generalization capability of the model.

This constraint may be effective when experimenting with large

datasets.

Fig. 4. Distance between medical concepts. Distance was calculated from the

number of tokens between two medical concepts.
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Table 6

Confusion matrix of the system output of the CNN-Multi model.

System output

TrIP TrWP TrCP TrAP TrNAP NTrP TeRP TeCP NTeP PIP NPP

TrIP 3 13 93 43

TrWP 11 38 60

TrCP 143 73 126

TrAP 26 1320 386

TrNAP 15 53 3 41

NTrP 3 44 319 2393

TeRP 1831 7 222

TeCP 112 71 155

NTeP 411 9 1554

PIP 824 624

NPP 320 7769

Zero items were removed from this table. Correctly classified items are bolded and the remainder are italicized.

Distance between medical concepts. The distance between two

medical concepts was calculated from the number of tokens be-

tween the concepts. Fig. 4 illustrates the distance distribution

of different relation types. In most samples, the distance be-

tween concepts was less than 20 tokens, however, there are still

some long-distance relations, which are more challenging to be

classified.

5. Related work

Before deep learning research became popular, most relation

classification tasks used statistical machine learning methods.

Many researchers in the general and medical domains focused

on feature-based and kernel-based methods [21, 24–28], which

are limited by conditions such as manual feature engineering

and dependence on existing NLP toolkits.

More recently, researchers began investigating the perfor-

mance of deep learning methods in relation classification tasks

and achieved satisfactory results. Various deep architectures

have been proposed for relation classification in the general do-

main, including the recurrent neural network (MV-RNN) [3],

CNN with softmax classification [4], factor-based composi-

tional embedding model (FCM) [29], and word embedding-

based models [30]. Many RNN- and CNN-based variants ex-

ist. Because the max-pooling operation in CNN models experi-

ences significant linguistic feature losses in sentences, some re-

searchers introduced dependency trees for this application such

as bidirectional long short-term memory networks (BLSTM)

[31], dependency-based neural networks (DepNN) [32], short-

est dependency path-based CNN [33], long short term memory

networks along shortest dependency paths (SDP-LSTM) [34],

deep recurrent neural networks (DRNN) [35], and jointed se-

quential and tree-structured LSTM-RNN [36]. Although the

above studies achieved solid results, further research was de-

voted to eliminating the dependence on NLP parsers. dos San-

tos et al. [5] proposed a new pairwise ranking loss function

where only two class representations were updated in every

training round. Similarly, Wang et al. [6] introduced a pairwise

margin-based loss function and multi-level attention mecha-

nism, achieving new state-of-the-art results for relation classi-

fication. Some feature-free neural network methods also exist

for relation classification on biomedical and clinical text. Liu

et al. [7] employed CNN for drug-drug interaction (DDI) ex-

traction, and Quan et al. [9] proposed a multichannel convo-

lutional neural network (MCCNN) for this task. Furthermore,

several attention-based methods [10–12, 14] were presented for

automated biomedical relation extraction. This paper aimed is

9



to train a feature-free CNN-based model for classifying medical

relations in clinical records.

6. Conclusion

This paper presented a novel CNN-based model for classify-

ing relations between medical concepts in clinical records. The

model performed well classifying relations in the 2010 i2b2/VA

relation corpus. A multi-pooling operation helped to extract

more precise and richer features in the convolutional layer, in-

dicating feature extraction based on concept pair positioning

can improve the efficacy of relation classification on clinical

records. Although this model was applied to relations between

medical concepts in clinical records, it could also be adapted to

classify relations in other domains.
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