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A B S T R A C T

Following the personalized medicine paradigm, there is a growing interest in medical agents capable of pre-
dicting the effect of therapies on patients, by exploiting the amount of data that is now available for each patient.
In disciplines like oncology, where images and scans are available, the exploitation of medical images can
provide an additional source of potentially useful information. The study and analysis of features extracted by
medical images, exploited for predictive purposes, is termed radiomics. A number of tools are available for
supporting some of the steps of the radiomics process, but there is a lack of approaches which are able to deal
with all the steps of the process.

In this paper, we introduce a medical agent-based decision support system capable of handling the whole
radiomics process. The proposed system is tested on two independent data sets of patients treated for rectal
cancer. Experimental results indicate that the system is able to generate highly performant centre-specific
predictive model, and show the issues related to differences in data sets collected by different centres, and how
such issues can affect the performance of the generated predictive models.

1. Introduction

Personalized medicine is a relatively new, but already well-estab-
lished, paradigm based on the principle that each individual is born
with unique biological and genetic characteristics [1,2]. The foundation
of this paradigm is formed by disciplines such as Genomics – the science
of studying the genes in a genome and their interactions with each
other –, and proteomics – which instead focuses on proteins. Further-
more, in disciplines like oncology, where images and scans are avail-
able, the exploitation of medical images can provide an additional
source of potentially useful information. Thanks also to the recent ad-
vances in computer science, it is now possible to extract a huge number
of “quantitative” features from tomographic images (computed tomo-
graphy [CT], magnetic resonance [MR], or positron emission tomo-
graphy [PET] images), and such extracted features can then be auto-
matically analysed in order to investigate their informativeness with
regards to the evolution of the disease, or the response of the patient to

a specific clinical treatment. This discipline is commonly termed
radiomics [3], and is aimed at providing effective decision support to
physicians and practitioners, and complementing the traditional “qua-
litative” analysis of images, commonly performed by human experts
[4]. In this context, features represent a numerical synthesis of some
properties of the considered image, which would not be possible to
manually extract and analyse. Extracted features can then be combined
with available clinical data into complex models to predict patient
prognosis or benefit from a specific therapy.

Remarkably, evidence that radiomics can be helpful for predicting
tumour control or clinical complications has been documented for most
of the common modalities (CT, MRI, PET, etc.) and anatomical districts
– such as lung, rectum, or brain – [5–8].

The growing interest in radiomics lead to the development of sev-
eral specifically-designed tools; examples include cGITA [9], TexRAD
[10,11], moddicom [12], Pyradiomics [13], and CERR [14]. In parallel
with the grows of radiomics tools, initiative such as the Image
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Biomarker Standardisation Initiative [15] and the Radiomics Ontology1

become important to standardise the different aspects of image pro-
cessing and features extraction. However, despite the growing number
of radiomics tools, to the best of our knowledge there is a lack of agents
that can deal with all the steps of the radiomics process, thus providing
a complete and modular environment for supporting the generation and
analysis of the predictive models, and allowing the exploitation of
models in everyday medical routine. Existing tools are mainly aimed at
facilitating the extraction of features, and at extending the set of fea-
tures that can be extracted from a medical image, only. Pivotal steps,
like feature selection and generation of the actual predictive model –
either via traditional statistical approaches or recent machine learning
techniques – are ignored. More worryingly, existing tools do not na-
tively provide any support for the external validation of generated
models. As a result, a crucial issue of the exploitation of radiomics
predictive models, is that their portability between centres or hospitals
is unclear. This is also due to the fact that different machines, parti-
cularly in MRI, provide medical images with very different character-
istics, particularly in terms of visual noise. Such differences can strongly
affect the predictive capabilities of the generated models, and in-
validate the results. A possible way for tackling this issue is to ex-
tensively exploit external independent testing sets, and providing tools
that are supportive in this regards, in order to validate the generated
models [16–18]. Similarly, features can be analysed in order to identify
those which are more robust to common sources of image noise.
However, despite the fact that empirical investigations which rely on
external validation are deemed to be qualitative better than others by
the TRIPOD guidelines [19], this approach can not guarantee the re-
producibility of the observed results in every set [20].

The contribution of this paper is twofold. First, we introduce an
approach – under the form of a medical agent-based decision support
system – for supporting the whole radiomics process. In its current
implementation, the agent incorporates some of the ideas and func-
tionalities of moddicom [12]. Given a set of medical images, the pro-
posed system is able to extract a wide range of features, to analyse and
select them with regards to the outcome to predict, and to generate an
optimised predictive model. When data from a new patient is provided
as input, the proposed agent is able to collect features from available
medical images and patient's data, and to return a prediction about the
clinical outcome of a proposed treatment. In other words, the agent can
be provided high level goals to achieve – such as, generate a predictive
model that shows some given properties, and it able to reason upon
available knowledge in order to satisfy, whether possible, the goals.
This reduces the burden on human experts, and provides a valuable
decision support tool, that can also allow to investigate alternative
approaches and models. The agent is centre-specific, but has been de-
signed in order to be capable of exchanging models between agents in
different centres and testing generated models on different data, thus
supporting external validation. As a second contribution, we investigate
the capabilities of the proposed agent in a real-world scenario. We
consider two sets of medical images acquired by two different centres
for treating patients affected by rectal cancer. By training the system on
each set, we empirically demonstrate how the differences in data sets
collected by different centres can affect the performance of the gener-
ated predictive models.

The remainder of this paper is organised as follows. Section 2 de-
scribes the structure of the proposed system and gives details of the
considered features. In Section 3 the data sets are introduced, and
empirical results are then presented. An extensive discussion is pro-
vided in Section 4. Finally, conclusions are given.

2. The proposed agent

The architecture of the proposed agent-based decision support
system is depicted in Fig. 1, and the corresponding software is available
at https://github.com/robertogattabs/RadAgent. The exploitation of an
agent-based approach has a number of advantages. An agent can cope
with high level goals, such as generate models that maximise given
metrics, by taking into account all the steps of the process. In facts, the
agent can reason upon overall and step-specific knowledge in order to
modify the behaviour of the corresponding modules, so that the overall
goals are achieved. The modular architecture supports the agent by (i)
allowing the development and exploitation of off-the-shelf modules that
can be substituted without any modification to the rest of the archi-
tecture; (ii) providing a standardised interface between the modules;
and (iii) allow to modify parameters and behaviour of each component,
and isolating the effects on the overall performance.

The system has been designed in order to being able to deal with all
the steps of a radiomics analysis, and to provide useful information and
support to the physicians. It is worth emphasising that clinicians are
generally not very keen to exploit predictive models that cannot be
inspected and validated “clinically”. For this reason, in the rest of this
paper we focus on machine learning techniques, such as logic regres-
sion or decision trees, that allows to generate predictive models that can
be analysed by human experts – but that yet can provide reasonably
high performance.

Main functionalities of the proposed system, that can be performed
automatically or required by the users, include:

• Features extraction from both original medical images, and images
filtered using the well-known Laplacian over Gaussian convolution
kernel (LoG) [16]. The LoG filter is commonly exploited in order to
smooth the high frequency noise and enhance the variation of values
among adjacent pixels in the images.

• The LoG filter can return images with very different appearance
according the value of the σ parameter used. It is therefore im-
portant to identify the σ values that lead to most significant and
informative features being extracted for the considered outcome to
be predicted. σ values are selected by a Mann–Whitney test with the
clinical outcome (to identify the most representative σ) and ex-
ploiting a cross-correlation matrix, assessed via a p Pearson Test (to
allow the use of two different σ for the same feature in case of no-
correlation between the feature at the two σ values).

• Signatures of selected features, i.e. subsets of informative features,
are evaluated. Signatures are generated via greedy forward selec-
tion, and are assessed according to metrics provided by the user. In
our analysis we considered the AUC with regards to a logistic re-
gression.

• Signatures are then exploited for generating predictive models, and
are compared with regards to their predictive ability. The signature
that leads to the best predictive model is selected in order to be used
by the agent to support the decisions of the human expert, on new
testing cases. Optionally, performance and characteristics of the best
performing features can also be presented to the user, which can
decide to exploit a different set of features than those included in the
signature identified by the agent.

Noteworthy, the introduced agent has a high level of configur-
ability, that allows it to be optimised according to the characteristics of
the images and data sources of the centre. In order to maximise its
compatibility with existing systems, it has been developed in R, which
is one of the most used environments for statistical analysis in medicine.
Results of the analysis can be exchanged between agents, in order to
(externally) validate results or evolve the generated predictive models.

The architecture is agnostic with regards to the element to be pre-
dicted and to the available features. For the purposes of this work, we
consider 92 types of features, that can be classified as follows:1 https://bioportal.bioontology.org/ontologies/RO
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• BASIC: first order image features [15] extracted by considering as-
pects such as Morphological (MRF), Statistical (STAT), and Intensity
Histogram (HI) of the image. Features in this set also include shape
properties, such as Volume, Surface, Surface to volume ratio,
Compactness, Sphericity, Centre of mass shift, Mean, Variance,
Skewness, Kurtosys, etc.;

• GLCM: Grey level co-occurrence based textural features [15]. Fea-
tures in this set include Mean, Variance, Skewness, Kurtosis, 10th
and 90th percentile, Robust mean absolute deviation, Energy, etc.;

• GLRLM: Grey level run length based textural features [15]. Ex-
amples of features in this set are Short and Long runs emphasis,
Short and Long run low grey level emphasis, Grey level non-uni-
formity normalised, Run entropy, etc.

• GLDZM: Grey level size zone based textural features [15]. Features
include Grey level non-uniformity, Zone size non-uniformity, Zone
percentage, Zone size entropy, etc.

It should be noted that the value of a feature also depends on the
considered σ used in the LoG filter. In this implementation of the
system, for the sake of efficiency, we consider 9 possible σ values: 0.35,
0.49, 0.54, 0.59, 0.64, 0.69, 0.74, 0.79, 0.84. Such values has been
selected according to the experimental results achieved in [21]. The use
of 9 possible σ values leads to a grand total of 734 features (Morpho-
logical and shape features, from the Basic set, are not affected by
changes in the LoG filter) considered by the approach for generating the
predictive model. The complete list of features considered in this work
is provided in appendix. For a detailed description of the features, in-
cluding the actual mathematical formulas, the interested reader is re-
ferred to [15].

3. Experimental analysis

The main purpose of this experimental analysis is to assess the
usefulness of the proposed radiomics agent in supporting the different
steps of a radiomics investigation. It is therefore beyond the scope of
this study to thoroughly compare the performance of differently gen-
erated predictive models. For a clinical evaluation of mathematical
predictive models, the interested reader is referred to [16].

The experimental analysis considers two data sets of T2-weighted

fast spin-echo 2D oblique images MR scans, that are used for treating
patients affected by rectal cancer. The first data set includes scans of
173 patients from the Gemelli polyclinic hospital in Rome, the second
set is composed by 25 clinical cases treated at the Maastro clinic of the
Maastricht University Medical Centre. Both the data sets of images in-
clude manual contouring of the clinical target volume (CTV) [22]. CTV
includes the gross tumour volume, which is the region already affected
by the tumour, as well as the regions of direct, local subclinical spread
of disease that must be treated in order to stop the evolution of the
tumour. The different size of the sets provides an interesting test-bed for
a radiomics decision support system. Typical medical sets can show a
significant size variability, according to the typology of tumour con-
sidered and to the characteristics of the medical centre.

The scanner used at the Gemelli polyclinic hospital is a MR 1.5 T
unit (Signa Excite GE Medical Systems), while the Maastro clinic is
equipped with a Siemens Magnetom AVANTO machine. Acquisition
parameters were homogeneous for the two data sets, and are as follows:

• repetition time, 2500–5000 ms;

• inversion time, 100–110 ms;

• pixel spacing, ca. 0.7 mm;

• echo train length, 16–24;

• section thickness, 3 mm;

• no intersection gap;

Images have been acquired in a transverse plane orthogonal to the
tumour longitudinal axis. No intravenous contrast medium was ad-
ministered. The subsequent manual contouring was performed by an
expert radiation oncologist, using a radiotherapy delineation console
(Eclipse, Varian Medical System) for the definition of lesion outline as
defined in ICRU n. 83.2

Fig. 2 shows two MR slices from the Gemelli polyclinic data set
(left), and two MR slices acquired at the Maastro clinic. Noteworthy,
despite the strict observance of acquisition procedures and acquisition
parameters, it is easy to notice that acquired images are significantly
different. Qualitatively, images acquired at the Gemelli polyclinic

Fig. 1. The overall architecture of the proposed decision support system for radiomics, in terms of modules and input/output. The modules included in the ar-
chitecture correspond to the steps to be performed in the radiomics process. Generated models can be internally validated (green module) or exploited for predicting
the outcome of a previously unseen clinical case, and support the physicians.

2 https://icru.org/testing/reports/prescribing-recording-and-reporting-in-
tensity-modulated-photon-beam-therapy-imrt-icru-report-83
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include more visual noise, particularly at high frequencies, than those
acquired by the other centre. Moreover, some horizontal interferences
can be spotted (and are pointed in the figure). On the other hand,
images acquired at the Maastro clinic may present blurring artefacts, as
highlighted in the figure.

In order to provide the appropriate input for the proposed approach,
MR scans have been processed using the moddicom R library [12].
Moddicom is an open source library that allows to: (i) deal with DICOM
files in order to extract images and contouring information; (ii) process
and store extracted data; and (iii) analyse stored data to extract mor-
phological and structural features. DICOM (Digital Imaging and Com-
munications in Medicine) is a standard for storing and transmitting
medical images enabling the integration of medical imaging devices
such as scanners, servers, workstations, printers, network hardware,
and picture archiving and communication systems (PACS) from mul-
tiple manufacturers.

The clinical outcome to be predicted trough the generation of
radiomics-based models is the pathological complete response (pCR)
after surgery, which indicates that there is no residual histological
evidence of tumour after surgery. pCR is increasingly found to be a
reasonable surrogate for long-term favourable outcomes [23]. In the
considered datasets, 21–23% of the cases show a positive pCR. The
output of the proposed approach comes in the form of probability of
pCR; while the threshold can be provided as input by the user, in this
case we exploited a 50%-value threshold. Remarkably, the probability
value provides implicitly an estimation of the reliability of the predic-
tion: the closer the probability is to 50%, the lower the confidence.

With the aim of limiting the possibility of overfitting, predictive
models are evaluated using a 10-fold cross-validation strategy.

Performance are measured in terms of specificity and sensitivity.
The former measures the so-called true negative rate, i.e., the propor-
tion of negative cases that are correctly identified as such. In our ana-
lysis, negative cases correspond to the presence of residual histological
evidence of tumour, and the absence of a complete pathological re-
sponse. Sensitivity (also called the true positive rate) focuses on the
proportion of correctly classified positive cases.

3.1. Results

Hereinafter we will refer to the predictive model trained, using the

proposed framework, on the data set from the Gemelli polyclinic and
the Maastro clinic, as respectively, Ag.G and Ag.M. On the basis of the
considered training data, the optimisation procedure included in the
architecture lead to the generation of differently structured predictive
models:

• The Ag.G model is based on a logistic regression built using cT
(clinical T stage), the zone size entropy [15] after the application of
a LoG with σ=0.35 and the Skewness of the grey-level distribution
after the application of a LoG with σ=0.59.

• The Ag.M predictive model is based on two covariates, the Grey
level co-occurrence correlation [15] obtained with a σ=0.84 and
the Grey level co-occurrence joint entropy obtained with a σ=0.54.
The agent decides automatically the number of covariates to con-
sider according to the size of the provided training set.

It should be noted that the automated optimisation is performed
greedily, following the expected AUC value.

Fig. 3 shows the receiver operating characteristic curve (ROC) of
Ag.G and Ag.M on both the training set (blue) and the external testing
set (red). Unsurprisingly, the performance of the models tend to be
better on the training set, rather than on the testing set. This is because
the testing set images are affected by a different type of noise than the
training set ones (examples have been discussed in Fig. 2). The ex-
tremely good performance of Ag.M on the same data from the Maas-
tricht clinic is possibly due to two main reasons: (i) the limited size of
the set, which may result in some overfitting; and (ii) the fact that
images acquired by the Maastricht clinic show a very limited noise, or a
type of noise to which considered features are robust.

3.1.1. Features analysis
To shed some light on the informativeness and the significance of

considered features in the two data sets, we performed an univariate
analysis between each feature and the pCR outcome to be predicted.
The analysis was performed using the Mann–Whitney test (p < 0.05).
Table 1 presents the results of the investigation in terms of number of
features that have a correlation with the outcome to predict. For each
feature, only the most representative σ has been considered. Features
are grouped according to the class they belong to. As a first remark, we
observe that out of the total set of available features, a large subset

Fig. 2. Two MR slices from the Gemelli polyclinic set
(left) and from the Maastro clinic (right). Images show
significant differences in terms of high frequency noise
(upper left), horizontal lines (bottom left), and spotted
blurring artefact (upper and bottom right). Such arte-
facts have been highlighted using red arrows, for the
sake of readability.
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(more than 20%) has a significant correlation with the pCR outcome to
be predicted. Considering that the univariate analysis cannot take into
account combinations of features, this result seems to suggest that
considered features can be very informative, as they carry useful in-
formation for predicting the required pCR outcome.

Results presented in Table 1 also highlight the limited overlap be-
tween the features deemed to be significant between the two data sets.
In total, 7 features are identified by the univariate analysis, for at least
one σ value, in both the sets.

• Entropy, BASIC;

• Sum Entropy: Textural features, GLCM;

• Correlation: Textural features, GLCM;

• Sum variance: Textural features, GLCM;

• Cluster tendency: Textural features, GLCM;

• Run Entropy: Textural features, GLRLM;

• Large zone high grey level emphasis: Textural features, GLDZM.

Interestingly, most of the features (4) come from the GLCM class,
which includes textural features about the grey level co-occurrence.
This suggests that this class is, in general, more robust with regard to
the kind of noise that affects the medical images acquired by the two
considered centres.

Fig. 4 shows the cross-correlation matrices of the extracted features,
and the bivariate correlation – measured using the Pearson correlation
coefficient. For the sake of readability, features in the histograms are
ordered following the order used in the matrices. Evidence seems to
indicate that in the Ag.G set, features have a lower correlation: the
region around 0 is very populated. This is possibly due to the noisy of
the images in the set, that may reduce the informativeness of extracted
information. On the contrary, features in the Ag.M model show a higher
level of correlation, as correlation values are evenly distributed among
the scale.

3.1.2. General predictive models
It is worth reminding that the Ag.M and Ag.G models have been

optimised by the proposed system in order to maximise the perfor-
mance on images from the corresponding medical centre. Results pre-
sented in Fig. 3 indicate that trained model perform poorly on a dif-
ferent data set. Therefore, the question naturally arises: Is it possible to
generate a more general and robust predictive model? To answer this
question, we configured the proposed system in order to generate a
predictive model according to the approach proposed in [21]: their
work was based on a very limited set of features, and showed to be
portable and robust. We refer to the resulting model as Ag.G*, because
it has been trained using data from the Gemelli clinic. The Ag.G* model
is based on a logistic regression built using cT (clinical T stage), the
entropy of the grey-level distribution after the application of a LoG with
σ=0.35 and the Skewness of the grey-level distribution after the ap-
plication of a LoG with σ=0.49.

Fig. 5 shows the performance of the Ag.G* predictive model. Blue is
used to indicate the ROC observed on the Gemelli training set, in cross-
validation. Red indicates the ROC obtained on the Maastro testing set.
The generated predictive model provides an interesting trade-off be-
tween portability and performance: while the performance on the
training set are not as good as those delivered by the Ag.G or Ag.M
models, the Ag.G* approach is more robust when used on data from a
different centre. This seems to indicate that it is possible to generate a
more general and robust model, but at the cost of reduced performance
on the specific set.

4. Discussion

According to the presented results, the proposed approach is able to
deal with all the steps of a radiomics analysis on data gathered by
different centres. Specifically, the proposed framework showed to be
capable of identifying a suitable set of informative feature to maximise
the performance – measured in terms of AUC with regards to the out-
come to be predicted – of a given class of predictive models. In this
work, we focused on logistic regression, but the modularity of the fra-
mework allows to easily substitute logistic regression with a different
class of approaches, or even to consider more approaches at once. We
also highlighted how the framework can be exploited for comparing
predictive models generated for different data sets, and how the cor-
responding features (and their characteristics) can be compared and
analysed. Remarkably, this analysis can potentially lead to identify is-
sues in the machines or in the environment, or even suggests the pre-
sence of procedural issues.

The empirical results presented in the previous section seem to

Fig. 3. ROC curve of the predictive model trained on the Gemelli polyclinic's data set (left) and on the data acquired by the Maastricht clinic (right). Blue is used to
indicate the ROC observed on the training set, –in cross-validation. Red indicates the ROC obtained on the (external) testing set.

Table 1
Number of features that, at least at one σ value and according to an univariate
analysis performed using the Mann-Whitney test (p < 0.05), are correlated
with the outcome to predict. Features are grouped according to the class they
belong to. Results are provided for each considered data set, and also in terms of
features which are relevant for both sets.

BASIC GLCM GLRLM GLSZM

Policlinico Gemelli 8 9 5 4
Maastro clinic 4 9 2 3
Common features 1 4 1 1
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confirm the importance of centre-specific radiomics-based predictive
models. Fig. 3 suggests that the use of “general” predictive models can
lead to very poor predictive performance. However, results also clearly
indicate the value of a radiomics-based decision support system, that
can provide useful information to physicians and can lead to a more
effective planning of the treatments for patients. A trade-off between
portability and performance is presented in Fig. 5: remarkably, the
generated predictive model is less sensitive to the difference in the data

sets, for instance in terms of image noise. On the other hand, general
performance is worse than those that can be achieved by exploiting
centre-specific models.

Taking a different perspective, which is necessarily more spec-
ulative than the analysis of the results presented in the previous section,
we can identify a number of ways in which the presented system can be
exploited with regards to radiomics:

• For the sake of the explainability of the predictive models, a number
of different models can be generated for predicting the same clinical
outcome. In particular, emphasis can be given to approaches that
generate models easy to investigate and analyse by humans, so that
an expert user can visualise the generated model, and can explore
the relevance of features with regards to the considered clinical
outcome. While the number of features can be extremely large, fo-
cusing on the described classes of features can highlight the im-
portance of a set of feature, that can be used all together.

• The proposed framework can also allow users to provide as input a
specific set of features to be analysed. Such features are then
exploited for generating predictive models, and can be compared in
terms of relation and correlation. This may allow to investigate
features believed to be informative in the relevant literature, and
also to assess their usefulness in the presence of images acquired by
using different machines, settings, or centres.

• Different data sets can also be compared, in terms of relevant fea-
tures. For instance, in the presence of large multi-centric studies, it
may be useful to identify centres which acquire images with similar
properties; that would reduce the noise of the analysis, and max-
imise the probability of generating an highly performant yet general
– with regards to the considered clinics – predictive model.

The physicians involved in the experimental analysis positively
evaluated the experience with the proposed agent. The agent allows the
medical experts to focus on the actual goals of their investigation and
analysis: optimisation and low-level details are optimised by the agent
architecture without the need of human guidance. The agent, given a
range of alternative modules to choose from, and the parametrisation of

Fig. 4. Cross-correlation matrices, using the
Pearson correlation coefficient, obtained by
analysing the data set of the Gemelli polyclinic
(left) and Maastro clinic (right) are presented
in the top half. Bottom half shows the dis-
tribution of the coefficients under the form of
histograms. 0.0 indicates that no correlation is
found, while +1 (−1) identifies cases with
strong direct (inverse) correlation.

Fig. 5. The ROC of a predictive model created by considering as training data
images acquired by the Gemelli polyclinic. The model, called Ag.G*, shows to
be more general and robust than the Ag.G and Ag.M models, but it delivers
slightly worse performance. Blue is used to indicate the ROC observed on the
training set, in cross-validation. Red indicates the ROC obtained on the Maastro
testing set.
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each module, can transparently test different alternatives in order to
achieve the specified goal. In the presented experimental analysis, the
goal was to generate a LR-based predictive model of the pCR of patients
treated for rectal cancer. A very important aspect that the agent-based
structure can support, but has not been integrated in the proposed
system yet, is the ability to explain results, and to motivate the decisions.
We are extremely interested in develop these aspects as part of our
future work.

An important aspect to consider, particularly in the case of agent-
based decision support system, is the ability to generalise on different
data sets. This has been partly covered in the experimental analysis by
considering images from two different centres. However, also due to the
very limited amount of contoured images available in the radiomics
field, it is hard to empirically demonstrate that the proposed agent will
easily generalise on data sets where different type of cancer are treated.
On this matter, a preliminary study performed by exploiting the pro-
posed agent on a data set considering 15 patients affected by glio-
blastoma (a form of brain cancer) seems to indicate that the agent, also
due to its modularity, can generalise on significantly different sets of
MRI images [24].

The agent introduced in this work can play a central role in a dis-
tributed learning scenario [25], where different agents cooperate to
converge to a robust and shared predictive model while preserving the
privacy of patients. This can be achieved by exploiting an iterative
approach, shown in Fig. 6, composed by four main steps: (a) Each
centre trains a local model, (b) the models are sent to a Master, (c) the
Master calculates a model, considering weighting the contribute of each
centre with the cardinality of the locally available sets, then calculates
some new coefficients for each node, (d) the coefficients are sent to
each node and the process can be repeated until in a (c) step a con-
vergence criteria is reached.

However, we also envisage the use of the introduced agent in dis-
tributed learning scenarios where federated learning approaches are
exploited [26], where there is no need for a master to coordinate
learning and merge a general model.

5. Conclusion

Radiomics is a topic that is gaining a significant interest in the
scientific community, as testified by the growing number of publica-
tions that can now be found on the online library of medicine-related
articles Pubmed. While still in its infancy, a number of tools are now
available for supporting radiomics, as well as standardisation in-
itiatives. These initiatives, such as IBSI [15] are mainly aimed at
maximising the reproducibility of results.

Despite the growing interest and the number of already available
tools, there is a lack of agents that can deal with all the steps of the
radiomics process. Existing tools are mainly aimed at facilitating the
extraction of features, and at extending the set of features that can be
extracted from a medical image, only. Crucial aspects, such as features
selection, correlation between features and the outcome to predict, and
the generation of the actual predictive model, are normally ignored.

In the light of the peculiarities of radiomics, such as the very dif-
ferent characteristics of acquired images according to the exploited
machine or the location of the machine, two lines of evolution of
radiomics can be envisaged:

• General and portable models. By identifying features that are
robust with regards to different sources of image noise that can be
found in images acquired in different centres, it could be possible to
generate general and portable predictive models, which would allow
to exploit the availability of numerous – even though sparse – sets of
images. On the other hand, the focus on portability would lead to
under performing (when compared to centre-specific) models, with
clear negative repercussion on the quality of the treatment delivered
to patients.

• Centre-specific models. By dropping any requirement related to
the portability of models, a significant performance boost can be
obtained by highly optimised centre-specific predictive models. This
would allow every centre to train a model that is specific for the
characteristics of the machines, and for the typology of noise which
is included in the acquired images. A significant drawback would
then be that any change in the environment, e.g. a new machine is

Fig. 6. An example of a possible architecture of cooperative agents to converge to a robust and shared model by an iterative approach. Initially, each centre trains a
local model using its local agent (a), that is then sent to a Master (b). The master agent merges the models into a general one (c), and send it back to each centre (d).
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bought to substitute and obsolete one, may dramatically reduce the
reliability of the generated model. Furthermore, this approach does
not allow to investigate, in a general sense, the importance and
robustness of features.

In this paper, we introduced a medical agent-based decision support
system which is capable of supporting the whole radiomics process3.
The agent can be given a high level goal, and is then able to reason in
order to achieve it. Given a set of medical images, the proposed system
is able to extract a wide range of features, to analyse and select them
with regards to the outcome to predict, and to generate an optimised
predictive models. When data from a new patient is provided as input,
the proposed agent is able to collect features from available medical
images and patient's data, and to return a prediction about the clinical
outcome of a proposed treatment. Our experimental analysis demon-
strated the ability of the system, and highlighted that the proposed
architecture is capable of supporting both the lines of research men-
tioned above: predictive models can be optimised for a specific centre,
and then exchanged in order to analyse the differences. Furthermore,
data sets can be merged in order to generated general predictive
models, or more general approaches can be used for the creation of
predictive models.

We see several avenues for future work. We are actively working on
four aspects.

1 The exploitation of additional data sets for testing the capability of
the proposed medical agent-based decision support system to gen-
eralise on different types of images and contouring.

2 A graphical user interface, that would create a more comfortable
environment for researchers.

3 The development of additional modules for performing different
kind of features selection algorithms, and extend the set of techni-
ques that can be used for generating the actual predictive model.
Specifically, we are looking into neural networks [27], SVM [28],
and decision trees [29]. Neural networks will need only a subset of
the currently developed modules of the proposed decision support
agent, but this aspect is already supported by the modularity of the
system.

4 An approach for extracting information about the spectral compo-
nents (and other measurable aspects) of image noise of images in-
cluded in the considered data set. Such analysis will allow to assess
the impact of different sort of noise on the predictive capabilities of
(some set of) considered features, and to better counter-balance it.
As a result, it would be possible to generate more robust predictive
models.

5 Improving the capabilities of the agent, so that it can explain the
obtained results and motivate the decisions taken.

6 An architecture to support multi-centric investigation based on the
distributed learning principles.
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Appendix A. Detailed list of features

Here we provide the list of 92 features exploited in this work. They
are described in the Image biomarker standardisation initiative
Reference manual [15]. In order to make it easier, for the interested
reader, to identify the features in the reference manual, the same id is
used in the following list.

• BASIC
– 4.1.1 Volume
– 4.1.3 Surface area
– 4.1.4 Surface to volume ratio
– 4.1.5 Compactness 1
– 4.1.6 Compactness 2
– 4.1.7 Spherical disproportion
– 4.1.8 Sphericity
– 4.1.9 Asphericity
– 4.1.10 Centre of mass shift
– 4.1.11 Maximum 3D diameter
– 4.1.12 Major axis length
– 4.1.13 Minor axis length
– 4.1.14 Least axis length
– 4.1.15 Elongation
– 4.1.16 Flatness
– 4.3.1 Mean
– 4.3.2 Variance
– 4.3.3 Skewness
– 4.3.4 Kurtosis
– 4.3.5 Median
– 4.3.6 Minimum grey level
– 4.3.7 10th percentile
– 4.3.8 90th percentile
– 4.3.9 Maximum grey level
– 4.3.10 Interquartile range
– 4.3.11 Range
– 4.3.12 Mean absolute deviation
– 4.3.13 Robust mean absolute deviation
– 4.3.17 Energy
– 4.3.18 Root mean square
– 4.4.18 Entropy
– 4.4.19 Uniformity

• Grey level co-occurrence based features–Texture features
(GLCM)
– 4.6.1 Joint maximum
– 4.6.2 Joint average
– 4.6.3 Joint variance
– 4.6.4 Joint entropy
– 4.6.5 Difference average
– 4.6.6 Difference variance
– 4.6.7 Difference entropy
– 4.6.8 Sum average
– 4.6.9 Sum variance
– 4.6.10 Sum entropy
– 4.6.11 Angular second moment
– 4.6.12 Contrast
– 4.6.13 Dissimilarity
– 4.6.14 Inverse difference
– 4.6.15 Inverse difference normalised
– 4.6.16 Inverse difference moment
– 4.6.17 Inverse difference moment normalised
– 4.6.18 Inverse variance
– 4.6.19 Correlation
– 4.6.20 Autocorrelation
– 4.6.21 Cluster tendency
– 4.6.22 Cluster shade
– 4.6.23 Cluster prominence
– 4.6.24 First measure of information correlation
– 4.6.25 Second measure of information correlation

• Grey level run length based features–Texture features (GLRLM)
– 4.7.1 Short runs emphasis
– 4.7.2 Long runs emphasis
– 4.7.3 Low grey level run emphasis
– 4.7.4 High grey level run emphasis
– 4.7.5 Short run low grey level emphasis

3 The agent-based decision support system can be downloaded from https://
github.com/robertogattabs/RadAgent
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– 4.7.6 Short run high grey level emphasis
– 4.7.7 Long run low grey level emphasis
– 4.7.8 Long run high grey level emphasis
– 4.7.9 Grey level non-uniformity
– 4.7.10 Grey level non-uniformity normalised
– 4.7.11 Run length non-uniformity
– 4.7.12 Run length non-uniformity normalised
– 4.7.13 Run percentage
– 4.7.14 Grey level variance
– 4.7.15 Run length variance
– 4.7.16 Run entropy

• Grey level size zone based features–Texture features (GLDZM)
– 4.8.1 Small zone emphasis
– 4.8.2 Large zone emphasis
– 4.8.3 Low grey level zone emphasis
– 4.8.4 High grey level zone emphasis
– 4.8.5 Small zone low grey level emphasis
– 4.8.6 Small zone high grey level emphasis
– 4.8.7 Large zone low grey level emphasis
– 4.8.8 Large zone high grey level emphasis
– 4.8.9 Grey level non-uniformity
– 4.8.10 Grey level non-uniformity normalised
– 4.8.11 Zone size non-uniformity
– 4.8.12 Zone size non-uniformity normalised
– 4.8.13 Zone percentage
– 4.8.14 Grey level variance
– 4.8.15 Zone size variance
– 4.8.16 Zone size entropy
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