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Abstract

An overview of the applications of deep learning in ophthalmic diagnosis
using retinal fundus images is presented. We also review various retinal
image datasets that can be used for deep learning purposes. Applications of
deep learning for segmentation of optic disk, blood vessels and retinal layer
as well as detection of lesions are reviewed. Recent deep learning models for
classification of diseases such as age-related macular degeneration, glaucoma,
diabetic macular edema and diabetic retinopathy are also reported.
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1. Introduction

In the United States, more than 40 million people suffer from acute eye
related diseases that may lead to complete vision loss if left untreated [I].
Many of these diseases involve the retina. Glaucoma, diabetic retinopathy
and age-related macular degeneration are some of the most common reti-
nal diseases. Figure 1 is a fundus photograph of the retina with various
structures and disease manifestations.

Glaucoma is one of the major causes of blindness; it is estimated that
by 2020 glaucoma will affect almost 80 million people in the world [2]. The
two main types of this disease are open-angle glaucoma and angle closure
glaucoma. About 90% of the affected people suffer from primary open-angle
glaucoma [3]. Traditionally glaucoma is diagnosed by calculating what is
called the optic cup to disk ratio . Neuroretinal rim loss, visual fields and



retinal nerve fibre layer defects are also some of the measures used by oph-
thalmologists for diagnosis. Diabetic retinopathy (DR) is another common
cause of human vision loss. It is expected that the percentage of diabetic pa-
tients worldwide will increase from 2.8% in 2000 to 4.4% in 2030. Diabetes
is quite common in persons above the age of 30; uncontrolled diabetes can
lead to DR [4]. Early stages of DR are less severe and clincially managed.. It
is characterized by various abnormalities in retina such as microaneurysms
(MA) and other small lesions caused by rupture of thin retinal capillar-
ies; these are early indicators for DR. Some of the other manifestations in-
clude hard exudates, soft exudates or cotton wool spots (CWS), hemorrhages
(HEM), neovascularization (NV) and macular edema (ME) (see Figure ||
[B].  Age-related macular degeneration (AMD) is another common vision

Figure 1: Fundus Photograph showing retinal morphologies and pathologies [5].

related problem. It can result in loss of vision in the middle of the visual field
in the human eye, and with time there is a complete loss of central vision
[6]. In the United States, about 0.4% people from age range 50 to 60 suffer
from this disease and around 12% people who are over 80 years old are af-
fected [7]. Health-care in most countries suffers from a low doctor to patient
ratio. Due to an overburdened patient-care system, diagnosis and proper
treatment becomes error-prone and time-intensive. On the other hand, suf-
ficient amount of data are generated everyday in various health clinics and
hospitals, but it is rarely utilized for computer aided diagnostics (CAD) ap-
plications and not available publicly. [5]. During the past few years, artificial
intelligence algorithms have been used in classifying different types of data
including images.In retinal image analysis, the traditional CAD system ar-
chitectures takes several predefined templates and kernels to compare with
manually annotated and segmented parts of these images. Deep learning
models are extremely powerful architectures to find patterns between dif-



ferent nonlinear combinations of different types of data. It derives relevant
necessary representations from the data without the requirement of manual
feature extraction. In recent years, deep learning algorithms are replacing
most of the traditional machine learning algorithms and in most of cases
outperforming the traditional classifiers. General details of the different
deep learning architectures like Alexnet [§], VGG [9], Sparse Autoencoder
[10] can be found in [II]. This review focuses on the application of different
deep learning architectures and algorithms for retinal fundus image process-
ing especially for segmentation and classification problems. Table 1 gives an
overview of existing fundus image datasets which are commonly used in deep
learning models. Section [2| reviews various applications of deep learning for
detection and diagnosis of ophthalmic diseases from retinal fundus images.
Section 3 discusses several future research directions and critical insights.

2. Application in Retinal Image Processing Techniques

Table 1: Fundus Image Dataset Information

Dataset

Name Images Usage Camera Availability
258 manually annotated

HIKO_K images, 114 Glaucoma, Glaucoma detection Available Online
144 Normal

AREDS [13] Approx. 206,500 images AMD detection Upon Request

CHASE 28 images Blood vessel segmentation Available Online

CEOPATRA 298 images OD segmentation I\.IOt Available  Pub-

15 licly

DIARETDBL 88 images,84 DR and 4 DR detection Fundus Camera FOV 50° Available Online

normal

DIARETDBO 130 images, 20 normal and . v T

(7] 110 DR DR detection Available Online
110 images, 23.1% Chronic

DRIONS-DB Glaucoma and 76.9% Eye Glaucoma detection Available Online
Hypertensio

ggIISIETI— 101 images Glaucoma detection ggg‘dus Camera with FOV Available Online

Canon CR5 non-mydriatic

DRIVE

40 images,33 normal and 7
mild DR

Vessel segmentation

3CCD camera with FOV
45°

Avaliable Online

gzgcgsle/@Eye— 35126 images DR detection ﬁ;’illable on Registra-
45 images,15 images each Ie
. anon CR-1 fundus cam- : :
HRF :;)éul;elzzztt};)e/;)gr{, glaucoma- Glaucoma detection era with FOV 45° Available Online
KORA [23] images from 2,840 patients AMD detection Available Online
SEED [24] 235 images,43 - glaucoma Glaucoma Not available online

and 192 normal



https://oar.a-star. edu.sg/jspui/handle/123456789/1080?mode=full
https://www. ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1
https://blogs.kingston.ac.uk/retinal/chasedb1/
http://www.it.lut.fi/project/imageret/diaretdb1/
http://www.it.lut.fi/project/imageret/diaretdb0/
http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html
http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php
https://www.isi.uu.nl/Research/Databases/DRIVE/
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www5.cs.fau.de/research/data/fundus-images/
https://epi.helmholtz-muenchen.de

400 images,blood vessel TRV50 fundus camera

STARE [25] annotation on 40 images Vessel segmentation with FOV 35° Available Online
Available Online|
MESSIDOR . OD  segmentation,Lesion Color Video 3CCD camera
[26] 1200 images detection with FOV 45° MESSIDOR-2  Upon
Request,
47 images with exudates,
e-optha [27] 35 without. 233 normal Lesion detection Available Online
images and 148 MA images
ONHSD [28] 99 images OD,ON segmentation gg;:/ol:mCoRG ASMMNE with Available Online
ORIGA [29] 650 retinal images Glaucoma detection Not Available Online
RIGA [30] 760 retinal fundus images Glaucoma detection Available Online
RIM-ONE 783 i . oD s tati Nidek AFC-210 Can EOS Not Available Pub-
1) Images segmentation 5D Mark IT licly
E;:JFUGE 1200 annotated images Glaucoma detection Available Online
Retinopathy Topcon NW 100, Top- - -
Online Chal- 100 fundus images Lesion detection con NW 200, Canon CR5- ﬁ;’illable on Registra-
lenge [33] 45NM

To the best of our knowledge, the very first application of computer-
aided methods to clinical ophthalmology was by Goldbaum et al. in 1994
[34]. The authors concluded that a neural network could be trained and
modelled as efficiently as a trained reader for glaucoma visual field interpre-
tation. Another early application was the use of a neural network to predict
astigmatism after cataract surgery [35].

Segmentation is an important step for automatic cropping of the region
of interest for further processing. An image may possess some unwanted
distortions which hamper proper processing. Noise can be present in the
images and the illumination may not be uniform across the image. Hence
for proper visualization, different parts of an image should be segmented.
Over the last few years different deep learning approaches combining with
various methodologies were reported to solve segmentation problems.

In this review, we will discuss recent articles where different deep learn-
ing architectures have been implemented for ophthalmic applications with
fundus images. Figure 2 shows yearwise trends of published literature and
also number of papers for different application areas. It can be seen that
number of published papers on deep learning for fundus imaging for oph-
thalmic diagnosis has increased significantly starting from 2014. In this
review, published papers upto December 2018 have been reviewed. Papers
were collected through search queries on google scholar with various key-
words like deep learning, ophthalmology, image segmentation, classification,
fundus photos, image datasets (e.g.- MESSIDOR, DRIVE, STARE, EYE-


http://cecas.clemson.edu/~ahoover/stare/
http://www.adcis.net/en/third-party/messidor/
https://www.kaggle.com/google-brain/messidor2-dr-grades
https://www.kaggle.com/google-brain/messidor2-dr-grades
http://www.adcis.net/en/third-party/e-ophtha/
http://www.aldiri.info/Image%20Datasets/ONHSD.aspx
https://deepblue.lib.umich.edu/data/concern/data_sets/3b591905z
https://refuge.grand-challenge.org
http://webeye.ophth.uiowa.edu/ROC/
http://webeye.ophth.uiowa.edu/ROC/

PACS, RIGA etc), retina. Different performance measures like accuracy
(Acc) , sensitivity (SN), specificity (SP), area under curve (AUC), F1 score,
DICE Score are mentioned for different application areas. Please refer to
[36] for details on the performance indicators discussed herein.

Number of Papers Per Year Number of Papers for Different Applications
35
Retina Blood Vessel G
30
, Cup, |
2 Optic Disk, Cup, Nerve Head
20 Lesion I
15 Glaucoma
10 DR Classification |
5
AVD I
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Figure 2: Analysis of Reviewed Articles

2.1. Fundus Image Applications
2.1.1. Optic Disc(OD), Cup(OC) and Nerve Head Segmentation(ONH)
The first implementation of deep learning architecture in OD segmen-
tation was proposed by Lim et al. [37] in 2015. During this time (2015)
CNN had already been successfully implemented in various biomedical seg-
mentation problems [38] [39]. The authors developed CNN for calculating
cup-to-disc ratio as a measure of the presence of glaucoma to overcome the
need for hand-crafted feature extraction methods of shallow machine learn-
ing algorithms. Since this publication, there have been significant advances
in deep learning architectures. Maninis et al. [40] experimented on fun-
dus images to segment both blood vessels and OD together using the VGG
model [9] with a smaller modification of layers. Feng et al. [41] performed
both OD and exudates segmentation. A fully convolutional neural network
(FCN) of U-Net architecture, very popular for biomedical image segmen-
tation problems [42], was modified by replacing convolutional layers with
residual blocks, (inspired by He et al. [43]) and used to build a unified
architecture. Sevastopolsky [44] also used U-Net architecture(with reduced
number of filters in each convolutional layer) to segment both OD and OC
decreasing both time and space complexity. In [44] the authors segmented
both OD and OC separately. Edupuganti et al. [45] implemented one
shot segmentation pipeline for segmenting OD and OC for glaucoma anal-
ysis.ImageNet(http://www.image-net.org/) was used for initialization of
the FCN encoder. Utilizing the concept of unified segmentation architec-
ture like [40] or [41] Al-Bander et al. [46] proposed deep learning based


http://www.image-net.org/

segmentation architecture for both OD and fovea together. Recently Mitra
et al. [47] reported some drawbacks of Al-Bander et al. [46], as Al-Bander
et al. used grayscale images which resulted in some data loss. Their pro-
posed architecture in [46] utilized Dropout layers at different stages which
arbitrarily dropped neurons resulting in further data loss. To address and
overcome these shortcomings, [47] used batch-normalization in CNN for OD
detection. More recently Liu et al. [48] used fundus images to implement
deep learning based segmentation architectures to segment glaucomatous
OD. A previously trained model with ImageNet database was used and the
output layer was replaced by a new output layer with 2 nodes for 2 different
classes- normal and glaucoma. In contrast with the previous studies, this
work gathered a larger amount of data from different sources with differ-
ent image qualities and resolutions. Hence this model can be considered as
more robust than most of the other works. Sun et al. [49] employed a faster
R-CNN architecture as a deep object detection architecture to segment OD
from fundus. Ghassabi et al. [50] introduced a consolidated approach of
ONH and cup segmentation for glaucoma assessment which is effective even
when there are non-obvious neuroretinal rim, peripapillary atrophy and low
intensities of the optic cup as it gave a better performance (as shown by the
overlapping error).

Table 2: Summary of Some Optic Disc Segmentation Results

Reference Architecture Dataset Acc SN SpP AUC F1 Score DICE Overlapping
Score Error
) L MESSIDOR, !
Lim et al. 3-class CNN SEED-DB 847
DRIVE,
. STARE, 822, .831,
Maninis et al. ~ CNN DRIU DRIONS-DB, 971, 950
RIM-ONE
Feng et al. FCN DRIONS-DB 93.12% 99.56% 0.9093
U-Net with DRIONS-DB,
S Tew 1. .95
Sevastopolsky lesser filters RIM-ONE 94,95
Eld“p“ga““ ® VGGI6 FCN  Drishti-GS 967
AlBander el MESSIDOR  96.89%
. . MESSIDOR, 99.05%, 99.14%,
Mitra et al. -~ CNN EyePACS 98.78% 98.17%
Sun et al. Faster R-CNN ORIGA 93.1%
Dataset
3 centres from
Liu et al. ResNet50 FCN  Sydney, HRF, 91.6% 86.7% 96.5% 97
RIM-ONE
Stein Eye
WTA  Ney Imstitute, 9.6%(ONH
Labbafi ~ Ned-
Ghassabi et al ral Network, jad hospi- Seg) &
assabl et 8t gOM  Neural ?° o 25.1%(Cup
Network tal of Iran, Son.)
Hetwor RIMONGE, o8
DIARETDBO
87.58%-
. CLEOPATRA- exudates
Tan et al. 10-layer CNN DB 71.58%-

dark lesions




2.1.2. Lesion Segmentation and Detection

Lesion detection is an important step for DR screening. Different deep
learning based studies on lesion detection and segmentation are discussed
below.

Haloi [51] was the first to implement deep neural network to detect MA
for DR screening. He used a 5 layer pixel based deep neural network to detect
MA. Shan et al. [52] found biological cell nuclei detection and MA detection
problems quite similar and employed stacked sparse autoencoder (SSAE)
proposed in a nuclei detection problem [53]. Classification was done for
MA and non-MA patches. Image patches were passed through the SSAE to
obtain features and a softmax layer was used to classify the labels. The pre-
vious studies mainly addressed detection of MA, but in DR screening bigger
hemorrhages are also important. Grinven et al.[54] proposed a methodology
to detect hemorrhages in retinal fundus images by classifying the lesions.
CNN was implemented and a selective sampling algorithm was introduced
to dynamically select misclassified training samples. It was found to de-
crease the time of epochs and also to enhance the AUC as compared for the
CNN with no selective sampling. All previous studies [51] [52] [54] tried to
detect different lesions separately, Tan et al. [55] applied a 10 layer CNN
to automatically segment exudates, MA and hemorrhages using a single
framework. Orlando et al. [56] also worked on detection of both MA and
HE together using 3 different data-sets combining hand-crafted feature and
deep features learned from CNN. Previously there were very few studies
analyzing the effectiveness of combining two feature methods [57]. Deep
learned feature vectors using 4 convolutional layers and 1 fully connected
layer from CNN(trained using LeNet architecture) were created by combin-
ing handcrafted features drawn from the green channel of the normalized and
equalized image. Lam et al. [58] used a deep learning architecture to detect
the presence of five classes of red lesions i.e. normal, microaneurysms, hem-
orrhages, exudates, retinal neovascularization using EyePACS. The CNN
was trained with 1050 images using GoogleNet architecture [II]. Patches
were extracted with varying shapes and sizes according to the size of the
lesions. For testing, a sliding window was introduced to make a full scan
over the whole image by the CNN to give a multiclass outcome probability.
Son et al. [59] proposed a cost-effective method to localize lesions which
improved precision during training by using regional annotation of findings.
Badar et al. [60] used an encoder-decoder based FCN architecture calcu-
lating pixel-wise segmentation of multi-class retinal pathologies (exudates,
hemorrhages & cotton wool spots) and achieved state of the art results.



Khojasteh et al. [61] introduced an innovative framework and architecture
for CNN by inserting a pre-processing layer for recognition of HE and MAs.
Chudzik et al [62] presented a segmentation method which utilized similar
a combination of CNN and codebook structure.

Table 3: Summary of Red Lesion Detection Studies

Reference Architecture Dataset Acc SN SP AUC
Haloi 5 layer CNN i\{[ggSID()R" 96% 97% 96% .982, .98
Transfer
Shan et al. Learning DIARETDB 91.38% 916
.. CNN using MESSIDOR, o ) . -
Grinven et al. OxfordNet EyePACS 91.9%, 83.7%  91.8%, 85.1%  .972, .895
| 87.58%,
Tan et al. 10 layer CNN  CLEOPATRA T158%
CNN using
Orlando et al.  LeNet  archi- c-optha, MES- .8812, .8932
SIDOR
tecture
. . CNN using EyePACS, , -
Lam et al. GoogleNet3 e-optha 98% 95
CNN with
residual,  re- Seoul National
Son et al. duntllon, avg. University 0.9895
pooling, atrous Bundang
pyramid pool- Hospital
ing layers
Encoder-
Badar et al. Decoder based MESSIDOR 97.86% 80.93% 98.54%
FCN
CNN with pre-
Khojasteh et processing af- DIARETDBI  90.0%
al. ter 1st conv
layer
FCNN &
Chudzik et al.  Auxiliary E-Optha MA 0.8666 0.9998 0.982
& E-Optha EX
Codebook

2.1.3. Retinal Blood Vessel Segmentation

Retinal blood vessels are important for different eye disease diagnosis.
In this section we will discuss different results on vessel segmentation from
retinal fundus images. In one of the first studies in this domain, Maji et
al. [63] used a hybrid of random forest and deep neural network (DNN) for
blood vessel segmentation. The DNN performed unsupervised learning of
vessel dictionaries using sparse trained denoising auto-encoders (DAE). It
was followed by supervised learning of random forest on the DNN response.
However this method could not outperform the conventional approaches.
Around the same time Liskowski et al. [64] proposed a deep learning based
blood vessel segmentation framework of retinal fundus images datasets. Im-
ages were standardized by subtracting the mean from every patch and divid-
ing it by the standard deviation to avoid contrast and brightness fluctuations
in the image pixels. It outperformed many existing approaches. In another
pioneering work Melinscak et al. [65] used a deep neural network, inspired



by a similar problem of segmenting neuronal membranes [66] using DNN as
pixel classifier. To improve the performance proposed in [63] Maji et al. [67]
used an ensemble of 12 CNNs to segment retinal blood vessels. The networks
were trained individually on the dataset of 60,000 randomly chosen 3x31x31
patches. During inference, the responses were averaged to form the final
segmentation. RMSProp was used as the optimizer and a minibatch size of
200 was used. Fu et al. [68] found several disadvantages in [65] as it used
pixel based approach and hence Fu et al. proposed a fully CNN architec-
ture based on image-to-image training system. Multi-scale and multi-level
CNN was used and combined with conditional random field (CRF) to model
the long-range interactions between pixels. Leopold et al. [69] investigated
use of CNN to segment blood vessels using ADAM parameter optimization.
The green channel of each image was used for classifying vessels and non-
vessels image pixels. The model gave the probability maps of every pixel to
classify between vessel and non-vessel. Gabor filters were used to smooth
and finalize the decision. Zhang et al. [70] applied U-Net which was also
used in other works for OD segmentation [41] [44]. The authors proposed a
modified U-Net based architecture to segment blood vessels from fundus im-
ages. By adding some additional labels on boundary areas the problem was
converted into a multi-class task. Stochastic gradient descent (SGD) was
used to optimize model parameters. Oliveira et al. [71] implemented deep
learning architecture for blood vessel segmentation. Previous deep learning
architectures only processed raw data but here, initially, stationary wavelet
transform was applied to each training image to keep multi-resolution infor-
mation. A fully convolutional network was used to generate feature maps.
Stochastic Gradient Descent with Nesterov momentum was implemented
during training to decrease the cross-entropy loss function. The final prob-
ability maps for all of the image patches were merged and averaged to get a
final value and thresholding was done to get the ultimate unique segmenta-
tion. Liu et al. [72] used densely Connected CNN to segment blood vessels
in fundus images. A 17 layer architecture was used and the layer number X
got input from the output of the previous X-1 layers and thus used the back
layers of the network as features of the front layer. Similar to [68] Hu et al.
[73] proposed an image-to-image deep learning vessel detection model using
the CNN combined with conditional random field (CRF). Main contribution
of this work was to combine features from each of the convolutional layers
and to incorporate class-balanced cross-entropy loss to improve detection
accuracy. VGG-16 model was used. Lepetit-Aimon et al [74] introduced
the LRFFCN which did better than the U-Net [42]in retinal artery and vein
classification and manifested high sensitivity in comparison to other state of



the art algorithms to segment vessels. Chudzik et al. [75] gave a two stage
architecture combining visual codebook framework with CNN.

Table 4: Summary of Retinal Blood Vessel Segmentation Results

Reference Architecture Dataset Acc SN SpP AUC
Maji et al. RF and DNN DRIVE 93.27% 9195
. DRIVE,
P;skOWSk‘ ° ONN STARE, 97% 99
o CHASE DB
Maji et al. ConvNet DRIVE 94.7% 9283
ensemble
Multi-scale DRIVE, 95.23%,
Fu et al. and Multi- STARE, 95.85%,
level CNN CHASE_DB1 94.89%
Leopold et al. f{g;smgmg DRIVE 94.78% 68.23% 98.01% 9707
DRIVE, . . 96.18%,
Zhang et al. CNN(U-Net) STARE, 357)(1)-/21;?‘ 97.7% ggigg’ 76.7% 99.01%, '3399’ 9882,
CHASE_DB1 D 2 IR0 TR0 99.09% )
DRIVE, 95.76%, 80.39%, 98.04%, 9821 9905
Oliveira et al.  CNN STARE, 96.94%, 83.15%, 98.58%, '9855Y ' ’
CHASE_DB1 96.53% 77.79% 98.64% )
. ) Densely Con- .
Liu et al. nected CNN DRIVE 95%
Lenetit-Aimon FCNN with MESSIDOR,
ef?f' ! " arge receptive STARE, 95.9%
vk field DRIVE
Chudzik et al. CNN SD,%S:/{I;:’ 0.7881, 0.8269  0.9741, 0.9804  0.9646, 0.9837

2.1.4. AMD Classification

Recent results on AMD disease classification from fundus images are
discussed below.

One of the very first publications in this domain was done by Burlina et
al. [76] where they used OverFeat features from DCNN (pretrained in Ima-
geNet database) and used Support Vector Machine to classify between early
and intermediate stages of AMD. Later Burlina et al. [77] used a completely
data-driven approach using deep CNN (DCNN-A) to perform a binary clas-
sification between early-stage AMD and advanced stage AMD using the
same AREDS database implemented on AlexNet model [II]. This method
was compared with the previous methods combining both deep features and
transfer learning.Based upon the work of [76] Horta et al. [78] reported a
hybrid method employing deep image features and random forest to com-
bine different patient non-visual data e.g. lifestyle, cataract, demographics
with the image for AMD classification. To extract deep image features, the
CNN (pre-trained with 1.2 million image data) was used. The deep features
combined with the non-medical, non-visual information of the patients were
used to train a Random Forest Classifier to perform binary classification for

10



higher severity AMD and lower severity of AMD. The combined features
were found to achieve higher accuracy than individual feature set. Govin-
daiah et al.[7T9] reported an extended study of [80] with a modified deeper
VGG16 architecture. The macula was chosen as a Region of Interest and
images were resized to a common reference level. For comparison with the
VGG16, a 50 layer Keras implementation of residual neural network was
used. Matsuba et al. [8I] published a new approach for detecting AMD
disease from ultra wide-range Optos ophthalmoscope color fundus images.
Three convolutional layers, with ReLU unit and max-pooling layers were
used to perform this experiment on pre-processed fundus images. The ac-
curacy of DCNN using images was compared with human grading by six
ophthalmologists. Tan et al. [82] used a 14 layer CNN to detect AMD.
Three fully-connected layers, 4 max-pooling layers, and 7 convolutional lay-
ers were implemented in this work. Adam optimization [83] was used for
tuning the CNN model’s parameters.Grassmann et al. [84] proposed a deep
learning based classification architecture to predict the severity of AMD. In
this study, an ensemble of several convolutional neural networks was used to
classify among 13 different classes of AMD [85]. Mainly four different steps
can be found in this methodology. Six different neural networks (AlexNet,
GoogLeNet, VGG, ResNet, Inception-v3, 1-ResNet-v2 ) were used inde-
pendently to train the model. With the result obtained from each of the
individual neural networks, a random forest ensemble model was developed.
Govindaiah et al. [86] used an ensemble network consisting of state of the
art network architectures thereby reaching a satisfactory performance level
in AMD classification.

2.1.5. Glaucoma Classification

One of the early publications in glaucoma classification using deep learn-
ing was by Chen et al.[87]. They implemented a CNN with dropout and data
augmentation. A six layers deep CNN with 4 convolutional layers of progres-
sively decreasing filter size (11, 5, 3, 3) followed by 2 dense layers was used.
Improving their previous work, [87] Chen et al. [88] presented a model using
Contextualized CNN (C-CNN) architecture. It combined the output of con-
volutional layers of multiple CNN to a final dense layer to obtain the softmax
probabilities. The 5 C-CNN model which was a concatenation of outputs
of last convolutional layers of 5 CNNs each of depth 6 (5 convolutional lay-
ers + 1 MLP). Asoaka et al. [89] used a 3 layer deep Feed-forward Neural
Network (FNN) on a private dataset of 171 Glaucoma images. Chakravarty
[90] was first to propose a method for joint segmentation of OD, OC and
glaucoma prediction. In this method CNN feature sharing for different tasks

11



Table 5: Summary of AMD Detection Studies

Reference Architecture Dataset Acc SN Sp AUC
R Deep Features 0y 0 4© - o/
Burlina et al. with SVM AREDS 95% 96.4% 95.6%

R DCNN using . 91 @0 )
Burlina et al. AlexNet AREDS 91.6% .96
Horta et al. DCNN AREDS 79.04% 66.34% 88.95% .8476
Govindaiah et VGG16 AREDS 92.5%
al. dataset
Matsuba et al. DCNN Tsukz‘a‘zakl 99.76%

Hospital
Kasturba
Tan et al. CNN Medical  Col-  95.45% 96.43% 93.45%
lege
Ensemble
(AlexNet,
Grassmann et GoogleNet, AREDS  and o o
al. VGG, ResNet, KORA 94.3% 84.2%
Inception-v3,
1-ResNet-v2)
Ensemble Net-
Govindaiah et work (Inception- 20,
al. ResNet-V2 & AREDS 86.13%
Xception)

ensured better learning and over-fitting prevention. The parts of the model
that were shared with U-net contained 8 times fewer number of CNN filters
than the conventional U-net. It used an encoder network to downsample the
feature and then a decoder network to restore the image size. Two different
convolutional layers were applied on the decoder network’s output for OC
and OD segmentation. The OC and OD segmentation masks were merged
into separate channels and CNN was applied to it. The outputs of the CNN
and encoder output were combined and fed to a single neuron to predict
glaucoma. With a lower number of parameters this method achieved com-
parable performance with existing architecture e.g. [91]. Zhixi et al. [92]
used the Inception-v3 architecture to detect glaucomatous optic neuropa-
thy. Here researchers graded the images by trained ophthalmologists before
applying the algorithm. Local space average color subtraction was applied
in pre-processing to accommodate for varying illumination. Chai et al.[93]
presented a framework on a dataset of fundus images obtained from vari-
ous hospitals by incorporating both domain knowledge and features learned
from a deep learning model. This method was also used in other applica-
tions [56] The disk image provided local CNN features, the whole image
provided global CNN features whereas domain knowledge features were ob-
tained from diagnostic reports. It used a total of 25 features including 3
numerical features: intraocular pressure, age, and visual acuity as well as
22 binary features such as swollen eye, headache, blurred vision and failing
visual acuity. The disk and whole images were fed to two separate CNN
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Table 6: Summary of Glaucoma Detection Studies

Reference Architecture Dataset Acc SN SP AUC F-Score

Chen et al. 6 layer CNN ORIGA, SCES .831, .887

Asoaka et al. 3 layer FNN Private: 171 .926

Chakravarty et Multi-task - - -

al. CONN REFUGE .9456

Zhixi et al. Inception-v3 Private:48000+ 95.6% 92.0% .986

Chai et al. MB-NN Private: 2554  91.51%

Chen et al. C-CNN ORIGA, SCES .838, .898
RIM-ONE-v1, o 0.82

Perdomo et al. DCNN RIM-ONE-v3, ffle/“(%IM (DRISHTI-
DRISHTI-GS1 GS)

Pal et al. CAE  with ppions DB 0.923

CNN classifier

while domain knowledge features were fed to a third branch consisting of a
fully connected neural network. These three branches were concatenated by
a merge layer followed by two dense layers and a logistic regression classi-
fier. Perdomo et al. [94] used curriculum learning [95] in DCNN’s to achieve
better results using a reduced set of training examples. Pal et al. [96] intro-
duced the G-EyeNet architecture which proved to be more robust given its
results on low quality images.

2.1.6. Diabetic Retinopathy Classification

In this section different applications of deep learning algorithms for dia-
betic retinopathy detection are described briefly.

Abramoff et al [97] described DR detection using a device called IDx-DR
X2.1. Here retinal images were used in a CNN based on AlexNet to classify
different types of DR. The main classes of diseases were referable DR (rDR),
vision-threatning DR (vtDR) and proliferative DR (pDR). The CNN-based
architectures were designed to characterize and detect optic disc, fovea and
lesion characteristics. Using a retinal fundus image dataset consisting of
70000 images, Colas et al. [98] proposed a DR grading method. There were
4 different classes of DR images in the dataset- no DR, mild DR, moderate
DR and acute DR. Gulshan et al. [99] used deep learning algorithms to
identify the presence of diabetic retinopathy. Five different types of DR and
the presence of macular edema were graded by expert clinicians. Inception
v-3 model was used, stochastic gradient descent method for optimization
was used and batch normalization was done with a pre-trained model with
ImageNet data. Gargeya et al.[I00] reported a deep learning architecture to
classify between normal and DR fundus images and also reported heatmap
visualization of the result. Using the principle of deep residual learning,
the CNN model was built to learn deep discriminative features for detect-
ing DR. From average pooling layer of CNN, 1024 features were obtained.
Metadata features related to 3 metadata variables i.e. pixel height, pixel
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width and field of view of the image were appended to form a final fea-
ture vector with 1027 features. A second level tree-based gradient boosting
classifier was designed. Quellec et al. [I01] discussed a method to detect
referable DR as well as lesions with ConvNet architecure using 0_O Solution
[21].Unlike the previous studies this method attempted to classify between
normal and DR on both image level and pixel level. This proposed model
was mainly based on visualization methods of CNN. Heatmap generation
modifications were proposed for this purpose to jointly improve the quality
of DR and lesion detection. Takahashi et al. [102] graded different stages of
the presence of DR using GoogleNet architecture. Unlike in other previously
published literature the authors graded the images manually on their own
to test the accuracy of the methodology. The model was designed using two
different ways, first with manual staging of three color photographs (AIl)
and second with manual staging of only one color photograph (AI2). From
the GoogleNet model- 5 top layers were deleted, the crop size was expanded
and the batch size was reduced. 20 fold cross-validation was used and for
comparison AIl was also trained with ResNet model. Garcia et al. [I03] ap-
plied different architectures of CNN for DR detection. As a pre-processing
step, images were subtracted from color mean and rescaled to 256x256. Data
augmentation by flipping the images was done to increase the robustness. In
this work several neural network architectures using various learning rates
and different number of layers were used to compare different architectures
to calculate the highest accuracy among all. Lin et al. [104] used entropy
images instead of original fundus images and showed that the feature maps
are generated faster and competently.

Table 7: Summary of Diabetic Retinopathy Detection Studies

Reference Architecture Dataset Acc SN SP AUC
Abramoff et al. CNN AlexNet Messidor-2 96.8% 87%
Colas et al. CNN EyePACS 96.2% 66.6% .946
. . EyePACS-1, oo .
Gulshan et al.  CNN Incetionv-3 S 90.3%, 87% 98.1%, 98.5% 991, .99
Messidor-2
. EyePACS,
Gargeya et al.  CNN Deep Resid- rpaarnop 94% 98% 97
ual Learning
e-Optha2
Kaggle, e-
Quellec et al. ConvNet optha, Di- 1954, .949, .955
aretDB1

Takahashi et CNN GoogleNet, 9939 images 80%

al. ResNet
Garcia et al. CNN AlexNet EyePACS 83.68%
Lin et al. CNN Kaggle 86.10% 73.24% 93.81% 0.92
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3. Conclusion and Future Research

This review addressed different applications of deep learning method-
ologies in ophthalmic diagnosis. Table 8 gives a brief overview of state-of-

Table 8: Deep Learning vs Traditional Methods

Application  Reference Method Dataset Acc SN SP AUC F1 Score
OD Segmenta- Maninis et al. DRIVE,
2, .88
tion 0] CNN DRIU STARE .822, .831
Soares et al. B DRIVE,
[105] Wavelets STARE 762, .774
ﬁf‘;“’“ Detec- f;*f‘“ et Al aver ONN  Messidor 96% 97% 96% 988
Algg‘“ ot el Fsemble Messidor 90% 90% 91% 989
Retinal Vessel Lco[‘mld et al. FCN using 4 70
Segmentation  [69] RETSEG13 DRIVE 94.78%
52‘5”‘1 °t Al 4NN Classifier  DRIVE 94.22%
AMD Classific Burlina et al. 4 Deep Features .., o [
cation [T6) AREDS with SVM 95% 96.4% 95.6%
. SURF features
ﬁa_;‘ll““;‘gl;au‘ AREDS with random  91.8% 91.3% 92.3%
oo forest
RIM-ONE-v1,
raneoma - Ledomo et Al ponN RIM-ONE-v3,  89.4%
slasstiication. 23 DRISHTI-GS1
Gajbhiye et al. KNN 29%

[108]

o T CNN Deep  EyePACS,
DR Classifica- - Gargeya ot al. g1 MESSIDOR 94% 98% 97
tion 100, .

R Learning e-Optha2

Roychowdhury kNN 0 4 %
et al. [109) (DREAM) MESSIDOR o8 e

the-art deep learning approach and traditional imethods for computer-aided
diagnosis.It can be noticed that in most of the cases deep learning methods
outperformed traditional methodologies.

The previous reviews published in this domain were very clinical or focused
on traditional machine learning algorithms or emphasized a particular dis-
ease or focused on hardware implementation of artificial intelligence in oph-
thalmic diagnosis [110][111][112][I13][114]. None of them dealt with detailed
reviews of different state-of-the art deep learning algorithms used in oph-
thalmic diagnosis with retinal fundus images. Hence, to the best of our
knowledge this is the first review article of deep learning algorithms and
performance outcomes for different architectures for ophthalmic diagnosis
using retinal fundus images.Deep learning applications in retinal images are
quite useful and effective. They reduce the need of manual feature extrac-
tion as the methodologies are mainly data-driven. Convolutional neural
networks are the most widely used architecture for classification, detection
or segmentation of different parts of fundu images. Ensemble, FCN, ResNet
and AE based architectures were commonly used in these studies. However,
there are still some limitations which need to be addressed. Some of these
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and also some possible solutions are discussed below:

e Unlike computer vision problems, large datasets are not available.
Also there is a scarcity of manual annotation of data. Deep learn-
ing equated large amounts of data since the model mainly learns from
the inherent pattern of the data. Hence this is a major problem in
this field.Generative models proposed by Goodfellow et al. can be
an important and useful solution to mitigate this problem. This is a
very state-of-the art area of this research and very few efforts have
been made so far [115] [I116] to explore the possibilities of generative
modelling to synthesize new fundus images with annotations and with
proper clinical relevance. Generative Adversarial Network, Variational
Auto-encoders are some very popular architecture for image genera-
tion. Successful application of these can be used to generate large
amounts of clinically relevant synthetic data. It will not only help to
increase amount of available data but also it will help to avoid the
privacy issues.

e A major problem is the unavailability of standardized KPIs (Key Per-
formance Indicators) for measuring the performance of a particular
model. Different researchers use different indices to measure their
work. Due to this variablity one cannot easily compare different deep
learning architectures for a given disease state. For example, in le-
sion detection, Lam et al. [58] achieved an accuracy of 98% which
is higher than most of the other state-of-the-art methods, whereas
in terms of AUC Haloi[51] achieved 0.982 which is higher than other
reported AUC. Leopold et al. [36] took this into consideration and
also suggested more generalized metrics such as G-mean and MCC to
measure a model’s effectiveness.

e Due to the difference in camera settings there is a possibility of domain
shift problem. In most of the literature, training and test data come
from same image distribution. But in real life this is not always the
case. Hence this domain shift can cause a major damage in real life
application if not taken care of beforehand. Transfer learning has been
used for different applications in this area [45] [77][117][118]. Domain
Adaptation is a sub-domain of Transfer Learning where data for both
training and testing are extracted from different distributions. In real
world, it is not always possible to get test data and training data from
the same distribution. Hence the model should be robust enough to
deal with data from a different distribution for test purpose. Often
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it is found that accuracy decreases due to this domain shift problem.
More emphasis should be given to deep domain adaptation approaches
in order to create robust models which can be implemented for real
world ophthalmic diagnosis. Wang et al. [I119] have discussed differ-
ent deep domain adaptation algorithms which can be used to address
this problem. A recent paper explored adversarial domain adaptation
technique to segment blood vessels of STARE dataset with a model
trained on DRIVE dataset and it outperformed other works in terms
of F score [120]. In the context of ophthalmic diagnosis it can be an
important and necessary direction for future research.
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