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Highlights: 

 A strategy for a complete vessel 

extraction is provided under the 

framework of minimal path propagation. 

 Two constraints (potential constraint 

and radius constraint) are devised to 

provide efficient vessel extraction. 

 The close loop problem in the MPP-BT 

algorithm is solved by applying a local 

MPP-BT operation.  

 

 

 

Abstract: Minimal path method has been widely recognized as an 

efficient tool for extracting vascular structures in medical imaging. 

In a previous paper, a method termed minimal path propagation 

with backtracking (MPP-BT) was derived to deal with curve-like 

structures such as vessel centerlines. A robust approach termed 

CMPP (constrained minimal path propagation) is here proposed 

to extend this work. The proposed method utilizes another 

minimal path propagation procedure to extract the complete 

vessel lumen after the centerlines have been found. Moreover, a 

process named local MPP-BT is applied to handle structure 

missing caused by the so-called close loop problems. This approach 

is fast and unsupervised with only one roughly set start point 

required in the whole process to get the entire vascular structure. 

A variety of datasets, including 2D cardiac angiography, 2D 

retinal images and 3D kidney CT angiography, are used for 

validation. A quantitative evaluation, together with a comparison 

to recently reported methods, is performed on retinal images for 

which a ground truth is available. The proposed method leads to 

specificity (Sp) and sensitivity (Se) values equal to 0.9750 and 

0.6591. This evaluation is also extended to 3D synthetic vascular 

datasets and shows that the specificity (Sp) and sensitivity (Se) 

values are higher than 0.99.   Parameter setting and computation 

cost are analyzed in this paper.  

Keyword: Minimal path approach, backtracking, vascular 

structures, segmentation. 

I. INTRODUCTION 

ESSEL segmentation is a key step toward accurate 

visualization, diagnosis and quantification of vascular 

pathologies. However, vessel segmentation remains a 

challenging problem because blood vessels often exhibit large 

structure variability (size/curvature), and their geometrical 

appearances can be significantly perturbed by stents, stenoses, 

calcifications, aneurysms and other neighboring anatomical 

entities, etc. [1][2]. Moreover, challenges in vessel extraction 

vary from domain to domain. 2-D images like retinal vessel 

images may face problems like close-loop which most 3-D 

images do not have. For coronary arteries, we need to 

distinguish them from atrial ventricles while spines become the 

problem for aorta segmentation.  

Numerous segmentation methods have been proposed to 

extract vessels of different organ structures and from major 

imaging modalities [3]-[5]. They can be divided into four 

categories: filter-based algorithms, model-based algorithms, 

supervised algorithms and centerline-tracking algorithms. The 

filter-based algorithms enhance first the vascular structures 

using a Hessian-matrix-based filter and then segment the 

vessels on the enhanced image. A typical example is the Frangi 

filter proposed in [6]. However, although easy to implement, 
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such approaches do not consider the vessel topology 

information and the segmentation accuracy is not ensured. 

Moreover, all pixels in the image need to be processed by the 

filter so that the computational time is significantly increased. 

The model-based algorithms include methods utilizing active 

contour models [7]-[11]. These algorithms are able to extract 

vascular structures well, but they are sensitive to the 

initialization. Image matting model [12] is also applied to 

retinal vessel segmentation task and achieves outstanding 

performance. Supervised algorithms [13]-[15] make use of 

machine learning and can achieve higher segmentation 

accuracies than other algorithms. Recent deep-learning based 

algorithms [16]-[18] also show great potential in vessel 

segmentation tasks. However, hand-crafted labels are needed in 

those supervised methods which are difficult to acquire. 

Centerline-tracking algorithms [19]-[32] firstly extract vessel 

centerlines using techniques like minimal path tracking and 

then dilate the centerlines to acquire the vessel areas. Their 

speed and their ability to avoid being caught in local extrema 

make them very attractive. They are also able to overcome 

vessel crossing, intensity or width variations as observed in 

severe stenoses or image degradations [23]. Several manually 

set points are needed in these algorithms as the start or end 

points to control the tracking process. 

In [30], an algorithm termed minimal path propagation with 

backtracking (MPP-BT) was proposed for vessel centerline 

extraction. This MPP-BT algorithm incorporates a 

backtracking operation into the minimal path propagation to 

overcome the end-point-setting problem, the shortcut problem 

and the accumulation problem encountered in standard minimal 

path techniques. The MPP-BT algorithm realizes the extraction 

of curve-like structures with only one coarsely set start point 

and can be effectively used in vessel centerline extraction. 

However, the MPP-BT algorithm does not offer solution to the 

extraction of the vessel lumen. In the present work, we aim to 

propose a method suitable to different imaging modality with 

features shared by different vessels. An algorithm named 

constraint-minimal path propagation (CMPP) is developed to 

fulfill the complete task of vessel extraction within the 

framework of backtracked minimal path propagation. The 

performance in centerline extraction is also improved by 

overcoming the close loop problem via a technique called local 

MPP-BT operation. Therefore, our contribution includes three 

elements: 

1) A strategy for a complete vessel extraction is provided under 

the framework of minimal path propagation. 

2) Two constraints (potential constraint and radius constraint) 

are devised to provide efficient vessel extraction. 

3) The close loop problem in the MPP-BT algorithm is solved 

by applying a local MPP-BT operation. 

The proposed solution has the following advantages: (i) it is 

unsupervised, which means that no hand-crafted label is needed 

in the algorithm; (ii) it is not sensitive to initialization. Only one 

roughly set start point is needed for initializing the whole 

process; (iii) it is faster than filter-based algorithms as only 

pixels inside and around vessel areas are visited.  

The rest of this paper is organized as follows. In Section II, 

we firstly review the backtracking strategy in minimal path 

propagation and the MPP-BT approach, and then, the proposed 

CMPP method is introduced in details, including the 

‘Convexity’ and “Symmetric Convexity” metrics (for the vessel 

and centerline structures). The constrained propagation with 

automatic stopping, and the solution to the close loop problem 

are also described. In Section III, the performance of our 

approach is assessed using 2D X-ray angiography datasets, 2D 

retinal images and volumetric CT angiography (CTA).  A 

quantitative evaluation on retinal images is provided together 

with a comparison to other competing methods. An analysis of 

the computation cost and the parameter sensitivity is also given. 

In Section IV, some relevant problems are addressed before 

concluding and sketching future plans. 

II. METHOD 

2.1 Review of the MPP-BT algorithm 

Minimal path methods extract curve-like structures in image 

f by searching a path with a contour dependent minimum 

integrated energy between user-preset start and end points.

 E C is defined as the integrated energy along a path C 

according to a given potential function P : 

         E C P C d s P C s d s
 

                (1) 

where,  denotes the data space.   is the regularization term 

(often a real positive constant) and ( )
n

C s R  is a 

parameterized path with the arch length s . The cost associated 

to each point in C can be denoted by the cost function ( ( ))P C s

, which is calculated in such way that the preferable feature 

points have smaller values than non-feature points. In this 

paper, the “Symmetric Convexity” metric in [31] is used to 

calculate P for the centerline extraction. The minimal action 

map  
0

p
U p is defined as the minimum integrated energy 

among all the possible paths between the start point
0

p and a 

point p : 

       
0

0 0
( , ) ( , )

in f in f  
p

A p p A p p

U p E C P C d s


           (2) 

where 
0

( , )A p p denotes the set of all the paths from
0

p to p .The 

minimal path between the point
0

p and the point p can be 

efficiently obtained using the Dijkstra algorithm [33] or fast 

marching methods [34]. Here, the Dijkstra method is used to 

solve (2) in the discrete domain. The Dijkstra algorithm can be 

applied by first setting all the node costs to infinity and then 

using an explicit discrete front propagation with direction 

pointing from current minima to its neighboring nodes. At each 

step in this process, a priority queue is used to find the next 

propagation point with the smallest U  among all reached 

points ordered in a minimum heap data structure. The U values 

of the neighboring nodes of each reached point will be 

calculated and ordered in the minimum heap data structure. 

With no specified end point, solution to Eq. (2) is in fact a 

feature-preferred propagation from the only starting point, 

called minimal path propagation in this study. 

As the connection information is stored, we can easily trace 

back from each reached point p  all the previous points 'p  

toward the start point
s

p . This is termed backtracking 

operation. Obviously, the points associated with lower potential 
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P  are preferably reached in the propagation and are thus more 

frequently revisited in the backtracking process. Based on the 

significantly different numbers of revisits upon different 

structures, a backtracking operation is proposed in [30] to build 

the MPP-BT algorithm to overcome the end problem, the 

shortcut problem and the accumulation problem found in 

standard minimal path based techniques.  

An illustration of this backtracking operation is given in 

Fig.1, where
1

p , 
2

p and
3

p represent the three types of points, 

namely the non-centerline vessel points, the background points 

and the centerline points.  The potential function P  is 

constructed according to [30]. Then, from each reached grid 

point the MPP-BT algorithm traces back to the point 
E

b k
p  with 

a path of a fixed length 
b k

l  and performs accumulation with a 

value inversely proportional to ( )
E

b k
P p upon each ˆ ( )

E

B K b k
I p in 

the feature map ˆ
B K

I which is initialized to zero for all points. It 

results  that  the center l ine points can receive  more 

accumulations than the non-centerline points. From Fig.1 (e), 

we can see that the points along the vessel centerline will 

receive much more visits than the points in the backtracking 

path which are not located on the centerline. To alleviate the 

accumulation problem caused by the increased cost as the 

propagation proceeds, the MPP-BT algorithm resets the 

accumulated cost  
0

p
U p of each reached point p to the 

difference between the accumulated costs of the current point 

p and the last point 
E

b k
p  in the backtracking path. This 

operation can make the propagation more effective in 

identifying more centerline points, especially those far away 

from the start point. To guarantee a smooth accumulation, we 

just trace back 
b k

l steps and record the last 
b k

l points [30]. In 

the MPP-BT algorithm in [30], the minimal path propagation is 

stopped when a stopping criterion is fulfilled. Considering the 

fact that most end points in the backtracking paths are also the 

centerline points with lower cost, the accumulated cost  

 

Fig. 1 Illustration of the backtracking operation in minimal path propagation. (a) The Original 2D image data with the start points
s

p . (b), (c), (d) depict the zoomed 

images of the backtracked paths for three grid points
1

p , 
2

p  and
3

p  in different colors, respectively.(e) is the map of the recorded revisited times for each point. 

( 1  , 2 0  ,
b k

1 5l  ,
m in

2R  ,
m a x

1 5R  , according to [30]) 

difference     -
E

b k
U p U p along the backtracking path will 

significantly increase when the propagation starts proceeding 

into non-vessel regions with much larger P values. Based on 

this observation, a metric based on the backtracking speed 

together with a stopping criterion is used in the MPP-BT 

algorithm to automatically stop the propagation. This will be 

discussed in section 2.2.2. 

2.2 The proposed CMPP method 

As reported in [30], building the potential P in Eq. (1) is 

crucial to the performance of the centerline extraction. A metric 

termed “Symmetric Convexity” was used in MPP-BT algorithm 

to calculate the potential for the centerline extraction. This 

“Symmetric Convexity” metric was built based on the 

“symmetricity” and “convexity” properties of the 1-D intensity 

distribution across vessel points. 

Unlike centerline points, vessel points can be located at any 

position inside the lumen and do not have such symmetricity 

constraint. So a medialness metric solely based on the 

“convexity” property is used for vessel extraction. In this study, 

we propose an algorithm termed constrained minimal path 

propagation (CMPP) to get an efficient extraction of the vessel 

lumen. The “constraint” knowledge in CMPP algorithm is 

incorporated via the following two forms: the potential 

constraint and the radius constraint, which can be well built 

using the information obtained during the centerline extraction 

step. 

2.2.1 Calculation of ‘Convexity’ and “Symmetric Convexity” 

metrics for vessel structures and centerlines 

According to [30], the combination of the “Symmetry” and 

the “Convexity” properties leads to the “Symmetric Convexity” 

metric for the centerline points in cost function building. For 

centerline extraction, the medialness measure  c
,M p  is 

calculated[31]. Because the points in the lumen do not have the 

so-called symmetricity property, to perform the vessel 

extraction, a new medialness measure  v
,M p   is used, which 

only considers the “Convexity” property[31]. Note that

 c
,

s

n
M p  and  v

,
s

n
M p  are obtained by sorting all the 

 c
,

i
M p  and  v

,
i

M p  in descent order with respect to all the 

orientations, e.g.: 

   c c 1
, ,

s s

n n
M p M p 


 ,    v v 1

, ,
s s

n n
M p M p 


 . 

Fig.2 (b) and (c) illustrate the 2-D measures  c
M p and 

 v
M p for one simulated 2-D vessel image in Fig.2 (a). The 

two measures  c
M p  and  v

M p  are respectively 

calculated using (3) and (5), with values mapped into [0, 255] 

for display. We can see in Fig.2 that the two measures  c
M p

(e) (d) (c) (b) (a) 
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and  v
M p  give specific highlights of the vessel structures 

(i.e. centerlines and branches). 

 2.2.2 Constrained propagation with automatic stopping 

The fact that the centerline points always lie within the vessel 

structures means that the potential values of these centerline 

points can be set to zero as the preset start point. Therefore, the 

first potential constraint can be easily applied by fixing the 

energy values of all the extracted centerline points to zero in the 

entire propagation process. With this potential constraint, all the 

centerline points can be regarded as start points in the 

propagation process, and then, the surface will propagate 

equally into the vessel. This will eliminate the influence of the 

start point position, leading to a significantly improved 

propagation efficiency.  

The radius constraint is directly related to the radius 

parameter
m ax

R . Here, a centerline distance map is used to 

record the distance between the point reached and the first 

centerline point in its backtracking path. All the points in this 

centerline distance map are initially set to infinity except the 

centerline points, which are simply set to zero. As the 

propagation proceeds, the distance value related to each point 

is updated to the shortest distance between the point and its 

nearest centerline point. Those points with distances larger than 

m ax
R will be excluded from the final vessel extraction result. 

With this radius constraint, some distant non-vessel points 

(pixels outside the vascular lumen) with large “convexity” 

values will not be included into the extracted vessel structures. 

With these potential and radius constraints, we can see that 

the CMPP method affords a vessel -feature preferable 

traversing, and the vessel structures are segmented by directly 

marking all traversed points as vessel points. Fig.3 illustrates 

the extraction results of the simulated vascular image for 

different traversed point numbers. Fig.3 (b) to Fig.3 (e) are the 

extraction results when the numbers of traversed points are set 

to 500, 1000, 2000 and 2706 (which is the traversed point 

number when stopping criterion is satisfied), respectively. It is 

also found that the propagation should be stopped when the 

p r o p a g a t i o n  f i n i s h e s  

 
 

Fig. 2 Illustration of “symmetric convexity”and “convexity” by gray images. (a) Original X-ray simulated image [28]. (b)The“symmetric convexity” gray image. 

(c)The “convexity” gray image. 

 

Fig. 3. (a), the original X-ray simulated vascular image. From (b) to (e), the extraction results when the traversed number points in the minimal path propagation 

are 500,1000,2000, and 2706, respectively. Note that the number 2706 is the recorded traversed point number when the stopping criterion is satisfied. ( = 0 .7 ,

A V E
=1 0 0 0l , 1  , 1 0 0  ,

b k
1 5l  ,

E C
= 1 5 0 0l , m in

0 _ c
= 0 .0 5N S ,

m in
2R  ,

m a x
1 5R  , according to [30]) 

 

the traversing of the vessel region. Otherwise, more non-vessel 

points with large convexity values will be falsely included into 

the final extracted vessels. 

The CMPP method uses two normalized backtracking speed 

metrics 
c

( )N S p and 
v

( )N S p as the stopping criteria for 

centerline extraction and vessel extraction, respectively. These 

two metrics are developed based on the fact that the feature 

points with lower costs are always preferably visited during 

backtracking. In consequence, the cost difference along the 

backtracking path will significantly increase when the 

propagation starts to pick up non-feature points with much 

larger energy values after traversing the vascular region. The 

metrics 
c

( )N S p and 
v

( )N S p are defined as below: 

 
 

 

c A V E

c

m a x

,  

=

S p l

N S p
S p

                          (7) 

 
 

 

v A V E

v

m a x

,  

=

S p l

N S p
S p

                        (8) 

(a) (c) (b) 
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 
   

c
=

-

b k

E

b k

l
S p

U p U p

                        (9) 

 
   

v
=

-

b k

E

b k

l
S p

P p P p

                       (10) 

where, p is the current point, and E

b k
p is the point with 

b k
l steps 

back-traced from the current point p .  c A V E
,  S p l and 

 v A V E
,  S p l  in Eq. (7) and Eq. (8) are respectively the average 

values of 
c

S  and 
v

S  calculated over the 
A V E

l  points reached 

before the point p . One significant difference between Eq. (9) 

and Eq. (10) is that we use the potential difference rather than 

the integrated potential difference to calculate
v

S . With all 

centerline points’ integrated potential set to zero according to 

the potential constraint, the integrated potential difference is 

equal to the integrated potential from centerline to p , which is 

unable to distinguish vessel and non-vessel points. That is the 

reason to use the potential difference here. For the first 
A V E

l  

points,  c A V E
,  S p l and  v A V E

,  S p l  are simply set to the 

maximum 
c

S  and 
v

S  values. The normalized average 

backtracking speed metrics 
c

( )N S p  and 
v

( )N S p  are preferred 

because the backtracking speed is sensitive to local fluctuations 

[23]. The normalized backtracking speed 
v

( )N S p  for the 

vessel extraction step runs in the same way as the
c

( )N S p . For 

the centerline extraction task, the propagation stops when there 

are 
E C

l successive points with 
c

N S value lower than a 

dynamically varying parameter m in

c
N S . 

c
N S is initially set to an 

input parameter m in

0 _ c
N S (0< m in

0 _ c
N S <1) and is updated to 

min{ m in

c
N S , 

c
( )N S p }every time a new point p is reached. 

For the vessel extraction, the same process is applied with 

different parameters. We use respectively
E V

l , 
v

N S , m in

v
N S ,

m in

0 _ v
N S instead of 

E C
l ,

c
N S , m in

c
N S , m in

0 _ c
N S . 

2.2.3 Local MPP-BT operation to solve the close loop problem 

During the centerline extraction, the MPP-BT algorithm 

traces back l steps and performs accumulation upon the last 

point E

b k
p in the backtracking path for each reached point. Such 

accumulation operations on all the last reached points yield the 

centerline feature map
B K

Î . Fig.4 (a) and Fig.4 (b) illustrate one 

retina image (obtained from the retinal database DRIVE [27]), 

and a zoomed area in blue including one closed loop structure. 

Fig.4(c) illustrates the traversed area with the direction marked 

by red arrows in Fig.4(c). Fig.4(d) depicts the expanding 

propagation of the traversed area at different phases (indicated 

by dotted red lines). In the MPP-BT algorithm, to be identified 

as the centerline points, points need to get enough 

accumulations in the backtracking process. However, and in 

particular when facing closed loops, some points might get 

greatly reduced accumulations in the backtracking process 

because alternative routes exist with less integrated potential. 

The result is that the points near the blue line (bottom-right in 

Fig. 4(c)) cannot be accumulated in any point’s backtracking 

path and so, some centerline points near the blue line cannot be 

extracted from the centerline feature map
B K

Î . In Fig.4(e), one 

small but obvious discontinuity can be seen when applying the 

MPP-BT algorithm reported in [30]. We call this problem the 

close loop problem. 

In the present study, to solve this close loop problem, an 

operation named local MPP-BT operation is performed on the 

preliminary centerline map 
C

Î built from the original MPP-BT 

algorithm. In the centerline map 
C

Î , the break points are first 

identified as those points connected to only one centerline point. 

These break points in Fig.4 (d) are marked as red points in Fig.4 

(e) and they also include the end points of vessel branches. Then, 

our local MPP-BT operation is applied by implementing the 

MPP-BT algorithm in [30] using each break point as a start 

point. When compared to the original MPP-BT algorithm, such 

local MPP-BT operation appears more efficient because this 

local MPP-BT operation is stopped after a fixed traversed 

number N  . Nevertheless, one local MPP-BT operation is 

required for each break point, so the combination of all the local 

MPP-BT operations takes a bit more time than the original 

MPP-BT method, as we will see in Table 6. In Fig.4 (f), the red 

lines depict the local centerline results extracted this way and 

further combined with the centerline image 
C

Î in Fig.4 (e) to 

get the final result illustrated in Fig.4 (g). 

For 3-D images like coronary CTA images, the close loop 

problem is not the main concern as there is no loops. However, 

local MPP-BT is still valuable in 3-D images. The original 

MPP-BT is sometimes unable to extract centerline points at 

vessel endings due to the imprecise stopping criterion. Local 

MPP-BT can extend the centerlines to make them more 

complete.  

 

 

(a) (b) (c) 

(d) 

(e) (f) (g) 
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Fig. 4. Illustration of close loop problem and the solution obtained using the 

local MPP-BT operation. (a) Original image. (b) The enlarged closed loop 

structure with a start point marked in red. (c) The propagation area with the 
arrowed propagation directions for the original MPP-BT algorithm in [30]. (d) 

Different propagation phases with the corresponding traversed areas. (e) The 

preliminary extracted centerline map resulting from the original MPP-BT 
algorithm. (f) The local centerline extraction result overlapped with the original 

image data. (g) The final extraction obtained by means of the local MPP-BT 

algorithm. ( = 0 .7    
A V E

=1 0 0 0l    1     2 0     2 0 0 0N     
E V

= 1 0 0 0 0l    

b k
1 0l  , 

E C
= 2 5 0 0l , m in

0 _ c
= 0 .0 5N S , m in

0 _ v
= 0 .0 5N S , 

m in
2R  , 

m a x
1 0R  ) 

2.3 The complete flowchart of the CMPP method 

Fig. 5 summarizes the flowchart of the CMPP method. For 

each specific vessel, the start point and the parameters being 

set,the minimal path propagation based method in [30] is run to 

extract centerlines.The centerline feature map is obtained after 

the propagation is stopped when the first stopping criterion is 

met. Then, the local MPP-BT operation is applied to solve close 

loop problems. After this, with the centerline map, another 

minimal path propagation using the potential constraint and the 

radius constraint is carried out to retrieve the complete vessel 

structures. The finally extracted vessels are obtained by tagging 

all the traversed point as vessel points when the stopping 

condition is satisfied. 

 

 Fig. 5.The complete flowchart of the CMPP method 

 

Table 1 Parameter setting for the proposed method 

Test data Parameter Settings 

2-D  
coronary 

artery 
b k

1 5l  ,
E C

= 2 5 0 0l , m in

0 _ c
= 0 .0 5N S , m in

0 _ v
= 0 .0 5N S ,

m in
2R   ,

m ax
1 5R   

2-D  

retinal vessel b k
1 0l  ,

E C
= 2 5 0 0l , m in

0 _ c
= 0 .0 5N S , m in

0 _ v
= 0 .0 5N S ,

m in
2R  ,

m ax
1 0R   

3-D  

coronary 
artery 

b k
1 5l  ,

E C
= 5 0 0 0l , m in

0 _ c
= 0 .0 5N S , m in

0 _ v
= 0 .0 5N S ,

m in
2R  ,

m ax
2 0R   

3-D  
kidney artery b k

1 5l  ,
E C

= 5 0 0 0l , m in

0 _ c
= 0 .0 5N S , m in

0 _ v
= 0 .0 5N S ,

m in
2R  ,

m ax
1 5R   

 

III. EXPERIMENTS 

3.1 Data description and parameter setting 

The simulated angiography image (Fig.1 (a)) with intensities 

normalized into the gray-level range [0, 255] is used. This 

simulation is performed based on [37] by projecting a manually 

segmented 3-D vessel tree ( 2 5 6 2 5 6 2 5 6  ) onto a 2 5 6 2 5 6

2-D background image. In addition to the simulated image in 

Fig.1 (a), four real 5 1 2 5 1 2  coronary artery angiogram images 

were collected from a GE rotational angiography system in the 

Cardiology Department of the University Hospital of Rennes, 

France. More details on the rotational angiography system can 

be found in [37]. The 3-D coronary artery datasets (in Fig.9 (a) 

and (b)) correspond to nine sets of CT angiography (CCTA) 

data acquired from a Siemens dual-source CT system 

(Somatom Definition Flash) in the Radiology Department of 

the First Hospital of Nanjing, China. Each 3-D CCTA includes 

about 300 2-D slices. The retinal vessel images used in this 

paper are obtained from the DRIVE (Digital Retinal Images for 

Vessel Extraction) database, and another publicy available 

retinal database STARE (STructured Analysis of the Retina) 

was used for more detailed evalution of our method. In DRIVE 

dataset, a total of 40 color fundus photographs together with 

their manual delineations was used (refer for more details to 

[35]).  STARE consists of 20 images, 10 of them contain 

pathology [36]. The 3-D kidney artery dataset  (see Fig.9(c)) is 

composed of CT angiography (CCTA) data acquired from a 64 

dual-source CT in the Jiangsu Province Hospital, China.  

The implementation has been performed on a PC (Intel 

Core™ 4 Quad CPU and 20 GB RAM, GPU (NVIDIA 

GTX560)) with Visual C++ as the developing language (Visual 

Studio 2010 software; Microsoft). The pixel-wise calculations 

of 2-D image data involved in the computation of  c
,M p   

and  v
,M p   were parallelized using a CUDA-based GPU 

Set start point
Minimal path propagation 

for centerline extraction
Thresholding

Backtracking for 

centerline connection

Local MPP-BT
Set centerline 

potential to zero

Minimal path 

propagation for 

lumen extraction
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(respectively Compute Unified Device Architecture and 

Graphic Processing Unit) [39][40].  

Thirteen parameters require to be set in the proposed method. 

They include D  describing the number of directions used for 

calculating the potential, 
b k

l limiting the backtracking steps, the 

coefficient   of quantile value applied in the feature map 
B K

Î

in order to get the intermediate feature image
C

Î , the number of 

propagation steps N modulating the local MPP-BT operations. 

The propagation stopping mechanism includes the parameter 

A V E
l for the computation of the normalized average speed, the 

successive point numbers
E C

l (for centerline) and 
E V

l  (for vessel 

lumen) and the initial values m in

0 _ c
N S  (for centerline) and m in

0 _ v
N S  

(for vessel lumen). The parameters of the “symmetric 

convexity” metric include  ,  and the vessel radius range

m in m ax
[ , ]R R . Most parameters were selected under the guide of 

one experienced radiologist (Y.X.D 20 years experience) to 

provide good extraction results. It is found that all the involved 

parameter can be robustly set in the proposed CMPP method. 

The parameters , N ,
A V E

l ,  ,  and 
E V

l were kept unchanged 

for all datasets ( = 0 .7 , 
A V E

=1 0 0 0l , 1  , 2 0  , 2 0 0 0N 

, 
E V

= 1 0 0 0 0l ). We set 2D   for 2-D images while 6D   for 3-

D images and the remaining parameters  (listed in Table 1) were 

fixed when processing the datasets of the same type. All these 

parameters are tuned on one image of each type and validated 

on other images for evaluation. A detailed analysis of the 

parameter setting is given and discussed in section 3.6. 

3.2 Effect of the stopping criterion 

The plots in Fig. 6 characterize the behavior of the 

normalized average backtracking speed 
c

( )N S p  (Fig. 6(a2) and 

(b2)) for centerline propagation stopping and the 
v

( )N S p  (Fig.6 

(a3) and (b3)) for vessel propagation stopping. The stop points 

(marked as red dots along the x axis) are displayed in the plots 

in the middle and right most columns in Fig.6. We can see that 

the propagation should be stopped to give a good extraction of 

vessel structure when the normalized average speed 
v

N S  is 

turned to a small value. 

Fig. 6. Illustration of the stopping criterion for centerline and vessel structure extraction on two images. Fig.6(a1) and Fig.6 (b1) are the original images; (a2) and 

(b2) plot the calculated normalized average speed of centerline extraction; (a3) and (b3) plot the calculated normalized average speed of vessel extraction. The 

number of reached points is marked in red. ( = 0 .7 , 
A V E

=1 0 0 0l , 1  , 2 0  , 2 0 0 0N  , 
E V

= 1 0 0 0 0l , 
b k

1 5l  , 
E C

= 2 5 0 0l , m in

0 _ c
= 0 .0 5N S , m in

0 _ v
= 0 .0 5N S , 

m in
2R  , 

m a x
1 5R  ) 

3.3Effect of local MPP-BT operation 

Fig.7, Fig.8 and Fig.9 illustrate the extraction results of 2-D 

coronary artery images, 2-D retinal images and 3-D vascular 

image datasets (including the 3-D coronary artery datasets and 

the kidney artery), respectively. The left to right columns in 

Fig.7-Fig.8 display the original images, the extracted vascular 

centerline images using the original MPP-BT method, the 

extracted vascular centerline images using the MPP-BT method 

with local MPP-BT operations, the extracted vascular structure 

using the CMPP method,and the manually delineated vascular 

structure images. The start points are marked in red in the 

original images. We can see in the second columns in Fig.7, 

Fig.8 and Fig.9 that the original MPP-BT algorithm fails to 

extract the full centerline structure due to the close loop 

problem. Much more break points appear in the retinal images 

which contains many close loop structures. 

The arrows in the third column in Fig.7 and Fig.8 show that 

this close loop problem can be effectively alleviated by 

applying the local MPP-BT operations. It is found in Fig.7 and 

Fig.8 that the proposed approach works well in retrieving the 

complete vascular structures. Nevertheless, in the third columns 

of Fig.8, we can note that some structures still fail to be 

extracted even with the local MPP-BT operations (marked as 

yellow arrows) due to the indistinct intensity feature in the 

original images.  

In Fig.9, the extracted vascular lumens of three kinds of 3-D 

data are displayed. The columns from left to right represent the 

original 3-D image data, the extracted centerlines, the extracted 
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vessel lumens and the extracted lumens overlaid on the original 

volumes, respectively. Only the vessel radius range [ m in
R

, m ax
R

] needed to be modified while the other parameters were kept 

unchanged for these different volumes. The first and second 

rows are illustrations of the left coronary trees and the right 

coronary trees. The third row displays one kidney artery tree 

and the last row one carotid artery tree. Results in Fig.9 show 

that, the proposed CMPP algorithm works well in providing 

complete 3-D vessel lumen extraction for different kinds of 3-

D image data. 

3.4 Start point position setting 

To analyze the robustness of the algorithm with respect to the 

start point position, we compared the extraction results obtained 

on one vascular image with different initial points. Fig. 10 

shows the segmentation results of the proposed CMPP 

algorithm on 2-D coronary artery images. The rows in Fig. 10 

display the original images, the extracted vascular centerlines 

and vessel structures from top to bottom, respectively. The start 

points are marked in red in the original images (refer to the left 

column). It can be seen that the results remain almost the same 

when the start point is set to different positions inside the vessel 

lumen or even slightly outside the lumen.  The results show that 

the start point setting is quite robust in the proposed CMPP 

algorithm.  

3.5 Quantitative Evaluation on 2D vessels 

The DRIVE and STARE database provides a ground truth o

f vessel extraction (http://www.isi.uu.nl/Research/Databases/D

RIVE/)(http://cecas.clemson.edu/~ahoover/stare/), and a quant

itative evaluation can be performed on these public datasets to 

evaluate the performance of the proposed method for retinal ve

ssel images. Let us define TP (true positive) as the right extract

ed feature points, FP (false positive) the wrong extracted featu

re points, TN (true negative), the correct extracted non-feature 

(background) points, FN (false negative) as the wrong extracte

d non-feature (background) points. 

Fig. 7. Extraction result corresponding to four 2-D coronary artery images (from the first row to the fourth row) using the proposed method. From left to right, 

the first to fifth columns correspond respectively to the original images, the extracted centerlines using the original MPP-BT method in[30], the extracted 
centerlines using the improved MPP-BT method with local MPP-BT operations, the CMPP extracted vessel structures (in white color), and the manually 

delineated vessel structures.The starting points are marked by red points in the images in the first column. ( = 0 .7 , 
A V E

=1 0 0 0l , 1  , 2 0  , 2 0 0 0N  , 

E V
= 1 0 0 0 0l , 

b k
1 5l  , 

E C
= 2 5 0 0l , m in

0 _ c
= 0 .0 5N S , m in

0 _ v
= 0 .0 5N S , 

m in
2R  , 

m a x
1 5R  ) 
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Fig. 8. Extraction result obtained for four retinal images (from the first row to the fourth row) using the proposed method. From left to right, the first, second, third, 

fourth and fifth columns correspond to the original images, the extracted centerlines using the original MPP-BT method in[30],the extracted centerlines using the 

improved MPP-BT methodwith local MPP-BT operations, the CMPP extracted vessel structures (in white color), and the manually delineated vessel structures.The 

starting points are tagged as red points in the images in the first column.( = 0 .7 , 
A V E

=1 0 0 0l , 1  , 2 0  , 2 0 0 0N  , 
E V

= 1 0 0 0 0l , 
b k

1 0l  , 
E C

= 2 5 0 0l , 

m in

0 _ c
= 0 .0 5N S , m in

0 _ v
= 0 .0 5N S , 

m in
2R  , 

m a x
1 0R  ) 

Fig. 9. Application to 3D images data (from the first to the third row are the left branch of coronary artery, the right branch of coronary artery and the kidney artery) 

using the proposed method. From left to right, the first, second, third and fourth columns correspond to the original images, the extracted centerlines using the 
improved MPP-BT method with local MPP-BT operations, the extracted vessel structure using the proposed algorithm, and the overlapped vessel images.(For the 
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first row and the second row,
b k

1 5l  , 
E C

= 5 0 0 0l , m in

0 _ c
= 0 .0 0 5N S , m in

0 _ v
= 0 .0 1N S , 

m in
2R  , 

m a x
2 0R  .For the third row, 

b k
1 5l  , 

E C
= 5 0 0 0l , m in

0 _ c
= 0 .0 5N S , 

m in

0 _ v
= 0 .2N S , 

m in
2R  ,

m a x
1 5R  ) 

Then, the Acc (accuracy), the Se(sensitivity), and the Sp 

(specificity) can be expressed by: 

A c c
T P T N

T P F P T N F N




  
,  

S e
T P

T P F N



, S p

T N

T N F P



                         (14) 

The values of Acc, Se and Sp calculated via Eq.(14) for the 

extraction results in Fig.7 and Fig.8 are listed in Table 2 and 

Table 3, respectively. The maximum Acc, minimum Acc and 

average values obtained over the full 40 images of DRIVE 

database are also listed in the table. In Table 4, a comparison 

with recent retinal vessel extraction methods is presented. 

Table 2. Quantitative Evaluation of the proposed CMPP method on 

Coronary Images 

Image(or method) Acc Se Sp 

Fig.7(a1) 0.9544 0.5536 0.9826 

Fig.7(b1) 0.9608 0.6933 0.9772 

Fig.7(c1) 0.9480 0.5714 0.9776 

Fig.7(d1) 0.9391 0.5621 0.9712 

Standard deviation 0.0093 0.0659 0.0047 

We can see that for the segmentation task the proposed 

method leads to accuracy (Acc) and specificity (Sp) values 

equal to 0.9345 and 0.9750,  very close to those obtained by the 

other methods. However, the sensitivity (Se) of the proposed 

method is found lower than most other methods. This is due to 

the vessel point missing caused by the lower “convexity” metric 

values near the vessel boundaries. 

Table 3. Quantitative Evaluation of the proposed CMPP method on 

Retinal Images 

Image(or method) Acc Se Sp 

Fig.8(a1) 0.9438 0.6979 0.9809 

Fig.8(b1) 0.9557 0. 6722 0.9881 

Fig.8(c1) 0.9144 0.6370 0.9618 

Fig.8(d1) 0.9360 0.6023 0.9873 

Maximum Acc 0.9553 0.7652 0.9813 

Minimum Acc 0.9144 0.6370 0.9618 

average 0.9345 0.6591 0.9750 

Standard deviation 0.0125 0.0397 0.0115 

Table 4. Quantitative Evaluation Results of different retinal vessel 

extraction methods on DRIVE and STARE database 

Dataset Method Acc Se Sp 

DRIVE 

Staal[13] 0.9441 0.7193 0.9773 

Marín[14] 0.9452 0.7067 0.9801 

Chaudhuri[41] 0.8894 0.2716 0.9794 

Zhang[42] 0.9382 0.7120 0.9724 

Espona[43] 0.9352 0.7436 0.9615 

Mendonca[44] 0.9452 0.7344 0.9764 

MSLTA[45] 0.9285 0.7468 0.9551 

Proposed  0.9345 0.6591 0.9750 

STARE 

Marín[14] 0.9526 0.6944 0.9819 

Zhang[42] 0.9474 0.7346 0.9726 

Mendonca[44] 0.9440 0.6996 0.9734 

Proposed  0.9589 0.6190 0.9911 

 

Fig. 10. Results on the same image with different start point setting. Images in the first row are the original images. Start point was set at the vascular root in the 
first column while at other position inside the vessel in the second and the third column. Start point was set outside the vessel lumen in the fourth column. The red 

points represents the start point setting. Second row represents the centerline extraction results. Third row represents the vessel segmentation results. Blue arrows 

show some errors result from setting start point outside the vessel lumen.  
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3.6 Quantitative Evaluation on 3D synthetic images 

In this experiment, we performed a quantitative evaluation of 

our CMPP Algorithm using synthetic images from VascuSynth 

dataset (http://vascusynth.cs.sfu.ca/Data.html) which were 

generated by the method proposed in [46]. The algorithm 

evaluation criteria are still Acc(accuracy), Se(sensitivity), and 

Sp (specificity) defined in section 3.5 above and are calculated 

via Eq.(14). The results are shown in Fig. 11 and Table 5. It can 

be seen that all Acc and Se values are higher than 0.99 with 

extremely low standard deviations while the values of Sp reach 

1 for all tested images. 

Table 5. Quantitative Evaluation of the proposed CMPP method on 

Synthetic 3D Data 

Image(or method) Acc Se Sp 

Fig.11(a1) 0.999972 0.9928 1 

Fig.11(b1) 0.999907 0.9978 1 

Fig.11(c1) 0.999980 0.9938 1 

Fig.11(d1) 0.999993 0.9985 1 

Standard deviation  3.8323e-05 0.0028 0 

3.7 Computation Cost 

The vessel structures only occupy a small portion of the total 

image space and so the CMPP method leads to higher efficiency 

when compared to filter based methods requiring calculations 

over all grid points. Table 6 provides a comparison of the 

average time consumption for the coronary and retinal images 

displayed in Fig.7 and Fig.8 using Frangi filter [6] and the 

proposed CMPP algorithm respectively. The computation time 

of CMPP is smaller which means that the former algorithm is 

more efficient for the vessel structures extraction.  The 

computation times to process the images displayed in Fig.7, 

Fig.8 and Fig.9 are reported in Table 7 and Table 8. The local 

MPP-BT operation is not used for 3D data in order to avoid the 

significant increase in computations due to the large number of 

break points. The vessel structure extraction is quite efficient 

since all the traversed grid points are directly included into the 

extracted vessel structures. For one coronary artery image with 

5 1 2 5 1 2  pixels, the vessel extraction takes less than 0.5s 

while for the retinal case,  the time required is less than 1.5s. 

Table 6．Comparison of computation time for 2-D image data  using 

Frangi and CMPP algorithms 

2D IMAGE 

DATA 

Average Time(s) 

Frangi [6] CMPP 

Coronary 0.8637 0.3025 

Retinal 1.59 1.09 

Table 7．Computation time (in seconds) for 2-D image data 

2D 

IMAGE 

DATA 

CENTERLINE VESSEL  

Original MPPBT 
Local 

MPPBT 
CMPP 

Time 

(s) 

Extracted 

point 

numbers 

Traversed 

point 

numbers 

Time 

(s) 

Break 

point 

numbers 

Time 

(s) 

Traversed 

point 

numbers 

FIG.7(A1) 0.39 2397 15300 1.22 23 0.27 15043 

FIG.7(B1) 0.29 1783 16909 0.75 16 0.28 14717 

FIG.7(C1) 0.38 2694 21083 1.47 29 0.31 16262 

FIG.7(D1) 0.34 3103 18920 1.23 26 0.35 17772 

FIG.8(A1) 0.68 6550 28119 3.88 96 1.06 35837 

FIG.8(B1) 0.72 6380 28856 4.45 101 1.25 38796 

FIG.8(C1) 0.92 6403 35491 4.44 107 1.27 39133 

FIG.8(D1) 0.49 5509 22935 2.34 60 0.78 30089 

     

As no parallization technique is applied to accelerate the 

calculation of the convexity and symmetric metrics, 3-D image 

datasets need much more computation (between 10 and 100 

seconds for 3D volumes with 300 to 700 slices sized 5 1 2 5 1 2

pixels). From Table 8, we found that the number of  
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Fig. 11. Results on four synthetic 3D data volumes.  Images in the first row are the input data volumes. Images in the second row represents the centerline 

extraction result while images in the third row shows the segmentation results.  

Fig. 12 Results when varying N. (a) the retinal vessel image chosen from the DRIVE data base. (b)  extraction result without using the local operation. (c), (d) and 

(e) results when N equals 1000, 2000, and 5000, respectively.( = 0 .7 , 
A V E

=1 0 0 0l , 1  , 2 0  , 
E V

= 1 0 0 0 0l , 
b k

1 0l  , 
E C

= 2 5 0 0l , m in

0 _ c
= 0 .0 5N S , m in

0 _ v
= 0 .0 5N S

, 
m in

2R  , 
m a x

1 0R  ) 

traversed points and the radius range are closely related to the 

computation complexity.  

3.8 Parameter analysis 

Though there are 12 parameters to be set in the proposed 

method for extracting the centerlines and vessel structures, their 

choice is not  difficult. For all  experimental datasets, six 

parameters are set to the same values (see Table 1). The other 6 

parameters need an adjustment for different datasets but they 

remain unchanged for the same dataset type. The parameters
b k

l

,
E C

l ,
m in

0 _ c
N S  for centerline extraction have been discussed in our 

previous work [30] so, in this section, the parameter N for the 

local combination and the parameter 
E V

l  for the stopping 

criterion of vessel extraction are examined below. Parameter 

m in
R  and 

m ax
R  provide a rough range of target vessel radius. 

Their settings are also examined.  

Fig.12 illustrates the extracted centerlines when different N

values are used in the local MPP-BT operation.We can see in 

the second column in Fig.12 (b) that the original MPP-BT 

method in [30] fails to extract some loop structures and new  

Table 8．Computation time (in seconds) for 3-D image data 

3D 

IMAGE 

DATA 

CENTERLINE VESSEL 

MPPBT CMPP 

Time 
(s) 

Extracted 

point 

numbers 

Traversed 

point 

numbers 

Time 
(s) 

Traversed 

point 

numbers 
FIG.9(A1) 34.66 1379 106308 10.74 43786 

FIG.9(B1) 30.88 1657 96317 13.53 44071 

FIG.9(C1) 10.45 899 65206 2.00 8934 

Fig. 13. Results on a retinal image with different 
m in

R . (a) Ground truth. (b) 
m in

= 1R . (c) 
m in

= 2R . (d) 
m in

= 4R . (e) 
m in

= 6R . We set 
m ax

= 1 0R  in all experiments 

here and other parameters are set according to Table 1.  

Fig. 14. Results on a retinal image with different 
m a x

R . (a) Ground truth. (b) 
m a x

= 6R . (c) 
m a x

= 8R . (d) 
m ax

= 1 0R . (e) 
m ax

= 1 5R . We set 
m in

= 2R  in all experiments 

here and other parameters are set according to Table 1 

 

structure increments (in red in Fig.12 (c)-(e)) can be brought by 

means of the additional local MPP-BT operations.  Fig.12 (c)-

(e) shows that the local MPP-BT operation works well in 

extracting more close loop structures (with N  equals to 1000, 

(a) (b) (c) (d) (e) 

(a) (b) (c) (e) (d) 

(a) (b) (c) (d) (e) 
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6 closed loops marked by the blue arrows in Fig.12(c) were 

extracted). When N  is increased to 2000, another 2 closed loops 

were found (also identified by the blue arrows in Fig.12 (d)). 

However, a larger value of N does not bring any new benefit 

(see Fig.12 (e), and Table 9). In our experiments, N was set to 

2000 to achieve a good balance between the extraction accuracy 

and the computation cost. 

Table 9．Relationship between N and the computation cost 

Value of N 1000 2000 3000 4000 5000 

Computation 
Time (second) 

2.37 3.79 5.46 7.16 8.82 

Fig.16 illustrates the results obtained when varying 
E V

l  (
E V

l

is used to modulate the minimal path propagation of vessel 

extraction). Because all the grid points traversed in the 

propagation belong to the final result points in some specific 

backtracking path, the choice of 
E V

l value  has a large impact 

on the final extraction. Lowering the value of 
E V

l  leads to  miss 

edge points while increasing the value of 
E V

l tends to augment 

the false non-vessel points (marked by blue arrow) in the final 

result. Fig.15 and Table 10 show the relationship between the 

values of 
E V

l  and the values of Acc, Sp and Se. As the 
E V

l  

turns larger, the Sp value decreases and Se value increases. Acc 

reaches its largest value at around 10000 points are searched.  

The extracted vascular structures with different 
m in

R and 
m a x

R

values in the local MPP-BT method are illustrated in Fig.13 and 

Fig.14. We vary
m ax

R or 
m in

R  while the other parameters were 

kept unchanged (refer to Table 1). We can observe an over-

segmentation of retinal edge with low 
m in

R value in Fig.13(b) 

and a partial segmentation of the vessel structure  with high 

m in
R in Fig.13(e). Fig.14(b) shows the incomplete vessel 

structure result extracted by local MPP-BT operation when the 

m ax
R value is high. Table 11 and Table 12 present the evolutions 

of Acc, Sp and Se when varying  m in
R , 

m ax
R . Large or small 

m in
R values or small 

m ax
R values can lead to low values of Acc, 

Sp and Se For large 
m ax

R  values, the change in accuracy is not 

significant. However, larger 
m ax

R values will inevitably involve 

higher computation cost. 
Fig. 15 The relationship between the values of  and quantitative standard 

ACC, SP, and SE of the result of the Fig.12 (a) using the proposed method. 

Table 10．Quantitative evaluation when varying 
E V

l  

E V
l  Acc Sp Se 

2000 0.9348 0.9922 0.5543 

5000 0.9404 0.9879 0.6257 

10000 0.9442 0.9798 0.7082 

12000 0.9440 0.9762 0.7309 

15000 0.9426 0.9704 0.7588 

Table 11．Quantitative evaluation when varying 
m in

R   

m in
R  ACC Se Sp 

1 0.9228 0.5321 0.9674 

2 0.9557 0.6722 0.9881 

4 0.9538 0.5832 0.9961 

6 0.9008 0.2729 0.9725 

Fig. 16 Segmentation results with different 
E V

l  values on a retinal image. (a) The original retinal image. (b), (c) and (d) illustrate the extraction results when the 

= 2 0 0 0
E V

l , = 1 0 0 0 0
E V

l and = 1 2 0 0 0
E V

l , respectively. Other parameters are set according to Table 1.  

Fig. 17 Illustration on the effect of potential constraint and radius constraint. (a) the selected retinal vessel image; (b) the centerlines  extracted by the proposed 
method; (c) result without using potential constraint and radius constraint; (d) result obtained with only the potential constraint (e) vessel extraction using both the 
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potential constraint and the radius constraint. ( = 0 .7 , 
A V E

=1 0 0 0l , 1  , 2 0  , 2 0 0 0N  , 
E V

= 1 0 0 0 0l , 
b k

1 0l  , 
E C

= 2 5 0 0l , m in

0 _ c
= 0 .0 5N S , m in

0 _ v
= 0 .0 5N S , 

m in
2R  , 

m a x
1 0R 

)
. 

Table 12．Quantitative evaluation when varying 
m a x

R   

m a x
R  ACC Se Sp 

6 0.9027 0.2619 0.9758 

8 0.9557 0.6725 0.9881 

10 0.9557 0.6722 0.9881 

15 0.9557 0.6723 0.9881 

3.9 Analysis on potential constraint and radius constraint 

The effect of potential constraint and radius constraint in the 

proposed algorithm is also analyzed. Fig.17(a) to Fig.17(e) 

depict a retinal image selected from the DRIVE database, the 

centerline extraction result, the vessel extraction result without 

the constraints, the vessel extraction result with only the 

potential constraint and the vessel extraction result with the 

both constraints. From the Fig.17(c) we can see that without the 

constraints, the propagation falled into non-vessel regions with 

high v
M

values. Fig.17(d) shows that the potential constraint 

works well in limiting the vessel structures in the vessel regions. 

Also, the radius constraint allows constraining the propagation 

around the vessel regions. Thus, inclusion of non-vessel points 

is reduced (as observed by comparing the structures pointed by 

the red arrow in Fig.17(d) and Fig.17(e)). 

IV. CONCLUSION AND FUTURE WORK 

In this paper, as an extension of our previous work on curve-

like structure extraction using the MPP-BT method [30], we 

developed a method termed constraint-minimal path 

propagation (CMPP) to realize the extraction of complete 

vessel structures. Using the extracted centerline information as 

constraint, another minimal path propagation is performed for 

the vessel structure extraction. The proposed method is 

unsupervised and requires only one roughly set start point to 

automatically get the centerline and the vessel structures. The 

method is suitable for different kinds of vessel images including 

retinal images, coronary images and etc. In addition, by using 

local MPP-BT operations, the CMPP method greatly alleviate 

the structutre missing phenomenon for the close loop problems.  

Different types of vessel data including the coronary artery, 

retinal vessel, kidney artery and the carotid artery are used in 

algorithm evaluatation. Visual illustrations in Fig.7 to Fig.9 

show that the proposed method can provide an effective vessel 

extraction. Quantitative comparisons using retinal data also 

validate the effectiveness of this CMPP approach when 

compared to other supervised and unsupervised methods. It is 

also found that the involved 12 parameters can be set to the 

same values for the same type of data.  

However, some issues should be addressed in the near future. 

Firstly, the local MPP-BT may not only extract the loop 

structures but also connects some branches in some 2D cases 

where branches are very close. Secondly, a smooth surface of 

the lumen is not ensured by the algorithm as there is no surface 

smoothness constraint in the proposed algorithm. Future work 

will look for solutions to this problem that do not penalize too 

much the computation cost. Thirdly, the lower convexity values 

of vessel boundary points leads to compromised segmentation 

specificity. A full study of pathological situations (such as 

calcifications, aneurysms or vessel stenosis) must also be 

performed. Such effort is not easy because we need ground truth 

data for assessment. Also, there are too many parameters to tune 

in the proposed algorithm. Although we provided some 

recommended parameter settings, an automatic parameter 

selection algorithm is needed in the future. Finally, regarding 

the 3D applications, the computation time, although not too 

high (about 40 seconds), needs to be reduced using acceleration 

techniques.  
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