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ARTICLE INFO ABSTRACT

Keywords: Motivation: Breast cancer is the leading cause of cancer deaths among women today. Survival rates in developing
Breast cancer countries are around 50%-60% due to late detection. A personalized, accurate risk scoring method can help in
Thermography targeting the right population for follow-up tests and enables early detection of breast abnormalities. Most of the

Risk assessment
Machine learning
Thermalytix
Artificial intelligence

available risk assessment tools use generic and weakly correlated features like age, weight, height etc. While a
personalized risk scoring from screening modalities such as mammography and ultrasound could be helpful,
these tests are limited to very few metropolitan hospitals in developing countries due to high capital cost,
operational expenses and interpretation expertise needed for a large screening population.

Methods: We propose and analyze a new personalized risk framework called Thermalytix Risk Score (TRS) to
identify a high-risk target population for regular screening and enable early stage breast cancer detection at
scale. This technique uses Artificial Intelligence (AI) over thermal images to automatically generate a breast
health risk score. This risk score is mainly derived from two sub-scores namely, vascular score and hotspot score.
A hotspot score signifies the abnormality seen from irregular asymmetric heat patterns seen on the skin surface,
whereas vascular score predicts the presence of asymmetric vascular activity. These scores are generated using
machine learning algorithms over medically interpretable parameters that describes the metabolic activity inside
the breast tissue and indicate the presence of a possible malignancy even in asymptomatic women.

Results: The proposed personalized risk score was tested on 769 subjects in four breast cancer screening facil-
ities. The subjects’ age ranged from 18 to 82 years with a median of around 45 years. Out of the 769 subjects, 185
subjects were diagnosed with a breast malignancy by an expert radiologist after mammography, ultrasound and/
or histopathology. Our personalized Al based risk score achieved an area under the receiver-operator curve
(AUC) of 0.89 when compared to an age normalized risk score that showed an AUC of 0.68. We also found that if
the computed risk score is used to place individuals into four risk groups, the likelihood of malignancy also
increases monotonically with the risk grouping level.

Conclusion: The proposed Al based personalized risk score uses breast thermal image patterns for risk compu-
tation and compares favorably to other generic risk estimation approaches. The proposed risk framework so-
lution is automated, affordable, non-invasive, non-contact and radiation free and works for a wide age range of
women from 18 to 82 years, including young women with dense breasts. The proposed score might be further
used to assign subjects into one of the four risk groups and provide guidance on the periodicity of screening
needed. In addition, the automatically annotated thermal images localizes the potential abnormal regions and
might empower the physician to create a better personalized care.

* This article belongs to Special issue: Artificial Intelligence in Breast Cancer Care.
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1. Introduction

The worldwide incidence of breast cancer has been increasing every
year. It is the largest cause of cancer-related deaths among women.
According to the World Health Organization, approximately 627,000
women lost their lives to this disease in 2018 [1,2]. In developing
countries like India, there are about 163,000 new cases every year and
the survival rate is merely 50 % [2]. To tackle this high mortality rate
and to detect breast cancer earlier, screening facilities and public access
programmes are being improved in these countries [3]. At present,
baseline incidence and mortality of female breast cancer in the Indian
population are approximately 25.8 and 12.7 [2] respectively, per
100,000 women. This incidence rises to 35-40 per 100,000 in me-
tropolitan cities like Delhi, Chennai and Bangalore [4]. The problem is
complicated by a critical imbalance of supply - 1 radiologist per
100,000 persons in India - indicating that a lack of access to expertise
and screening facilities plays a major role in breast cancer mortality [3].
A risk profiling mechanism that could identify high-risk persons earlier
may help to focus personalized screening recommendations and thus
making public screening programmes more effective.

In the current literature, there are three prominent epidemiological
risk models that estimate the risk of breast cancer based on demo-
graphics, clinical and family cancer information. The Gail model [5]
considered age, age at menarche, age at first childbirth, race, ethnicity,
number of first-degree relatives with history of breast cancer and the
number of breast biopsy examinations. The Claus model [6] assessed
hereditary risk of breast cancer by including comprehensive family
cancer history information. The Tyrer-Cuzik model [7] was a recent risk
estimation model that accounted for genetic mutations such as BReast
CAncer (BRCA) 1 and 2 genes, atypical hyperplasia, lobular carcinoma
in situ and the other parameters in the Gail model.

Though the above risk models can be used for identifying a target
population for screening, they are only moderately personalized and
have a weak correlation to actual screening outcome [12]. As most of
the features used in these models are generic, the models groups par-
ticipants into large cohorts as high risk or low risk, where the malig-
nancy incidences in these cohorts might not significantly correlate with
their risk. In addition, obtaining all risk factors needed for the model is
challenging due to privacy issues, fear of social discrimination or just
lack of data. With missing information, the risk score estimated by these
models might not be accurate in grouping the women into high or low
risk.

In this paper, we introduce a new methodology of personalized risk
prediction for breast cancer pre-screening using breast thermal pat-
terns. We discuss and analyze an automated scoring framework called
Thermalytix Risk Scoring (TRS) that uses machine learning analysis on
breast thermal imaging to estimate breast cancer risk. Our hypothesis is
that since thermal imaging provides information about abnormal me-
tabolic activities in the breast region [8], these images may be used to
estimate breast cancer risk enabling personalized screening. Specifi-
cally, we hypothesize that TRS can identify a high-risk target popula-
tion who can be recommended for regular screening to detect breast
cancers in their initial stages.

2. Background

Thermography is an emerging modality that involves image analysis
of heat patterns emitted by a human body. In the presence of a breast
malignancy, the metabolic activity in the immediate vicinity increases
due to high resource consumption by the tumor as well as due to in-
creased blood flow from existing and newly formed blood vessels (neo-
angiogenesis) [8,9]. This metabolic activity is facilitated by the release
of nitric oxide that is autocatalyzed by ferritin ions [10] and the heat
generated is transferred to the breast skin surface through venous
convection and conduction. With the advanced infrared cameras that
can detect temperature differences as low as 0.05 °C, it is now possible
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to identify, analyze and differentiate changes in heat patterns due to
metabolic and vascular abnormalities. Since these metabolic perturba-
tions start from the onset of cancer cells long before they coalesce into a
solid mass, these heat patterns may be used to detect a sub-clinical
cancer in the initial stages. In a research study by Gautherie [11], it was
pragmatically validated in a large population that thermal imaging
could detect breast cancers up to 5 years earlier than conventional
screening modalities.

Though conventional screening techniques like mammography can
be used to create personalized care [12], it has lot of challenges to be
adapted to developing countries. Mammography uses X-rays to image
the physical tissue density variations in the breast region. Solid tumors
have a high density and therefore appear as enhanced regions in
mammograms. This explains its proven low accuracy in younger
women, where the surrounding breast tissue has a higher density and
thus image contrast is poorer. Mammography is painful as it involves
the compression of breast with 10-20 pounds of pressure to obtain the
necessary images. The use of x-radiation also limits the number of
screenings that can be taken by women over their lifetime and espe-
cially at a young age, as each exposure increases the cumulative risk of
radiation-induced cancer.

Thermal imaging can be used a limitless number of times and is a
non-contact, painless screening method, since it only collects the non-
ionizing thermal radiation emitted from the subject’s skin surface. Its
efficacy has been tested in the field for women of all ages, and heat
conduction is even more efficient for younger women with dense breast
tissue (e.g. younger women). Even with advanced thermal cameras,
thermography investment costs are about 5,000-25,000 USD which is
less than 1/10th of conventional mammography. Furthermore, the
method is highly portable and does not require high voltage power
supplies which may be hard to find in remote areas. Thermal cameras
are compact and can be easily set up as “screening rooms” in the
comfort and privacy of a domestic residence. In our implementation, it
is possible to make the breast screening completely private by trig-
gering the camera shutter remotely and using artificial intelligence to
analyze the anonymous images in real time.

There are several studies that tested the efficacy of thermography
for breast cancer. In 1982, the US Food and Drug Administration (FDA)
approved thermography for breast cancer as an adjunct modality. The
first breast cancer thermography trial dates to the 1960’s, where
Gershon-Cohen et al. [13] were able to identify malignancies from
thermal images with a sensitivity and specificity of 91.6 % and 92.4 %,
respectively, in 1924 subjects. Stark and Way [14] reported a sensitivity
of 98.3 % and 93.5 % on 4621 subjects. Spitalier et al. [15] reported 89
% sensitivity and 89 % specificity on 61,000 women with a longer 10-
year period follow-up. In this study, they also reported that thermo-
graphy showed early signs in 60 % of the cancerous cases. In similar
studies conducted by Haberman et al. [16] and by Gros and Gautherie
et al. [11], they attained high sensitivities close to 90 % on 39,800 and
58,000 subjects by following up subjects for 3-year and 5-year periods,
respectively. Both studies observed that approximately 30 % of cases
found an initial abnormality in breast thermograms before any other
traditional screening techniques. Lastly, in Rassiwala et al. [17] ther-
mography was able to classify breast cancers accurately with a sensi-
tivity and specificity of 97.6 % and 99.2 %, respectively, on 1008
women. However, the complication in all these studies was the manual
expertise needed to interpret the breast thermograms. The analysis of
breast thermal images is not trivial as the changes in the breast heat
patterns can also be seen with benign conditions like fibroadenoma,
duct ectasia etc. In addition, the breast thermal images were generally
represented using false color palettes and the experts needed to pick out
the thermal properties of malignancies visually from these false color
images. Due to these reasons, results were highly dependent on the
expertise of manual thermographers. This dependence on expert in-
terpretation was one of the main reasons for poorly reproducible results
of breast thermography in the Breast Cancer Demonstration Project
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(BCDDP), which compared different screening techniques for breast
cancer [8,18].

3. Role of machine learning in thermal imaging

Machine learning (ML) is the process of iteratively training an al-
gorithm to produce a correct response to a stimulus (input) without
explicitly having that response programmed into the algorithm from the
outset. In the field of healthcare, ML has shown its efficacy in achieving
high accuracies, scaling and reproducibility. Analyzing medical images
typically involves the extraction of a variety of features that could re-
veal the disease characteristics (radiomics) followed by an ML classifier
that predicts the disease outcome based on these features.

Thermal radiomics deals with the features that quantify breast
thermal patterns and their associations with cancerous metabolism.
These features could empower the physician in quantifying the disease
nature and provide additional information that might not be detected
with the unaided eye. The automation of cancerous detection with these
features could assist with reproducible classification and reduce the sole
dependence on human experts. It could also enable large scale screen-
ings without the need for a vast army of human experts in every part of
the country. Borchartt et al. [19] summarized the academic studies on
the efficacy of machine learning algorithms for breast cancer thermal
screening. These techniques involve the use of textural radiomic fea-
tures such as energy, uniformity, correlation, entropy, among others,
for differentiating the malignant patterns from normal heat distribu-
tion. The main drawback of these features is that they use the entire
breast region for analysis and do not localize the abnormal regions
spatially. Hence, these features describe the overall heat pattern of the
breast and do not give specific information about the abnormality,
something which could help the physician in understanding the nature
of tumor.

Our own earlier research on using machine learning for breast
thermography has shown promising accuracy results [20-23]. In [20],
we described the effectiveness of medically interpretable imaging fea-
tures obtained from the abnormal thermal patterns to get high levels of
sensitivity and specificity of interpretation. In [21], we proposed the
use of shape-based and temperature-based image processing features to
detect the vasculatures from thermal images. These algorithms have
shown comparable and sometimes better results than standard of care
[22,21-23].

To summarize, there are very few risk assessment solutions to
generate a personalized risk score for pre-screening of breast cancer.
Most of these techniques use demographic and clinical features as dis-
cussed above. The use of mammography for personalized risk score is
not ideally suited for developing countries due to its aforementioned
challenges. In this paper, we discuss a novel solution called the
Thermalytix risk scoring framework that generates a breast health risk

~ v
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score based on the thermal images and further localizes the abnormal
regions for radiologists to possibly support personalized care.

4. Methodology

In order to quantitatively give a risk score for breast cancer, we
propose a risk assessment tool which quantifies heat patterns on the
skin surface of the breast. We use machine learning algorithms to ex-
tract, detect and characterize radiomic features in the thermal images.
We estimate a risk score called Thermalytix Risk Score (TRS) using two
sub-scores: vascular score and hotspot score. A vascular score helps in
detecting the abnormal properties in the region related to blood flow
and neo-angiogenesis, while the hotspot score helps in describing the
phenotype properties of a localized abnormality. In this sense, we
provide a quantitative analysis of thermal images which signify phy-
siological activities of the breast tissue. This analysis is more objective
than human experts who mentally segregate the heat patterns into
thermally locally active regions (hotspots) and adjacent vascularity
features [8,18]. A description of the methods used for generation of
these scores follows.

4.1. Computing hotspot score

A malignant tissue generates more heat due to the release of nitric
oxide in its immediate location, which is detected as a highly localized
region of elevated temperature (i.e. hotspots) in the thermal images.
However, nitric oxide is also released due to localized inflammation and
other benign conditions such as fibro-adenoma, ductal ectasia, etc. The
operating hypothesis of thermography is that the heat patterns from a
breast malignancy must be differentiated from other conditions due to
their differences in the biological origin [8]. To characterize these heat
patterns, we extracted different image features that could help in dif-
ferentiation between malignant and non-malignant conditions.

The first step in abnormal hotspot feature extraction is the detection
of the hotspot regions. As shown in our earlier work [20], fusion of
multiple temperature-based thresholds performs well for segmenting
these abnormal regions. It is also noted that segmenting the regions that
are less thermally active (warm spots) could help in analyzing the be-
nign and deeper malignant lesions. Hence, we use T; and T, as shown
below to extract the hotspot and warm spot regions by choosing dif-
ferent p, 7.

Ti=u +p *(Tmax — w) 1)
T, = Tmax — 1 2)

In the above equation, 1 and Tmax represents mean and maximum
of the breast temperatures across all the views respectively. The para-
meters (p, 7) are chosen such that they maximize the weighted average
of sensitivity and specificity for malignancy classification [20]. We

- )
&

Fig. 1. Thermal image of two malignant subjects with hotspot and warmspot regions represented in blue and pink boundaries respectively (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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found that the (p, 7) values of (0.56,1.9) and (0, 2.4) for hotspots and
warmspots respectively results in maximum weighted average through
grid search [20]. Fig. 1 shows annotated thermal images with detected
hotspot and warm spot regions for two subjects with a malignancy.
Once these regions are detected, medically relevant features are ex-
tracted to characterize these abnormal regions as detailed in [20].
These features can be categorized as below:

4.1.1. Boundary and shape features

Benign lesions are confined to tissue boundaries, whereas the ag-
gressiveness of cancerous lesions makes them rupture their tissue
boundaries and invade the surrounding regions [8]. Hence, the use of
features like deviation from natural shapes like circle/ellipse, irregu-
larity and fractal dimensionality quantifies the structural properties of
the lesion and help in differentiating the regions into benign and ma-
lignant lesions.

4.1.2. Relative temperature

The temperatures of the detected abnormal regions correspond to
their metabolic activities. Human thermographers consider any region
with 2 °C-2.5 °C increase in the temperature as suspicious for malig-
nancy [8,18]. To incorporate this domain knowledge, we considered
relative increase of mean temperature of these abnormal regions with
respect to mean temperatures of the surrounding region and con-
tralateral breast regions as the features.

4.1.3. Symmetry

Symmetry between breasts is a well-known feature in breast radi-
ology. Symmetry can help in delineating the normal and abnormal
changes. Any normal change has high possibility of occurring bilat-
erally. So, we have extracted features like mirror overlap, thermal
distribution ratio and area difference as described in [20] to study the
symmetry.

4.1.4. Presence and extent of abnormal regions

This corresponds to the existence and the extent of hotspot and
warm spot regions in the breasts.

Overall, 31 features were extracted from the detected abnormal
regions as shown in Table 1. Hotspot features are extracted from the
view having maximum hotspot region (best view) and whereas the
warmspot features are extracted from both best view and its con-
tralateral view. To differentiate the malignant heat patterns, we used a
random forest (RF) classifier with 200 decision trees, which has shown
better accuracies for breast thermography in our previous works [20].
RF is an ensemble of distinct decision trees whose outputs are pooled
together to obtain the final classification. A hotspot score is then cal-
culated as the fraction of trees out of the total number, that classify the
features as malignant. The RF is initially trained on a labelled data set
whose class labels (malignant or benign) are obtained using mammo-
graphy, ultrasound and biopsy results.

4.2. Computing vascular score

Li et al. [24] observed that vascular changes happen in the very
initial stages of cancer much before they coalesce into a solid mass.
These vascular changes help in feeding the cancerous cell with the

Table 1
The 31 features extracted from both hotspot and warmspot regions.
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required resources. Therefore, identifying the vascular changes could
help in early detection of cancer. Since more volume of blood flows in
these vessels with higher velocity, they generate more thermal activity
and can be captured using thermal infrared cameras. Unlike many
segmentation problems where there are distinct boundaries, thermal
vessel signatures are diffused as they represent the transmitted heat
from the vessels that reside beneath the breast skin surface. Hence, we
convolve the thermal image with three different variations of gaussians
for enhancing the vessel boundaries as discussed in our previous work
[21]. Each of these enhanced images are then passed to a shape and
temperature filter for identifying the pixels with high temperatures and
which have a shape close to vessel like structures.

Shape filters detect the pixels that have a high curvature in one
direction and low curvature in its perpendicular direction using Egs. (3)
and (4). V; is calculated for different scales from s,,;, t0 Sy and the
mode of these scales is taken to detect the pixels having vessel (tube)
like shape.

. . [ 2251
sign|sincl ————— | —t |4 <O
v, = {8 ( (|/1u| _ |/12S|) ) 1s

Ootherwise 3
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In the above equation, A;; and Ay (45 > Ay) correspond to the
maximum and minimum eigenvalues of a Hessian matrix at scale s,
respectively, and t is a parameter that decides the threshold for vessel
and non-vessel regions. V; represents vessel-ness measure at scale s and
Smin and Syqc corresponds to the minimum and maximum possible
thickness, s, of vessels.

On the other hand, a temperature high pass filter identifies the
pixels that have higher temperatures compared to their surrounding
mean temperature. Thus, an intersection of both these temperature and
shape filters results in pixels that have both vessel structure and locally
maximum temperatures. On obtaining these intersected outputs for
each of the enhanced image, they are all combined to give the final
vessel pixels [21].

Once the vessels are segmented, features quantifying the nature of
vessels are extracted for further classification. These features include
tortuosity, number of vessels, number of branches, extent of vessels,
symmetry of vessels in both breasts and temperature increase of vessels
w.r.t to the surrounding region and contralateral breast regions. In
total, we extracted 21 features from these vessels detected in both the
breast regions. These features are then fed to an RF classifier with 200
decision trees as discussed in previous subsection for binary classifica-
tion to obtain the vascular risk score.

4.3. Computing the Thermalytix Risk Score

To obtain the final Thermalytix risk score (TRS), we have combined
the proposed vascular score, hotspot score with critical symptoms like
lump and nipple discharge as shown in below equation:

0.7
TRS = 0.25 + (TS) *(hotspot score + vascular score) if lumpordischarge

0.8 * hotspot score + 0.2 * vascular score else (5)

In case of symptoms such as lump or discharge, equal weight is

Properties Features Extracted

Hotspot features count Warmspot features count

Boundary Features
Contralateral-side Comparison
Relative Temperature
Presence of abnormal regions

Relative temperature to surrounding tissues
Number and Size

Deviation from circle and ellipse, Irregularity and Fractal dimensionality. 4
Mirror overlap, Thermal distribution ratio and Area difference. 5
1
2

AN U1
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given to both the hotspot and vascular scores and an additional risk
score of 0.25 is added to signify the risk of these symptoms. In the
absence of lump, a lower weight is given to the vascular score in order
to reduce the impact of high scores produced during natural hormonal
activities. The 4:1 weightage ratio of hotspot score to vascular score is
found from our previous experiments by performing a grid search of
weights similar to hotspot parameters calculation.

5. Dataset description

To compare the performance of our proposed approach, we de-
termined the TRS on 769 subjects who visited for either mammography
or ultrasound screening at four clinical sites consisting of 3 cancer
hospitals (581 women) and one diagnostic centre (188 women).
Pregnant women, lactating mothers and cancer survivors were excluded
from the data collection. We performed breast thermography imaging
prior to any conventional diagnostic test for each of these subjects. All
persons were informed about the study and enrolled after signing a
consent form. Our breast thermography acquisition protocol involved
removing the external clothing from the breasts and cooling the subject
for 10—15 min to remove any extraneous heat. This was followed by
thermal image capture at 5 different viewing angles, which took 2 min
per person. Fig. 2 summarizes these different steps involved in the
thermal image capture and TRS computation. The subjects then con-
tinued onto the other diagnostic tests as recommended by the attending
radiologists at the respective data collection sites. The final ground
truth is assumed to be the conclusion given by the attending radi-
ologists after mammography, ultrasound and/or histopathology. Radi-
ologists remained fully blinded to the thermography results for the
duration of the study. Mammography was only available for 407 sub-
jects due to the high tissue density in the remaining subjects or as per
radiologist recommendation in case of a painful breast that was un-
suitable for compression. Majority of the subjects underwent ultrasound
imaging and we obtained at least one of either mammography or ul-
trasound reports for each of the enrolled subjects. Biopsy or Fine Needle
Aspiration Cytology (FNAC) was recommended in case of suspicious
findings in these reports. Out of 769 subjects, 185 subjects were de-
termined to have a breast malignancy by the radiologist after looking at
the available reports. 100 out of these 185 malignancies were histo-
pathologically confirmed for malignancy either through FNAC or

o

"

Participant

Cooling

Artificial Intelligence In Medicine 105 (2020) 101854

Table 2

The detailed age distribution of the subjects who participated in the study.
Age Normal Malignant

No. of cases Lump  Screening No. of cases Lump  Screening
15-30 59 28 14 2 1 0
30-35 69 36 16 6 5 0
35-40 82 36 23 23 19 0
40—-45 113 38 48 18 16 0
45-50 82 15 39 33 29 1
50—-55 75 26 32 22 16 1
55-60 49 7 25 31 22 5
60—65 29 4 17 18 16 0
> =65 26 8 10 32 26 4

Biopsy in addition to the imaging tests. This high number of malig-
nancies is due to the selection of 3 cancer hospitals for this study.

The detailed distribution of the subjects is given in Table 2. Overall,
534 subjects came with complaints such as nipple discharge, pain, lump
etc. and the remaining 235 subjects had no complaints and came for
regular breast screening.

6. Results

The first step is to find the cropped breast region automatically from
the thermal image. For this, an initial prediction was estimated using a
V-net architecture as discussed in our earlier work [25] and then re-
fined manually by human experts. For all the 769 subjects we calcu-
lated the hotspot and vascular scores as discussed in the previous sec-
tions and our earlier work [20,21]. The t value is set to 0.1 to identify
the pixels with vessel shape and we have considered the mode over 0
(Smin) to 10 (Syqx) scales as described in our prior work [21]. The RF
classifiers were pretrained using a prior collected dataset consisting of
128 subjects with 51 malignancies. In this study, we used these pre-
trained classifiers and the entire 769 subjects were used as test set for
validating the TRS.

We present the results in two-fold: (a) Effectiveness of the TRS using
ROC analysis by comparing with age normalized risk score (b)
Comparison of the TRS with the actual malignancy status of the sub-
jects.

.
5B

Thermal image capture

¥

Y 1

Thermalytix Risk Score
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Proposed Algorithms
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Fig. 2. The overall process involved in generating final Thermalytix Risk Score.
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6.1. Evaluating the effectiveness of TRS

The proposed TRS resulted in an Area Under receiver operating
characteristic Curve (AUC) of 0.895 as shown in Fig. 3. This AUC is
superior to the age normalized score that produced an AUC of 0.68. Age
normalized score is computed by normalizing the age with minimum
and maximum age values in the obtained dataset. Age is the most
common criterion used to assess the risk in the developing and under-
developed countries due to the lack of risk assessment tools tuned to
these countries.

The dataset did not have any information about the BRCA genes,
detailed family history, race, age at menarche, body mass index (BMI)
etc. Due to this, the models like Gail [5], Claus [6] and Tyrer-Cuzik [7]
were not applicable in the current scenario.

6.2. Risk stratification using TRS

We stratified the study population into 4 uniform width risk cohorts
based on their TRS as [0 —0.25: 1, 0.25—0.5: 2, 0.5—0.75: 3, 0.75-1.0:
4]. Fig. 4a shows the number of subjects per risk level and the per-
centage of malignant subjects in each level. As seen, when we use 4 risk
cohorts (risk cohort 1, 2, 3, 4), the likelihood of malignancy correlates
with the risk level. No subject in the risk cohort 1 is found to be ma-
lignant. Approximately 12 % of the women in the risk cohort 2 were
found to be malignant as per radiologist conclusion. This malignancy
incidence has increased to 57 % and 65 % for the risk cohorts 3 and 4,
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respectively. This shows that TRS is an effective method of risk scoring
where higher TRS corresponds to higher risk of breast cancer.
Typically, women under 45 years of age are not recommended for
regular screening by mammography due to low breast cancer in-
cidences in this age group and low sensitivity of mammography in
dense breasts. However, with the recent increase in the breast cancer
incidence among younger women, one might argue for regular
screening for this population as well. We found that 48 % of walk-ins at
the data collection sites were of age below 45 years and 13 % of these
subjects were found to have malignant breast cancer. In order to ana-
lyze the effectiveness of the TRS in young women, Fig. 4b shows the
same risk stratification for 372 women with age less than 45 years. As
seen, the proposed risk scoring identified 104 of these young women as
high risk and very high risk, upon which a breast Magnetic Resonance
Imaging (MRI) or ultrasound could have been recommended as follow-

up.
7. Discussion

The main motivation of this paper is to propose a risk assessment
framework that could detect a population at high risk of malignant
breast cancer. As shown in the results section, the proposed risk score
showed an AUC of 0.89 when compared to an age-based risk estimation
that gives an AUC of 0.68. This shows the potential of the proposed risk
framework in accurately predicting the breast cancer risk from breast
thermal images. The use of sole breast thermal images for TRS com-
putation also avoids the missing data problem that is seen with the
other risk assessment tools [5-7].

Fig. 4 shows the effectiveness of TRS in stratifying the screening
population into four different risk levels. These four risk levels might be
further used to create a personalized screening regime as follows:

® TRS < 0.25 (low risk): This group corresponds to the subjects whose
heat patterns look normal and do not have critical symptoms like
lump or discharge. This explains the risk weight of 0.25 in TRS
calculation so that these critical symptoms are not ignored during
risk group assignment. In the current study, none of the subjects are
found to have a malignancy by the radiologist when the proposed
risk score is less than 0.25. Hence, an annual follow up with pro-
posed technique could be recommended as a non-radiation-based
pre-screening for these low risk women.

TRS < 0.5 and TRS > = 0.25 (Moderate risk): Approximately 12 %
of the subjects whose risk score is in this range are found to have a
malignant cancer in the current study. Hence, an annual follow up
with proposed approach could be recommended adjunct to ultra-
sound or mammography for these subjects.

e TRS < 0.75 and TRS > = 0.5 (High risk): In the current study, 57 %
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Fig. 4. The stacked bar plot of the risk score along with the total number of malignancies for (a) all 769 women (b) 372 women with under 45 years.
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of the subjects falling in this range are found to have malignant
cancer by the radiologist. Due to this high incidence, these subjects
could be recommended for immediate follow up with other tech-
niques like ultrasound/MRI/Mammography. In the case of negative
results, an annual follow up with the proposed approach adjunct to
ultrasound or mammography might be recommended for these
subjects.

e TRS > = 0.75 (Very High risk): These are high risk women with
more than 65 % cancer incidence. An immediate follow up is re-
commended for these subjects especially at the localized abnormal
regions. The immediate follow up can be with mammography or
ultrasound or MRI or histopathology at detected abnormal regions.
In the case of negative results, a short interval follow-up of 6 months
with the proposed non-radiation approach might be helpful in de-
tecting the malignancies at early stages [26].

The screening recommendations discussed above could help women
to understand their risk and in identification of early stage breast
cancers. Though approximately 40 % of women in high and very high
risk categories are found to be negative by current standard of care, we
believe these women are at high risk of breast cancer in future. Hence,
we believe that the proposed screening regime for these high risk ca-
tegories can help in detecting the cancers at early stages, thereby im-
proving the chances of survival.

The high AUC with the proposed TRS also allows its usage as a pre-
screening for breast cancer detection. The proposed TRS also provides
the spatial location of abnormal regions along with their thermal
radiomics as shown in Fig. 1. This spatial localization of the abnormal
regions can help the physicians in creating a personalized diagnosis and
treatment. It might guide the physician to look for presence of any
physical abnormalities like lump, pain skin changes etc. at the detected
regions using clinical breast examination. It might also help ultra-so-
nographers in reducing the procedure time and might improve their
performance by guiding them to the appropriate locations instead of
recommending whole breast ultrasound imaging for all women. The
spatial localization would be crucial especially for high and very high-
risk cohorts, where Fine Needle Aspiration Cytology (FNAC) or histo-
pathology can be done directly on these regions in case of suspicious
findings with other modalities.

The current study validated the performance of Thermalytix on a
small population of 769 women who visited our clinical sites com-
prising of three cancer hospitals and a breast cancer diagnostic centre in
Karnataka, India. This choice of clinical sites led to 70 % symptomatic
and 30 % asymptomatic women. It is also important to note that the 30
% asymptomatic women could be far from the real-world screening
population as these were the women who walked into cancer hospitals
and diagnostic centres. Therefore, to bring Thermalytix into the med-
ical practice, we need to validate its performance on both screening and
symptomatic populations with varying races, ages to remove any biases
by conducting large scale studies.

8. Conclusion

In this paper, we have discussed a new risk assessment tool called
Thermalytix Risk Score to estimate a personalized risk score that can be
used as a pre-screening for breast cancer. The use of non-invasive, af-
fordable and portable thermal imaging for predicting the risk score
makes it more suitable for developing countries like India and may
overcome some of the critical challenges faced by other breast cancer
screening modalities. It works for a wide age range of women from 18
to 82 years including younger women with high breast tissue densities.
The proposed TRS uses breast thermal patterns for risk estimation,
thereby making it more personalized than generic risk estimation
techniques e.g. based on age. The obtained results show that the TRS
can estimate the breast cancer risk with a high area under curve com-
pared to age-based risk score. The four risk categories discussed in this

Artificial Intelligence In Medicine 105 (2020) 101854

paper can serve as the guidelines for creating screening procedures for
detecting the malignancies in early stage. The proposed approach fur-
ther detects the abnormalities in vascular structures and localizes the
abnormal lesions in the thermal images. This might empower the doctor
with better understanding of metabolic activity of different tissues in-
side the breast region and might direct more personalized care. This is
an initial study and in future we intend to test the TRS on a larger and
more diverse population.
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