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1. Introduction 

Breast cancer is the most commonly occurring cancer in women. In 

Italy, about 1 out of 8 women will be diagnosed with breast cancer 

during her lifetime. While the trend of newly diagnosed cases between 

2003 and 2018 has slightly increased (+0,3 %/year), mortality sig- 

nificantly lowered (-0,8 %/year), due to the combination of early 

screening and better therapeutic options [1]. To improve breast cancer 

care, beyond randomized clinical trials, the analysis of different diag- 

nostic and treatment patterns on large cohorts is increasingly per- 

formed in order to derive guidelines based on higher levels of evidence. 

In cancer management, each diagnostic or treatment guideline is 

associated with a well-defined set of procedures and drug therapies [2]. 

The sequence of such procedures performed on specific patients can be 

extracted from the combination of administrative and clinical data 

routinely collected and stored at the hospital. In this context, it is of 

interest to investigate if patients can be clustered in terms of their 

patterns of care to highlight potential relationships between those 

patterns and clinically significant outcomes, such as event-free survival. 

These types of analyses are aimed at properly stratifying a group of 

patients, verifying guideline adherence and their impact, and giving 

better  structure  to  real-world  outcomes.  For  example,  Baker  et  al. 

propose an approach to extract clinical pathways, or CAREFLOWS, of breast 

cancer patients during chemotherapy by using data routinely collected 

in the electronic health record (EHR) [3]. The proposed methodology, 

based on Markov models, is able to highlight the complexity of real-life 

pathways with respect to the ideal ones proposed in clinical guidelines, 

identifying a set of critical situations, such as readmission to the hos- 

pital. This approach can help to identify unmet needs that can cause 

non-compliances to the guidelines. An interesting and broadly applic- 

able approach to examining careflows in detail, reflecting the temporal 

nature of the clinical events that compose them, is to use the CAREFLOW 

Mining (CFM) approach that was recently developed by the authors of 

this paper, and successfully applied to different clinical settings [4,5]. 

CFM can be used to extract emerging temporal patterns of clinical di- 

agnoses and procedures from long sequences of events, which cannot be 

retrieved by resorting to traditional SQL queries. CFM results in time- 

oriented patients’ stratification, which might be related to significant 

clinical outcomes, and thus used to define TEMPORAL phenotypes. 

An important source of information for CFM is represented by ad- 

ministrative data. In this work, we extend the work already presented in 

[5] to  explore the  potential of  using administrative  data in gaining 
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insight into different care scenarios that occur in a hospital breast 

cancer unit. Administrative data are collected and exploited for billing 

purposes, but they also reflect the medical actions performed to address 

specific health conditions. Those data have the advantage of being 

structured, time-stamped, and less prone to missingness than clinical 

data. On the other hand, they are less informative, as they just carry the 

information that a specific action has been performed, without re- 

porting a clinical observation or outcome. Administrative data are also 

very granular, thus implying that data related to similar clinical sce- 

narios may be represented by different codes. If not properly managed, 

this variability can cause CFM algorithms to extract models [6] that are 

not usefully interpretable [6]. 

To guide the creation of a more comprehensible process model, 

explicit definitions of key clinical activities is crucial. This can be done 

following two strategies: on the one hand, it is possible to manually 

classify the events relying on a knowledge-driven approach supported 

by domain experts [7]. On the other hand, it is possible to use auto- 

mated algorithms aimed at grouping similar clinical events into re- 

levant categories [8–10]. When clinical events are expressed in natural 

language, Topic Modeling (TM) techniques can be applied as a pre- 

processing step in process mining [9–11]. TM is a text mining metho- 

dology to cluster documents on the basis of their content. TM algo- 

rithms, such as Latent Dirichlet Allocation (LDA) [12], use a probabil- 

istic approach to discover themes (or topics) in large archives of 

documents and automatically annotate them, without any need of prior 

labeling. 

As mentioned, some works in the literature have already exploited 

TM as a first step for clinical pathway mining [9,10]. In [9], the authors 

use TM to synthesize the daily activities of patients, incorporating the 

clinical events into a sequence of topics computed for each day. They 

then apply a process mining algorithm to demonstrate that the created 

sequences of topics are clinically meaningful. The focus of this paper is 

on the optimization of LDA when applied to clinical data, and the final 

process mining step serves to assess the quality of the proposed topics, 

rather than stratifying the population into clinically relevant subgroups. 

The same approach can be found in [10], where the authors present 

further experiments on TM, focusing on expanding the functionalities of 

LDA by embedding constraints in the construction of the stochastic 

model, to enforce the meaningfulness of the discovered topics. 

In this work, we propose an analytic pipeline based on a combina- 

tion of TM and CFM, which will advance previous research in several 

directions. First, we have focused on improving our CFM algorithm to 

be able to consider simultaneous events carried out during the same 

hospitalization. Furthermore, we have performed an evaluation of the 

clinical relevance of the results by comparing the extracted careflows in 

terms of clinical outcome, which was not available in [5]. Finally, with 

respect to the other approaches presented in the literature, this work 

has the main goal of showing a complete analysis workflow that, 

starting from administrative and clinical data of breast cancer patients, 

has the main goal of extracting clinically relevant temporal phenotypes 

to stratify patients according to their flows of care. 

We show results on a dataset of more than 3000 patients who un- 

derwent breast surgery at the hospital IRCCS ICS Maugeri of Pavia 

(ICSM), Italy. Two data sources were used: Hospital Information 

Systems (HIS) recorded procedures, used for billing and administrative 

purposes, and a registry of clinical and molecular data collected by the 

Oncology Ward service. The events used for CFM are derived from 

ICD9-CM procedures, which is the standard coding system used by 

administrative information systems in Italian hospitals. Through rig- 

orous examination of the data, we describe the disease evolution pat- 

terns of breast cancer patients treated at ICSM. The mined patterns 

show clinical significance in terms of specific clinical endpoints, such as 

recurrence or metastases. 

2. Methods 

According to clinical guidelines [2], the treatment of a breast cancer 

patient after the first surgery proceeds through a series of hospitaliza- 

tions and Short Procedure Unit (SPU) visits, which are aimed at deli- 

vering the therapy, performing additional surgical interventions (e.g., 

reconstruction, treatment of relapse, etc.) and examinations, or dealing 

with possible complications of the disease or treatment. Each hospita- 

lization is in turn characterized by a variable number of procedures, 

which are carried out on a patient in the period that goes from ad- 

mission to discharge. This creates two temporal dimensions, the first 

one that represents the overall flow of the hospitalizations, and the 

other that represents the inner flow of procedures within a single hos- 

pitalization. From the perspective of understanding the main careflows 

enacted in a specific institution, the temporal trajectory that needs to be 

considered is the one related to the sequence of hospitalizations. 

Therefore, it is more important to preserve and synthesize the in- 

formation on the clinical procedures performed during hospitalization- 

specific events, rather than their temporal occurrence within the hos- 

pitalization. 

To tackle this twofold problem, we propose a pipeline that is based 

on topic modelling and careflow mining. Specifically, the main care 

processes are discovered by performing CFM on events extracted using 

topic modelling to summarize the information related to within-hos- 

pitalization procedures. Fig. 1 explains in more detail the steps that are 

carried out: 

1 Starting from a cohort of cancer patients who underwent breast 

surgery, we extract the procedures codes related to all the hospita- 

lizations following the first surgery. 

2 To summarize the groups of procedures included in each hospitali- 

zation, we apply the TM step. In this step, we process the description 

of the codes related to the set of procedures included in a single 

hospitalization record as a document and assign a topic to it. We 

then create the event log, where each event is the topic assigned to 

the considered hospitalization, and the timestamp of the event 

corresponds to the time span of the hospitalization. 

3 The CFM algorithm [5] is run on the topic-based event log derived 

as described in Step 2. With the help of expert physicians, the 

careflows are further summarized into clinically meaningful tem- 

poral phenotypes. 

4 Temporal phenotypes are compared in terms of clinical endpoints 

and used in multivariate models including relevant clinical in- 

formation about the oncologic disease. 

2.1. Study cohort 

Data were retrospectively collected on patients treated at the Breast 

Unit of ICSM, a high‐volume tertiary centre directly involved in ex- 

tensive mammographic screening programs in northern Italy. We in- 

itially considered patients included in a manually curated dataset 

maintained at the Breast Unit, which includes data on 3564 subjects 

followed from January 2007 to November 2018 [13]. The inclusion 

criteria were: i) a confirmed diagnosis of breast cancer and ii) one or 

more following surgery procedures of any kind (e.g., lumpectomy, 

mastectomy, nipple-sparing mastectomy, skin-sparing mastectomy with 

reconstruction). Exclusion criteria were: i) distant metastases at diag- 

nosis, ii) a previous diagnosis of cancer (including breast cancer), iii) 

benign breast diseases. 

To build the patients’ sequences of events, we extracted from ICSM 

HIS all the inpatient hospitalizations and SPU visits that were per- 

formed after the first diagnosis of breast cancer. Since we were inter- 

ested in activities performed during inpatient hospitalizations, we ex- 

tracted the billing data related to the ICD9-CM codes of the procedures 

registered in the discharge summary. For SPU visits this information is 

not available, as these visits are not coupled with a discharge summary 
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Fig. 1. The proposed analytic pipeline: 1. Starting from a cohort of cancer patients who underwent breast surgery, we extract the procedure codes related to all the 

hospitalizations following the first surgery. The sequences of procedures allow identification of two temporal dimensions: (i) the overall hospitalizations flow (i.e. 

from the first surgery to the last recorded hospitalization and clinical outcome), and (ii) the inner flow of procedures within the single hospitalizations. 2.To 

summarize the groups of procedures included in each single hospitalization record, we apply the TM step. In this step, we process the description of the codes related 

to the set of procedures included in each hospitalization record as a document and assign a topic to it. We then create the event log, where each event is the topic 

assigned to the considered hospitalization, and the timestamp of the event corresponds to the time span of the hospitalization. 3. The CFM algorithm is run on the 

topic-based event log derived as described in Step 2. The careflows are further summarized into clinically meaningful temporal phenotypes (P1,..P4) with the help of 

medical experts. 4. Temporal phenotypes are compared in terms of clinical endpoints and used in multivariate models. 
 

but rather with a textual medical report. For this reason, these visits are 

simply recorded with their occurrence date, without any other in- 

formation. Procedures carried out during SPU visits are usually follow- 

up encounters or administration of treatments such as radiotherapy and 

hormone therapy. 

To extract data from the HIS, we used Pentaho Kettle [14], a Java- 

based open source platform for extract-transform-load (ETL) proce- 

dures. Data were exported in. csv format, and the following analysis 

steps were carried out using R [15]. From the original set of patients, 

we excluded 218 subjects who did not undergo any procedure. The 

following analysis was then performed on data from 3346 patients. 

The manually curated dataset included baseline patients’ char- 

acteristics and survival endpoints at the last available follow-up. We 

took into consideration Age at diagnosis (years), Type of surgery 

(Lumpectomy, Mastectomy), Histological Type (DCIS, Ductal invasive 

carcinoma, Lobular invasive carcinoma), Grading (G1, G2, G3) Staging 

(0-III), Biomolecular subtype (Luminal A, Luminal B, HER2+, TNBC), 

Hormone therapy, Chemotherapy, Radiation therapy, Neoadjuvant 

therapy and Lipofilling intervention. The clinical endpoints taken into 

consideration were: 1) the 10-year loco-regional recurrence (LRR)-free 

survival probability and 2) the 10-year distant metastases (DM)-free 

survival probability 3) the 10-year overall survival probability. 

 
2.2. Topic modelling 

The aim of the TM step is to represent each hospitalization using 

single labels that synthesize the information related to the procedures 

performed on the patient. To perform this step, we exploited the Latent 

Dirichlet Allocation (LDA) method [16], which is a widely used method 

for TM, and is implemented in the R package ‘topicmodels’ [17]. 

LDA is an unsupervised algorithm that allows clustering a set of 

documents (document corpus) into K different topics, where K is a user- 

defined parameter that fixes the set of topics, each of which represents a 

set of words. The goal of LDA is to map all the documents to the topics, 

such that the words in each document are mostly captured by the es- 

tablished K topics. 

The LDA algorithm is a generative probabilistic model where: 

(i) Each latent topic can be described by a probability distribution over 

a dictionary of words. This dictionary is composed by all the words 

in the documents included in the corpus. The distribution of topic 

over words is indicated by the matrix ϕ, which is graphically illu- 
strated in Fig. 2, where the columns correspond to topics, and the 
rows to words. Each column of ϕ represents the probability dis- 
tribution of the words, given the topic. On its turn, each column of 
ϕ is a random variable with a Dirichlet distribution. 

(ii) Each document is represented by a random mixture over topics. 

Such mixture is described by a latent variable vector z of dimension 

K; the probability distribution of z is multinomial with parameter . 

is a random variable with Dirichlet probability distribution. 

Given a corpus D of documents, each document d having Nd words, 

generated by a single topic from a set of K topics. Bayesian estimation 

allows the derivation of the posterior probability of the latent variables 

z, and . The posterior moments can be used to derive the point es- 

timates for all the latent variables. 

To apply LDA, we created a document corpus where each document 

refers to a single hospitalization, and the content of the document is the 

list of procedures carried out during that hospitalization. We pre-pro- 

cessed the corpus to remove punctuation, numbers, and stop words. 

Modifying the LDA algorithm embedding internal constraints was 

not the goal of this study, but, taking the example from the study in 
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Fig. 2. Graphical visualization of the topic distribution over words, and the ϕ matrix showing the values of words probabilities for each topic. 
 

[10],  we  defined  a  method  to  ensure  that  the  model  we  selected  is 

coherent  and  develops  a  meaningful  set  of  topics.  In  particular,  to 

evaluate the quality of the models generated via LDA and to select the 

optimal number of topics K, we introduce the following scores: con- 

sistency, REDUNDANCY, IMPORTANCE, and perplexity. 

configuration of topics. To overcome this issue, we decided to run the 

algorithm multiple times and check the consistency C of each generated 

topic T, counting if and how T and its words will be present in another 

iteration of the model. 

I _max 

Consistency, redundancy, and importance are heuristic parameters, 

which we defined as reported in the following of this paragraph. The 
C (T ) =    ( max (      (T, ti,k)))/I _max 

i 
1 k K words 

perplexity measure is a standard value used to evaluate the LDA result Where I_MAX is the total number of iterations of the LDA model, K is the 

[12], and it is in general related to the robustness of topic assignation. 

Consistency and redundancy are related to the words defining a number of topics, ti,k is the k-th topic of the i-th run and 

 

 
words 

(t1, t2) is 

topic and are computed on the basis of words repetitions in a topic. 

Consistency expresses the reproducibility of topics composition after 

multiple runs of the same model with the same K. Redundancy indicates 

how many words characterizing a topic are also present in other topics 

of the same model. To define these two indicators, we introduced the 

concept of “topic words” as the smallest amount of words (in descending 

order of importance) that are needed to reach the 80 % of the cumu- 

lative probability of k, i.e. the words probability distribution of the k- 

th topic. Fig. 3 reports an example of this definition, where the set of 
topic words for Topic 1 is represented by words w1, w2 and w3, whereas 

the number of “topic words” shared by t1 and t2. The overall Consistency 

of a model is calculated as the mean of the consistency of all its topics. 

 
REDUNDANCY 

Another problem that could arise by running LDA is that each word 

can potentially have non-zero probability to generate more than one 

topic. For this reason, for each topic T in a model, we compute the 

redundancy R by evaluating how many words are repeated in other 

topics of the model. R is computed as follows: 

the topic words for topic 2 are w5 and w6. 

Consistency 

R (T ) = max (      (T, tk))/length (T ) 
1 K  

words 
T 

Since model creation is a probabilistic method, there is the possi- Where is the total number of topics, tk is the k-th topic of the LDA model 

bility that each run of the algorithm can generate a different (note that topic T will not be compared with itself), 
 

 
words 

(T, tk) is the 

 

 

Fig. 3. Definition of the topic words. 
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Fig. 4. The document meets the labeled topic model and it is assigned to “Diagnostic Exam”, because of the prevalence in the text of words belonging to this topic. 

Alongside the topic label, the final document label is enriched with another word. 
 

number of “topic words” shared by T and tk , and length (T ) is the number 

of “topic  words”  for topic T . The REDUNDANCY  of the overall model is 

calculated as the mean of the redundancy of its K topics. 

 
IMPORTANCE 

The importance of a topic for a document measures if the words 

belonging to that document are mostly extracted from that topic. 

The overall importance I of a topic T can be thus calculated as 

follows: 

Selection of K, number of topics 

To select the best model, we ran the algorithm multiple times with 

different values of K, and evaluated both the defined scores and the 

content of the discovered topics. We selected the model that allowed 

obtaining a good trade-off between high values of Consistency and 

Importance and low values of Redundancy and Perplexity. 

 
Topic LABELLING 

Once the LDA topic model is selected, it provides a list of K topics, 

each of which is characterized by a list of “topic words”. Since the model 

doesn’t provide labels to synthesize each topic, as they depend by the 

I (T ) = T (d) max ( (d)) /length (D ) 
1 k K 

k T 

informative content of the topic itself, a manual labelling step is 

needed. This is a procedure that is frequently performed to be able to 

use the topic modeling results for further analysis steps [18]. In this 

Where DT  is the group of documents assigned to topic T , tk is the k-th 

topic of the LDA model (note that the topic T will not be compared to 
paper, we considered the list of “topic words” for each topic, and defined 

a meaningful name for the topic. 
itself), k (d) is the probability of the k-th topic for the document d, and 

length (DT) is the number of documents assigned to topic T . The Document LABELLING 

IMPORTANCE  of  the  topic  model  can  be  computed  as  the  mean  of  the 

importance of its topics. 

 
Perplexity 

Perplexity is a commonly used score to evaluate the LDA models on 

held-out data. It was also used in clinical applications to select the 

appropriate number of topics (K) [10] to identify concise and inter- 

pretable process models. Perplexity is inversely correlated to the gen- 

eralizability of the model, as it evaluates the likelihood of the proposed 

assignation of topics to words and documents. A trade-off between K 

and perplexity has to be found in order to respond to the required 

generalization capabilities of fitted models. The perplexity score can be 

computed with the built-in function ‘perplexity’ of the R package ‘to- 

picmodels’ [17]. Formally, for a corpus D, the perplexity is defined as 

follows [12]: 

 
Perplexity (D) = exp 

 
Where log(p(d)) is the log likelihood of the model for a document d, D is 

the corpus of documents and Nd is the number of words of the document 

d. 

Once the process of topic model selection and labeling is complete, 

the next step is to tag each document (i.e. each hospitalization) with the 

label of the topic to which the document has been assigned with the 

highest probability. 

In some cases, the assignment of a document to a topic might only 

partially represent the information content of the document itself, due 

to the high number of procedures performed during the same hospita- 

lization. In order to tackle this issue, we represent each document both 

with the label of the topic it has been assigned to and with the word in 

the document with the highest probability in matrix ϕ, considering the 
entire topic set. This document-specific word can confirm or enrich the 

meaning related to the topic label. 

If we consider for example the document shown in Fig. 4, we can see 

that it is assigned to the topic labeled as DIAGNOSTIC EXAMS. Considering 

the  words  in  the  document  and  the  probabilities  related  to  them, 

though,  we  can  see  that  the  word  with  the  highest  score  is  Che- 

motherapy.  Even  if  this  word  is  not  specific  to  the  topic  DIAGNOSTIC 

EXAMS, we include it in the label of the document, to enhance the re- 

presentativeness of the label. As we will show, the most important word 

in the topic is most frequently in accordance with the overall label of 

the topic. In other cases, using the first word is a good strategy to im- 

prove the interpretability of the document. 

DT 

 
d 

D 

d=1 
log(p (d)) 
D 

d=1 
Nd 
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hospitalization/SPU visit at the end of the TM step 

• ID: the patient subject to the event 

• DATE_END: event end date - the discharge 

2.3. CAREFLOW mining 

We applied the algorithm described in [4] and implemented in [19]. 

The algorithm considers the temporal nature of the data, mining the 

most frequent careflows in terms of process events, which in this work 

are represented by hospitalizations and SPUs summarized by the Topics 

identified in the previous step. 

The CFM algorithm works on a file with a list of ordered events, 

where each row includes the following information: 

 

• EVENT: name of the event, in our case the label assigned to each 

• DATE_INI: event start date - the hospitalization admission 

The algorithm extracts frequent careflows from process data and it 

is inspired by sequential pattern mining techniques. It discovers fre- 

quent careflows, where frequency is defined in terms of support. The 

support (S) of a careflow is defined as the number of patients (Ns) who 

undergo the sequence of events by which it is composed divided by the 

total number of patients in the analysed population (N). 

2.3.1. CAREFLOW ASSESSMENT 

The careflows resulting from the application of the CFM algorithm 

are able to divide and separate the population of patients into a set of 

sub-cohorts, which can help identify different temporal phenotypes. 

In order to make careflows comparable from a statistical point of 

view and derive phenotypes that have a clinical meaning, CFM results 

have been presented to expert clinicians who – thanks to their expertise 

and knowledge on the real processes - validated them into specific 

phenotypes. As a result of this process, some of the careflows originally 

resulting from the application of the CFM algorithm were merged. It has 

to be noted that this re-grouping was completely guided by the CFM 

results: clinicians suggested group-specific branches of the DAG given 

their knowledge that the procedures mined in the processes were 

equivalent or that were the exact same procedure recorded in different 

ways. The so-derived phenotypes can be further analysed and assessed 

in terms of clinical outcome and disease evolution. 

In this work, the extracted temporal phenotypes have been char- 

acterized in terms of the following clinical endpoints: Local/loco-re- 

gional recurrence (LLR), Distant recurrence Metastasis (DM), and 

Death. Survival probabilities are estimated by Kaplan-Meier methods. 

Groups were compared by multivariate Cox proportional hazards re- 

gression model with stepwise model selection by AIC, including vari- 
ables associated with the outcomes, such as the type of therapy (hor- 

support (S) = 
Ns

 
N 

mone therapy, chemotherapy and radiation therapy) and biomolecular 

subtype to avoid biases. A multivariate survival analysis was performed 

Frequent sequences are those that have a support S greater or equal 

than a user-defined threshold. Thresholds are used to guide the search 

process such that only the most frequent patterns are extracted. The 

algorithm works starting on the first events of the patients’ sequences 

and selecting those that are more frequent than a pre-defined threshold 

on support (min_support). The algorithm adds steps to the careflows by 

iterating the support computation on the events that follow the initial 

set, until no more frequent sequences can be extracted, or a maximum 

number of events is reached. This second constraint can be controlled 

by another parameter called max_length. This discovery step of the 

algorithm requires a careful assessment regarding min_support and 

max_length. The effect of these two parameters affects the general- 

ization and precision of the CFM models: low min_support and high 

max_length might lead to overfitting and a difficult interpretation of the 

results, losing power to summarize patients’ care pathways. On the 

other hand, high min_support and low max_length can retain only a 

general description of the initial events of the majority of patients, 

loosing details and becoming under-fitted. 

To select the min_support and max_length parameters, we followed 

the strategy described in [4] and we performed a grid search by varying 

these parameters in a defined range. At each iteration, we computed the 

number of extracted careflows, the average number of patients per 

careflow, the average number of events not represented in the final 

careflows (missed events), and the proportion of patient sequences fully 

represented by the mined careflows (true match rate). We decided to 

use the parameters that resulted in the best trade-off among the con- 

sidered indicators. Maximizing the true match rate allows maximizing 

the homogeneity of the sequences that are included in the same care- 

flow. 

The result of the algorithm can be represented using a Directed 

Acyclic Graph (DAG), where nodes are the events, while arcs represent 

temporal connections among them. The resulting DAG is enriched by 

temporal information. In particular, for each event of a careflow, the 

graph shows the number of patients undergoing the event, and the 

median, 25th, and 75th percentile of the duration of that events for the 

patients who verify it. The arcs report the same statistics, computed on 

the duration of the transition between the two events that are con- 

nected by the arc. In the final event for each careflow, the total history 

time for the patients of the careflow is provided, as median of times 

between first and last displayed events of the careflow. 

excluding those subjects for which the right censoring follow-up date 

preceded the last mined event in the CFM. Statistical significance was 

set at p < 0.05 (two-tailed). Data analysis was performed using the R 

software. 

As a final step, to evaluate the described pipeline with respect to our 

previous work, we have compared the results obtained with the ap- 

proach proposed in this paper with those obtained by applying to our 

data the approach originally presented in [5]. This previous approach 

applies the CFM algorithm to data where single events are character- 

ized on the basis of the type of hospitalization (Admission or Short 

Procedure Unit) and the ward, without applying the topic modelling 

step. 

3. Results 

3.1. DATA pre-processing AND PREPARATION 

Table 1 summarizes the demographic and clinical characteristics of 

the study cohort. The statistics of the population in terms of hospitali- 

zations, SPU visits and procedures are shown in Table 2. 

Clinical and administrative data were integrated using unique pa- 

tient identifiers. Left-censoring was performed considering the first 

breast surgery (also reported as baseline time point in the clinical data 

stream) and its related procedures (e.g. biopsies or neoadjuvant 

therapies administrated before the surgery) registered in the HIS. Right- 

censoring was performed considering for each subject the last proce- 

dure registered in the HIS at the moment of data extraction, and 

compared with the clinical endpoints, in order to exclude subjects 

whose careflow events overlap or follow the clinical outcome. 

In addition to using the low-granularity set of the 363 ICD9-CM 

codes available in the data, we also mapped the codes into higher-level 

categories. Pre-processing techniques are available for this purpose, like 

the Clinical Classification Software (CCS) which provides a suitable 

categorization scheme for ICD procedures [20]. Since the CCS is 

structured on several levels of granularity, we started with a mapping 

based on a finer CCS level (level 2) for breast-related procedures, and a 

coarser level (level 1) for non-breast-related procedures. After a further 

step of manual review, we obtained 36 Procedures. The ICD9-9 CM 

codes/Mapped Procedures mapping is provided in the Supplementary 

section (Appendix 1). 

Clinical events were thus represented as: (i) sequences of ICD9-CM 
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Table 1 

Baseline clinical and epidemiological data.  

TOTAL 3346 

Age Mean (SD) 58.74 (13.38) 

Type of Surgery N (%) 

Lumpectomy 2328 (70.31) 

Mastectomy 1018 (30.75) 

Histological Type N (%) 

DCIS In situ cancer 337 (10.18) 

CDI Invasive ductal cancer 2457 (74.21) 

CLI Invasive lobular cancer 552 (16.67) 

Staging N (%) 

Stage 0 439 (13.26) 

Stage 1 1670 (50.44) 

Stage 2 908 (27.42) 

Stage 3 329 (9.94) 

Grading N (%) 

G1 427 (12.9) 

G2 1934 (58.41) 

G3 985 (29.75) 

Hormone therapy N (%) 

No 767 (23.17) 

Yes 2579 (77.89) 

Chemotherapy N (%) 

No 2084 (62.94) 

Yes 1262 (38.12) 

Radiotherapy N (%) 

No 1088 (32.86) 

Yes 2258 (68.2) 

Neo adjuvant chemotherapy N (%) 

No 2972 (89.76) 

Yes 337 (10.18) 

Unknown 37 (1.12) 

Cancer multifocality N (%) 

No 2528 (76.35) 

Yes 818 (24.71) 

Bio molecular subtype N (%) 

Luminal A 1823 (55.06) 

Luminal B 1044 (31.53) 

Her2+ 175 (5.29) 

TNBC 304 (9.18) 

were performed on two different documents corpora: (i) in the first 

document corpus each document is the set of the Italian description of 

ICD9-CM procedures performed in one hospitalization, (ii) in the 

second document corpus each document is built in the same way, but 

we used the CCS and manual oncologist reclassification in the English 

language. Due to the difference of the vocabulary and the language 

used in each corpus, we performed two different preprocessing and 

cleaning steps. We report in the following the detailed results obtained 

using ICD9-CM codes, whereas for the CSS based approach we herein 

show only a summary of the main findings (the detailed results are 

reported in Appendix 4). 

3.2.1. TM of ICD9-CM procedures 

After the creation of the corpus, stop words, punctuation and 

numbers were excluded. We used the default Italian stop words list 

provided by R package ‘topicmodels’ version 0.2–8 (see Supplementary 

material – Appendix 2). An additional set of stop words was manually 

added to complete the list. This set included words that represent 

generic terms in the Italian language (“altro”, i.e.,“Other”), specific 

terms that are not important in our case study (“arterioso”, “micro- 

scopico”, i.e, “arterial”,”microscopic”), specific terms related to our 

case study but too frequent (“mammella”, i.e.,“breast”) or applied to 

different concepts (“iniezione”, “infusione”, i.e.,“injection” and “infu- 

sion”, words that are present in the description of both chemotherapy 

and other therapeutic administration). Since the list of stop words could 

cause an entire document to be deleted, the stop words must be care- 

fully chosen in order to avoid it. 

After the cleaning step and the removal of the stop words, the dic- 

tionary reduced in size from 588 to 498 words. On average, a single 

word is present in 91 documents (sd = 317). The most frequent word 

(“Asportazione”, i.e., “Removal”) is present in 3061 documents. A 

document is composed on average of 6 words (sd = 3.1), from a 

minimum of one to a maximum of 40 words. The 75 % of the docu- 

ments contain 8 words or less. 
As reported in the Methods section, to choose the topic number we 

Lipofilling intervention N (%) 

No 

 
2907 (87.8) ran the LDA algorithm considering different values for k, ranging from a 

Yes 439 (13.26) 

 
Local/loco-regional recurrence (Yes) N (%) 195 (5.89) 

 
Metastasis - Distant recurrence (Yes) N (%) 260 (7.85) 

 
Death (Yes) N (%) 176 (5.32) 

 
 

 
Table 2 

Hospitalizations, SPU visits, and procedures.  

Total number of hospitalizations 8387 

Total number of procedures 20765 

Total number of SPU visits 1650 

Distinct procedures (ICD9-CM codes) 363 

Average number of hospitalizations per patient (SD) 2.55 (2.47) 

Average number of SPU visits per  patient (SD) 2.13 (1.38) 

Average number of procedures per patient (SD) 6.33(7.10) 

Average number of distinct procedures per patient (SD) 4.90(4.00) 

Average number of procedures per hospitalization (SD) 2.47 (1.45) 

Average number of unique procedures per hospitalization (SD) 2.33 (1.31) 
 

 

 
procedures’ codes (2011 version) within each hospitalization, and (ii) 

sequences of mapped procedures derived from the CCS and the oncol- 

ogist manual revision. These events were used as inputs to the Topic 

Modeling step and the results of the two approaches were compared, as 

described in the following section. 

 
3.2. Topic modeling 

On the basis of the two clinical events representation, the analyses 

minimum of 2 topics to a maximum of 16 topics. 

As  already  explained,  in  order  to  choose  k,  we  took  into  con- 

sideration   consistency,   REDUNDANCY,   IMPORTANCE,   and   perplexity   (see 

Fig. 5). 

Consistency does not significantly vary with K and it is always 

greater than 0.5. According to the definition reported in Section 2.2, 

this means that, on average, half of the words representative for a topic 

are preserved over repeated LDA runs. After an initial decrease, Re- 

dundancy increases for K > = 4, reaching a plateau around 0.25. This 

value means that, on average, only the 25 % of the topics are over- 

lapping in a single LDA run. Importance increases for K = 3, and it is 

always higher than 0.5, meaning that, on average, the difference be- 

tween the probability of the most important topic and the second most 

important topic for a document is 0.5. Finally, perplexity decreases 

until K = 5, and then remains almost stable. This behavior was ex- 

pected, as the initial increase of the number of topics helps the model to 

provide stronger assignation of documents to the topics, thus causing 

perplexity to rapidly decrease. When K gets higher, the benefit of in- 

creasing the number of topics becomes less effective, as it leads to lower 

probabilities of assignation. 

Looking at these indexes and at the topics generated from the dif- 

ferent set-ups, we selected K = 6, as a compromise between the cap- 

ability of describing the domain complexity and the need to group 

procedures in a clinically coherent way. The extracted topics, the topic 

words set, and the topic labels that were assigned to each group are 

shown in Table 3. 

Topic 1 includes words related to lymph nodes operations and/or 

skin graft procedures. Topic 2 represents plastic surgery and it includes 

the placement or removal of prosthesis, either unilateral or bilateral, 

plastic surgery mammoplasty associated with mastopexy and other 
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Fig. 5. Consistency (a), Redundancy (b), Importance (c) and Perplexity (d) values on varying k, when TM is performed on ICD9-CM codes. 
 

corrective surgery techniques. Topic 3 is the most heterogeneous one, 

as shown by the variety of the exams and procedures included in its 

word set, which is also characterized by a large number of words (45). 

The topic can be interpreted as the set of the exams performed on a 

patient during the oncology process of care, starting from diagnostic 

exams and imaging localization of the tumor and ending with assess- 

ment and rehabilitation exercise performed during follow-up. Topic 4 

represents chemotherapy and other aspects related to it. Of note, this 

topic also includes two words related to ultrasound examinations of the 

heart and electrocardiogram: chemotherapy is often related to cardio- 

logical tests such as echocardiogram, because chemotherapy drugs 

could be cardiotoxic and so patients should undergo cardiological 

monitoring. 

Topics 5 and 6 represent surgical interventions on the breast. Topic 

5 includes words related to breast-conserving surgery. In particular, the 

most representative words describe the surgical procedure, which is 

usually composed of tumor localization through radioisotopes, quad- 

rantectomy and lymph nodes removal. Topic 6 is related to mas- 

tectomy, which is usually coupled to the positioning of a breast insert to 

prepare the patient for future reconstruction. Underarm lymph nodes 

may or may not be removed depending on the situation. 

 
3.2.2. TM of REMAPPED procedures 

To apply TM on the procedures remapped according to the strategy 

explained in Section 3.1 (based on CCS and manual oncologist re- 

classification), we used a similar strategy as the one described for raw 

ICD9-CM. Topics, their topic word sets, and the Topic labels are shown 

in Appendix 4. Even if the two document corpora are different, the 

results found on the TM scores for the remapped procedures indicate 

that it is possible to choose the same topic number, K = 6. Moreover, 

the clinical interpretation of the topics is almost the same as the one 

presented in Table 3. As a consequence, we may argue that, in this 

study, the TM approach is robust in highlighting the most relevant 

clinical conditions, independently from the language and the procedure 

representation system used. 

Given the substantial overlap of the results of the two TM strategies, 

in the following we will report the CFM results obtained after TM of the 

ICD9-CM procedures step. This approach relies on standard coding and 

requires less pre-processing than manual remapping, thus being more 

generalizable to other clinical contexts. 

3.3. CAREFLOW mining 

The CFM algorithm has been applied to the event logs derived from 

time-ordered sequence of hospitalizations of each patient. CFM algo- 

rithm parameters were selected following the grid-search approach 

presented in the Methods section. In particular, we performed a grid 

search by varying min_support in the range 2–50 and max_length in the 

range 3-10. Fig. 6 shows the number of careflows (blue), the average 

number of patients per careflow (purple), the average number of missed 

events (green), and the true match rate (red) for each value of the pair 

of parameters (numeric values are reported in Appendix 6). As shown in 

Fig. 6, the parameter values max_length = 10 and min_support = 10 

result in a relatively low number of detected careflows, while preser- 

ving a good matching rate and a low number of missed events. We used 

these values in the following analyses. 

The application of the CFM algorithm with the selected parameters 

resulted in a total of 160 events that were organized in 81 careflows. 

Table 4 reports the list of the 19 distinct events included in the care- 

flows. As explained in the Methods section, the events’ labels contain 

the topic name and the most informative word of the document. The 

longest careflows comprise of 5 events, and an average history length of 

3.33 (SD = 0.9) and a median equal to 3. The complete list of the ex- 

tracted careflows is reported in the Supplementary (Appendix 5). 

Considering the resulting careflows, we have been able to further 

reduce the number of sub-groups by merging sequences of events with 

the same meaning. For example, sequences including multiple occur- 

rences of plastic surgeries were grouped into a single group (Cluster 1, 

plastic surgery). From the initial 81 histories we have derived 9 clus- 

ters, as follows: 

Cluster 1: Reconstruction/plastic surgery. This cluster contains his- 

tories related to cases characterized by one or more occurrences of 

plastic surgery for breast reconstruction. These patients are referred 

to ICSM after a first intervention that was carried out in another 

hospital. 

• 
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Table 3 

Topic selected with k = 6 when using ICD9-CM procedures. The table reports 

the words included in the topic, the number of important words (i.e. words to 

reach a total probability > 0.8) and the assigned topic label.  

ICD9-CM procedures 
 

 

collected by a first conservative intervention. Cluster 4b reports 

cases related to a second surgery that was performed later in time. 

This may correspond to a second cancer episode or to a recurrence 

of the same one, such as local or regional recurrences. 

Cluster 5: Surgery + Plastic Surgery. Patients in this cluster are 
managed by ICSM only for their surgical intervention, whereas 

TOPIC     ITALIAN WORDS 

(TRANSLATION) 

# Important 

Words 

TOPIC LABEL therapy is decided and administered in another hospital. 

Cluster 6: Neoadjuvant therapy. This cluster includes patients for 

1 Cute (Skin) 

Sedi (Sites) 

Linfonodi (Lymph nodes) 

Innesto (Graft) 

Ascellari (Axillary) 

6 Skin graft / Lymph 

nodes operations 

which a SPU visit is performed before the first surgery. This is re- 

lated to patients who undergo neoadjuvant therapy, which consists 

in the administration of therapeutic agents, such as chemotherapy 

or hormonal therapy, before the main treatment. This is confirmed 
by the clinical data that are associated to this group: 96 % of the 

Radicale (Radical) 

2 Protesi (Prosthesis) 

Impianto (Implant) 

Monolaterale (Monolateral) 

Bilaterale (Bilateral) 

Mastopessi (Mastopexy) 

Riduttiva (Reductive) 

Mammoplastica 

(Mammoplasty) 

Rimozione (Removal) 

3 Ecografica (Sonographic) 

Torace (Thorax) 

Terapeutiche (Therapeutic) 

Tomografia (Tomography) 

Esercizi (Exercise) 

Radiografia (X-Ray) 

TAC (CT) 

Valutazione (Evaluation) 

Esami (Exams) 

Elettrocardiogramma (ECG) 

… 

4 Tumore (Tumor) 

Chemioterapeutiche 

(Chemotherapeutic) 

Esami (Exams) 

Antineoplastico 

(Antineoplastic) 

Iniezione infusione (Injection 

Infusion) 

Ecografica (Sonographic) 

Elettrocardiogramma (ECG) 

5 Asportazione (Removal) 

Quadrantectomia 

(Quadrantectomy) 

Scintigrafia (Scintigraphy) 

Linfatico (Lymphatic - 

singular) 

Linfatiche (Lympahtic - 

plural) 
Radioisotopi (Radioisotope) 

 
8 Plastic 

 
 
 
 

 
45 Other exams and 

therapies 

 
 
 
 
 

 
7 Chemotherapy 

 
 
 
 
 

 
6 Lumpectomy 

patients underwent such treatment. 

Cluster 7: surgery + rehabilitation. Patients belonging to this group 

underwent surgery followed by rehabilitation at the hospital. 

Cluster 8: surgery. Patients in this group had only undergone sur- 

gery at ICSM. This is largest group, including nearly half of the 

studied population. 

Cluster 9: surgery + exams. Patients belonging to this group un- 

derwent surgery (as only form of treatment) and further exams to 

investigate the clinical outcome of surgery. 

Fig. 7 illustrates the original CFM results and the regrouping, per- 

formed by expert clinicians, into Clusters 2 (Surgery and therapy), 4 

(double surgery) and 8 (surgery). Events labelled as “Day Hospital; SPU 

visit” in Cluster 2 indicate one or more chemotherapy treatments. 

It’s interesting to note that, since 2012, the administrative man- 

agement of chemotherapies has changed. While before 2012 che- 

motherapies were performed during one-day hospitalizations char- 

acterized by a regular discharge letter with the indication of ICD9-CM 

procedures, after 2012 chemotherapy has been managed as an out- 

patient service, which has just a textual report as a result. The in- 

formation related to that kind of visit is preserved, as we merged 

careflows assigned to the topic chemotherapy to careflows assigned to 

the topic day-hospital. 

Table 5 reports the clusters’ names, the number of patients in each 

cluster, and the statistics about the most important clinical variables. 

The details of the remapping of the histories into the clusters are re- 

ported in the Appendix 5. 

3.4. CAREFLOW ASSESSMENT AND groups COMPARISON 

After having derived the nine clusters from administrative data 

only, it is interesting to clinically enrich them, in order to evaluate the 

6 Monolaterale (Monolateral) 

Inserzione (Insertion) 

Mastectomia (Mastectomy) 

Espansore (Expander) 

Tissutale (Tissue) 

Asportazione (Removal) 

Linfatico (Lymphatic) 

Scintigrafia (Scintigraphy) 

Mammectomia 

(Mammectomy) 

9 Mastectomy so-called “temporal phenotypes”. In particular, the analysis of the re- 

lationships of those clusters with the patients’ outcomes may elucidate 

their clinical meaning and their capability of describing the evolution of 

the disease. In the following, we have considered three main endpoints: 

i) 10-year LRR-free survival probability; ii) 10-year DM-free survival 

probability and iii) 10-year overall survival probability. 

Looking at LRR disease-free survival (Fig. 8), the group with the 

worse prognosis is represented by cluster 4b, i.e., second surgery after 

two months. As expected, these patients have a re-intervention that 

might be due to recurrence, which represents a severe clinical condi- 

Cluster 2: Surgery + Therapy. The cluster maps well to one of the 

breast cancer guidelines of surgery and therapy. 

Cluster 3: Surgery + Therapy + Plastic Surgery. The third cluster 

adds plastic surgery to the previous careflow cluster. 

Cluster 4: double surgery. This group includes all double surgery 

cases. It has been further split into two sub-clusters on the basis of 

the time span between the two surgeries. In cluster 4a, the second 

surgery occurred very close (within two months) after the first one: 

this is likely related to a second intervention decided after having 

considered the histopathological exams of the breast samples 

tion. The second group with short disease-free survival is group 6, 

neoadjuvant therapy. This group has a worse prognosis since it in- 

directly selects patients with advanced diseases, requiring neoadjuvant 

treatment. Kaplan-Meier analysis finds a statistically significant differ- 

ence (p < < 0.01) between each group. 

With regards to DM (Fig. 9), it is notable that cluster 6 (neoadju- 

vant) has the worst prognosis, followed by cluster 3, patients who un- 

dergo surgery, therapy and plastic surgery, and finally by cluster 2, 

patients with surgery and therapy. Again, Kaplan-Meier analysis con- 

firmed statistically significant difference (p < < 0.01) between the 

groups. 

• 

• 

• 

• 

• 

• 

• 

• 
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• Cluster 0: Start with SPU 

• Cluster 2: Multiple consecutive admissions in Breast Surgery 

• Cluster 5: Admission in Breast Surgery and one or more SPUs in 

 

 

Fig. 6. Number of mined careflows (blue), average number of patients per careflow (purple), average number of missed events (green), and true match rate (red) at 

CFM parameters varying. The horizonal axis indicates the CFM parameters: min_support and max_length (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article). 
 

Table 4 

List of the distinct events resulting after the application of the CFM step.  

Events Label 

3.5. COMPARISON with BASELINE APPROACH 

In this paragraph, we compare the results presented in the previous 

   section with the results obtained by running the CFM algorithm on 

Chemotherapy; biopsy 

Chemotherapy; tumor 

Day Hospital; SPU visit 

Lumpectomy; prosthesis 

Lumpectomy; quadrantectomy 

Lumpectomy; removal 

Mastectomy; prosthesis 

Mastectomy; removal 

Mastectomy; unilateral 

Other exams and therapies; exams 

Other exams and therapies; exercises 

Other exams and therapies; tumor 

Other exams and therapies; ultrasound 

Plastic; prosthesis 

Plastic; reconstruction 

Skin graft / Lymph nodes operations; prosthesis 

Skin graft / Lymph nodes operations; removal 

Skin graft / Lymph nodes operations; skin 
 

 

 
Finally, examination of overall survival (Fig. 10), revealed that 

cluster 6 is the group with the poorest prognosis. Cluster 9 also shows 

some deaths relatively close to the surgery, while clusters 3 and 2 are 

related to a lower median survival than all patients grouped together 

(p < < 0.01). 

Given the results obtained by the Kaplan-Meier analyses, we in- 

vestigated whether the clusters are significant predictors of survival if 

we consider also the available clinical variables in a statistical model. 

To this end, we have carried out a multivariate survival analysis by 

using Cox-Regressions to predict 10-year LRR-free, DM-free, and overall 

survival probabilities. Results in terms of Hazard Ratios (HR) are shown 

in Table 6. 

It is possible to note that clusters are significant predictors of LRR, 

even when adjusting for clinical data. Only clusters 2 and 6 are pre- 

dictors of DM- free survival, while none of them is an independent 

predictor of survival. Overall survival is indeed a complex function of 

different clinical and patient-related variables, and expectedly the 

cluster itself is not able to be independently predictive. 

events characterized only by the type of hospitalization (Admissions or 

SPU) and ward, obtained using a minimum support of 50 subjects and 

maximum history length of 10. 

The clusters we obtained by applying this strategy are the following 

(see Supplementary Appendix 7 for their regrouping and outcomes 

comparisons): 

 

• Cluster 1: Admission in Breast Surgery and no other follow-ups 

• Cluster 3: Admission in Breast Surgery followed by an Admission in 

• Cluster 4: Admission in Breast Surgery and SPU in Breast Surgery 

Cluster 6: Admission in Breast Surgery, SPU in Oncology and further 

Admission in Breast Surgery 

The chord diagram in Fig. 11 represents the flows between clusters 

derived from the two different approaches. On the left, the results of the 

processing through TM and CFM are shown (P_), whereas the results of 

CFM only are represented on the right (AS_). Each cluster is represented 

by a fragment on the outer part of the circular layout, proportional to 

the number of subjects belonging to each group. The arcs, drawn be- 

tween each fragment, display the flow of the same patients when as- 

sociated with different clusters accordingly to the two strategies, TM 

and CFM coloured and only CFM in grey scale. 

Table 7 shows a quantitative comparison of the clusters obtained 

with the two strategies. It is possible to observe that, while the most 

general histories (i.e. P_8, AS_1) almost perfectly map into each other, 

histories that we previously found significantly associated with in- 

creasing risks of adverse outcome (i.e. P_4 and P_6) were masked and 

fused together into more general and less meaningful ones (P_4 into 

AS_2, P_6 into AS_0). 
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Fig. 7. Re-grouping of CFM results. The CFM results and the re-group of the branches as suggested by expert clinicians. It is possible to note that the regrouping 

follows the exact structure of the resulted DAG. Exit events report the number of subjects included in each branch. A patient careflow can end in an exit box for two 

reasons: (i) the patient has flown through all his/her events available in the data base (Pts.END), (ii) the patient has other events, but the careflow that would result 

from them has a minimum support lower than min_support or a length that is higher than max_length (Pts.OUT). 
 

4. Discussion 

In this paper we present an analysis pipeline that, starting from 

administrative data on breast cancer-related hospitalizations, is able to 

stratify the patients’ population into meaningful groups that reflect the 

evolution of the disease in terms of clinical outcome. 

Applying data and process mining to raw data collected in HIS 

might lead to poorly informative results due to the high variability that 

typically characterizes the patients’ flows of care. For this reason, it is 

well-agreed that appropriate data preparation and preprocessing is 

crucial. One way to perform this step is to rely on domain knowledge. 

Nevertheless, a completely knowledge-driven approach might be highly 

expert-dependent and not easily reproducible. Using data-driven tech- 

niques to reduce the original variability is a valid alternative, and 

methodologies originating from the field of Natural Language 

Processing can be useful when the semantics are of importance. We 

have leveraged Topic Modeling to represent a single hospitalization 

with a topic that synthesizes the set of procedures carried out between 

admission and discharge on a specific patient. To identify the most 

frequent careflows enacted by the considered Breast Unit, we then ran a 

careflow mining algorithm on the sequence of hospitalizations re- 

presented by the corresponding topic. 

As presented in some works in the literature [21,22], an alternative 

approach could have been to apply topic modeling to the entire set of 

ICD9-CM codes comprising the hospitalizations history of a patient, but 

this would have resulted into the loss of the information on the tem- 

poral order of events, which is instead preserved when using CFM. 

Recently, other works have dealt with the joint application of LDA and 

process mining for the automated discovery of clinical pathways in the 

case of intra-cerebral hemorrhage [9,10]. These papers focused on the 

optimization of the quality of the topics extracted by LDA through the 

specification of constraints to ensure that the same clinical activity 

performed on the same day would not be assigned to different topics, 

and to ensure that a single clinical activity would rank high in a limited 

number of topics. The process mining step, performed via the fuzzy 

miner algorithm [23], was limited to the reconstruction of clinical 

pathways that helped validating the LDA optimization process through 

the comparison of the obtained pathways to clinical guidelines. 

While we took inspiration from these works to drive the LDA topic 

search on the basis of a set of indicators introduced in the Methods 

section, in this paper we focused on the interpretability and clinical 

significance of the extracted careflows, and on their potential to 

describe clinical phenotypes of patients. The CFM approach has several 

advantages with respect to the utilization of process mining algorithms 

in healthcare-related scenarios, such as the possibility to preserve the 

temporal order of events and to consider similar events occurring at 

different timestamps (e.g., two occurrences of breast surgery) as dis- 

tinct. This is particularly important for histories such as the ones in- 

volving neoadjuvant treatments before the first breast surgery, which 

couldn’t have been distinguished from careflows with treatment after 

surgery by using more standard process mining techniques. 

Nevertheless, one of the limitations of the approach is that it is not 

optimized for dealing with events occurring at the same time or over- 

lapping. The introduction of the TM step prior to the use of CFM helps 

to mitigate this issue, as the events occurring together during the same 

hospitalization are managed and summarized by using the TM results. 

Another advantage of the proposed pipeline is related to the visuali- 

zation of results as DAGs, which improve the results explicability and 

help in identifying of meaningful patients’ subgroups. 

We have previously applied the CFM algorithm to breast cancer data 

[5]. In that study, since the goal was to validate the methodology, we 

used simple events such as the type of stay (regular hospitalization or 

SPU visit) and the related ward. In addition, the information on the 

patients’ outcome was not available, so it was not possible to compare 

the extracted careflows in terms of survival, but only to enrich them 

considering blood test results. In that work, we demonstrated that the 

algorithm was able to identify the most typical, high-level, patterns of 

care experienced by the patients included in the cohort, and to char- 

acterize them in terms of temporal and clinical information. In this 

work we report several advancements with respect to our previous re- 

search, furthermore we performed an evaluation of the proposed ap- 

proach by comparing its results to the ones obtained by running the 

CFM algorithms on coarser clinical events represented, as in [5]. The 

results show that the new approach presented in this paper is able to 

provide finer phenotypes, significantly associated with relevant out- 

comes. 

One of the main results of this study is that by using administrative 

data only, we have been able to identify clinically relevant trajectories 

able to stratify patients into informative groups with different evolution 

of the disease. As described in the Methods and in the Results section, 

we have considered two different representations of clinical events as 

input to the topic modeling step. The first one uses raw ICD9-CM codes, 

whereas the second one includes an initial knowledge-driven remap- 

ping step. Interestingly, the extracted topics were almost totally 



 

 

Table 5 

Cluster descriptive statistics. Age is reported as Mean (SD), all the other categorical variables are reposted as Number (% over the number of subjects in each cluster).  

Cluster number 1 2 3 4a 4b 5 6 7 8 9 

Cluster name Reconstruction/ 

Plastic surgery 

Only 

Surgery + Therapy Surgery + Therapy + Plastic 

Surgery 

Double Surgery - 

Second Surgery 

Within 2 Months 

Double Surgery - 

Second Surgery 

After 2 Months 

Surgery + 

Plastic 

Surgery 

Neoadjuvant Surgery + Rehabilitation Surgery Surgery + Exams 

Number of patients 284 668 114 132 110 285 53 42 1568 46 

Age 49.7(11) 57(12.4) 51.2(10.9) 53.7(10.9) 61(13.2) 52.5(11) 55.2(11.7) 54.2(12.6) 63.3(13) 66.4(12.4) 

Type of Surgery 

Lumpectomy 40(14.08) 504(75.45) 5(4.39) 119(90.15) 98(89.09) 73(25.61) 18(33.96) 25(59.52) 1389(88.58) 37(80.43) 

Mastectomy 244(85.92) 164(24.55) 109(95.61) 13(9.85) 12(10.91) 212(74.39) 35(66.04) 17(40.48) 179(11.42) 9(19.57) 

Histological Type 

DCIS In situ 

cancer 

CDI Invasive 

ductal cancer 

CLI Invasive 

lobular cancer 

Grading 

35(12.32) 9(1.35) 3(2.63) 23(17.42) 25(22.73) 47(16.49) 8(15.09) 2(4.76) 178(11.35) 6(13.04) 

 
197(69.37) 561(83.98) 89(78.07) 87(65.91) 64(58.18) 183(64.21) 42(79.25) 31(73.81) 1134(72.32) 31(67.39) 

 
52(18.31) 98(14.67) 22(19.3) 22(16.67) 21(19.09) 55(19.3) 3(5.66) 9(21.43) 256(16.33) 9(19.57) 

G1 22(7.75) 24(3.59) 3(2.63) 28(21.21) 20(18.18) 32(11.23) 2(3.77) 7(16.67) 275(17.54) 9(19.57) 

G2 171(60.21) 272(40.72) 71(62.28) 71(53.79) 72(65.45) 176(61.75) 22(41.51) 24(57.14) 1001(63.84) 30(65.22) 

G3 91(32.04) 372(55.69) 40(35.09) 33(25) 18(16.36) 77(27.02) 29(54.72) 11(26.19) 292(18.62) 7(15.22) 

Neoadjuvant 

chemotherapy 

No 252(88.73) 596(89.22) 99(86.84) 130(98.48) 107(97.27) 256(89.82) 2(3.77) 37(88.1) 1422(90.69) 43(93.48) 

Yes 30(10.56) 62(9.28) 13(11.4) 2(1.52) 2(1.82) 28(9.82) 51(96.23) 5(11.9) 127(8.1) 3(6.52) 

Unknown 2(0.7) 10(1.5) 2(1.75) 0(0) 1(0.91) 1(0.35) 0(0) 0(0) 19(1.21) 0(0) 

Cancer multifocality 

NO 194(68.31) 509(76.2) 65(57.02) 87(65.91) 83(75.45) 167(58.6) 38(71.7) 27(64.29) 1285(81.95) 38(82.61) 

Yes 90(31.69) 159(23.8) 49(42.98) 45(34.09) 27(24.55) 118(41.4) 15(28.3) 15(35.71) 283(18.05) 8(17.39) 

Staging 

Stage 0 41(14.44) 28(4.19) 7(6.14) 24(18.18) 24(21.82) 54(18.95) 31(58.49) 3(7.14) 216(13.78) 6(13.04) 

Stage 1 106(37.32) 248(37.13) 30(26.32) 80(60.61) 62(56.36) 134(47.02) 8(15.09) 10(23.81) 948(60.46) 27(58.7) 

Stage 2 90(31.69) 259(38.77) 45(39.47) 23(17.42) 22(20) 80(28.07) 7(13.21) 23(54.76) 334(21.3) 10(21.74) 

Stage 3 47(16.55) 133(19.91) 32(28.07) 5(3.79) 2(1.82) 17(5.96) 7(13.21) 6(14.29) 70(4.46) 3(6.52) 

Biomolecular subtype 

Luminal A 144(50.7) 170(25.45) 40(35.09) 73(55.3) 75(68.18) 172(60.35) 4(7.55) 26(61.9) 1070(68.24) 34(73.91) 

Luminal B 94(33.1) 299(44.76) 55(48.25) 39(29.55) 24(21.82) 84(29.47) 25(47.17) 14(33.33) 382(24.36) 9(19.57) 

Her2+ 20(7.04) 79(11.83) 7(6.14) 5(3.79) 3(2.73) 6(2.11) 22(41.51) 1(2.38) 27(1.72) 0(0) 

TNBC 26(9.15) 120(17.96) 12(10.53) 15(11.36) 8(7.27) 23(8.07) 2(3.77) 1(2.38) 89(5.68) 3(6.52) 

Hormone therapy 

NO 52(18.31) 239(35.78) 25(21.93) 32(24.24) 31(28.18) 50(17.54) 25(47.17) 5(11.9) 285(18.18) 11(23.91) 

Yes 232(81.69) 429(64.22) 89(78.07) 100(75.76) 79(71.82) 235(82.46) 28(52.83) 37(88.1) 1283(81.82)   35(76.09) 

Chemotherapy 

NO 144(50.7) 102(15.27) 15(13.16) 100(75.76) 101(91.82) 212(74.39) 0(0) 23(54.76) 1334(85.08) 42(91.3) 

Yes 140(49.3) 566(84.73) 99(86.84) 32(24.24) 9(8.18) 73(25.61) 53(100) 19(45.24) 234(14.92) 4(8.7) 

Radiotherapy 

NO 176(61.97) 125(18.71) 79(69.3) 41(31.06) 37(33.64) 200(70.18) 25(47.17) 16(38.1) 350(22.32) 20(43.48) 

Yes 108(38.03) 543(81.29) 35(30.7) 91(68.94) 73(66.36) 85(29.82) 28(52.83) 26(61.9) 1218(77.68)   26(56.52) 

Lipofilling intervention 

No 119(41.9) 603(90.27) 89(78.07) 118(89.39) 102(92.73) 199(69.82) 50(94.34) 36(85.71) 1525(97.26) 42(91.3) 

Yes 165(58.1) 65(9.73) 25(21.93) 14(10.61) 8(7.27) 86(30.18) 3(5.66) 6(14.29) 43(2.74) 4(8.7) 

Local/loco-regional 

recurrence (Yes) 

Metastasis - Distant 

recurrence (Yes) 

12(4.23) 50(7.49) 11(9.65) 8(6.06) 39(35.45) 25(8.77) 5(9.43) 2(4.76) 32(2.04) 7(15.22) 

 
22(7.75) 116(17.37) 22(19.3) 3(2.27) 7(6.36) 15(5.26) 10(18.87) 5(11.9) 48(3.06) 2(4.35) 

Exitus (Yes) 16(5.63) 66(9.88) 14(12.28) 3(2.27) 5(4.55) 7(2.46) 5(9.43) 4(9.52) 46(2.93) 6(13.04) 
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Fig. 8. Local-regional recurrence survival (disease) free curves in the Clusters – Time in months. 
 

overlapping. This indicates that TM is able to extract the needed in- 

formation independently from the type of coding used for the events 

and from the representation language (the ICD9-CM description was in 

Italian, while the remapping was in English). On the basis of this result, 

we argue that in the data and clinical domain we investigated, using 

raw ICD9-CM codes is preferable, as it avoids an additional expert- 

based step, which could limit the reproducibility of the results. 

However, this might not be true in other domains or data sources, and 

this merits further investigation. 

While the initial knowledge-based recoding has been shown to be 

unnecessary, some other steps needed the close interaction among ex- 

perts to properly guide the algorithms and interpret the results [24]. In 

particular, the expert-based validation of the label assigned to each 

topic is extremely important to capture the clinical significance of the 

extracted words, and the post-processing of the results of CFM to 

identify careflows that represent the same trajectory is crucial to 

properly identify the patients’ phenotypes. An example of this second 

step is related to Group 8, which includes patients who had only un- 

dergone surgery at ICSM. In this case, we merged into a single group 

those patients who underwent a lumpectomy, patients who underwent 

a mastectomy, and patients who underwent lumpectomy together with 

operations on the lymph nodes. 

When process mining approaches are applied to the healthcare 

domain, especially to secondary data coming from clinical routine 

processes, a set of domain related, expert-based interventions are 

usually needed. These manual interventions allow avoiding the spa- 

ghetti-like models often resulting from fully automated approaches, and 

can be performed either (a) by pre-processing data via the initial for- 

malization of the domain knowledge, for example with ontology-based 

approaches [25,26], or (b) with unstructured data and post-processing 

tailored interventions, as in the case presented in this paper. These 

interventions have the potential to produce more detailed process 

 
 

 

Fig. 9. Distant metastasis survival (disease) free curves in the Clusters – Time in months. 



L. Chiudinelli, et AL. ArtificiAlIntelligenceInMedicine105(2020)101855 

1
4 

 

 

 

 

Fig. 10. Survival (registered deaths) in the Clusters – Time in months. 
 

models than completely automatized methods, especially when ana- 

lysing complex clinical processes data with unstructured components, 

thus providing clinicians with readable results – also including in- 

formation about the specific organizational set-ups of the hospital. 

The results we have obtained are meaningful with respect to the 

Breast Unit we studied. In particular, we have been able to distinguish 

those patients only undergoing surgery at the hospital from the patients 

who instead carry out the entire process of care within the studied 

hospital. Among these, we mainly identified three groups: (i) patients 

who undergo breast surgery possibly followed by plastic reconstruction 

and then chemotherapy, (ii) patients who undergo multiple surgeries 

due to cancer recurrence, and (iii) patients who undergo neoadjuvant 

therapy before surgery. Such groups turned out to be different in terms 

of clinical endpoints, considered as onset of metastases, local re- 

currences, and overall survival. 

Once these sub-groups are extracted and clinically validated, they 

might constitute the basis for automatic case retrieval in more complex 

architectures [27]. In particular, it would be both possible to query the 

 

Table 6 

Cox Regression results reported as Hazard Ratio + 95 % CI for HR and significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 (p-values).  
 

 LRR DM DEATH 

Cluster 1 - Only Reconstruction/ Plastic surgery 3.06 (1.53–6.11) ** n.s. n.s. 

2 - Surgery + Therapy 1.87 (1.15–3.04)* 1.97 (1.29–2.99)** n.s. 

3 - Surgery + Therapy + Plastic Surgery 3.23 (1.51–6.91)** n.s. n.s. 

4 - Double Surgery – – – 

4a - Double Surgery - Second Surgery Within 2 Months 11.59 (7.16–18.76)*** n.s. n.s. 

4b - Double Surgery - Second Surgery After 2 Months n.s. n.s. n.s. 

5 - Surgery + Plastic Surgery 4.52 (2.64–7.75)*** n.s. n.s. 

6 - Neoadiuvant 3.33 (1.16–9.56)* 2.43 (1.14–5.19)* n.s. 

7 - Surgery + Rehabilitation n.s. n.s. n.s. 

8 - Surgery Reference Reference Reference 

9 - Surgery–+ Exams 2.83 (1.21–6.62)* n.s. n.s. 

Age 1.01(1–1.02)*** n.s. 1.02(1.01–1.03)** 

Type of Surgery Lumpectomy Reference Reference Reference 

Mastectomy n.s. 1.54(1.11–2.13)** n.s. 

Staging Stage 0 Reference Reference Reference 

Stage 1 n.s. n.s. n.s. 

Stage 2 n.s. 2.24(1.28–3.92)** 3.44(1.75–6.76)*** 

Stage 3 n.s. 4.60(2.58–8.13)*** 6.72(3.35–13.46)*** 

Grading G1 Reference Reference Reference 

G2 n.s. 2.08(1.04–4.16)* 3.75(1.3–9.84)* 

G3 n.s. 2.40(1.18–4.89)* 4.15(1.44–11.92)* 

Hormone therapy Yes 0.49(0.33–0.75)*** n.s. n.s. 

Chemotherapy Yes n.s. n.s. n.s. 

Radiotherapy Yes n.s. n.s. 0.63(0.46–0.87)** 

Neoadjuvant chemotherapy Yes 2.56(1.69–3.88)*** 2.82(1.99–3.98)*** 3.40(2.42–4.78)*** 

Biomolecular subtype Luminal A Reference Reference Reference 

Luminal B 1.45(1.01–2.09)* n.s. 1.46(1.01–2.11)* 

Her2+ n.s. n.s. n.s. 

TNBC n.s. n.s. 2.21(1.3–3.77)** 

Lipofilling intervention Yes n.s. 0.62(0.42–0.92)* n.s. 
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Fig. 11. Chord diagram visualizing the relations between clusters derived via TM and CFM on the basis of procedures (P_ on the left) and clusters derived from 

admission and SPU (AS_ on the right). 
 

architecture on the basis of the specific subgroups, and, once a new 

patient is considered, it would be possible to assign him to the trajec- 

tory that is more similar according to a suitable function [4]. Such an 

approach could be suitably exploited to rapidly analyze large datasets 

in order to derive clinical management strategies that could be related 

to improved or decreased long-term oncologic outcomes. 

The proposed analyses have some limitations. Some limitations are 

inherently derived from the application of process mining technologies 

to healthcare pathways analysis, and are related to challenges of ap- 

plying these approaches to unstructured processes, the lack of estab- 

lished data reference models and the necessity to implement custom 

solutions for each case study [28]. More specifically, when the context 

data are derived from administrative systems or healthcare logistic 

systems, on the one hand the number of events to be mined for each 

patient can be low on average when considering coarse granularities 

such as an entire hospitalization, on the other hand using finer granu- 

larity will produce unreadable spaghetti-like processes. Previous works 

Table 7 

[29] identified these limitations and highlighted how in healthcare 

systems events granularity is often too low for process mining algo- 

rithms to identifying the correct control-flow as the ordering of events. 

Some limitations are specific to this work. First of all, we considered 

only semi-structured data, corresponding to the description of the ICD9- 

CM codes included in discharge letters. While the process of care for 

breast cancer patients develops mainly through events with a structured 

discharge letter prepared for billing purposes, this might not be the case 

for other diseases. To complete the view on the clinical history of the 

patient, it would be possible to add to the analysis textual reports re- 

leased during outpatient visits. Other relevant information that might 

be worth exploring is related to comorbidities, which can have an effect 

on both the mined careflows and the results, thus acting as confounders. 

In this paper we have considered the procedures performed in the 

same hospitalization as a whole, regardless of their temporal order. This 

is possible as hospitalizations for breast cancer are relatively short-term 

and, even more importantly, usually include procedures with a specific 

Adjacency matrix of the mapping between clusters derived via TM and CFM on the basis of procedures (P_ rows) and clusters derived from admission and SPU (AS_ 

columns). The table reports numbers and percentages calculated over the number of subjects for rows. 

 
AS_0 AS_1 AS_2 AS_3 AS_4 AS_5 AS_6 

P_1 NA 62 (21.83%) 170 (59.85%) 3 (1.06%) 15 (5.28%) 22 (7.74%) 12 (4.22%) 

P_2 6 (0.89%) 35 (5.23%) NA 11 (1.64%) NA 514 (76.94%) 102 (15.26%) 

P_3 NA 4 (3.5%) 11 (9.65%) NA NA 2 (1.75%) 97 (85.08%) 

P_4 39 (16.11%) 3 (1.24%) 161 (66.53%) NA 39 (16.11%) NA NA 

P_5 2 (0.70%) 10 (3.51%) 270 (94.74%) NA 3 (1.05%) NA NA 

P_6 53 (100%) NA NA NA NA NA NA 

P_7 NA 6 (14.28%) NA NA NA 22 (52.38%) 14 (33.34%) 

P_8 47 (2.99%) 1368 (87.24%) 80 (5.10%) 27 (1.72%) 8 (0.51%) 31 (1.98%) 7 (0.45%) 

P_9 NA 23 (50%) NA 10 (21.74%) NA 5 (10.87%) 8 (17.39%) 
 

 
AS_0 AS_1 AS_2 AS_3 AS_4 AS_5 AS_6 

P_1 NA 62 (21.83%) 170 (59.85%) 3 (1.06%) 15 (5.28%) 22 (7.74%) 12 (4.22%) 

P_2 6 (0.89%) 35 (5.23%) NA 11 (1.64%) NA 514 (76.94%) 102 (15.26%26 %) 

P_3 NA 4 (3.5 %) 11 (9.65 %) NA NA 2 (1.75 %) 97 (85.08 %) 

P_4 39 (16.11 %) 3 (1.24 %) 161 (66.53 %) NA 39 (16.11 %) NA NA 

P_5 2 (0.70 %) 10 (3.51 %) 270 (94.74 %) NA 3 (1.05 %) NA NA 

P_6 53 (100 %) NA NA NA NA NA NA 

P_7 NA 6 (14.28 %) NA NA NA 22 (52.38 %) 14 (33.34 %) 

P_8 47 (2.99 %) 1368 (87.24 %) 80 (5.10 %) 27 (1.72 %) 8 (0.51 %) 31 (1.98 %) 7 (0.45 %) 

P_9 NA 23 (50 %) NA 10 (21.74 %) NA 5 (10.87 %) 8 (17.39 %) 
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overall goal, resulting in topics with high inner coherence. For other 

applications this might not be the case, and it could be necessary to 

change the temporal granularity, by considering for example the single 

hospitalization day, as it has been done in other works [9]. 

Finally, the CFM algorithm discovers careflows that include patients 

who undergo the same temporal sequence of events. In some cases, 

even though the sequence is the same, the temporal gap between two or 

more events could discriminate patients with different outcomes. In this 

work, we faced this problem in the case of Cluster 4 (Double surgery), 

where the time between the first and the second intervention is im- 

portant to distinguish among re-interventions that are complementary 

to the first surgery or related to a change in the condition of the patient 

instead (e.g. a recurrence). At the moment, this step was expert-driven 

and manually performed after checking the CFM results, potentially 

generating a non-uniformity in results interpretation. In the future, a 

constraint on the temporal duration of events and transitions could be 

included in the CFM search strategy. 

Nevertheless, the approach presented in this paper has the potential 

to help clinicians and hospital decision makers to exploit routinely 

collected administrative data to have a snapshot of the population of 

patients they are treating. This would allow identifying groups of cri- 

tical patients or hidden care patterns, which would need further at- 

tention and require to plan specific interventions. 
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