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A B S T R A C T

Substantial progress has been made towards implementing automated radiology reporting models based on deep
learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology co-
herent paragraphs that do more than traditional medical image annotation, or single sentence-based description,
has been the subject of recent academic attention. This presents a more practical and challenging application and
moves towards bridging visual medical features and radiologist text. So far, the most common approach has been
to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN)
for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural
language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus
our investigation on the following critical challenges: understanding radiology text/image structures and da-
tasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL
based models and evaluation metrics. Lastly, we include a critical discussion and future research re-
commendations. This survey will be useful for researchers interested in DL, particularly those interested in
applying DL to radiology reporting.

1. Introduction

The combination of radiology images and text reports has led to
research in generating text reports from images. This was inspired by
recent work in generating text descriptions of natural images through
inter-modal connections between language and visual features [1].
Traditionally, computer-aided detection (CAD) systems interpret med-
ical images automatically to offer an objective diagnosis and assist
radiologists [2]. Unlike CAD, DL is able to learn useful features that
move beyond the limitations of radiology detection [3]. For example,
DL has been applied to mammography to discriminate between breast
cancer and microcalcification [4], on ultrasounds to differentiate breast
lesions (malignant and benign), and on CT lung scans to classify pul-
monary nodules [5]. Researchers [4,5] noted a significant performance
increase in DL models over conventional CAD systems. From a radi-
ologist standpoint, DL helps to improve patient safety by offering more
accurate diagnoses, obtains additional diagnostic criteria by generating
unobservable data from imaging features, and increases efficiency by
performing various tasks automatically [6].

The incapability to construct direct multimodal mapping between
radiology images and reports that input an image and output a de-
scriptive report is a well-known shortcoming of most automatic

diagnosis methods. The discriminative image features hidden in radi-
ology reports can support better diagnostic conclusion inferences in-
stead of specific image labels. Recent research has utilized this semantic
information in reports to propose effective image–text modelling.

Several recent surveys of DL applications [7,8] have been published
in healthcare [9], electronic health records (EHR) [10], health infor-
matics [11], medical image analysis [12,13], medicine [14,15], and
even radiology [3,6,16,17]. However, no existing reviews specifically
address image and text analysis, let alone in radiology. As such, this is
the investigative scope of this survey. Papers that cover a wide range of
radiology applications and tasks based on DL were analyzed. We found
that literature related to generating radiology reports using DL, how-
ever, is rare.

In this paper, we examined the DL approaches employed in radi-
ology reporting systems. Unlike other recent surveys that investigated
DL in broad health informatics practices ranging from medicine to
electronic health records (EHR), our survey focused exclusively on DL
techniques tailored to radiology report generation.

2. Radiology

Radiology is a branch of medicine that can be divided into the
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following two subcategories: diagnostic and interventional radiology
[18]. Diagnostic radiologists examine medical images to diagnose the
cause of a patient’s symptoms, monitor treatment effects, screen for
various illnesses, and then write radiology reports. On the other hand,
interventional radiologists utilize radiology images to guide proce-
dures. Currently, radiology images are interpreted by radiologists who
are limited by speed, fatigue, and experience. Certified radiologists are
rare due to training costs. As a result, many health-care systems out-
source the task of medical image analysis. For example, there are many
teleradiology companies in India [12]. Delays or errors in diagnosis can
cause harm to patients. Therefore, one solution is for radiology re-
porting to be performed by an automated, accurate, and efficient DL
algorithm.

2.1. Understanding radiology text

A radiology report is a text-based document written by a certified
radiologist. It contains descriptive information about a patient’s history,
symptoms, and interpretations of relevant radiology images [19].
Normally, these reports are written in a specific radiology reporting
format and divided into the following sections: comparison, indication,
findings, and impressions. The findings section is the most crucial part
of the report as it describes medical observations of normal/abnormal
features in a presumptive order [20]. Fig. 1 shows an example in the
form of an IU X-ray [21] dataset. Here, each report is associated with
two chest X-ray images.

A generated radiologist report must follow critical protocols in-
cluding the correct use of medical terms to describe normal/abnormal
diagnoses. They must also include supporting visual evidence in the
form of detected disease location and key attributes of the image. There
are several lexicons utilized in writing radiology reports including
Metathesaurus1 [22], RadLex2 [23], and medical subject headings
(MeSH).3 Metathesaurus [22] is a collection of more than five million
concept names and a million biomedical terms from over one-hundred
controlled vocabulary systems. In contrast, RadLex contains more
radiology-specific terms than Metathesaurus including imaging
methods and equipment. Furthermore, MeSH offers comprehensive
controlled vocabulary created by the United States National Library of
Medicine (NLM) to index scientific journal articles and books. For ex-
ample [24], utilized MeSH terms to mine reports in IU X-rays [21].
However, brain tumors and lung diseases do not have a fixed standar-
dized lexicon. Instead, they have a semi-standardized description
system.

The use of DL has shown promising results in generating radiology
reports from images [20,25–27]. First, researchers generated a short
descriptive sentence of a radiology image using only the image features.
Then, they attempted to produce more informative reports with

multiple sentences. However, this introduced new challenges in content
selection and ordering. Using this method, radiology reports could in-
clude information that cannot be detected from image features, such as
the nationality of the patient [24]. On the other hand, this text-based
DL algorithm is insufficient as it does not include specific image labels.

2.2. Understanding radiology images

There are different types of radiology images, including X-ray,
computed tomography (CT), magnetic-resonance imaging (MRI), posi-
tron emission tomography (PET), and ultrasound (US) [28]. Fig. 2
shows an example of various radiology imaging modalities and char-
acteristics. Globally, chest radiography is the most common imaging
examination that demands correct and immediate interpretation to
avoid life-threatening diseases [29]. A single radiologist may need to
read and report more than 100 chest X-rays per day [30]. This imaging
technology is starting to be employed as the first-line imaging modality
by hospitals in Italy and UK to diagnose patients with the coronavirus
disease 2019 (COVID-19) [31]. Although chest X-ray is less sensitive
than chest CT, it is easy to document and may reduce the risk of cross-
infection by utilizing portable radiology units [32]. Recently, several
large chest x-rays datasets were released to enable researchers to ad-
vance the state-of-the-art for the proposed DL models [29,33]. Conse-
quently, chest X-rays have gained significant attention from DL re-
searchers.

Picture archiving and communication systems (PACS) have been
used since the 1990s by modern hospitals for radiology storage, man-
agement, transmission, and processing. To enhance standards, digital
imaging and communications in medicine (DICOM) was introduced in
1993. It included advanced report and result features [41]. Where
DICOM has assisted with many image processing procedures, PACS is
an e-system mainly used for the acquisition of medical images.

From DL perspective, radiology images are pre-processed differently
due to the varied processor and memory restrictions. Some images, such
as X-rays, are two-dimensional (2D) while others such as CT and MRI
scans are three-dimensional (3D). Currently, DL models that are trained
on simple 2D images are more successful than 3D images which add an
extra dimension to the problem [42]. However, experience needs to be
gained in applying DL to X-rays because they are 2D projections of a 3D
human body [43]. In other words, DL algorithms may need to be ad-
justed to handle the physiological structures that lie on top of each
other in the X-rays. Significantly, DL, in particular CNN, can process an
input of 2D and 3D images with only minor adjustments. After all, deep
learning in radiology images is still an area of active ongoing research.

So far, DL has been successfully applied to medical image analysis
and acknowledged as a powerful tool for image classification [44], le-
sion detection [45], segmentation [46], content-based image retrieval
(CBIR) [47], report generation from images, and image generation and
enhancement [48]. To allow practitioners to rapidly implement DL
solutions for image analysis tasks, NiftyNet4 [49] features an open
source framework for many medical imaging CNN algorithms under the

Fig. 1. Example of a radiology report and associated images (obtained from an IU X-ray) [21].

1 https://www.nlm.nih.gov/research/umls/knowledge_sources/
metathesaurus.

2 https://www.rsna.org/en/practice-tools/data-tools-and-standards/radlex-
radiology-lexicon.

3 https://www.ncbi.nlm.nih.gov/pubmed/. 4 http://www.niftynet.io.
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Apache License. Several surveys have introduced the role of DL algo-
rithms in medical image analysis, focusing on CNN [12,13]. Biswas
et al. [50] classifies DL models based on application area, including
cardiovascular, neurology, mammography, microscopy, dermatology,
gastroenterology, and pulmonary applications.

2.3. Text/Image radiology dataset

Table 1 compares publicly available radiology image datasets with
relevant reports in the medical informatics domain. These include the
following: the Indiana University chest X-ray (IU X-ray) [21], ChestX-
ray14 [34], MIMIC-CXR [33], pathology detection in chest radiographs
(PadChest) [37], the digital database for screening mammography
(DDSM), and the pathology education informational resource (PEIR).
Researchers have employed these multimodal medical databases for
developing and evaluating DL models. Nevertheless, there are few large
and accessible datasets adequate for developing CNN models. In addi-
tion, researchers conduct experiments using different database subsets.
This makes it difficult to compare the performance of their proposed
approaches.

At present, IU X-ray [21] and ChestX-ray14 [34] are the most

frequently used datasets by researchers in the medical informatics do-
main. The IU X-ray [21] collection consists of 7470 chest X-rays with
3955 radiology reports available through OpenI. OpenI is an open-
source collection of literature and biomedical images. It contains IU X-
ray, 2064 orthopedic illustrations, and more than three million images
from PubMed and the National Library of Medicine (NLM). Researchers
[20,24–27] have used this dataset to demonstrate how their proposed
DL models label and describe the diseases associated with the images.
However, data in IU X-ray comes from fully anonymized reports in two
hospitals. As a result, some keywords, findings and images are missing.
ChestX-ray14 [34] is from the national institute of health (NIH) clinical
center. It is an open access chest X-ray dataset that includes 112,120 X-
ray images with fourteen thorax disease labels (atelectasis, consolida-
tion, infiltration, pneumothorax, edema, emphysema, fibrosis, effusion,
pneumonia, pleural thickening, cardiomegaly, nodule, mass, and
hernia). These labels were mined from the original radiologist reports.
However, the complete text reports are not publicly available.

CheXpert [29] and MIMIC-CXR [33] are the latest co-released open
source datasets that use the CheXpert labeler to extract annotations
from unstructured radiology reports. CheXpert is a dataset that consists
of 224,316 chest radiographs from 65,240 patients labeled due to the
presence of 14 common chest radiographic observations. ChestX-ray14
uses an automatic labeler to extract labels from reports. On the other
hand, CheXpert offers radiologists labeled validation and expert scores.
The largest open access chest radiography to date is MIMIC-CXR. This
includes 371,920 chest X-rays linked to 227,943 reports gathered from
the Beth Israel Deaconess Medical Center. Through a limited release
version of this dataset [35], conducted the first work that trained a
collection of CNNs using a huge dataset to recognize thorax diseases.
Then [36], used MIMIC-CXR v1.0.0. to show that processing multi-view
chest X-rays simultaneously resulted in better classification perfor-
mance.

PadChest [37], however, is labeled with the largest number of an-
notations including 174 radiology findings, 19 diagnoses, and 104
anatomic locations. This dataset contains 160,868 chest X-rays from six
different views and the associated 109,931 reports collected from San
Juan Hospital. It provides researchers with the opportunity to address
unfinished investigations such as measuring DL model performance
using the chest X-ray views [38].

Apart from X-ray collections, DDSM [39] and PEIR are open source

Fig. 2. Radiology imaging modalities and characteristics. Note: X-ray (a), CT
(b), MRI (c), US (d), image characteristics (e).

Table 1
Radiology image/text dataset (available online).

Dataset Description Base annotation Employed by

IU X-Ray1

Demner-Fushman, et al.
[21] 2015

7470 chest x-rays
3955 radiology reports

Thorax diseases [20,24–27]

ChestX-ray142

Wang, et al. [34] 2017
112,120 chest x-rays
14 thoracic labels

Atelectasis, consolidation, infiltration, pneumothorax, edema, emphysema, fibrosis, effusion,
pneumonia, pleural thickening, cardiomegaly, nodule, mass and hernia

[20,27,29]

CheXpert3

Irvin, et al. [29] 2019
224,316 chest x-rays
14 annotated observations

No finding, enlarged cardamom, cardiomegaly, lung opacity, lung lesion, edema, consolidation,
pneumonia, atelectasis, pneumothorax, pleural effusion, pleural other, fracture, support devices

–

MIMIC-CXR4

Johnson, et al. [33] 2019
371,920 chest x-rays
227,943 studies

[35,36]

PadChest5

Bustos, et al. [37] 2019
160,868 chest x-rays
109.931 Spanish reports

174 radiology findings, 19 diagnoses and 104 anatomic locations [38]

PEIR Digital Library6 4732 images in 20
categories
one sentence per image

Multiple (e.g. abdomen, adrenal, aorta, breast, chest, heads and kidney) [25]

DDSM7

Heath, et al. [39] 2000
2620 breast mammography
3 labels

Normal, benign and malignant [40]

1 https://openi.nlm.nih.gov/faq.php.
2 https://nihcc.app.box.com/v/ChestXray-NIHCC.
3 https://stanfordmlgroup.github.io/competitions/chexpert/.
4 https://archive.physionet.org/physiobank/database/mimiccxr/.
5 http://bimcv.cipf.es/bimcv-projects/padchest/.
6 http://peir.path.uab.edu/library/index.php?/category/106.
7 http://marathon.csee.usf.edu/Mammography/Database.html.
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datasets of different image modality. For example, PEIR is a digital li-
brary created by the University of Alabama for medical education. It
contains sentence-level descriptions of 20 different body parts, in-
cluding the abdomen, adrenal, aorta, breast, chest, head, and kidneys.
On the other hand, DDSM [39] contains 2620 scanned films of normal,
benign, and malignant mammography studies with verified pathology
information. It is supported by the University of South Florida and it has
been widely used by researchers due to its scale and ground truth va-
lidation. Kisilev et al. [40] selected a subset of the DDSM database that
consisted of 974 images annotated with semantic descriptors to test
their multi-task-loss CNN based model. This outperforms the accuracy
of current techniques by up to 10% when detecting and describing le-
sions.

Moreover, researchers have trained their deep learning frameworks
on several privately-owned datasets, including the PACS from the NIH
clinical center [51] and CX−CHR [62]. The PACS from the NIH clinical
center consists of 216,000 2D images with radiology reports that offer
visual references to pathologies. The CX−CHR dataset contains chest X-
rays of 35,500 patients and contains Chinese reports.

3. Deep learning (DL)

Currently, DL is a promising subfield of machine learning (ML)
which, in turn, is a subfield of artificial intelligence (AI) (Fig. 3a). Ar-
tificial intelligence occurs when a machine is composed of multiple
layers, uses raw data as input, and improves the representations re-
quired for pattern recognition [52]. Essentially, a linear combination vk
of input signals …x x x x, , , m1 2 3 adds bias bk to apply an affine trans-
formation and generate the output yk (Fig. 3b) where

…w w w w, , ,k k k km1 2 3 are the weights, and (.) is the activation function
(described in Section 3.1). This main computational element, known as
the neuron or perceptron, enables the DL machine to learn from ex-
perience without the need to specify the desired knowledge. Currently,
DL has already succeeded in many computerized applications including
computer vision, NLP, speech processing, gaming, and cross-media

retrieval. From a radiology perspective, DL models can be fed with
multiple datatypes and iteratively distort them as they flow from layer
to layer [9] (Fig. 3c). This is a particularly relevant function for radi-
ology data as it consists of reports and linked images.

Researchers have classified DL models into three categories: su-
pervised, unsupervised, and reinforcement learning (RL) [8,10]. Su-
pervised learning mainly infers a mapping function =y f x( ) from input
x to output y such as multilayer perceptron (MLP), recurrent neural
network (RNN), and convolutional neural network (CNN). Often RNNs
are accompanied with CNNs to generate medical image descriptions
[24,27,51,53] (Fig. 3d). In contrast, unsupervised DL takes onboard
remarkable properties related to the distribution of x including Boltz-
mann machines (BM) and autoencoders (AE). Deep RL is a semi-su-
pervised technique for partially labeled datasets as it can act with
limited input data. For instance, if a deep RL network is fed with several
tumor cells, it can overinterpret an image to detect insignificant aspects
[54]. To enable effective and robust radiology report generation, using
RL, HRGR-Agent [20] trained the retrieval policy module and the
generation module using sentence-level and word-level rewards, re-
spectively.

3.1. Activation function

An activation function is a critical element of DL as it adds non-
linearity by taking the weighted sum of inputs in one layer and con-
verting it into an output value [16]. Then, this value is conveyed to
nodes in the subsequent layer. Table 2 illustrates common activation
functions including sigmoidal, hyperbolic tangent (TanH), rectified
linear unit (ReLU) [55], and leaky ReLU [56]. Sigmoidal is one of the
earliest activation methods used in neural networks but can cause
network instability or freeze network learning. The limitations of TanH
are similar as it is a scaled form of the sigmoid function.

On the other hand, ReLU performs better than sigmoidal functions
as it was the first to be successfully used for neural networks by [55]. It
converts the weighted sum of inputs to zero if they are less than zero or
to the same input if they are equal to or greater than zero. Leaky ReLU
is an extension of ReLU that outputs small negative numbers if the in-
puts are negative. If not, it produces the same outputs as ReLU. Re-
searchers tend to begin with ReLU and then apply other activation
functions if they do not obtain optimal results.

All traditional CNN activation functions output a single result for a
single input except Softmax. Instead, Softmax produces multiple out-
puts. It is useful as it converts the output of the last neural network
layer into a probability distribution. In practice, Softmax is used in

Fig. 3. Deep learning.

Table 2
Activation function for DL.

Name Equation Plot Characteristics

Sigmoid sigmoid x( ) Range [0,[1]
Not zero centered
Have exponential
centered

= + e x
1

(1 )

TanH tahn x( ) Range [-1, 1]
Zero centered=

+
1

e x
2

(1 2 )

ReLU [55] ReLU x( ) It doesn’t saturate
Fast= <x0, 0

OR
= x x, 0

leaky ReLU
[56]

leaky ReLU x( ) Overcome dead ReLU
problem= <x x, 0

OR
= x x, 0
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multiclass classifications, while sigmoid is used in binary classifications
[57].

3.2. Convolutional neural network (CNN)

A CNN [58] is a type of multi-layer neural network that uses
minimal processing to recognize visual patterns from pixel images. One
of the main advantages of CNN is its ability to automatically amalga-
mate low-level features (including lines and edges) into high-level
features (such as shapes) within subsequent layers [12]. For each
convolutional layer l, a set of k kernels …W W W, , , k1 2 with biases

…b b b, , , k1 2 convolve an input image to generate feature maps Xk.
These generated maps have a non-linear transform (.) in each layer
(refer to Eq. 1.).

= +X W X b( * )k k
l l

k
l1 1 1 1 (1)

There are several CNN models including deep feed-forward CNNs
for images and word-embedding networks for text. The histogram of
oriented gradients (HOG) and scale-invariant feature transform (SIFT)
are two examples of convolutional image features. However, deep CNNs
significantly outperform shallow learning frameworks and hand-crafted
image features as they need larger collections of training data [59].

Recently, CNNs have become the primary frameworks for mining
medical data as the number of papers published on CNN methods and
applications has increased rapidly since 2015 [12,13]. In radiology,
CNN is the most applicable DL algorithm for performing various tasks
including medical image classification and segmentation [60]. Inter-
estingly, CNNs can transfer learning from a large database unrelated to
the current task (e.g., ImageNet) into a related one (e.g., IU X-ray).

3.2.1. Architecture
The most popular CNN architectures were proposed by top com-

petitors at the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). This includes the following architectures: AlexNet [61],
ZFNet [62], Visual Geometry Group (VGG-16) [63], GoogLeNet [64],
Residual Network (ResNet) [65], ResNeXt [66], CUImage Team [67],
and SENets [68] (see Table 3). ImageNet is a project that aims to create
an enormous visual database that can be utilized by researchers in the
field of visual object recognition [69]. It should be noted that ImageNet
runs ILSVRC, an annual contest where software programmers classify
and detect objects and scenes.

In 2012, [61] noted how AlexNet was the first model to con-
siderably improve image classification performance. It obtained a 16.4
% error rate using the ImageNet dataset. This model minimized the
overfitting problem using data augmentation and dropout procedures.
Two remarkable models were then proposed in 2014: the VGG-16 (7.4
% error rate), which reduced the spatial size of the input in each layer,
and GoogLeNet (6.67 % error rate), which permitted procedures such as
pooling and convolutional to run in parallel to each other. AlexNet uses
eight convolutional layers, 650,000 neurons (60,000,000 parameters)
and has an error rate of 16.4 %. In contrast, VGG-16 consist of 16
convolutional layers, 133,000,000 parameters and 7.4 % error rates
[70]. It is clear that VGG-16 is a significantly deeper model than

AlexNet, which is why its error rate is lower.
By 2015, automatic image classification models could outperform

human manual annotation with a 5 %–10 % error, respectively. This
first occurred when [65] introduced Microsoft deep ResNet. This con-
tains 152 layers that apply residual connections in CNNs to address the
issues of vanishing gradients [71] and degradation. The ILSVRC 2016
winner was the CUImage team [67], who assembled the following six
architectures: Inception v3, Inception v4, Inception ResNet v2, ResNet
200, Wide Resnet 68, and Wide Resnet 3. However, the 2016 runner-up,
ResNext [66], introduced a simple framework that consisted of bran-
ches in a residual block. Each branch conducted a transformation ag-
gregated by a summation function at the end. Although this model is
based on ResNet and uses less layers, it outperforms ResNet, Inception-
v3 and Inception-ResNet [72]. It can be generalizable by reshaping it
using other models like AlexNet.

In 2017, the ILSVRC concluded as researchers considered the pro-
blem of supervised image classification solved [7]. The 2017 winner
was squeeze and excitation networks (SENet). This network is based on
the ResNeXt-152 model and adds recalibration to adaptively reweight
feature maps.

To generate radiology reports, researchers follow some ImageNet
CNN network settings as well as other reliable architectures. These
include network in network (NIN) [73] and densely connected con-
volutional network (DenseNet) [74] with slight modifications. For in-
stance [24], notes that AlexNet is a complex method. Instead, they use
NIN as it is a simpler and faster model. In addition, they suggest that
GoogLeNet is the baseline CNN model and use it to train their data.
Although AlexNet and GoogLeNet have different depths, Wang et al.
[59] utilized both to train their looped deep pseudo-task optimization
network model (LDPO). When extracting features from images, VGG16
is the preferred choice for the majority of researches in the visual
pattern recognition community [19]. This is largely because VGG16
offers a uniform CNN architecture and publicly available weight con-
figuration5. For example, [51,53] adopt this architecture to read radi-
ology images.

3.3. Recurrent neural network (RNN)

RNN is a neural network that processes sequential information
while maintaining a state vector within its hidden neurons [75]. Eq. (2)
is the basic RNN that preserves a hidden state h at a time t that is the
outcome of a non-linear mapping sing its input xt and the previous state
ht 1, where W and R are the shared weight matrices over time. On the
other hand, CNNs are the preferable networks for pixels in an image
and other clear spatial structure data. Recurrent neural networks work
well with natural language and similar sequentially ordered data [10].
They can predict next words based on the former ones in the language
model [76]. However, it is hard to save information for a long time as
the weights are equal in all RNN layers. Another issue is the require-
ment for a backpropagation algorithm to train RNN as the gradients
either grow or shrink. Consequently, variations of RNN have been in-
troduced to overcome these limitations.

= + +h W Rh b( )t x t 1t (2)

The most popular extensions of RNN are Long Short-Term Memory
(LSTM) [77] and the Gated Recurrent Unit (GRU) [78]. Long short-term
memory uses memory blocks to save the network temporal state and
gates to monitor the information flow. On the other hand, GRU is a
lighter form of RNN than LSTM in terms of topology, computation ex-
penses, and complexity. At present, researchers must choose between
the faster model offered by GRU that needs fewer parameters or the
higher performing model provided by LSTM that contains sufficient
data and computational power [8].

Table 3
CNN architectures (ILSVRC winners).

Winer by year No. of conv. layers Top-5 error rate (%)

2012 - AlexNet [61] 8 16.4
2013 - ZFNet [62] 8 11.7
2014 second - VGG-16 [63] 16 7.4
2014 first - GoogLeNet [64] 22 6.67
2015 - ResNet [65] 152 3.57
2016 second – ResNeXt [66] 101 3.03
2016 first – CUImage Team [67] 152 2.99
2017 - SENets [68] 152 2.25

5 http://www.robots.ox.ac.uk/∼vgg/research/very_deep/.
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3.4. Software

Convolutional architecture for fast feature embedding (Caffe)6 [79]
is the most common software package utilized by practitioners to au-
tomate radiology reporting. Using Caffe [51], trained their deep CNN
model to map X-rays into specified document categories, and [40]
implemented a multi task loss CNN model to describe medical images.
Using Caffe [53,59,80], acquired pre-trained CNN models on ImageNet
for their radiology annotation systems.

However, there are several other software packages that support
CNN and RNN implementations, including TensorFlow7 [81] and Py-
Torch8 [82]. Using both TensorFlow and Tensorpack9, [27] implement
a text–image embedding network (TieNet) that produces thorax dis-
eases reports. DualNet [35] and the hybrid retrieval-generation re-
inforced agent (HRGR-Agent) [20] frameworks are based on PyTorch.
These software packages are open-source projects that utilize Nvidia
support to enhance performance through graphics processing unit
(GPU) acceleration. To note, training DL can be accelerated through
advanced GPU that facilitates parallel processing.

4. Generating radiology text

Natural language processing (NLP) explores the use of machines to
process/understand human languages and carry out useful tasks.
Traditional learning algorithms for NLP are often incapable of ab-
sorbing a large volumes of training data as feature engineering requires
significant human expertise [83]. Several years ago, NLP was brought
forward by a new era of deep learning algorithms using a vision named
“NLP from scratch” [84]. Such DL waves have the capacity to learn
representations from text through layers of nonlinear neurons for fea-
ture extraction. Since 2010, DL has been productively applied to NLP
tasks [85] including natural language generation (NLG) from meaning
representation. This can be considered the inverse of natural language
understanding [86]. Through this, DL can generate fluent, commu-
nicative, and new image descriptions.

Applied to a free-form radiologist text, NLP assists with converting
text into a structured report, extracting meaningful information, and
classifying reports [87]. A recent NLP technique is neural language
modelling, which includes word embedding and recurrent language
models [88]. Word embedding converts words into vectors to allow less
sparse data representation. Using this, DL models can be trained with
smaller datasets. Advanced word embedding was applied to a large
collection of radiology reports to generate word vectors of radiology
image descriptions [20,25–27,51,89]. Recurrent language models pre-
dict word output based on a sequence of arbitrary past words. As such,
they are not limited by fixed input dimensions.

Generally, radiology reports are semi-structured and use standar-
dized documentation templates [33]. Consequently, researchers have
proposed open-source NLP tools to extract controlled vocabulary from
radiology reports. Examples of these tools include NegBio labeler10 [28]
and CheXpert labeler11. NegBio was developed by NIH and used to
annotate the ChestX-ray14 dataset. CheXpert was built by the Stanford
Machine Learning Group and based on NegBio. However, CheXpert
achieved a higher F1 score.

5. DL models for generating radiology report

Overall, the purpose of the proposed models was to generate

interpretations of radiology images. During training, the input for these
models was a collection of images and associated reports, as shown in
Fig. 4. First, researchers proposed models to align disease descriptions
to the relevant visual regions using multimodal embedding. They then
used the outcomes as training data for additional models. This training
data allowed the additional models to learn how to generate the image
descriptions.

Table 4 categorizes the existing approaches into three main levels to
summarize their main characteristics. These categories are as follows:
words, sentences, and paragraphs. It is clear that the accessibility of a
large volume of radiology reports and images allowed deep CNNs to
become the premier learning method and address the automatic text
report generation issue.

Table 5 compares the results of the generated reports through
quantitative evaluation matrices (defined in section 6.1). To the best of
our knowledge, the multi-task learning model [25] outperforms ex-
isting approaches in generating radiology paragraphs using the IU X-ray
dataset.

5.1. Word level

In 2015, the first text/image DL framework with a large-scale PACS
was proposed by [51] and used in a national research hospital. This
process is explained in more detail in [19]. This system uses approxi-
mately 780,000 radiology reports and around 216,000 2D images to
extract and mine the semantic interactions between them. This frame-
work is capable of matching images with their descriptions auto-
matically using NLP. Latent Dirichlet Allocation (LDA) [90] was applied
to obtain the semantic interpretation of diagnostic images, and a CNN
was trained to map the images into document categories. The weak
supervision method was used to generate interpretations of radiology
images, and the strict supervision method was used to detect the ab-
sence or presence of several common diseases. In the testing set, the
match rate between predicted disease words and actual words in the
report was 0.56. This system represents a significant step towards ac-
curately generating radiologist reports using enormous medical image
databases.

Nevertheless, the clusters in [51] are highly unbalanced. This is
because most images are clustered into three groups as they were de-
rived from text modalities only (approximately 780,000 reports). On
the other hand, Wang et al. [59] created the LDPO model, which
formed clusters from text reports as well as image cues to offer a more
visually coherent and balanced method in terms of clusters. As such,
LDPO is an iterative system that extracts deep CNN features based on
fine-tuned radiologist topic labels and mutual information shared be-
tween discovered clusters. Afterwards, the framework either stops the
iteration and outputs optimized clustering or inputs the refined cluster
labels into the next iteration to fine-tune the CNN model. At the end,
NLP is applied to the radiology reports to count and rank the frequency
of each word. This process allocates the most common words, which are
then used as the keyword labels for each cluster. To evaluate the
system, a board of certified radiologists reviewed the resultant key-
words and sampled images. The results of applying the LDPO model to
discovery clusters were found to be visually coherent and highly ba-
lanced clusters. Nevertheless, the looped property is specific to deep
CNN classification-clustering methods as other kinds of classifiers
cannot learn satisfactory image characteristics simultaneously.

Using a dataset of more than 16,000 X-ray images and Chinese
radiology reports, [53] trained a CNN model to automatically label new
images with one of ten pre-defined labels: normal, increased lung
marking, aortosclerosis, increased heart shadow, pleural thickening,
pulmonary interstitial hyperplasia, costophrenic angle blunting, pleural
effusion, emphysema, and bronchitis. These disease labels were ex-
tracted from the reports using basic NLP techniques. In addition, this
system can generate the correct label with an accuracy of 97 %. How-
ever, it performed poorly in cases including increased heart shadows

6 http://caffe.berkeleyvision.org/.
7 https://www.tensorflow.org/.
8 http://pytorch.org/.
9 https://github.com/ppwwyyxx/tensorpack/.
10 https://github.com/ncbi-nlp/NegBio.
11 https://github.com/stanfordmlgroup/chexpert-labeler.
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and pleural thickening due to the unbalanced database. In this dataset,
half of the images were labelled as “normal” cases.

The above frameworks involve two separate models. Therefore, a
single model trained end-to-end that can move directly from a radi-
ology text-image database to region-level annotation has yet to be
created.

CheXNet [80] is one of the most popular DL models that utilized the
Chest-Xray14 dataset [34]. It contains more than 112,000 images from
a reformed version of DenseNet with 121 convolution layers. CheXNet
outperformed a panel of three radiologists when annotating pneumonia
and 13 other diseases. Furthermore, it applied class activation mapping
(CAM) [91] to produce heatmaps that visualized the indicative regions
of the disease in the image. Using the same dataset but with ResNet-152
architecture instead, ChestNet [92] incorporated an additional atten-
tion branch into CNN based on gradient-weighted class activation
mapping (Grad-CAM) [93]. This exploited the correlation between la-
bels and disease locations.

DualNet [35] and the multi-view model [36] employed the MIMIC-
CXR [33] dataset, which is over four times the size of Chest-Xray14
[34], to demonstrate the benefits of simultaneously processing frontal
and lateral chest X-rays when detecting common thorax diseases. They
used DenseNet-121 and ResNet-50, respectively. The multi-view model
adopted discriminative learning rates [94] and introduced the stage
wise training approach to reduce training time and increase accuracy.
This had an average labelling performance of 0.779 AUC.

5.2. Sentence level

In contrast to recent studies that only detected diseases in images
using text/image datasets [35,36,51,53,59,80,92]. Shin et al. [24] de-
scribed the context of the disease in a similar way to a radiology report.
They introduced a recurrent neural cascade model to detect and de-
scribe disease location, severity, and the affected organs to offer a better
understanding of the disease. This system computed labels based on
joint text/image contexts after initial CNN/RNN training using single
object labels in a chest X-ray dataset from IU X-ray [21]. Eventually, it
generated image descriptions by training the RNN with the new CNN
image embedding (refer to Eq. 3.), where I denotes the input image, t is
the time step, N is the number of words in the annotation, Y is the

output word, S is the correct word and him text: represents the joint
image/text context vector from the first iteration, =iter 0.

= =
=

== =L I S P y S CNN I h( , ) [ ( ) | { ( )| }]
t

N

RNN t t iter im text
1

1 :iter iter1 0
(3)

Similarly, the multi-task-loss CNN-based system generated radi-
ologist sentences to describe tumor lesions (shape, margin, and density)
in breast images [40]. Essentially, this system was trained using a
DDSM dataset and a private dataset of mammography and ultrasound
to produce and rank the rectangular regions of interest (ROIs). The
highest ROIs were fed into the remaining network layers which, in turn,
generated semantic descriptions of subsequent ROIs. This system pro-
vided automatic lesion detection in breast images alongside semantic
descriptions. Jing et al. [25] added a co-attention mechanism to de-
scribe abnormal lesions by discovering visual and semantic informa-
tion.

5.3. Paragraph level

The first work towards generating truly radiology reports with long
and diverse topics is a multitask learning model with a co-attention
mechanism. It contains a hierarchical LSTM to produce long descriptive
paragraphs through capturing long-range semantics [25]. Although this
model achieved outstanding results when generating descriptive radi-
ology reports using the IU X-ray dataset, the produced paragraphs
contained repeated sentences due to a lack of contextual coherence in
the hierarchical models.

On the other hand, [26] generated sentences using the same dataset
through an attention input of image encoding and the first generated
sentence. This method maintained coherence in the resultant para-
graphs as it uses CNN and LSTM in a recurrent way. As [26] filtered
reports without two associated images (frontal and lateral chest X-rays)
and reports without complete sections from the IU X-ray dataset, the
training was performed using a small dataset. As a result, the generated
text was missing some abnormal descriptions and contained sentences
that were different from the ones in the training set.

Using the same dataset, [27] proposed a text-image embedding
network (TieNet) that integrated multi-level attention with a CNN-RNN
framework for classification and reporting. The CNN, RNN, and LSTM
were based on ResNet-50, the visual spatial attention approach [96],
and standard LSTM, respectively. Multiple RNNs may have enhanced
TieNet by learning the disease attributes more efficiently which, in
turn, may have improved the auto-report quality.

Recently, [20] introduced the first retrieval model with a generative
neural network using RL. This is called the hybrid retrieval-generation
reinforced agent (HRGR-Agent). The HRGR-Agent extracts visual fea-
tures of chest X-rays from the last convolutional layer of DenseNet or
VGG19 and improves text generation by empowering RNN with an
attention mechanism. The experiments on two medical databases, IU X-
ray and CX-CHR, showed high performance in generating precise text
that described rare abnormal findings. The CX-CHR database utilized
was a proprietary dataset of Chinese reports and linked images. This
made it difficult to compare the HRGR-Agent with other recent state-of-
the-art models.

In contrast, [97] used the largest public intensive care unit (ICU)
patient dataset to introduce a framework that learned multiple disease
labels from two types of features: medical charts and notes. Instead of
considering the correlation between diseases in the same way as ex-
isting methods, this approach used disease-specific features. However,
the paper only demonstrated an intuitive implementation of the dis-
ease-specific feature construction, rather than using multiple clusters
for positive and negative instances.

Fig. 4. Framework of the radiology reporting models.
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6. Evaluation

Evaluating radiology reporting models has become increasingly
essential due to the rapid introduction of DL approaches to large
medical datasets. Both quantitative (machine-based) and qualitative
(human-based) evaluations have been employed to compare the
benchmark reporting models. Qualitative evaluation is more expensive
than quantitative and is not repeatable. However, it may offer addi-
tional valuable measurement for generated reports.

6.1. Quantitative

The common evaluation metrics for image captioning and machine
learning are bilingual evaluation understudy (BLEU) [98], recall-or-
iented understudy for gisting evaluation (ROUGE) [99], METEOR
[100], consensus-based image description evaluation (CIDEr) [101],
and semantic propositional image caption evaluation (SPICE) [102].
Table 6 compares these matrices using their original purposes, main
ideas, strengths, and weaknesses.

These evaluation matrices are employed by researchers to compare
their proposed models of generating radiology reports against the
benchmarks. They automatically calculate an accuracy score for a new
model by observing the similarity/differences between the generated
captions and the radiologist’s written descriptions from empirical ob-
servation. Increased performance is indicated through higher scores in
BLEU, ROUGE, METEOR, CIDEr, and SPICE. The MS COCO evaluation
kit12 offers the implementation script for these evaluation matrices in
terms of caption generation.

BLEU-n metrices [98] are precision metrices for machine translation
that are computed by multiplying n-gram precision scores by a penalty
for short sentences. They have been employed to measure the similarity
between a pair of sentences. A superior version of BLEU was proposed
by [103]. However, BLEU suffers from a low performance in explicit
word matching.

ROUGE [99] is a recall metric for summarization systems that
matches intersecting n-grams, word sequences, and word pairs.
ROUGE-L is a version of ROUGE that calculates the longest common sub
sequences between two sentences.

METEOR [100] is a recall metric for machine translation that uti-
lizes synonyms, paraphrase matching, precision, and unigram recall to
obtain harmonic overlapping between sentences. It overcomes BLEU’s
weaknesses in failing to locate semantic similarity by applying synonym
matching based on WordNet. Nonetheless, observing synonyms alone
may not be adequate to capture semantic similarity.

CIDEr [101] is an evaluation metric for image captioning that cal-
culates cosine similarity between candidate image ci annotation and the
associated sentences produced by humans. It works in a purely lin-
guistic means, but its evaluations are ineffective as it sometimes pro-
vides large weight for insignificant sentence details.

SPICE [102] is a recent evaluation metric for image caption that
uses scene-graph tuples to parses a sentence into semantic tokens in-
cluding object classes, relation types, and attribute types. Thus, the
quality of the parsing determines CIDEr’s performance. In some cases,
this may result in failure as illustrated by an example in [104]. In a
similar way to METEOR, SPICE utilizes WordNet synonym matching for
tuple matching.

The different design choices of evaluation metrics, such as n-gram
and scene-graph, result in metrics that have different strengths and
weaknesses. For example, BLEU, ROUGE, and CIDEr use only exact n-
gram matches, but METEOR adds synonyms and paraphrases. Although
BLEU is based on precision, METEOR and ROUGE are recall-based
metrics. As a consequence, [104] suggested that existing evaluation
metrics should complement each other in measuring the quality,
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accuracy, and robustness of the generated annotations.
The original purpose of these common matrices was not to evaluate

generated radiology reports. Therefore, some researchers have designed
complementary metrices. For instance, a metric called keywords accu-
racy (KA) calculates accuracy by dividing the number of correctly
generated words by the number of ground truth words from the medical
text indexer (MTI) annotations [26].

6.2. Qualitative

Qualitative evaluation involves comparing ground truth reports
with mode generated reports using content coverage, length, medical
term accuracy, and text fluency. For example, [20] utilized Amazon
mechanical Turk (MTurk) to conduct surveys. Here, participants chose
the generated report that best matched the ground truth report. Jing
et al. [25] manually compared the generated paragraphs from their co-
attention model with the ground truth to establish which models cap-
tured normality and abnormality most efficiently.

7. Discussion and future direction

Deep learning algorithms have the potential to be used in all fields
of medicine and could significantly alter the way medicine is practiced.
Future DL research should utilize the wealth of medical images and
relevant diagnostic reports that are available in PACS to automatically
produce clinical reports [13]. Recent attention has focused on gen-
erating text reports based on medical data.

Beyond traditional medical image annotation
[35,36,51,53,59,80,92] and single sentence-based descriptions
[24,25,40], generating radiologist coherent paragraphs has recently
attracted researchers [20,25–27]. This presents a more practical and
challenging application that can bridge visual medical features with
radiologist interpretation. Notably, CNN and RNN have quickly become
popular choices for mining radiology images and text, respectively. The
main challenge now lies in how to obtain ImageNet-level semantic la-
bels on a large collection of medical images.

Deep learning has several limitations that should be addressed to
improve the task of radiology reporting. A reliable reporting system
may require tens of millions of image/text samples which are not yet
readily available [14]. Furthermore, these samples should be structured
without scattered and noisy information to facilitate the learning pro-
cess for DL models. To date, there are few medical datasets that are
large and accessible enough to train multimodal deep CNN. Improving
the quantity and quality of radiology data remains an ongoing task.

In a radiology database, the data is unbalanced because abnormal
cases are rarer than normal cases. For example, the healthy cases in the
IU X-ray chest X-Ray dataset consisted of 2696 images (37%) compared
to the 840 images (12%) that represented common diseases and 655
images (9%) that showed less common diseases [24]. Attempted to
address this issue by training CNN with different regularization
methods including batch normalization and data dropout. In addition,
it is challenging to automate labels for medical images as radiologist
reports often include ambiguous words. This includes disease prediction
rather than if it is present or not [19]. It should be noted that it is
difficult to compare various models as researchers conduct their ex-
periments using diverse and sometimes private datasets.

Researchers consider DL as a black box that takes an input, such as a
medical image, and generates an output to state a conclusion (e.g.
“there is a 0.8 probability of melanoma”) without clear explanations
[14,105]. This is unacceptable in the medical domain as radiologist
need to provide findings as well as underlying justifications. For in-
stance, researchers may attempt to provide the rationale behind the
radiologist’s description using their proposed models. Considerably
more research will need to be conducted to offer reasonable explana-
tions for DL model outcomes.

Most research uses CNN to apply text-image mining in medical
imaging. As such, CNN has the widest variety in architecture including
AlexNet, VGG-16, GoogLeNet, and ResNet. In the last three years, end-
to-end trained CNNs have become the preferred approach for medical
imaging interpretation. As such, this could be considered standard
practice for mining medical images. In addition, it is likely that the
volume of research in leveraging radiology reports for CNN training

Table 5
Quantitative evaluation of generated radiology reports based on DL models.

Model Database BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGH ROUGH_L CIDER

Sentence-level

Recurrent neural cascade model [24] LSTM IU X-Ray [21] 79.3 9.1 0.0 0.0 – – – –
GRU 78.5 14.4 4.7 0.0 – – – –

Multi-task learning model [25] PEIR 0.300 0.218 0.165 0.113 0.149 0.279 – 0.329

Paragraph-level

Multi-task learning model [25] IU X-Ray [21] 0.517 0.386 0.306 0.247 0.217 0.447 – 0.327
Multimodal recurrent model with attention [26] 0.464 0.358 0.270 0.195 0.274 0.366 – –
TieNet [27] 0.2860 0.1597 0.1038 0.0736 0.1076 – 0.2263 –
HRGR-Agent [20] 0.438 0.298 0.208 0.151 – 0.322 – 0.343

CX-CHR 0.673 0.587 0.530 0.486 – 0.612 – 2.895

Table 6
Evaluation metrics (image caption measures).

Metric Purpose Algorithm Strengths Weaknesses

BLEU [98] 2002 machine translation Ngram precision Correlates with human judgments Lack of explicit word matching
ROUGE [99] 2004 document summarization Ngram recall Favours long sentences Works only in single document

summarization
METEOR [100] 2005 machine translation N withgram synonym matching Benefit from synonyms and paraphrase

matching
Lack of semantic similarity capturing

CIDEr [101] 2015 image captioning N withgram corpu reweighting Works in linguistics means May weight irrelevant sentence’s details
SPICE [102] 2016 image captioning fobjects fattributes frelations* * Can match noun / object between captions Reliant on the performance of parsing

M.M.A. Monshi, et al. Artificial Intelligence In Medicine 106 (2020) 101878

10



will only increase in the near future.
Creating multipurpose reporting systems for radiologists that can

detect several diseases simultaneously remains an ongoing challenge.
Medical findings often correlate with certain body parts such as the
spread of liver metastases and lymph nodes. Despite the promising re-
sults of generating radiologist reports, several questions require ad-
dressing. For example, what are the clinically related image annotations
to be defined? How should the large volume of radiologist images re-
quired for DL techniques be labeled? To what extent is the deep CNN
framework generalizable for radiology images? Future work should
explore valuable semantic diagnostic information and map the many
well-written radiologist reports and relevant images.

8. Conclusion

This paper presented a comprehensive literature survey on multi-
modal datasets to train deep DL models that generate radiology text
from images. This field is crucial as these techniques can quickly and
accurately provide additional diagnostic criteria by reporting un-
observable data from the images and text.
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