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Abstract

Electronic health records (EHR) contain large volumes of unstructured text, requiring the application of Information
Extraction (IE) technologies to enable clinical analysis. We present the open source Medical Concept Annotation
Toolkit (MedCAT) that provides: a) a novel self-supervised machine learning algorithm for extracting concepts us-
ing any concept vocabulary including UMLS/SNOMED-CT; b) a feature-rich annotation interface for customising
and training IE models; and c) integrations to the broader CogStack ecosystem for vendor-agnostic health system
deployment. We show improved performance in extracting UMLS concepts from open datasets (F1:0.448-0.738 vs
0.429-0.650). Further real-world validation demonstrates SNOMED-CT extraction at 3 large London hospitals with
self-supervised training over ~8.8B words from ~17M clinical records and further fine-tuning with 6K clinician an-
notated examples. We show strong transferability (F1>0.94) between hospitals, datasets and concept types indicating
cross-domain EHR-agnostic utility for accelerated clinical and research use cases.

Keywords: Electronic Health Record Information Extraction, Clinical Natural Language Processing, Clinical
Concept Embeddings, Clinical Ontology Embeddings

1. Introduction formats, resulting in data that is hard to manipulate, ex-

tract and analyse. There is a need for a platform to accu-

Electronic Health Records (EHR) are large repositories
of clinical and operational data that have a variety of use
cases from population health, clinical decision support,
risk factor stratification and clinical research. However,
health record systems store large portions of clinical in-
formation in unstructured format or proprietary structured
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rately extract information from freeform health text in a
scalable manner that is agnostic to underlying health in-
formatics architectures.

We present the Medical Concept Annotation Toolkit
(MedCAT): an open-source Named Entity Recognition +
Linking (NER+L) and contextualization library, an anno-
tation tool and online learning training interface, and in-
tegration service for broader CogStack[1] ecosystem in-
tegration for easy deployment into health systems. The
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MedCAT library can learn to extract concepts (e.g. dis-
ease, symptoms, medications) from free-text and link
them to any biomedical ontology such as SNOMED-
CT][2] and UMLS|3]. MedCATtrainer[4]], the annotation
tool, enables clinicians to inspect, improve and customize
the extracted concepts via a web interface built for train-
ing MedCAT information extraction pipelines. This work
outlines the technical contributions of MedCAT and com-
pares the effectiveness of these technologies with existing
biomedical NER+L tools. We further present real clinical
usage of our work in the analysis of multiple EHRs across
various NHS hospital sites including running the system
over 20 years of collected data pre-dating even the usage
of modern EHRs at one site. MedCAT has been deployed
and contributed to clinical research findings in multiple
NHS trusts throughout England[5. [6].

1.1. Problem Definition

Recently NER models based on Deep Learning (DL),
notably Transformers[7] and Long-Short Term Memory
Networks[8]] have achieved considerable improvements in
accuracy[9]]. However, both approaches require explicit
supervised training. In the case of biomedical concept ex-
traction, there is little publicly available labelled data due
to the personal and sensitive nature of the text. Building
such a corpus can be onerous and expensive due to the
need for direct EHR access and domain expert annotators.
In addition, medical vocabularies can contain millions of
different named entities with overlaps (see Fig. [T). Ex-
tracted entities will also often require further classification
to ensure they are contextually relevant; for example ex-
tracted concepts may need to be ignored if they occurred
in the past or are negated. We denote this further clas-
sification as meta-annotation or a ‘contextualisation’ of a
recognised entity. Overall, using data-intensive methods
such as DL can be extremely challenging in real clinical
settings.

This work is positioned to improve on current
tools such as the Open Biomedical Annotator (OBA)
service[10] that have been used in tools such as
DeepPatient[11] and ConvAE[12] to structure and infer
clinically meaningful outputs from EHRs. MedCAT al-
lows for continual improvement of annotated concepts
through a novel self-supervised machine learning algo-
rithm, customisation of concept vocabularies, and down-
stream contextualisation of extracted concepts. All of

which are either partially or not addressed by current
tools.

1.2. NER+L in a Biomedical Context

Due to the limited availability of training data in
biomedical NER+L, existing tools often employ a
dictionary-based approach. This involves the usage of a
vocabulary of all possible terms of interest and the asso-
ciated linked concept as specified in the clinical database
e.g. UMLS or SNOMED-CT. This approach allows the
detection of concepts without providing manual annota-
tions. However, it poses several challenges that occur fre-
quently in EHR text. These include: spelling mistakes,
form variability (e.g. kidney failure vs failure of kidneys),
recognition and disambiguation (e.g. does ‘hr’ refer to the
concept for ‘hour’ or ‘heart rate’ or neither).

1.3. Existing Biomedical NER+L Tools

We compare prior NER+L tools for biomedical doc-
uments that are capable of handling extremely large
concept databases (completely and not a small sub-
set). MetaMapl[[13] was developed to map biomedi-
cal text to the UMLS Metathesaurus. MetaMap can-
not handle spelling mistakes and has limited capabili-
ties to handle ambiguous concepts. It offers an opaque
additional ‘Word-Sense-Disambiguation’ system that at-
tempts to disambiguate candidate concepts that conse-
quently slows extraction. Bio-YODIE[14] improves upon
the speed of extraction compared to MetaMap and in-
cludes improved disambiguation capabilities, but requires
an annotated corpus or supervised training. SemEHR[15]]
builds upon Bio-YODIE to somewhat address these short-
comings by applying manual rules to the output of Bio-
YODIE to improve the results. Manual rules can be
labour-intensive, brittle and time-consuming, but they
can produce good results[16]. cTAKES[17], builds on
existing open-source technologies—the Unstructured In-
formation Management Architecture[18]] framework and
OpenNLP[19] the natural language processing toolkit.
The core cTAKES library does not handle any of the pre-
viously mentioned challenges without additional plugins.
ScispaCy[20] is a practical biomedical/scientific text pro-
cessing tool, which heavily leverages the spaCyE] library.

2https://github.com/explosion/spaCy
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Figure 1: A fictitious example of biomedical NER+L with nested entities and further ‘meta-annotations’; a further classification or ‘context’ applied
to an already extracted concept e.g. ‘time current’ indicates extracted concepts are mentioned in a temporally present context. This context may
also be referred to as an attribute of a recognised entity. Each one of the detected boxes (nested) has multiple candidates in the Unified Medical
Language System (UMLS). The goal is to detect the entity and annotate it with the most appropriate concept ID, e.g. for the span Status, we have

at least three candidates in UMLS, namely C0449438, C1444752, C154

In contrast to other tools mentioned, ScispaCly is primarily
a supervised model for NER with limited linking capabil-
ities. CLAMP][21] is a comprehensive clinical NLP soft-
ware that enables recognition and automatic encoding of
clinical information in narrative patient reports. Similar
to ScispaCy it is a supervised approach and not directly
comparable to other tools mentioned here. MetaMap,
BioYODIE, SemEHR, cTakes and ScispaCy only sup-
port extraction of UMLS concepts. BioPortal[22]] offers
a web hosted annotation API for 880 distinct ontologies.
This is important for use cases that are not well supported
by only the UMLS concept vocabulary[23] or are better
suited to alternative terminologies[24]. However, trans-
mitting sensitive hospital data to an externally hosted an-
notation web API may be prohibited under data protection
legislation[25]. The BioPortal annotator is a ‘fixed’ algo-
rithm so does not allow customisation or improvements
through machine learning or support of non-english lan-
guage corpora[26].

CLAMP, and in a limited capacity cTakes and Se-
mEHR, support further contextualisation of extracted
concepts. MetaMap, BioYODIE and scispaCy treat this
as a downstream task although it is often required before
extracted concepts can be used in clinical research. Med-

6481.

CAT addresses these shortcomings of prior tools allowing
for flexibly clinician driven definition of concept contex-
tualisation, supporting modern information extraction re-
quirements for biomedical text.

2. Methods

MedCAT presents a set of decoupled technologies for
developing IE pipelines for varied health informatics use
cases. Fig. [2]shows a typical MedCAT workflow within
a wider typical CogStack deployment. CogStack queries
selectively extract relevant documents from the EHR in-
cluding the structured and unstructured (freetext) notes.
With MedCAT we firstly agree with clinical partners the
relevant terms within a clinical terminology(1) and train
MedCAT self-supervised(2). We load the model into the
MedCATtrainer annotation tool(3) alongside a random
sample of the extracted EHR documents(4). Clinical do-
main experts validate and improve the model using super-
vised online learning(5). Metrics demonstrate the quality
of a fine-tuned MedCAT model(6) and once desired per-
formance is reached the fine-tuned model is exported(7)
and run upon the wider free-text EHR dataset(8,9), fa-
cilitating downstream clinical research through the newly



structured data(10).

This section presents the MedCAT platform technolo-
gies, its method for learning to extract and contextualise
biomedical concepts through self-supervised and super-
vised learning. Integrations with the broader CogStack
ecosystem are presented alongside source codeﬂ Finally,
we present our experimental methodology for assessing
MedCAT in real clinical scenarios.

2.1. The MedCAT Core Library

We now outline the technical details of the NER+L al-
gorithm, the self-supervised and supervised training pro-
cedures and methods for flexibly contextualising linked
entities.

2.1.1. Vocabulary and Concept Database
MedCAT NER+L relies on two core components:

e Vocabulary (VCB): the list of all possible words that
can appear in the documents to be annotated. It is
primarily used for the spell checking features of the al-
gorithm. We have compiled our own VCB by scraping
Wikipedia and enriching it with words from UMLS.
Only the Wikipedia VCB is made public, but the full
VCB can be built with scripts provided in the MedCAT
repository  (https://github.com/CogStack/MedCAT).
The scripts require access to the UMLS Metathesaurus
(https://www.nlm.nih.gov/research/umls).

e Concept Database (CDB): a table representing
a biomedical concept dictionary (e.g. UMLS,
SNOMED-CT). Each new concept added to the CDB is
represented by an ID and Name. A concept ID can be
referred to through multiple names with identical con-
ceptual meanings such as heart failure, myocardial fail-
ure, weak heart and cardiac failure.

2.1.2. The NER+L Algorithm

With a prepared CDB and VCB, we perform a first pass
NER+L pipeline then run a trainable disambiguation al-
gorithm. The initial NER+L pipeline starts with cleaning
and spell-checking the input text. We employ a fast and

3https://cogstack.atlassian.net/wiki/spaces/C0OGDOC/
pages/733380653/Natural+Language+Processing

lightweight spell checker (http://www.norvig.com/spell-
correct.html) that uses word frequency and edit distance
between misspelled and correct words to fix mistakes. We
use the following rules:

e A word is spelled against the VCB, but corrected only
against the CDB.

e The spelling is never corrected in the case of abbrevia-
tions.

e An increase in the word length corresponds to an in-
crease in character correction allowance.

Next, the document is tokenized and lemmatized to en-
sure a broader coverage of all the different forms of a
concept name. We used SciSpaCy[20], a tool tuned for
these tasks in the biomedical domain. Finally, to detect
entity candidates we use a dictionary-based approach with
a moving expanding window:

1. Given a document d;
2. Set window_length = 1 and word_position = 0
3. There are three possible cases:

(a) The text in the current window is a concept in
our CDB (the concept dictionary), mark it and go
to 4. Note that MedCAT can ignore token order,
but only for up-to two tokens (stopwords are not
counted in the two token limit).

(b) The text is a substring of a longer concept name,
if so go to 4.

(c) Otherwise reset window_length to 1, increase
word_position by 1 and repeat step 3

4. Expand the window size by 1 and repeat 3.

Steps 3 and 4 help us solve the problem of overlapping
entities shown in Fig. [T]

2.2. Self-Supervised Training Procedure

For concept recognition and disambiguation, we use
context similarity. Initially, we find and annotate men-
tions of concepts that are unambiguous, (e.g. step 3. a. in
the previous expanding window algorithm) then we learn
the context of marked text spans. For new documents,
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Figure 2: An example MedCAT workflow using the MedCAT core library and MedCATtrainer technologies to support clinical research.

when a concept candidate is detected and is ambiguous
its context is compared to the currently learned one, if the
similarity is above a threshold the candidate is annotated
and linked. The similarity between the context embed-
dings also serves as a confidence score of the annotation
and can be later used for filtering and further analysis. The
self-supervised training procedure is defined as follows:

1. Given a corpus of biomedical documents and a CDB.

2. For each concept in the CDB ignore all names that are
not unique (ambiguous) or that are known abbrevia-
tions.

3. Iterate over the documents and annotate all of the con-
cepts using the approach described earlier. The filter-
ing applied in the previous steps guarantee the entity
can be annotated.

4. For each annotated entity calculate the context embed-
ding V.

5. Update the concept embedding Vi oncp: With the con-
text embedding V.

The self-supervised training relies upon one of the
names assigned to each concept to be unique in the CDB.
The unique name is a reference point for training to learn
concept context, so when an ambiguous name appears (a
name that is used for more than one concept in the CDB)
it can be disambiguated. For example, the UMLS concept
1d:C0024117 has the unique name Chronic Obstructive
Airway Disease. This name is unique in UMLS. If we
find a text span with this name we can use the surround-
ing text of this span for training, because it uniquely links
to C0024117. ~ 95% of the concepts in UMLS have at
least one unique name.

The context of a concept is represented by vector em-
beddings. Given a document d; where C, is a detected
concept candidate (Equation. [T)) we calculate the context
embedding. This is a vector representation of the context
for that concept candidate (Equation. [2). That includes
a pre-set (s) number of words to the left and right of the
concept candidate words. Importantly, the concept candi-
date words are also included in context embedding calcu-
lation as the model is assisted by knowing what words the



surrounding context words relate to.

Cx
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Where:

d - An example of a document

wi., - Words in the document, or to be more specific
tokens

C, - The detected concept candidate that matches the

words wy and wy,

@

Venix =
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Where:
Vensx - Calculated context embedding
- Word embedding

s - Words from left and right that are included in the
context of a detected concept candidate. Typically, s is
set to 9 for long context and 2 for short context.

To calculate context embeddings we use the word
embedding method Word2Vec[27]]. Contextualised em-
bedding approaches such as BERT[28]] were also tested
alongside fastText[29] and GloVe[30]. Results presented
in Section [3.1] show the BERT embeddings (the Med-
CAT U/MI/B configuration) perform worse on average
compared to the simpler Word2Vec embeddings. Fast-
Text and GloVe perform similarly to Word2 Vec, therefore
our default implementation uses Word2Vec for ease of
implementation. We trained 300 dimensional Word2Vec
embeddings using the entire MIMIC-III[31] dataset of
53,423 admissions.

Once a correct annotation is found (a word uniquely
links to a CDB name), a context embedding V. is cal-
culated, and the corresponding Vi oncep: 18 updated using
the following formula:

Veoncept Ventx
sim = max(0, PL ey 3)
”Vconcept” ”Vcntx”
1
Ir = (4)
Cconcept
Vconcepf =Vc0ncept +1Ir- (1 - Slm) : Vcnrx (5)

Where:

Concepr - Number of times this concept appeared during
training

sim - Similarity between Veoncepr and Ve

Ir - Learning rate

The update rule is based on the Word2Vec model and
aims to make the concept embedding Vi onceps similar to
the context in which the concept was presently found
Vensee The scaling which is achieved via the cosine sim-
ilarity is used to favour new contexts in which a concept
appears over contexts that frequently appeared in the past.

To prevent the context embedding for each concept be-
ing dominated by most frequent words, we used nega-
tive sampling as defined in[27]. Whenever we update the
Veoncept With Ve, we also generate a negative context by
randomly choosing K words from the vocabulary consist-
ing of all words in our dataset. Here K is equal to 2s i.e.
twice the window size for the context (s is the context size
from one side of the detected concept, meaning in the pos-
itive cycle we will have s words from the left and s words
from the right). The probability of choosing each word
and the update function for vector embeddings is defined
as:

AUD (w)¥*
PO =5 S ©)
Swi) _Z” 7N
1 K
Vncntx = E Z Vw,- (8)
VC()"C@ nt VﬂCntX
sim = max(0, L ) O]
I Vconcept I 1 Viensll
Vconcepz =Vconcept = 1Ir-sim - Viyenx (10)

Where:

n - Size of the vocabulary

P(w;) - Probability of choosing the word w;

K - Number of randomly chosen words for the negative
context

Vientx - Negative context

2.2.1. Supervised Training Procedure
The supervised training process is similar to the self-
supervised process but given the correct concept for the



extracted term we update the Vy,cepr using the calculated
V. as defined in Eq. This no longer relies upon the
self-supervised constraint that at least one name in the set
of possible names for a concept is unique as the correct
term is provided by human annotators.

2.2.2. Contextualisation of Identified and Linked Con-
cepts: Meta-Annotations

Once a span of text is recognised and linked to a con-
cept, further contextualisation or meta-annotation is often
required. For example, a simple task of identifying all pa-
tients with a fever can entail classifying the located fever
text spans that are current mentions (e.g. the patient re-
ports a fever vs the patient reported a fever but ...), are
positive mentions (e.g. patient has a high fever vs patient
has no sign of fever), are actual mentions (e.g. patient is
feverish vs monitoring needed if fever reappears), or are
experienced by the patient (e.g. pts family all had high
fevers). We treat each of these contextualization tasks
as distinct binary or multiclass classification tasks Meta-
annotations are equivalent to ‘attributes’ in cTakes par-
lance.

The MedCAT library provides a ‘MetaCAT’ com-
ponent that wraps a Bidirectional-Long-Short-Term-
Memory (Bi-LSTM) model trainable directly from Med-
CATtrainer project exports. Bi-LSTM models have con-
sistently demonstrated strong performance in biomedi-
cal text classification task[32, |33, [34]] and our own re-
cent work[35]] demonstrated a Bi-LSTM based model out-
performs all other assessed approaches, including Trans-
former models. MetaCAT models replace the specific
concept of interest for example ‘diabetes mellitus’ with
a generic parent term of the concept ‘[concept]’. The for-
ward / backward pass of the model then learns a concept
agnostic context representation of the concept allowing
MetaCAT models to be used across concepts as observed
in our results (Section. [3.3.3). The MetaCAT API fol-
lows standard neural network training methods but are
abstracted away from end users whilst still maintaining
enough visibility for users to understand when MetaCAT
models have been trained effectively. Each training epoch
displays training and test set loss and metrics such as pre-
cision, recall and F1. An open-source tutorial showcas-
ing the MetaCAT features are available as part of the se-

ries of wider MedCAT tutorialsEl Once trained, MetaCAT
models can be exported and reused for further usage out-
side of initial classification tasks similarly to the MedCAT
NER+L models.

2.3. MedCATTrainer: Annotation Tool

MedCATtrainer allows domain experts to inspect, mod-
ify and improve a configured MedCAT NER+L model.
The tool either actively trains the underlying model after
each reviewed document (facilitating live model improve-
ments as feedback is provided by human users) or sim-
ply collects and validates concepts extracted by a static
MedCAT model. The active learning is done on a con-
cept level and MedCATtrainer will automatically mark
some concepts as correct/incorrect and ask for user in-
put for others where it is not confident enough. Version
0.1[4] presented a proof-of-concept annotation tool that
has been rewritten and tightly integrated with the Med-
CAT library, whilst providing a wealth of new features
supporting clinical informatics workflows. We also pro-
vide extensive documentation E] and pre-built containersE]
updated with each new release facilitating easy setup by
informatics teams.

2.4. Datasets and Experimental Setup
2.4.1. Named Entity Recognition and Linking Open
Datasets
MedCAT concept recognition and linking was vali-
dated on the following publicly datasets:

1. MedMentions[36] - consists of 4,392 titles and ab-
stracts randomly selected from papers released on
PubMed in 2016 in the biomedical field, published in
the English language, and with both a Title and Ab-
stract. The text was manually annotated for UMLS
concepts resulting in 352,496 mentions. We calculate
that ~ 40% of concepts in MedMentions require dis-
ambiguation, suggesting a detected span of text can be
linked to multiple UMLS concepts if only the span of
text is considered.

4https://colab.research.google.com/drive/1zzV3XzFJ9
1hhCJ680DaQV20QZ5XnHa06X

°https://github.com/CogStack/MedCATtrainer/blob/mas
ter/README . md

®https://hub.docker.com/r/cogstacksystems/medcat-tr
ainer
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2. ShARe/CLEF 2014 Task 2[37] - we used the develop-
ment set containing 300 documents of 4 types - dis-
charge summaries, radiology, electrocardiograms, and
echocardiograms. We’ve used the UMLS annotations
and ignored the attribute annotations.

3. MIMIC-II[31]] - consists of ~ 58,000 de-identified
EHRs from critical care patients collected between
2001-2012. MIMIC-III includes demographic, vital
sign, and laboratory test data alongside unstructured
free-text notes.

We attempted to use the SemEval 2019 shared task for
the evaluation of the NER+L taskﬂ but dataset access is
currently under review for all requests to i2b2.

2.4.2. Clinical Use Case Datasets
Our further experiments used real world EHR data from
the following UK NHS hospital Trusts:

e King’s College Hospital Foundation Trust (KCH)
Dataset:

— 300 free text inpatient notes for Covid-19 positive
patients, 121 Epilepsy clinic letters 2018-2019,
100 Cardiac Clinic letters, 200 echocardiographic
reports, 100 CT pulmonary angiograms, 700 10k
character chunks of clinical notes of patients with
Diabetes Mellitus/ Gastroenteritis/ Inflammatory
bowel disease/ Crohn’s disease/ Ulcerative colitis
for supervised training.

-~

17M documents with ~ 8.8B tokens (en-
tire KCH electronic health record from 1999
to 2020 consisting documents from ‘multi-era’,
multi-vendor electronic health records (including
iSoft iCM, EMIS Symphony and AllScripts) and
multiple geographically-distributed hospital sites
(Kings College Hospital, Princess Royal Univer-
sity Hospital and Orpington Hospital) were pro-
cessed for self-supervised training.

e South London and Maudsley Foundation Trust
(SLaM): 2200 free text notes for patients with a pri-
mary or secondary diagnosis of severe mental illness

"https://competitions.codalab.org/competitions/1935

between 2007 and 2018 with each document reviewed
for only a specific physical health comorbidity that
may or may not appear in the note.

o University College London Hospitals Foundation Trust
(UCLH) Covid-19 Datasets: 300 Free text clinical
notes for Covid-19 positive or suspected patients from
Jan - Apr 2020 from single-vendor electronic health
record (Epic).

We used two large biomedical concept databases and
prepared them as described in our source-code reposi-
toryf] the databases are:

e UMLS 2018AB: 3.82 million concepts and 14 mil-
lion unique concept names from 207 source vocabu-
laries.

o SNOMED CT UK edition: >659K concepts. The
UK SNOMED CT clinical extension 20200401 and
UK Drug Extension 20200325 with ICD-10 and
OPCS-4 mappings.

2.4.3. Named Entity Recognition and Linking Experi-
mental Setup

We use MedMentions[36], ShARe/CLEF[37] and
MIMIC-III[31] datasets in our experiments. We denote
the ‘MedMentions’ dataset (i.e. all concepts) and ‘Med-
Mentions Disorders Only’ (i.e. only concepts grouped
under the Disorder group as shown in[38]]). We train
MedCAT self-supervised on MIMIC-III configured with
the UMLS database. @ We denote the version using
Word2Vec embeddings as ‘MedCAT’ and the one using
Bio_ClinicalBERT[39] embeddings as ‘MedCAT BERT’.

An annotation by MedCAT is considered correct only
if the exact text value was found and the annotation was
linked to the correct concept in the CDB. We contrast our
performance with the performance of tools presented in

Section. [I.3] [Appendix_C]|provides self-supervised train-

ing configuration details.

2.4.4. Clinical Use Case NER+L Experimental Setup
For our clinical use cases we extracted SNOMED-CT
terms, the official terminology across primary and sec-

8https://github.com/CogStack/MedCAT#building-concep
t-databases-from-scratch
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ondary care for the UK National Health Health service,
as this was preferred by our clinical teams over UMLS.

Fig. [3| shows our process of model training and distri-
bution to partner hospital Trusts. Initially, we built our
untrained MedCAT model using the SNOMED-CT con-
cept vocabulary (M1), we then trained it self-supervised
on the MIMIC-III dataset (M2). Next, the entire KCH
EPR (17M documents with 8.8B tokens) is used for self-
supervised training (M3). We collect annotations with
clinician experts at KCH and train supervised (M4). We
share this model with each partner hospital site where fur-
ther self-supervised training (M5, M7) and specific su-
pervised training with their respective annotation datasets
(M6, M8).

Site-specific models (M3, M5, M7) are loaded into de-
ployed instances of MedCATtrainer and configured with
annotation projects to collect SNOMED-CT annotations
for a range of site specific disorders, findings, symptoms,
procedures and medications that our clinical teams are
interested in for further research (i.e. already published
work on Covid-19[5,6]). These included chronic (i.e.
diabetes mellitus, ischaemic heart disease, heart failure)
and acute (cerebrovascular accident, transient ischemic
attack) disorders. For comparison between sites we find
14 common extracted concept groups and
calculate F1 scores for each concept group and reporting
average, standard deviation (SD), and interquartile-range
(IQR).

We shared fine-tuned MedCAT models between KCH
and 2 NHS partner Trusts UCLH and SLaM. This was
a collaborative effort with each hospital team only hav-
ing access to their respective hospital EHR / CogStack in-
stance. Each site collected annotated data using MedCAT-
trainer, tested the original base model, a self-supervised
only trained model and a final supervised trained model
with the MedCATtrainer collected annotations.

2.4.5. Clinical Use Case Contextualisation Model Exper-
imental Setup

From ongoing and published work[5, |6]] we config-
ured and collected meta-annotation training examples and
trained a variety of contextualisation models per site as
defined in Table. [1l

Our experiments test the effectiveness of our meta an-
notation modelling approach to flexibly learn contextual

Site Task Values
KCH Presence Affirmed / Negated /
Hypothetical
Experiencer Patient / Family /
Other
Temporality Past / Present / Future
UCLH Negation Yes / No
Experiencer Yes / No
Problem Tempo- Past Medical Issue /
rality Current Problem
Certainty Confirmed / Sus-
pected
Irrelevant Yes / No
SLaM  Status Patient / Other / NA
Diagnosis Yes / No

Table 1: Meta Annotation Tasks Defined Per Site, KCH = King’s
College Hospital NHS Foundation Trust, UCLH = University College
London Hospitals NHS Foundation Trust, SLaM = South London and
Maudsley NHS Foundation Trust

cues by assessing cross-disorder and cross-site transfer-
ability (Section. To assess cross-disorder trans-
ferability of each of the 11 disorder groups (as specified
in[Appendix A} we use the SLaM collected ‘Diagnosis’
dataset that consists of 100 annotations for each disorder
group. We stratify our train/test sets by disorder, plac-
ing all examples for one disorder group in the test set and
use the remaining disorder examples as a train set. We
run this procedure 11 times so that each disorder group is
tested once. We average all scores of each fold and report
results.

To demonstrate cross-site transferability we derive an
equivalent meta-annotation dataset from the ‘Presence’
(KCH) and ‘Status’ (SLaM) datasets as they are seman-
tically equivalent despite having different possible anno-
tation values. We merge ‘Presence’ annotations from
Affirmed/Hypothetical/False to Affirmed/Other to match
classes available in SLaM. We then train and test new
meta annotation models between sites and datasets report
average results.
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Figure 3: Model provenance for NER+L clinical use case results between datasets and sites. M1-8, showing the MedCAT model instances, the data

and method of training and base model used across all sites.

3. Results

We firstly present our concept recognition and link-
ing results, comparing performance across previously de-
scribed tools in Section. [I.3] using the UMLS concept
database and openly available datasets presented in Sec-
tion. [2.4) We then present a qualitative analysis of learnt
concept embeddings demonstrating the captured seman-
tics of MedCAT concepts. Finally, we show real world
clinical usage of the deployed platform to extract, link
and contextualise SNOMED-CT concepts across multiple
NHS hospital trusts in the UK.

3.1. Entity Extraction and Linking

Table [2] presents our results for self-supervised train-
ing of MedCAT and NER+L performance compared with
prior tools using openly available datasets. Metrics for
all the tools were calculated consistently. Bold indi-
cates best performance. For each manual annotation we
check whether it was detected and linked to the cor-
rect Unified Medical Language System (UMLS) concept.
The metrics are precision (P), recall (R) and the har-
monic mean of precision and recall (F1). MedCAT mod-
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els were configured with UMLS concepts and trained
(self-supervised) on MIMIC-III: the base version (Med-
CAT) uses Word2Vec embeddings (trained on MIMIC-
III), while (MedCAT BERT) uses static word embeddings
from Bio_ClinicalBERT[39]]. For the BERT version of
MedCAT we do not use the full BERT model to calcu-
late context representations, but only the pre-trained static
word embeddings.

Our results show MedCAT improves performance com-
pared to all prior tools across all tested metrics (excluding
precision when compared to ScispaCy/CLAMP - which
are supervised models). We observe that the best perfor-
mance across all tools is achieved on the ShARe/CLEF
dataset. However, MedCAT still improves F1 perfor-
mance by 9 percentage points over the next best system.
We note the simpler Word2Vec embedding (base Med-
CAT) on average performs better than the more expres-
sive Bio_ClinicalBERT (BERT) embeddings. We pro-
vide a further breakdown of the range of performances
by MedCAT across MedMentions and ShARe/CLEF split
by UMLS semantic type in Table. [3]



Model \Dataset MedMentions MedMentions (Disorders Only) ShARe/CLEF

P R F1 P R F1 P R F1
SemEHR 0252  0.165 0.200 0.295 0499 0.371 0.680 0.623  0.650
Bio-YODIE 0316  0.143 0.197 0445 0366 0.402 0.700 0.607 0.650
cTAKES 0284 0.129 0.178 0.313 0375 0.342 0.567 0.640 0.601
MetaMap 0.305 0465 0368 0.358 0.460 0.403 0.755 0.540 0.630
ScispaCy* 0451 0408 0429 0487 0443 0464 0.711 0.463 0.561
CLAMP* 0.324  0.067 0.110 0.533 0.236 0.327 0.772 0.447 0.566
MedCAT BERT 0386 0475 0426 0459 0.513 0485 0.788 0.678 0.729
MedCAT 0406 0.500 0.448 0.470 0.523 0.495 0.796 0.688 0.738
+ 0 (MedCAT-Best) -0.045 0.035 0.019 -0.063 0.024 0.031 0.041 0.048 0.088

Table 2: Comparison of NER+L tools for the extraction of UMLS concepts. *The results for ScispaCy/CLAMP are not directly comparable to
other tools as they are supervised models.

. MedMentions ShARe/CLEF
Semantic Type Dataset p R F1 p R F1
T047 Disease or Syndrome 059 059 059 087 0.75 0.80
T121 Therapeutic or Preventive Procedure 0.52 0.52 0.52 NO DATA
T061 Pharmacologic Substance 049 038 043 NO DATA
T184 Sign or Symptom 0.58 0.70 0.64 0.86 0.75 0.80
T048 Mental or Behavioral Dysfunction  0.63 0.55 058 0.71 0.63 0.66

Table 3: MedCAT performance for different UMLS semantic types on MedMentions and ShARe/CLEF
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3.2. Qualitative Analysis

For concept disambiguation the MedCAT core library
learns vector embeddings from the contexts in which a
concept appears. This is similar to prior work[40], al-
though we also present a novel self-supervised training
algorithm, annotation system and wider workflow. Us-
ing our learnt concept embeddings we perform a qual-
itative analysis by inspecting concept similarities, with
the expectation that similar concepts have similar embed-
dings. Table. [] shows the learnt context embeddings
capture medical knowledge including relations between
diseases, medications and symptoms. We train MedCAT
self-supervised over MIMIC-III[31]] using the entirety of
UMLS, 3.82 Million concepts from 207 separate vocabu-
laries. Training configuration details are provided in [Ap-

3.3. Clinical Use Cases across Multiple Hospitals

The MedCAT platform was used in a number of clin-
ical use cases providing evidence for its applicability to
answer relevant, data intensive research questions. For
example, we extracted relevant comorbid health condi-
tions in individuals with severe mental illness and pa-
tients hospitalized after Covid-19 infection[5} |6, 41]].
These use cases analysed data sources from 2 acute sec-
ondary/tertiary care services at King’s College Hospital
(KCH), University College London Hospitals (UCLH)
and mental health care services South London and Maud-
sley (SLaM) NHS Foundation Trusts in London, UK.

The following results focus on providing an aggregate
view of MedCAT performance over real NER+L clinical
use-cases, meta-annotation or context classification tasks
and model transferability across clinical domains (physi-
cal health vs mental health), EHR systems and concepts.

3.3.1. Entity Extraction and Linking

Table. [5] shows our results for NER+L across hospi-
tal sites, model and training configurations as described
in Section Our KCH annotations were collected
across a range of clinicians, clinical research questions
and therefore MedCATtrainer projects. This unfortu-
nately led to a lack of resourcing to enable double annota-
tions and calculation of inter-annotator-agreement (ITA)
scores. SLaM annotations were collected by clinician
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/ non-clinician pairs with average inter-annotator agree-
ment (ITA) at 0.88, disagreements were discarded before
results were calculated to ensure a gold-standard. UCLH
ITA was at 0.85 between two medical students with an-
notation disagreements arbitrated by an experienced clin-
ician providing the final gold-standard dataset. For our
KCH results we use all annotations collected across vari-
ous MedCATtrainer projects within our 14 concept groups
as described in Section. 2.4.4 Both KCH and UCLH an-
notations contained occurrences of all 14 concept groups,
SLaM annotated notes did not contain any occurrences
of Dyspnea (SCTID:267036007), Pulmonary embolism
(SCTID:59282003) and Chest pain (SCTID:29857009).

3.3.2. Entity Extraction and Linking Model Transferabil-
ity

Table. [5] demonstrates the improved NER+L perfor-
mance that arises from using domain specific data first
self-supervised in MIMIC-III, then KCH. We observe fur-
ther improvements with clinician expertise with super-
vised training using the KCH data. With model shar-
ing to UCLH we observe a 0.044 average drop in F1
performance compared to KCH. Further self-supervised
training directly on UCLH data offers minimal average
performance gains but does reduce the F1 SD and IQR
suggesting there is less variability in performance across
concepts. Supervised training on a small (499) annota-
tions from UCLH delivers comparable performance to our
KCH trained model. For our experiments at SLaM we
see average F1 performance drop initially by 0.062 using
the KCH model directly on SLaM data. SLaM is a large
mental health service provider where EHRs are markedly
different to acute care hospitals KCH and UCLH. Inter-
estingly, successive self-supervised (M7) and supervised
training (M8) show benefits across all measures with final
performance largely similar to final KCH performance.

Importantly, this suggests performance is transferred
to the different hospital sites and initially only drops by
~0.04. With self-supervised training and further super-
vised training we are able to reach KCH performance with
~ Tx fewer manually collected examples at UCLH or
~ 2% fewer examples at SLaM.

3.3.3. Contextualisation Model Performance
Contextualisation of extracted and linked concepts is,
by design, bespoke per project. Due to this, reporting and



Disease — Medication Disease — Procedure ~Symptom — Medication

Hypertensive disease Neoplastic Process Fever

Metoprolol 50 MG Chemotherapy Levofloxacin
Metoprolol 25 MG Radiosurgery Vancomycin
Valsartan 320 MG FOLFOX Regimen Vancomycin 750 MG
Nadolol 20 MG Chemotherapy Regimen Azithromycin
Atenolol 100 MG Preoperative Therapy  Levofloxacin 750 MG
Enalapril 10 MG Anticancer therapy Dexamethasone

Oral form diltiazem Parotidectomy Lorazepam
nimodipine 30 MG Resection of ileum Acetaminophen

Table 4: Qualitative Analysis of Learnt Concept Embeddings. UMLS concepts that have highest cosine similarity between learnt vector embeddings
of concepts in bold. The first row defines the chosen concept and the target concept type. We have randomly chosen the most frequent concepts
and presented the 8 most similar concepts for each target concept type. For example, Neoplastic Process (C0006826) and the following rows show
the top 8 most similar Procedure concepts.

Model Training Configuration Hospital Test # Annotated F1 F1 F1
Site Examples SD=+ IQR
M1 Base - No Training KCH 3,358 0.638  0.297 0.333
M2 Base + Self-Supervised MIMIC-III KCH 3,358 0.840  0.109 0.150
M3 Base + Self-Supervised KCH KCH 3,358 0.889 0.078 0.103
M4 KCH Self-Supervised + KCH Supervised KCH 3,358 0.947  0.044 0.051
M4 KCH Self-Supervised + KCH Supervised UCLH 499 0.903 0.103 0.112
M5 KCH Self-Supervised + KCH Supervised UCLH 499 0.905 0.079 0.034
+ UCLH Self-Supervised
M6 KCH Self-Supervised + KCH Supervised UCLH 499 0.926  0.060 0.086
+ UCLH Self-Supervised + UCLH Super-
vised
M4 KCH Self-Supervised + KCH Supervised SLaM 1,425 0.885 0.095 0.088
M7 KCH Self-Supervised + KCH Supervised SLaM 1,425 0.907 0.047 0.082
+ SLaM Self-Supervised
M8 KCH Self-Supervised + KCH Supervised SLaM 1,425 0.945 0.029 0.025
+ SLaM Self-Supervised + SLaM Super-
vised

Table 5: NER+L Results Across Hospitals. MedCAT NER+L performance for common disorder concepts defined inby clinical teams.
Annotations for supervised learning are used as test sets for models M1, M2, M3, M5, M7. Average performance on a 10 fold cross-validation with
a held out test set is reported for models M4, M6, M8. KCH: Kings College Hospital; UCLH: University College Hospital; SLaM: South London
and The Maudsley NHS Foundation Trusts.
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comparing results across studies / sites is difficult as the
definitions of tasks and concepts collected are different
and therefore output trained models are bespoke. Table.
[6a] shows aggregate performance at each site, and Table.
show further experiments for cross-site and cross-
concept model transferability.

We achieve strong weighted (0.892-0.977) / macro
(0.841-0.860) F1 performance across all tasks and sites,
with breakdown of each metric per site/task available in
We report average macro and weighted F1
score demonstrating the variation in performance due to
unbalanced datasets across most tasks.

For cross-concept transferability, Table. @] shows a de-
crease in performance when stratifying by concept. How-
ever, we still observe a relatively high 0.82-0.85 score
suggesting the model is capable of learning disorder inde-
pendent representations that distinguish the classification
boundary for the ‘Diagnosis’ task, not just the disorder
specific contexts.

Our cross-site transferability results, Table sug-
gest the ‘Status’ context model that is trained on cross
site (i.e. KCH) data then fine-tuned on site specific data
(i.e. SLaM) performs better (+ 0. 0.08 Macro / + 0.09
Weighted F1) compared with training on only the SLaM
site specific training only (i.e. comparing row 3 and 4).

4. Discussion

4.1. Named Entity Recognition and Linking

Our evaluation of MedCAT’s NER+L method using
self-supervised training was bench-marked against exist-
ing tools that are able to work with large biomedical
databases and are not use-case specific. Our datasets and
methods are publicly available making the experiments
transparent, replicable, and extendable. With the Med-
Mentions dataset, using only self-supervised learning, our
results in [3.1] demonstrate an improvement on the prior
tools for both disorder detection (F1=0.495 vs 0.464) and
general concept detection (F1=0.448 vs. 0.429). We
observe all tools perform best with the ShARe/CLEF
dataset. We suggest this broadly due to the lack of am-
biguity and the more clinical setting allowing alternative
systems to also perform reasonably well.

We now discuss the result between our BERT and reg-
ular (Word2Vec) configured MedCAT models. Generally
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BERT, a deep neural embedding model, performs well
for a range of downstream tasks[28]] better than older ap-
proaches such as Word2Vec, i.e. a shallow neural embed-
ding. We believe this due to our use of pre-trained static
BERT embeddings that: 1) are not specifically trained
to produce similar values for words appearing in a sim-
ilar context, 2) Sub-word tokenization might be problem-
atic if the tokenizer was trained on a non-medical dataset
(no matter whether it was fine-tuned later on MIMIC-III,
pubmed or similar).

The general concept detection task with MedMentions
is difficult due to: the larger number of entities to be ex-
tracted, the rarity of certain concepts and the often highly
context dependent nature of some occurrences. Recent
work[42] highlights examples of ambiguous texts within
the MedMentions dataset such as ‘probe’ with 7 possible
labels (‘medical device’, ‘indicator reagent or diagnostic
aid’ etc.) Further work[40] also showed a deep learn-
ing approach (BioBERT+) that achieved F1=0.56. When
MedCAT is provided with the same supervised training
data we achieve F1=0.71. We find our improved per-
formance is due to the long tail of entities in MedMen-
tions that lack sufficient training data for methods such
BioBERT to perform well.

Our qualitative inspection of the learnt concept embed-
dings, [3.2] indicate learnt semantics of the target medical
domain. This result mirrors similar findings reported in
fields such as materials science[43]]. Recent work has
suggested an approach to quantity the effectiveness of
learnt embeddings[38] in representing the source ontol-
ogy. However, this relies on concept relationships to be
curated before assessment requiring clinical guidance that
may be subjective in the clinical domain. We leave a full
quantitative assessment of the learnt embeddings to future
work for this reason.

As more concepts are extracted the likelihood of con-
cepts requiring disambiguation increases, particularly in
biomedical text[44]. Estimating the number of train-
ing samples for successful disambiguation is difficult but
based on our experiments we need at least 30 occurrences
of a concept in the free text to perform disambiguation.
We provide more details in

Finally, we note that there are no limitations algo-
rithmically for MedCAT to support languages other than
our tested language, English. As MedCAT uses a con-
cept dictionary/vocab for NER+L, if there are existing re-



Table 6: Contextualisation Model Results

Site Task # Annotated examples Macro F1 Weighted F1
KCH Presence 37,310 0.846 0.929
Temporality 18,670 0.803 0.943
Experiencer 18,670 0.867 0.959
SLaM  Patient Diagnosis 1,152 0.904 0.913
Status 1,152 0.775 0.812
UCLH Negation 4,400 0.836 0.970
Experiencer 4,400 0.940 0.996
Problem Temporality 4,350 0.848 0.970
Certainty 4,160 0.836 0.970
Irrelevant 4,390 0.835 0.969

(a) Site Specific Contextualisation Model Performance. Weighted / Macro average F1 Meta annotation model performance custom defined and trained per site - detailed
definitions are provided in Task definitions are uniquely defined at each site, e.g. Experiencer at KCH considers the values patient / family / other whereas
Experiencer at UCLH only considers the value patient / other. Status at SLaM considers the values affirmed / other and Certainty at UCLH considers the values confirmed
/ suspected. We include all concepts of interest as defined under clinician guidance at each site, therefore site-to-site comparison in performance cannot be made.

Site Task Train / Test Split Macro F1 = Weighted F1
SLaM Diagnosis Concept Stratified 0.82 0.85
SLaM Diagnosis Random 0.90 0.91

(b) Cross Site Transferability Performance. 11 fold concept stratified CV vs randomized CV for SLaM ‘Diagnosis’ contextualisation task performance. The 11 concepts
were selected from NER+L experiment concepts available at SLaM (Supplementary Table 1). The ‘Diagnosis’ task at SLaM was used as this was our most balanced
dataset between all tasks and concepts collected.

Site Trained on # Annotated Examples Macro F1 Weighted F1

KCH KCH 37,310 0.89 0.93
SLaM KCH 37,310 0.71 0.91
SLaM SLaM 1,152 0.77 0.87
SLaM KCH + SLaM 38,462 0.85 0.96

(c) Cross-site transferability of the MetaCAT model for Presence (at KCH) / Status (at SLaM converted to values of Affirmed/Other) - as that was the only task that
existed across sites. Results show 10 fold CV where applicable - e.g. row 2 is direct testing of the KCH model on SLaM data, so no training is performed on the SLaM
side.
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sources (e.g. SNOMED-CT has already been translated
into Spanish, Dutch, Swedish and Danish) they can be
used directly for these languages with likely similar re-
sults. Alternatively, users could build their own custom
concept dictionary (CDB) for their language of choice.
Meta-annotation or contextualisation models also do not
have language specific features, i.e. English, and would
also likely perform well as they only rely on bi-directional
context from supervised examples to make predictions.

4.2. Clinical Use Cases

MedCAT models and annotated training data have been
implemented to be easily shared and reused, facilitating a
federated learning approach to model improvement and
specialisation with models brought to sensitive data si-
los. Our results in Section. demonstrate that we
are able directly apply models trained at one hospital site
(KCH) to multiple other sites, and clinical domains (phys-
ical vs mental health datasets) with only a small drop in
average F1 (0.044 at UCLH, 0.062 at SLaM), and after
small amount of additional site specific training, we ob-
serve comparable performance (-0.021 at UCLH, -0.002
at SLaM).

We also highlight that separate teams were able to de-
ploy, extract and analyse real clinical data using the tools
as is by following provided examples, documentation and
integrations with the wider CogStack ecosystem. Aca-
demic engineering projects are often built to support a sin-
gle research project, however MedCAT and the CogStack
ecosystem are scalable fit-for-purpose locally-tunable so-
lutions for teams to derive value from their data instead of
being stalled by poor quality code or lack of documenta-
tion. This means the model is broadly useful with top-up
tuning also available for specific scenarios, domains and
hospitals.

Each hospital site and clinical team freely defined the
set of contextualisation tasks and associated values for
each task. On aggregate our results show performance
is consistently strong across all sites and tasks (Macro F1:
0.841-0.860, Weighted F1: 0.892-0.977). With many of
the tasks the annotated datasets are highly unbalanced.
For example, the ‘Presence’ task at KCH, disorders are
often only mentioned in the EHR if they are affirmed
(e.g. “..pmhx: TIA..””), and only rarely are hypotheti-
cal (e.g. “...patient had possible TIA...”) or negated terms
(e.g. “...no sign of TIA...”) encountered. This explains

the differences in performance when reporting macro vs
weighted average F1 score. We would expect generaliza-
tion performance to lie between these reported metrics.

4.3. Limitations

MedCAT is able to employ a self-supervised training
method as the initial pass of the algorithm uses a given
unique name to learn and improve an initial concept em-
bedding. However, if the input vocabulary linked to the
concepts inadequately specifies possible names or the
given names of a concept rarely appear in the text then
improvements can only occur during standard supervised
learning. The main limitation of our approach is that it
greatly depends on the quality of the concept database.
Large biomedical concept databases (e.g. UMLS) how-
ever have a well specified vocabulary offering many syn-
onyms, acronyms and differing forms of a given concept.

A limitation of our concept embedding approach is if
different concepts appear in similar contexts disambigua-
tion and linking to the correct concept can be difficult. For
example, ‘OD’ can link to ‘overdose’ or ‘once daily’, both
referring to medications with very different implications.
We have rarely seen this problem during real-world cor-
pus. Our approach can also struggle if concepts appear
in many varying contexts that are rarely seen or annotated
for. With each new context updating the underlying con-
cept embedding this may decrease performance of the em-
bedding.

Supervised learning requires training data to be consis-
tently labelled. This is a problem in the clinical domain
that consists of specialised language that can be open to
interpretation. We recommend using detailed annotation
guidelines that enumerate ambiguous scenarios for anno-
tators.

4.4. Future Work

MedCAT uses a vocabulary based approach to detect
entity candidates. Future work could investigate the ex-
pansion of such an approach with a supervised learning
model like BERT[28]. The supervised learning model
would then be used for detection of entity candidates that
have enough training data and to overcome the challenge
of detecting new unseen forms of concept names. The
vocabulary based approach would cover cases with insuf-
ficient annotated training data or concepts that have few

16



different names (forms). The linking process for both ap-
proaches would remain the same self-supervised.

Our self-supervised training over the ~20 year KCH
EHR, as described in Section. took over two weeks to
complete. Future work could improve the training speed
by parallelizing this process since concepts in a CDB
are mostly independent of one another. Further work
could address effective model sharing, allowing subse-
quent users/sites to benefit from prior work, where only
model validation and fine-tuning is required instead of
training from scratch.

Finally, ongoing work aims to extend the MedCAT li-
brary to address relation identification and extraction. For
example, linking the extracted drug dosage / frequency
with the associated drug concept, or identifying relations
between administered procedures and following clinical
events.

5. Conclusions

This paper presents MedCAT a multi-domain clinical
natural language processing toolkit within a wider ecosys-
tem of open-source technologies namely CogStack.

The biomedical community is unique in that con-
siderable efforts have produced comprehensive concept
databases such as UMLS and SNOMED-CT amongst
many others. MedCAT flexibly leverages these efforts in
the extraction of relevant data from a corpus of biomedi-
cal documents (e.g. EHRs). Each concept can have one
or more equivalent names, such as abbreviations or syn-
onyms. Many of these names are ambiguous between
concepts. The MedCAT library is based upon a simple
idea: at least one of the names for each concept is unique
and given a large enough corpus that name will be used in
a number of contexts. As the context is learned from the
unique name, when an ambiguous name is later detected,
its context is compared to the learnt context, allowing us
to find the correct concept to link. By comparing the con-
text similarity we can also calculate confidence scores for
a provided linked concept.

With MedCAT we have built an effective, high per-
formance IE algorithm demonstrating improved perfor-
mance over prior solutions on open access datasets. We
have commoditised the development, deployment and im-
plementation of IE pipelines with supporting technologies
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MedCATtrainer / MedCATservice supporting the trans-
fer, validation, re-use and fine-tuning of MedCAT mod-
els across sites, clinical domains and concept vocabular-
ies. MedCAT deployments are enabled by extensive doc-
umentation, examples, APIs and supporting real world
clinical use cases outlined in prior published work.

Overall, MedCAT is built to enable clinical research
and potential improvements of care delivery by leveraging
data in existing clinical text. Currently, MedCAT is de-
ployed in a number of hospitals in the UK in silo or as part
of the wider CogStack ecosystem, with wide-ranging use
cases to inform clinical decisions with real-time alerting,
patient stratification, clinical trial recruitment and clinical
coding. The large volume of medical information that is
captured solely in free text is now accessible using state-
of-the-art healthcare specific NLP.
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Code Availability

All code for running the experiments, the toolkit and in-
tegration with wider CogStack deployments are available
here:

MedCAT: https://github.com/CogStack/MedC
AT

MedCAT Tutorials/Example Code: https://github
.com/CogStack/MedCAT/tree/master/tutorial

MedCATtrainer: https://github.com/CogStack/
MedCATtrainer

MedCATtrainer Examples: https://github.com/C
ogStack/MedCATtrainer/tree/master/docs

MedCATservice: https://github.com/CogStack/
MedCATservice

CogStack: https://github.com/CogStack/CogS
tack-Pipeline
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Appendices
Appendix A. SNOMED-CT Groupings

Each group was defined with expert clinical guidance.
S-267036007 - Dyspnea (finding), S-59282003 - Pul-
monary embolism, (disorder) S-29857009 - Chest pain
(finding) do not appear in the SLaM annotations for su-
pervised training.
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Table A.1: SNOMED-CT concept level groupings for clinical use cases

Container Concept

Concepts

S-73211009 - Diabetes mellitus(disorder)

S-44054006 - Diabetes mellitus type 2 (disorder)

S-46635009 - Diabetes mellitus type 1 (disorder)

S-422088007 - Disorder of nervous system co-occurrent and due to di-
abetes mellitus (disorder)

S-25093002 - Disorder of eye co-occurrent and due to diabetes mellitus
(disorder)

S-73211009 - Diabetes mellitus (disorder)

S-84114007 -Heart failure (disorder)

S-128404006 - Right heart failure (disorder)
S-48447003 - Chronic heart failure (disorder)
S-56675007 - Acute heart failure (disorder)
S-85232009 - Left heart failure (disorder)
S-42343007 - Congestive heart failure (disorder)
S-84114007 - Heart failure (disorder)

S-414545008 - Ischemic heart
disease (disorder)

S-413439005 - Acute ischemic heart disease (disorder)
S-413838009 - Chronic ischemic heart disease (disorder)
S-194828000 - Angina (disorder)

S-22298006 - Myocardial infarction (disorder)
S-414545008 - Ischemic heart disease (disorder)

S-38341003 - Hypertensive disorder,
systemic arterial (disorder)

S-31992008 - Secondary hypertension (disorder)

S-48146000 - Diastolic hypertension (disorder)

S-56218007 - Systolic hypertension (disorder)

S-59621000 - Essential hypertension (disorder)

S-38341003 - Hypertensive disorder systemic arterial (disorder)

S-13645005 - Chronic obstructive
lung disease (disorder)

S-195951007 - Acute exacerbation of chronic obstructive airways dis-
ease (disorder)

S-87433001 - Pulmonary emphysema (disorder)

S-13645005 - Chronic obstructive lung disease (disorder)

S-195967001 - Asthma (disorder)

S-195967001 - Asthma (disorder)

S-709044004 - Chronic kidney
disease (disorder)

S-723190009 - Chronic renal insufficiency (disorder)
S-709044004 - Chronic kidney disease (disorder)

S-230690007 - Cerebrovascular
accident (disorder)

S-25133001 - Completed stroke (disorder)
S-371040005 - Thrombotic stroke (disorder)
S-371041009 - Embolic stroke (disorder)

S-413102000 - Infarction of basal ganglia (disorder)
S-422504002 - Ischemic stroke (disorder)
S-723082006 - Silent cerebral infarct (disorder)
S-1078001000000105 - Haemorrhagic stroke (disorder)
S-230690007 - Cerebrovascular accident (disorder)

S-266257000 - Transient ischemic attack
(disorder)

S-266257000 - Transient ischemic attack (disorder)

S-84757009 - Epilepsy (disorder)

S-352818000 - Tonic-clonic epilepsy (disorder)
Continued on next page
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Table continued from previous page

Container Concept

Concepts

S-19598007 - Generalized epilepsy (disorder)
S-230456007 - Status epilepticus (disorder)
S-509341000000107 - Petit-mal epilepsy (disorder)
S-84757009 - Epilepsy (disorder)

S-49436004 - Atrial fibrillation (disorder)

S-49436004 - Atrial fibrillation (disorder)

S-267036007 - Dyspnea (finding)

S-267036007 - Dyspnea (finding)

S-59282003 - Pulmonary embolism (disor-
der)

S-59282003 - Pulmonary embolism (disorder)

S-29857009 - Chest pain (finding)

S-29857009 - Chest pain (finding)
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Number of examples per concept F1 on Test
1 0.74
5 0.81
10 0.82
30 0.86

Table B.2: Relation between the number of training examples and per-
formance of MedCAT concept disambiguation.

Appendix B. Estimating Example Counts for Suffi-
cient F1 Score

To test the required number of examples to achieve a
high enough F1 score, we created a mini-dataset from
MedMentions. It contains two concepts: C0018810
(Heart Rate) and C2985465 (Hazard Ratio). Both con-
cepts have a unique name and the ambiguous abbrevia-
tion HR that can link to either one. We chose these two
concepts, as the abbreviation HR is the most frequent am-
biguous concept in MedMentions, given the requirement
that it must be ambiguous. Our dataset consists of:

e 60 training examples (30 per concept). In each exam-
ple the full name of the concept was used, see below
MedMentions Text Extracts.

e 174 test examples, each document contains the am-
biguous abbreviation HR, see below MedMentions
Text Extracts.

We have tested the performance for different sizes of
the training set: 1, 5, 10 and 30. If we set the training set
size to e.g. 5, we split the full training set into 6 parts (in
total the training set has 30 examples per concept), each
containing 5 examples per concept. Then we check the
performance for each part and report the average over the
6 parts, see Table[B.2]

Appendix C. Self-Supervised Training Configuration

Appendix C.1. Self-Supervised Training Configuration

MedCAT was configured for self-supervised training
across experiments presented in Section. as follows:

e Misspelled words were fixed only when 1 change
away from the correct word for words under 6 char-
acters, and 2 changes away for words above 6 char-
acters.

e For each concept we calculate long and short embed-
dings and take the average of both. The long embed-
ding takes into account s = 9 words from left and
right (as shown in Equation 2). The short embed-
ding takes into account s = 2 words from left and
right. The exact numbers for s were calculated by
testing the performance of all possible combinations
for s in the range [0, 10].

e The context similarity threshold used for recognition
is 0.3 unless otherwise specified. This means for a
given concept candidate, or sequence of words, to
be recognised and linked to the given concept the
concept similarity provided by Equation 2 would be
greater than 0.3.

Appendix C.2. Qualitative Analysis Training Configura-
tion

We train MedCAT self-supervised over MIMIC-III us-
ing the entirety of UMLS, 3.82 Million concepts from 207
separate vocabularies. We use 2.4M clinical notes (nurs-
ing notes, notes by clinicians, discharge reports etc.) on
a small one-core server taking approximately 30 hours to
complete.

Appendix D. Contextualisation Task Results Per Site

Appendix D.l. Contextualisation Results Breakdown for
KCH

Aggregate results for each defined meta-annotation at
KCH. Performance is aggregated over all extracted con-

cepts listed in We defined the following

meta-annotation tasks:

e Presence: is the concept affirmed, negated or hypo-
thetical, values: [Affirmed, Negated, Hypothetical]

e Experiencer: is the concept experienced by the pa-
tient or other, values: [Patient / Family / Other]

e Temporality: is the concept in the past, present or
future, values: [Past, Recent, Future]
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Levels of fibrin degradation products (FDP), D-dimer, fibrinogen, the ratio of FDP to fibrinogen, the ratio of D-dimer to
fibrinogen, systolic blood pressure, heart rate, the Glasgow Coma Scale, pH, base excess, hemoglobin and lactate
levels, the pattern of pelvic injury, and injury severity score were measured at hospital admission, and compared
between the two groups.

NEAC was assessed by a validated food frequency questionnaire collected at baseline. We categorized the
distribution of NEAC into sex - specific quartiles and used multivariable adjusted Cox proportional hazards regression
models to estimate hazard ratios with 95% confidence intervals (95% CI).

In the overall population radical nephrectomy was not associated with an increased risk of other cause mortality on
multivariable analysis compared to nephron sparing surgery (HR 0.91, 95% CI 0.6-1.38, p = 0.6).

Figure B.4: MedMentions Text Extracts: Three samples from the dataset used to test the amount of training samples needed for disambiguation to
work. First example is a training case for the concept C0018810, second for C2985465 and third is used to test the disambiguation performance.

Table D.3: Meta Annotation Results at KCH Appendix D.2. Meta Annotation Results Breakdown for
SLaM
t Test
Support Tes Aggregate results for each defined meta-annotation at
CLS F P R (10% of total) .
SLaM. Performance is aggregated over all extracted con-
Hypothetical 0.756 0.797  0.72 360 cepts listed in We defined the following
Negated 0.865 0.878 0.852 440 meta-annotation tasks:
Affirmed  0.955 0.961 0.951 2930
Macro 0.86 0.875 0.846 3731 o Status: is the concept affirmed to be affecting the pa-
Weighted  0.927 0.927 0.929 3731 tient or not, values: [Patient / Other / NA]
(a) Presence average 10 fold CV 90/10 ratio o Diagnosis: is the concept a diagnosis related to the
Support Test patient, or not, values: [Yes, No]
CLS F1 P R (10% of total)
Family ~ 0.801 0.865 0.751 13 Appendix D.3. Meta Annotation Results Breakdown for
Other  0.823 0.838 0.809 205 UCLH
Patient 0.977 0.975 0.98 1649
macro 0867 0.893 0.847 1867 Aggregate results for each defined meta-annotation at
weighted 0.959 0.959 0.959 1867 UCLH: Perfgrmance is aggregated over all extracted con-
cepts listed in We defined the following
(b) Experiencer average 10 fold CV 90/10 ratio meta-annotation tasks:
Support Test
CLS F P R  (10% of total) e Negation: is the concept negated or not, values: [Yes
No
Recent 0.969 0.964 0.94 1655 /Nol
Past 0.771 0.807 0.74 162 e Experiencer: is the concept experienced by the pa-
Future 0.667 0.706 0.74 50 tient or not, values: [Patient, Other]
macro  0.803 0.825 0.783 1867
weighted 0.943 0.943 0.945 1867 e Problem Temporality: is the concept referring to a

historical mention, values [Past Medical Issue, Cur-

(c) Temporality average 10 fold CV 90/10 ratio rent Problem]
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Table D.4: Meta Annotation Results at SLaM

Support Test

CLS F P R (10% of total)
NA 0.873 0.869 0.878 43

Other 0.544 0.663 0.475 7
Affirmed 0.908 0.893 0.924 60
Macro  0.775 0.812 0.757 109
Weighted 0.873 0.874 0.873 109
(a) Status average 10 fold CV 90/10 ratio

Support Test

CLS F P R (10% of total)
Yes 0.931 0.935 0.926 68
No 0.872 0.889 0.880 39
Macro  0.904 0.908 0.905 109
Weighted 0913 0912 0913 109

(b) Diagnosis average 10 fold CV 90/10 ratio

e Certainty: is the concept confirmed to be present,
values: [Confirmed, Suspected]

e Irrelevant: is the concept relevant, values: [Yes, No]
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