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Abstract—Myocardial Infarction (MI) has the highest mortal-
ity of all cardiovascular diseases (CVDs). Detection of MI and
information regarding its occurrence-time in particular, would
enable timely interventions that may improve patient outcomes,
thereby reducing the global rise in CVD deaths. Electrocardio-
gram (ECG) recordings are currently used to screen MI patients.
However, manual inspection of ECGs is time-consuming and
prone to subjective bias. Machine learning methods have been
adopted for automated ECG diagnosis, but most approaches re-
quire extraction of ECG beats or consider leads independently of
one another. We propose an end-to-end deep learning approach,
DeepMI, to classify MI from normal cases as well as identifying
the time-occurrence of MI (defined as acute, recent and old),
using a collection of fusion strategies on 12 ECG leads at data-,
feature-, and decision-level. In order to minimise computational
overhead, we employ transfer learning using existing computer
vision networks. Moreover, we use recurrent neural networks
to encode the longitudinal information inherent in ECGs. We
validated DeepMI on a dataset collected from 17,381 patients, in
which over 323,000 samples were extracted per ECG lead. We
were able to classify normal cases as well as acute, recent and
old onset cases of MI, with AUROCs of 96.7%, 82.9%, 68.6%
and 73.8%, respectively. We have demonstrated a multi-lead
fusion approach to detect the presence and occurrence-time of
MI. Our end-to-end framework provides flexibility for different
levels of multi-lead ECG fusion and performs feature extraction
via transfer learning.

Index Terms—Transfer Learning, Cardiovascular Disease,
Deep Learning, Health Informatics

I. INTRODUCTION

C
ARDIOVASCULAR diseases (CVDs) are the leading

cause of death globally, and four out of five CVD deaths

are due to heart attacks (i.e., myocardial Infarction) and strokes

[1]. Traditional diagnosis of heart attack mainly employ inter-

pretation of ECG recordings, which requires precise acquisi-

tion devices and highly trained clinicians (i.e., cardiologists),

both of which are in limited supply in resource-constrained

areas. Cardiologists visually inspect the conventional 12-lead

ECG waveforms as images when making diagnosis. However,

such a process is tedious and can be highly subjective [2].

ECG readings are also sensitive to mounting position and

prone to movement artefacts [3], resulting in noisy readings

that add to the difficultly of making reliable diagnoses from

them. This problem becomes more visible in low-resource
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settings where there is no/limited cardiologists. Numerous

studies have also shown that it is not always possible to

detect cardiovascular abnormalities from a visual inspection

of the ECG trace alone, given the small amplitude and short

PQRST durations involved [4]. In this context, computer aided

diagnosis methods present a promising solution to the problem

of analysing and identifying CVDs from ECG readings.

Automatic approaches using computer algorithms have been

proposed to extract domain-specific handcrafted ECG fea-

tures both in time- and frequency-domains for heart disease

diagnosis [5]–[8]. (Compared to automatically learned fea-

tures),Though handcrafted features, such as identifying com-

plexes in the ECG trace, are simple and tractable, they might

be susceptible to noise/motion artefacts and do not generalise

across variations in patient characteristics, mounting positions

and device specifications. Moreover, these approaches often

require extensive pre-processing steps that are prone to error.

Feature engineering also requires careful consideration and is

associated with a time-consuming and labour-intensive model

development process. By contrast, end-to-end deep learning

methods can eliminate the need for explicit feature engineer-

ing, by learning optimal representations directly from the raw

data for the task at hand. Additionally, there are currently no

studies that have investigated the prediction of occurrence-

time in MI (i.e., the age of a MI), information that is crucial

for preoperative risk assessment [9]: patients with acute (i.e.,

within seven days) and recent (i.e., less than 30 days but longer

than seven days) MIs are considered to be at higher risk of

a perioperative cardiac event, while those with old MIs (i.e.,

more than 30 days) are at higher risk of perioperative cardiac

morbidity. Such systems become handy, again, in low-resource

settings, where there is no patient data archival practice; or in

emergencies when a patient history might not be available on

the spot.

In this paper, we present an end-to-end deep learning system

for predicting the occurrence time of MI using 12-lead ECG

waveforms (see Fig. 1). The contributions of the proposed

approach are as follows: 1) spectral-based preprocessing that

transforms time-series waveforms to spectrogram representa-

tions, which offer a more general representation that overcome

issues of variability in sampling rates and device specifications

across ECG manufactures; 2) application of cross-domain

transfer learning between natural images classification and

ECG waveform detection, to extract spectral features to reduce

the dimension of the spectrograms and minimise redundant
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information; 3) ultilising joint spectral-temporal modelling

to encode the spatial and temporal information from multi-

channel ECG waveforms; 4) proposing the use of a variety of

fusion approaches to combine information at different levels

of data representation (i.e., data, feature and decision level

fusions) aiming to utilise distinctive characteristics offered by

each ECG lead; and 5) predicting the occurrence time of MI,

utilising a large scale dataset containing > 15, 000 patients

and > 323, 000 data samples, to provide timely intervention

that can potentially improve patient outcomes.

The paper is organised as follows: Section II surveys the

research literature on the topic of automated ECG analysis

for CVD diagnosis, with a focus on MI detection. Section III

presents the proposed framework, including different multi-

lead fusion strategies and diagnosis modelling techniques. Sec-

tion IV details the experimental setup including descriptions of

the dataset used for validation, the set up of network architec-

tures and parameters in the proposed approach, in addition to

methods considered for comparison. Section V presents results

and discusses important findings, whilst concluding remarks

are provided in Section VI.

II. RELATED WORK

The potential diagnostic value provided by ECG signals,

particularly for the diagnosis of CVDs such as MI, has long

been recognised by researchers [4]. To date, the majority of au-

tomated methods proposed for detecting MI from ECG traces,

have focused on identifying abnormalities in the morphology

of the signals. These approaches often entail error-prone pre-

processing steps, such as identifying ECG complexes and

handcrafting features to learn from (e.g. [10]). The latter

requires careful consideration and is associated with a time-

consuming and laborious model development process. Deep

learning methods by contrast, remove the need for feature

engineering through their ability to automatically learn optimal

representations directly from the raw data.

Given the success of deep learning in a wide range of appli-

cation domains, a growing number of studies have investigated

the use of end-to-end deep networks for ECG based CVD

detection [11]–[20]. The most widely employed and often best

performing architectures have been CNNs, e.g. [12], [15], [19],

[20]. A smaller number of these studies considered RNNs [18],

[21], whilst [17], [21] demonstrated that a cascaded CNN-

LSTM model architecture achieved superior performance to

either individual model architectures on their own. This pro-

vides supporting evidence to the broad fact that capturing local

and more long-term temporal characteristics of ECG signals

through joint modelling, as we consider in this study, is well

motivated.

Whilst deep learning methods have the potential to achieve

state-of-the-art performance, this often entails a lengthy train-

ing and laborious model development process, requiring co-

pious amounts of training data. This is particularly true when

proposing sophisticated architectures from scratch, which con-

tain many parameters that must be learnt. To overcome these

challenges in data and labour requirements, transfer learning

can be exploited. Transfer learning aims to leverage models

that are pre-trained, namely models that have been carefully

developed for a different task and/or on a different dataset. For

the task of CVD detection using ECGs, the works of [14], [22]

showed the effectiveness of cross-domain transfer learning

through their use of Google’s Inception image recognition

model [23]. In these works, raw ECG signal traces were treated

as images to be analysed by the network, thereby directly

emulating the analysis cardiologists perform. Our work differs

from these, and other similar studies, in that we first map

1D ECG signals to 2D spectrogram representations, before

treating the latter as an image to be analysed by a pre-

trained computer vision network through transfer learning.

We consider the spectrogram representation as input, rather

than the image of the ECG signal itself, as the former allows

spectral time-varying information present in the signal to be

better visualised. Thereby potentially enabling more clinically

relevant information for diagnosis to be captured and learnt

by an ML model. In previous work by the authors, we have

shown the effectiveness of spectrogram image representations

of physiological signals, such as PPG, for ML based disease

diagnosis [24], [25].

More recently, the following are examples of studies that

have employed end-to-end deep learning approaches for ECG

based MI detection specifically [12], [13], [15], [19]–[21].

For the majority of these works, MI detection was framed

solely as a binary classification problem (non-MI or MI),

whilst in others MI localisation was the focus through a multi-

class problem formulation. The latter concerned identifying

different MI types characterised by the location of the blocked

artery (e.g. posterior lateral MI), as an example, 10-classes

of MI location are predicted in the work of [19]. The utility

of discriminating between such MI types is clear, however

prediction of MI by time-onset, as we propose in this work,

has not yet been researched. Characterising MI diagnosis by

estimated occurrence time has clear practical implications, as

early detection of MI would enable proactive care management

and intervention strategies to be enacted.

Published research in CVD detection from ECG signals,

has primarily restricted itself to using a single lead [11], [12].

In the studies where multiple ECG leads were considered,

individual models were developed and evaluated for each lead

separately [19], that is without any data or result fusion,

strategies we investigate extensively in this work. Whilst the

use of 12 leads ECG may usually be limited outside clinical

settings, and single lead analysis is advantageous in certain

contexts (for example remote monitoring of patients), the

work of [26] highlights the prevalence and seriousness of in-

hospital MI. In these contexts, patients can be consistently and

conveniently monitored using the standard and inexpensive 12

lead ECG setup, which clinicians use in their entirety to make

diagnoses. Importantly, research has shown that different ECG

traces contain different predictive importance for MI diagnosis

[15], highlighting the value of considering multiple lead fusion

for CVD prediction in general [15], [17], [27], [28].

Research methods proposed to date for automatic CVD de-

tection, have primarily developed and evaluated their methods

on the open-source PhysioBank Physikalisch-Technische Bun-

desanstalt (PTB) ECG dataset [29], or on proprietary datasets
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Fig. 1. Overview of the proposed framework: multi-lead ECG waveforms are provided as input, and spectrogram generation is used to encode the frequency-
time characteristics. Transfer learning is applied to encode deep features using existing computer vision networks. Spectral and temporal models were employed
for diagnosis modelling.

(e.g. [17]). High performance achieved on the detection of MI

or MI types in the PTB dataset, may indicate that to assess

the generalisability of developed methods, validation on new

datasets is vital. To date, studies that have employed alternative

datasets have often been small. For example in [17] models

were trained on ECG records 10 seconds long from 362

patients with cardiovascular abnormalities. By contrast, we

have developed our models using a dataset with over 17, 000
patients and 323, 000 ECG sample measurements, which is an

order of magnitude higher than those used in the literature.

Moreover, the dataset used in this work contain additional

labels regarding the eventual time occurrence of MI, allowing

us to investigate the possibility of predicting time-onset of

heart attack from ECG readings alone.

III. PROPOSED FRAMEWORK: DEEPMI

In this section, we outline the system aspects of the pro-

posed framework for identifying MI and its occurrence time.

A. Overview

Figure 1 shows the overview of our proposed approach.

Given a dataset, D, which contains η patients diagnosed

for MI, i.e., D = {Si}
η
i=1

, where Si represents the ith

patient represented by 12 ECG leads, Si = {l
j
i}, j ∈

[I, II, III, aV R, aV L, aV F, V1, V2, V3, V4, V5, V6]. Each pa-

tient is diagnosed and the onset time of MI cases is de-

termined clinically. Thus, the ground truth of Si is gi ∈
{acute, recent, old, normal}. Thus, our approach focuses on

predicting the diagnose label using an end-to-end trainable

framework designed to operate with limited training data and

in low computational resource settings. To this end, we, first,

extract the frequency-time characteristics, i.e., spectrogram,

of the ECG waveforms. Then feature encoding is done on

these spectrograms via transfer learning using pre-trained

computer vision networks. Diagnosis modelling is performed

with spectral and longitudinal models, which encodes spatial

and temporal information, respectively. To integrate informa-

tion from different ECG leads, we employ different fusion

techniques. Next we describe the details of each step in the

proposed framework.

Given the raw ECG waveforms, a preprocesing is applied

to clean up the data, which includes filtering of patients with

erratic ECG readings in one or more of the ECG leads.

Particularly, missing readings which could occur due to loose

mounting of the electrodes during ECG acquisition. To discard

some of the noise/motion artefacts, often characterized by low

and high frequency characteristics, we employed a band-pass

filter (a high pass filter followed by a Gaussian filter) on all

ECG recordings. Other pre-processing steps include the subse-

quent sampling of ECG windows per lead, i.e., l
j
i = [wj

in]
γ
n=1

,

where w
j
in represents the nth window segmented from the jth

lead of the ith patient and γ is the total number of windows

from a patient lead, l
j
i .

B. Spectrogram generation

Rather than using the raw ECG time-series to encode fea-

tures for the MI diagnosis, the proposed framework employs

a frequency-time (spectrogram) representation that captures

the time-varying characteristics of the waveforms, and it is

also robust across variations in device specifications such as

sampling rate [30]. The spectrogram generation is computed

from each w
j
in by applying a Fourier transform, that results

in a 2D frequency-time representation F
j
in. The subscript i is

dropped henceforth to improve readability. We also normalise

spectrograms by their maximum value, followed by a loga-

rithmic scale to smooth the representation as

F̂ j
n = log

(

F j
n

max(F j
n)

∗ 255

)

. (1)

The smoothed F̂ j
n is then saved as image using the JPEG image

format so that it resembles natural images for the transfer

learning step. While other colormaps could also be used, we

employed the ’viridis’ colormap to convert the spectrogram

array to an image after normalization in Eq. (1). The JPEG

format is selected due to its efficiency but other formats could

also be used.
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(a) Acute (b) Recent (c) Old (d) Normal

Fig. 2. Examples of ECG waveforms (top row) and their corresponding spectrograms (bottom row) from an aVR lead for a patient randomly selected from
each class. Note: only 2-seconds duration of each waveform is shown to allow detailed visualisation of the patterns.

C. Feature encoding

The spectrogram generation provides an image-like repre-

sentation that suits convolution-based deep learning encoding.

However, designing a dedicated deep network and encod-

ing features by training it from scratch poses an enormous

training data requirement, computational resources to train

and a prolonged hyper-parameter tuning process. As a result,

we opt to utilise existing computer vision networks, such as

GoogLeNet [23] and MnasNet [31], to encode features via

a transfer learning approach. Thus, a hidden layer of these

existing CNNs could be extracted from each normalised spec-

trogram input, F̂n, resulting a high-dimensional feature vector,

dn ∈ R
τ . The use of such cross-domain learning exploits

powerful existing architectures and relaxes the training data

requirement.

D. Multi-lead fusion

The proposed framework offers a variety of fusion tech-

niques to utilise the discriminant characteristics offered by the

conventional 12 ECG leads [15]. To this end, data, feature and

decision fusions are experimented with, details of which are

provided below.

1) Data fusion: The spectrograms from different

ECG leads are fused together at data level in the

form of stacked spectrograms. Given the set of

normalised spectrograms of the leads, {F̂ j
n} for

j ∈ [I, II, III, aV R, aV L, aV F, V1, V2, V3, V4, V5, V6],
the data fusion is applied as in Equation (2), which mimics

the visualisation of the ECG leads by cardiologists in clinical

practice [24]. This results in a stacked spectrogram, Φn, as

the output of the data fusion.

Φn =





F̂ I
n , F̂ aV R

n , F̂V 1
n , F̂V 4

n

F̂ II
n , F̂ aV L

n , F̂V 2

n , F̂V 5

n

F̂ III
n , F̂ aV F

n , F̂V 3
n , F̂V 6

n



 . (2)

In case of data fusion, transfer learning is applied to encode a

single deep feature vector, dn, from the stacked spectrogram,

Φn.

2) Feature Fusion: Another information fusion strat-

egy from the multiple ECG leads could be implemented

at the feature level. Namely, after deep features are

extracted from the spectrogram of each lead, i.e., dj
n

for j ∈ [I, II, III, aV R, aV L, aV F, V1, V2, V3, V4, V5, V6],
where each dj

n is extracted from the corresponding F̂ j
n.

We have experimented with two feature fusion approaches:

concatenation and accumulation. Concatenation refers to the

stacking of the feature vectors to a single vector, i.e. the

input to the modelling step becomes d̄n = C(dj
n), where

C(·) represents the concatenation operation and, as a result,

d̄n ∈ RNl×τ , where Nl represents the number of leads (i.e.,

Nl = 12) and τ represents the dimension of each dj
n. On the

other hand, accumulation-based feature fusion, A(·), results

in d̂n ∈ Rτ , with equal dimension as the individual feature

vectors due to the accumulation operation being defined as:

d̂n = A(dj
n) =

∑Nl

l=1
dj
n

Nl

. (3)

3) Decision Fusion: Decision fusion aims to exploit the

distinctiveness in each lead by training a specific diagnosis

model for each lead, after which the final output is obtained

from the fusion of predictions from these lead-specific models.

Given 12-lead ECGs, the diagnosis prediction specific to

each lead results in pj
n ∈ R

Nd , where Nd is the number

of diagnosis classes. To obtain the final prediction output

from these different lead models, we propose two different

decision fusion techniques: accumulation and majority vote.

Decision accumulation is applied similarly to feature fusion

as in Equation (3) and the average of lead-specific prediction

pj
n is computed. Majority vote, on the other hand, selects the

most frequently predicted diagnosis class, across the different

model leads, as the final predicted diagnosis.

E. Diagnosis modelling

After deep features are obtained in the transfer learning

module, three diagnosis modelling techniques are developed

in the proposed framework: spectral and longitudinal and joint

spectral-longitudinal. These techniques are described more

detail below.
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1) Spectral modelling: This modelling approach only uses

the spectral information, encoded as deep features, for di-

agnosis modelling. To do so, a dense layer is applied that

takes the deep feature vector as input; which means dn during

data fusion, d̄n during concatenated feature fusion, d̂n during

accumulated feature fusion and dj
n during decision fusion. The

output of the dense layer is rn ∈ R
κ, where κ is the dimension

of the dense layer. The dense layer helps to refine the spectral

features and reduce the feature dimension (since κ < τ ) as

rn = σ(Wrddn + br), (4)

where σ is a non-linear activation function, Wrd ∈ R
κ×τ

is the weight matrix linking the deep feature vector and the

dense layer, and b is the bias vector. Note that during feature

concatenation, τ becomes Nl = 12 longer. The prediction

vector for the MI diagnosis, pn, is obtained by applying a

softmax function on the dense layer output, rn, as

pn =
eWsrrn

eWsrrn + 1
, (5)

where Wsr ∈ R
Nc×κ is the weight matrix linking the dense

layer and diagnosis classes and Nc is the number of class

labels. The diagnosis class corresponding to the index of the

highest element in the prediction vector, pn, becomes the final

prediction output by the proposed framework.

2) Longitudinal modelling: The spectral modelling above

only encodes the spectral information in each sample window,

wn, segmented from a long ECG waveform. However, subse-

quent samples possess temporal dependency as γ samples were

segmented from each ECG lead. We propose a recurrent neural

network to exploit these long-term temporal dynamics. Long

short-term memory (LSTM) networks are designed to encode

temporal dependency, and they handle the vanishing and

exploding gradient problems better than the vanilla recurrent

neural networks (RNNs) via their input, output and forget gates

that act as switches to control memory information about the

past.

Given the previous cell information, cn−1, the output gate,

on, the forget gate, fn, the candidate cell information, c̄n, and

input gate, in; the current LSTM hidden state, hn, can be

computed as

hn = on ⊙ φ(fn ⊙ cn−1 + in ⊙ c̄n) , (6)

where ⊙ is an element-wise multiplication and φ is a tanh
activation function. The dimension of in, hn, cn−1, cn, on

and c̄n is R
ν , which is the number of neurons in the LSTM

layer. Note that when only the longitudinal model is used, its

input is the high dimensional deep features. Finally, a softmax

function similarly to Equation (5) is applied on hn to obtain

the MI diagnosis prediction, pn, using the longitudinal model.

3) Spectral-longitudinal modelling: Separate use of the

spectral and longitudinal modelling approaches have the fol-

lowing limitations. The spectral model fails to encode the

long-term temporal dependency existing between subsequent

samples segmented from long duration ECG waveforms. On

the other hand, the longitudinal model takes as input the high

dimensional deep features (τ during data, feature accumula-

tion and decision fusion, 12τ during feature concatenation)

obtained from the transfer learning step, which might result in

overfitting due to the curse of dimensionality, especially when

feature concatenation is used. We therefore propose a joint

spectral-longitudinal model to address these limitations and

utilise the advantages offered by both models, i.e. refinement

of deep features and dimensionality reduction by the dense

layer of the spectral model and the temporal encoding using

LSTM in the longitudinal model. Thus, the output of the

dense layer in the spectral model, rn, is used as input to the

longitudinal model. As a result, the hidden state, hn, in the

longitudinal model encodes the temporal dependency among

subsequent rn. Finally, the softmax layer is used to predict the

MI diagnosis, pn, similarly to Equation (5).

IV. EXPERIMENTAL SETUP

In this section, we describe details of the dataset used for

development and validation of onset time prediction, the set up

associated with the different stages of the proposed framework.

Namely, spectrogram generation, transfer learning, spectral

and longitudinal model architectures and their corresponding

hyper-parameters. We also describe the variety of methods

used for comparative purposes.

A. Dataset

The ECGs from 17,381 patients (11,853 MI and 5,528

Normal cases) were collected in the Provincial Key Labora-

tory of Coronary Heart Disease, Guangdong Cardiovascular

Institute (GCI), which is located in Guangdong province,

China. The study has obtained ethics committee approval and

informed patient consent. Each 12-lead ECG waveforms was

anonymised, sampled at 500 Hz and was 10 s long. The ECG

signals for each patient contain the standard 12 leads, which

are I, II, III, V1, V2, V3, V4, V5,V6, aVF, aVL, and aVR.

Cardiologists annotated the MI cases furthermore into three

sub-groups: Acute, Recent and Old based on hospital records

like patient history, in combination with ECGs. The final GCI

dataset resulted 1, 489 Acute (MI occurred within 7 days),

5, 377 Recent (MI occurred in less than 30 days but longer

than 7 days) and 4, 613 Old (MI occurred beyond 30 days)

MI cases.

B. Parameter Setup

We set the duration of a sample, wn, to 1 s in order

to achieve a balance between longer duration (which might

have some degree of redundancy and also reduce the num-

ber of training samples) and shorter duration (which might

lack enough information to do inference). We applied an

overlapping percentage of 50%, between subsequent samples,

which results a total of 323, 133 samples from each lead, of

which: 28, 291 are Acute, 102, 163 are Recent, 87, 647 are

Old, and the remaining 105, 032 are Normal samples. In the

spectrogram generation step, we applied a Fourier transform,

with a chunk of 0.1 s and an overlapping percentage of 90%,

which results in a spectrogram representation with 91 × 26
resolution when stored as an image in JPEG format.
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TABLE I
THE DESCRIPTIONS OF METHODS EMPLOYED AND COMPARED AGAINST EACH OTHER IN THIS STUDY. DIFFERENT FUSION TECHNIQUES, SUCH AS Data,
Feature AND Decision WERE EXPERIMENTED. DATA FUSION INVOLVES STACKING OF THE SPECTROGRAMS FROM DIFFERENT LEADS; FEATURE FUSION

REFERS TO THE AGGREGATION OF FEATURES EXTRACTED FROM MULTIPLE LEADS. DECISION FUSION REFERS TO THE AGGREGATION OF DECISIONS

FROM DIFFERENT ECG LEADS. TWO TYPES OF MODELLING WERE ALSO EMPLOYED: Spectral AND Longitudinal THAT ENCODE SPATIAL AND TEMPORAL

INFORMATION, RESPECTIVELY.

Method Description

Data-Dense Data fusion and spectral modelling using dense layers
Data-LSTM Data fusion and longitudinal modelling using LSTM
Data-Dense-LSTM Data fusion and spectral modelling using dense layers and longitudinal modelling using LSTM

Accumulation-Feature-Dense Accumulation-based feature fusion and spectral modelling using dense layers
Accumulation-Feature-LSTM Accumulation-based feature fusion and longitudinal modelling using LSTM
Accumulation-Feature-Dense-LSTM Accumulation-based feature fusion and spectral modelling using dense layers and longitudinal modelling using LSTM

Concatenation-Feature-Dense Concatenation-based feature fusion and spectral modelling using dense layers
Concatenation-Feature-LSTM Concatenation-based feature fusion and longitudinal modelling using LSTM
Concatenation-Feature-Dense-LSTM Concatenation-based feature fusion and spectral modelling using dense layers and longitudinal modelling using LSTM

Vote-Decision-Dense Spectral modelling using dense layers and majority vote-based decision fusion
Vote-Decision-LSTM Longitudinal modelling using LSTM and majority vote-based decision fusion
Vote-Decision-Dense-LSTM Spectral modelling using dense layers, longitudinal modelling using LSTM, and majority vote-based decision fusion

Accumulation-Decision-Dense Spectral modelling using dense layers and accumulation-based decision fusion
Accumulation-Decision-LSTM Longitudinal modelling using LSTM and accumulation-based decision fusion
Accumulation-Decision-Dense-LSTM Spectral modelling using dense layers, longitudinal modelling using LSTM, and accumulation-based decision fusion

Among existing computer vision networks, we exper-

imented with GoogLeNet’s Inception-v3 [23] and Mnas-

Net [31] networks that are trained on natural images from

ImageNet [32]. GoogLeNet is known to be quite robust due

to its novel inception module and the fact that it has been

validated across multiple domains. MnasNet, on the other

hand, is considered a mobile computing friendly architecture,

designed with limited resource settings in mind. Thus, we

extract deep features from the penultimate layers of these

networks using the spectrograms as input, resulting τ = 2, 048
and τ = 1, 056 dimensional deep feature vectors from the

Inception-V3 and MnasNet networks, respectively. After deep

feature encoding using transfer learning, the spectral model

employs a fully-connected dense layer with a dimension of

κ = 16 neurons with a ReLu activation. We have aimed for

an LSTM network which is simple and consists of a single

layer of size ν = 16. The number of time steps in the LSTM

is set to γ = 19 samples. Finally, the softmax layer consists

a fully connected layer of size Nc = 4, which is equal to the

number of diagnosis classes. During training a sparse-softmax-

cross-entropy loss function is used with Adam optimiser and

a learning rate of 0.01.

Both the GGH and PTB datasets used for the validation of

the proposed framework exhibit imbalance of samples among

classes. Though the number of MI cases is significantly higher

than normal cases in GGH, the imbalance becomes smaller

in the 4-class classification task OF MI onset detection since

the MI cases further decomposed into Acute, Recent and

Old classes. Considering the imbalance issue, we adopt the

following strategies in our validation: a) we employ stratified

cross-validation in our training; b) every batch is designed to

contain proportional number of samples from each class; c)

sparse-softmax-cross-entropy is applied as our loss function

that weighs the loss accordingly; d) Area under receiver oper-

ating characteristic (AUROC) is applied as the main metric to

compute the classification performance, as this metric better

handles the potential class imbalances. AUROC for each class

is obtained using a one-vs-all strategy, and overall AUROC

is computed from the average of AUROCs of all the four

classes. We also employed accuracy, precision, sensitivity,

specificity and F-score to evaluate MI detection performance.

The confusion matrices are also provided to obtain more

insights on the potential misclassification errors among the

classes.

The proposed framework consists of a variety of fusion tech-

niques (data, feature and decision) and modelling approaches

(spectral, longitudinal and spectral-longitudinal). These were

experimented with for every possible combination of fusion

and modelling approaches. A summary of these methods is

provided in in Table I.

V. RESULTS AND DISCUSSION

In this section, we present the results obtained for the

classification of MI cases from normal cases as well as the

prediction of the onset time of MI (i.e. acute, recent and

old), which was generally treated as a four-class classification

problem. We also performed the comparison of the proposed

framework with existing features and classifiers.

A. MI Detection

We first evaluated the performance of our proposed ap-

proach to detect MI cases from Normal cases using MnasNet

features on the GGH dataset. To this end, Spectral, Longitudi-

nal and Joint Spectral-Longitudinal models were evaluated on

the stacked spectrogram (data-fusion) of multiple ECG leads.

The results are shown in Table II, where an AUROC value

of 85.2% is achieved using the Joint Spectral-Longitudinal

model, higher than the independent performance of the Spec-

tral and Longitudinal models.

B. Onset Time Detection of MI

Table III shows the AUROC (%) values per each diagnosis

class across different fusion approaches: data, feature and

decision. Overall, feature fusion was shown to outperform the

other fusion approaches as the majority of the classes achieved
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TABLE II
PERFORMANCE OF THE PROPOSED FRAMEWORK VALIDATED TO DETECT

MI CASES FROM NORMAL PATIENTS IN THE GGH DATASET. ACC.:
ACCURACY, PRE.: PRECISION, SEN: SENSITIVITY, SPE.: SPECIFICITY, F:

F1-SCORE

Performance metrics (%)

Methods Acc. Pre. Sen. Spe. F AUROC

Spectral 70.3 86.7 66.8 77.8 75.5 80.6

Longitudinal 73.2 83.9 75.3 68.6 79.4 79.8

Spectral-longitudinal 72.5 89.8 67.6 83.3 77.1 85.2

their highest performance through feature fusion approaches.

Using GoogLeNet features (top half of Table III the following

highest AUROC values are reported for the classes: Acute

(82.9% using Concatenation-Feature-Dense-LSTM), Normal

(96.9% using Concatenation-Feature-LSTM) and Old (87.4%
using Concatenation-Feature-Dense-LSTM). Using MnasNet

features (bottom half of Table III), all the four diagnosis

classes achieved their highest AUROC values using feature

fusion approaches, i.e., Acute (81.5% using Concatenation-

Feature-LSTM), Recent (73.1% using Concatenation-Feature-

LSTM)), Normal (98.2% using Concatenation-Feature-Dense-

LSTM) and Old (75.1% using Concatenation-Feature-Dense-

LSTM). Results suggest that Normal cases are, as expected,

easier to detect compared to MI cases. On the other hand,

MI cases are shown to be challenging to classify, particularly

Recent cases as they are prone to being misclassified between

the two extremes: Recent and Old. The results reported with

MnasNet features in the bottom part of Table III are particu-

larly encouraging, as competitive performance is achieved with

GoogLeNet features. The MnasNet framework is relatively

simple compared to GoogLeNet, with the lower dimensionality

of MnasNet features (τ = 1, 056) proving to be an effec-

tive representation, particularly as input for the longitudinal

models which otherwise were prone to overfitting using the

τ = 2, 048-dimensional GoogleNet features. This is shown by

the fact that the two MI cases achieved the best performance

with the Concatenation-Feature-LSTM method using MnasNet

features.

Generally, the superior performance obtained using feature

fusion approaches reflects the unique discriminative character-

istics of each ECG lead, which need to be exploited during

modelling rather than merging early before modelling using

data fusion or lately using decision fusion after modelling.

Comparison between two feature fusion techniques: accu-

mulation and concatenation, reveals both are effective but

concatenation is superior as the information corresponding to

the distinctiveness of each lead is fed into the model while

accumulation might lose this information. Although it is the

simplest and least resource demanding, data fusion is shown

to be the worst performing fusion technique, undoubtedly as

the discriminative characteristics of the leads is lost too early

before feature encoding.

The overall results shown in Table III provide further

insights into the effectiveness of the proposed joint spectral-

longitudinal modelling approach across the majority of the

fusion techniques. The average AUROC performance show

that joint spectral-longitudinal modelling achieved the high-

TABLE III
PERFORMANCE OF DATA, FEATURE AND DECISION FUSION APPROACHES

IN THE PROPOSED FRAMEWORK FOR THE DETECTION AND

CLASSIFICATION OF MI CASES USING SPECTRAL (DENSE),
LONGITUDINAL (LSTM) AND SPECTRAL-LONGITUDINAL (DENSE-LSTM)

MODELS, USING: GOOGLENET (TOP TABLE)AND MNASNET FEATURES

(BOTTOM TABLE). A: ACUTE, R: RECENT, N: NORMAL AND O: OLD

GoogLeNet features

AUROC per class (%) Global (%)
Method A R N O AUROC Accuracy

Data-Dense 70.0 62.2 83.8 63.5 69.9 69.9
Data-LSTM 75.7 66.1 92.7 69.2 75.9 73.4
Data-Dense-LSTM 78.1 53.9 85.9 67.9 71.4 70.3

Accumulation-Feature-Dense 76.4 64.4 86.4 64.1 72.8 71.3
Accumulation-Feature-LSTM 73.1 69.5 92.1 69.2 76.0 73.4
Accumulation-Feature-Dense-LSTM 77.8 65.7 93.9 72.2 77.4 75.6

Concatenation-Feature-Dense 80.8 66.6 95.0 87.4 77.8 75.0
Concatenation-Feature-LSTM 62.0 64.1 96.9 68.8 73.0 68.7
Concatenation-Feature-Dense-LSTM 82.9 68.6 96.7 73.8 80.5 77.1

Accumulation-Decision-Dense 74.0 65.2 85.3 64.0 72.1 71.0
Accumulation-Decision-LSTM 68.8 70.6 89.9 65.9 73.8 71.9
Accumulation-Decision-Dense-LSTM 74. 8 67. 2 93. 2 71. 9 76.8 75.8

MnasNet features

AUROC per class (%) Global (%)
Method A R N O AUROC Accuracy

Data-Dense 68.1 59.8 78.9 61.6 67.1 68.9
Data-LSTM 71.3 67.9 90.8 68.4 74.6 73.3
Data-Dense-LSTM 73.7 54.8 77.6 59.8 66.4 67.2

Accumulation-Feature-Dense 73.8 62.6 85.5 64.3 71.5 70.9
Accumulation-Feature-LSTM 72.1 68.0 91.0 68.5 74.9 73.8
Accumulation-Feature-Dense-LSTM 75.5 66.3 92.9 71.8 76.6 73.7

Concatenation-Feature-Dense 78.9 65.0 94.3 69.3 76.9 74.6
Concatenation-Feature-LSTM 81.5 73.1 97.7 74.7 81.8 78.3

Concatenation-Feature-Dense-LSTM 77.7 68.1 98.2 75.1 79.8 77.8

Accumulation-Decision-Dense 71.4 63.8 81.4 63.3 70.0 69.4
Accumulation-Decision-LSTM 70.3 68.6 90.8 67.1 74.2 74.7
Accumulation-Decision-Dense-LSTM 73.1 66.9 91.9 70.2 75.5 72.9

est in Feature Accumulation (77.4%), Feature Concatenation

(80.5%), Decision Accumulation (76.8%) using GoogLeNet

features. Similarly, superior performance by the spectral-

longitudinal model is achieved using Feature Accumulation

and Decision Accumulation using MnasNet features. Sepa-

rately, longitudinal models achieved the highest in data fusion

technique (75.9% using GoogLeNet and 74.6% using Mnas-

Net features), where the feature dimension is not too long

to lead to the curse of dimensionality and model overfitting.

We also provided the accuracy metric in the last column,

and the results showed similar behaviour as the AUROC,

i.e., concatenation-based feature fusion superior performance,

compared to the other fusion techniques. During the validation

using MnasNet features, the LSTM-based longitudinal models

tend to perform competitively with Dense-LSTM models, due

to the smaller dimensionality of MnasNet features (1056)

compared to GoogLeNet (2048), and hence less overfitting.

Among the decision fusion approaches, both majority vote

and decision accumulation showed competitive performance.

However, the former showed slight superiority over decision

accumulation as shown in Fig. 3 (more in the Appendix), for

the proposed joint spectral-longitudinal model. This is partly

due to the loss of fine details resulting from the averaging

performed in accumulation fusion techniques. Furthermore,

the confusion matrices reveal misclassification errors observed

in the classification of MI cases. It is clearly visible that

the Normal class has been distinctively classified without

significant misclassification with other MI cases. On the other

hand, more misclassification errors occur among MI types, i.e.

acute, recent and old. In summary, though data-fusion seems

ineffective in leveraging the distinctiveness of the leads, care
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(a) GoogLeNet features

(b) MnasNet features

Fig. 3. Comparison of decision fusion approaches on (a) GoogLeNet and
(b) MnasNet features. The first column contains Majority vote results and the
second column Decision accumulation

must still be taken when considering feature concatenation

or decision fusion strategies. Namely, constraints imposed by

training resource considerations due to the curse of dimension-

ality that might arise for feature concatenation, or the need of

independent modelling for each lead in decision fusion.

Our DeepMI framework not only demonstrates its feasibility

in identifying an infarction from ECG readings alone, that is

free from any clinical input, but it also indicates the predicted

onset time of an infarction. Previous studies have shown that

the occurrence time of an MI affects both the reinfarction rate,

as well as mortality in surgery [33], [34]. In particular, the risk

of developing an adverse cardiac event has been reported to

decrease from 32.8% to 18.7% when surgery occurs within 30

days of MI, compared to surgeries occurring 31-60 days post-

MI [34]. Utilising DeepMI could therefore provide the age

of an MI from patient ECG readings only, without requiring

previous patient histories or more involved laboratory test

results. Our proposed framework could therefore be utilised

to assist clinicians in remote settings, by providing additional

information to assess patient risk.

C. Comparison with existing works and validation using a

public database

Among existing works, we selected hand-crafted features

from ECG waveforms validated with common classifiers and

dedicated deep neural networks [35]. The handcrafted fea-

tures were obtained from autoregressive parameter estima-

tion using Burg’s method, which was developed for spectral

estimation [36], and it estimates the autoregressive coeffi-

cients optimised for the input signal, by minimizing loss in

forward and backward prediction errors. Such representation

was shown to outperform the fast-Fourier transform method

in encoding dynamics of time-series signals, including ECG

waveforms [37]. Common classifiers were used to validate

on the autoregressive representation, which include Random

Forest, Logistic Regression, K-nearest Neighbors, Gradient

Boosted Trees and Multi-layer Perceptron. In addition to

the handcrafted feature representation, simple deep networks,

such as convolutional neural networks (CNNs) and Recur-

rent Neural Networks (RNNs) were implemented on the raw

ECG waveforms. The CNN architecture adopted a four-layer

architecture, and subsequent 1-D convolution was applied.

The RNN architecture was made of a single-layer LSTM

component, with a 1024 hidden units (using LSTM cells).

Similar train-test validation was employed as of [35], i.e., 10-

fold cross validation, and the AUROC performance of both the

existing works and the proposed (Dense, LSTM and Dense-

LSTM) framework with the data-fusion approach were shown

in Table IV.

To further validate our proposed spectral-longitudinal

model on a publicly available dataset, we used PhysioBank

Physikalisch-Technische Bundesanstalt (PTB) [29]: The PTB

ECG dataset comprises 15-lead ECG records of patients diag-

nosed with multiple heart diseases, sampled at 1000 Hz [38],

[39]. In our evaluation, we only used 12-lead ECG data

related to 148 (MI) and 52 (Healthy) subjects, with a total

of 200 subjects. As the duration of ECG data may vary across

subjects, we used only the first 10-second segment of each

patient.

The results showed that handcrafted features performed

inferior to our approach while Gradient Boosted Tree achieved

higher performance compared to other non-deep learning

based classifiers. The deep networks, i.e., CNNs and RNNs,

that were trained from scratch with the raw ECG waveforms

shown to underperform in their MI detection power, partly

due to the limited amount of data available for training. This

validates our approach which aims to utilize existing networks

via transfer learning rather than designing a new network for

each problem and train it extensively with a given dataset.

VI. CONCLUSION

Myocardial infarction (MI) is globally the leading of cause

of death among cardiovascular diseases. Due to the delay and

resource expenditure associated with diagnosis from laboratory

based blood sample tests, it is common clinical practice to in-

spect the electrocardiogram (ECG) records of patients instead.

However, such an approach is still time consuming and subject

to interpretation bias. In most developing countries, the num-

ber of cardiologists to interpret the ECG records is far lower

than demand requires. In this context, data-driven approaches

can assist the diagnosis process by providing decision support

to the domain experts on site. Particularly, understanding the

onset time of MI is crucially important in providing effective

and early intervention, thereby improving patient outcomes.

To this end, we have proposed an end-to-end trainable deep
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TABLE IV
AUROC (%), RESULTS FROM THE PUBLICLY AVAILABLE PTB

DATABASE [29], USING EXISTING WORKS THAT EMPLOYED

HAND-CRAFTED FEATURE, COMMON DEEP LEARNING CLASSIFIERS,
DEDICATED DEEP NETWORKS (CNN AND RNN [35]). A COMPARISON IS

CONDUCTED WITH DATA-FUSION STRATEGY OF OUR PROPOSED

FRAMEWORK TO DETECT MI CASES FROM NORMAL CASES.

PTB Dataset

Method Classifier AUROC

Existing
Handcrafted

Random Forest 68%

Gradient Boosted Tree 70%

Multi-layer Perceptron 61%

Logistic Regression 66%

K-nearest Neighbor 64%

Deep Learning
CNN 49%

LSTM 49%

Proposed
Spectral Dense 88%

Longitudinal LSTM 90%

Spectral-Longitudinal Dense-LSTM 94%

learning framework that takes raw ECG records and detects

MI cases from normal (or non-MI cases), whilst also inferring

the occurrence time of the heart attack as being either acute

(within 7 days), recent (less than 30 days but longer than 7

days) and old (beyond 30 days). To do so, we employ a transfer

learning technique that aims to exploit existing convolutional

neural networks by representing the raw ECG time series

with an image-like spectrogram representation. Importantly,

we have experimented with a variety of fusion techniques to

utilise the unique characteristics present among different ECG

leads. We have proposed a joint spectral-longitudinal model,

where the spectral component refines the high-dimensional

deep features and applies dimension reduction to avoid the

curse of dimensionality, and the longitudinal model encodes

the temporal dependency among subsequent ECG samples.

Encouraging performance, as high as 81.8% AUROC, is

obtained when we validated the proposed framework on a

cohort of > 17, 000 Chinese patients. Though the onset-time

detection performance could sometimes be less optimal, e.g.,

for Recent MI cases, the proposed platform could still provide

useful insights, such as perioperative risks, particularly in low-

resource settings where there is very minimal cardiologists-to-

patients and/or rich patient history is not common/available.

Future work aims to expand the validation of the proposed

framework to multiple recent networks, such as ResNeSt [40]

and to utilize attention-based mechanisms in the longitudinal

modelling stage.
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