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Abstract  
Cancer is one of the most dangerous diseases to humans, and yet no permanent cure has been developed 

for it. Breast cancer is one of the most common cancer types. According to the National Breast Cancer 

foundation, in 2020 alone, more than 276,000 new cases of invasive breast cancer and more than 48,000 

non-invasive cases were diagnosed in the US. To put these figures in perspective, 64% of these cases are 

diagnosed early in the disease’s cycle, giving patients a 99% chance of survival. Artificial intelligence and 

machine learning have been used effectively in detection and treatment of several dangerous diseases, 

helping in early diagnosis and treatment, and thus increasing the patient’s chance of survival. Deep learning 

has been designed to analyze the most important features affecting detection and treatment of serious 

diseases. For example, breast cancer can be detected using genes or histopathological imaging. Analysis at 

the genetic level is very expensive, so histopathological imaging is the most common approach used to 

detect breast cancer. In this research work, we systematically reviewed previous work done on detection 

and treatment of breast cancer using genetic sequencing or histopathological imaging with the help of deep 

learning and machine learning. We also provide recommendations to researchers who will work in this 

field. 
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1. Introduction  
Breast cancer is one of the major causes of death in women around the world. According to the American 

cancer society, 41,760 women and more than 500 men died from breast cancer recently1. Breast cancer 

occurs in four main types: normal, benign, in-situ carcinoma and invasive carcinoma  [1]. A benign tumor 

involves a minor change in the breast structure. It is not harmful and does not classify as a harmful cancer. 

In cases of in-situ carcinoma, the cancer is only in the mammary duct lobule system and does not affect 

other organs. This type is not dangerous and can be treated if diagnosed early.  Invasive carcinoma is 

considered to be the most dangerous type of breast cancer, as it can spread to all other organs. According 

to the authors in [1], breast cancer can be detected using several methods including X-ray mammography, 

ultrasound (US), Computed Tomography (CT), Portion Emission Tomography (PET), Magnetic Resonance 

Imaging (MRI) and breast temperature measurement. Usually, the golden standard is a 

pathological diagnosis for detecting breast cancer. This involves an image analysis of the removed 

tissue, which is stained in the lab to increase visibility.  Hematoxylin and Eosin (H&E) are commonly used 

for the staining process. Breast cancer can be diagnosed using one of two approaches: histopathological 

image analysis or genomics. Histopathological images are microscopic images of breast tissue that are 

extremely useful in early treatment of the cancer. As for genomics, the authors in [2] stated that radio-

 
1 https://www.cancer.org/ 



Artificial Intelligence in Medicine, Elsevier, Vol 127, May 2022 
 

genomics is an emerging research field focusing on multi-scale associations between medical imaging and 

gene expression data.  

Radio-genomics provide both radiological and genetic features that can enhance diagnosis. It can analyze 

tissues at the molecular level, helping with prediction and early detection of cancer. The main difference 

between imaging information and radio-genomics is the critical knowledge gap between imaging at the 

tissue level and analyzing the underlying molecular and genetic disease biomarkers. As imaging is less 

precise, it may lead to over- or under-treatment. While radio-genomics is much more effective than 

histopathological imaging, it is rarely used because the process involves datasets that are very expensive 

and require high computational power. As a result, a limited number of labs conduct radio-genomics 

experiments [2]. This research paper addresses the following research questions and highlights the deep 

learning models, looking at their performance, the datasets used and possibilities for breast cancer 

classification and detection. 

 

1. Which deep learning models perform most effectively?  

We will compare deep learning models with classical machine learning models to compare their 

performance. We will also list the performance metrics used.  

 

2. What are the most used features for breast cancer classification? How are these features 

selected and extracted? 

We will observe the most important features that contribute to breast cancer classification, and the 

methods used to extract these features.  

 

3. What datasets are available for both gene sequencing and MRI? What feature selection and 

extraction methods are used?  

 

We will list and discuss all public and private datasets for gene sequencing and MRI imaging data. 

We will also list some of the methods used to select and extract the features.  

 

4. Comparing gene sequence data with image data, for breast cancer detection problem, what 

are the drawbacks, challenges, and advantages?   

We will compare imaging and gene sequencing as they relate to breast cancer detection, using a 

tabular presentation to highlight the main differences between the two approaches.  

 

The remaining of this paper is structured as follows: Section 2 presents related work which includes surveys 

conducted in breast cancer area. Section 3 explains the methodology used to conduct this research. Section 

4 presents the obtained results and related discussions. Lastly, Section 5 concludes the paper and suggests 

future research directions. 

2. Related Work           
Many studies have been conducted about breast cancer detection through imaging or through genomics. 

However, to the best of our knowledge, no research has been conducted including both techniques.  

The authors in [1] summarized the various techniques used to classify breast cancer using histopathological 

image analysis (HIA) based on different architectures of Artificial Neural Networks (ANN). The authors 
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grouped their work according to the applied dataset. They arranged it in ascending chronological order. 

This work found that ANNs were first used in the field of HIA around 2012. ANNs and PNNs were the 

most frequently applied algorithms.  However, in feature extraction, most of the work used textural and 

morphological features. It was clear that Deep CNNs were quite effective for early detection and diagnosis 

of breast cancer, leading to more successful treatment. Prediction of Non-Communicable Diseases 

(NCDs) was conducted using many algorithms.   

In [2], the authors compared the performance of various classification algorithms. The classification 

algorithms were performed on eight NCD datasets using eight classification algorithms and a 10-fold cross-

validation method. These were evaluated using AUC as an indicator of accuracy. The authors stated that the 

NCD datasets have noisy data and irrelevant attributes. KNN, SVM and NN proved to be robust to this 

noise. In addition, they stated that the irrelevant attribute problem can be handled with some pre-processing 

techniques to improve the accuracy rate.  

Natural inspired computing (NIC) algorithms have been designed and applied to diagnose various human 

disorders. The authors in [3]  introduced five insect-based NIC algorithms used for diagnosing diabetes and 

cancer. The authors found that it achieved a high level of performance in detecting different types of cancer 

(breast, lung, prostate and ovarian). To be more specific, breast cancer was detected using a hybridization 

of the guided ABC and neural networks.   

The authors also developed a highly effective methodology of detecting diabetes and leukemia. They 

concluded that the hybridization of NICs with other classification algorithms produces more precise and 

promising results. They mentioned that more work is required to detect different stages of diabetes and 

cancer.  

In [4], the authors demonstrated the effectiveness of NNs in the classification of cancer diagnoses, 

especially in the initial stages.  According to their study, the majority of NNs have shown promise in 

detecting tumor cells. However, the imaging approach requires high computational capacity to preprocess 

the images.   

In [5], the authors reviewed different machine learning, deep learning and data mining algorithms related 

to breast cancer prediction. Several research papers on breast cancer were reviewed, with a total of 27 

papers in machine learning, 4 papers in ensemble techniques and 8 papers in deep learning techniques. The 

authors mentioned that most of the papers used imaging, while only a few papers used genetics. The main 

algorithms used to predict breast cancer using genetics were SVM, decision tree and random 

forest. However, imaging techniques used several algorithms such as CNNs and Naïve Bayes.  

On the other hand, the authors in [6] focused on gene mutation for detecting breast cancer. They mentioned 

that the gene prediction classification phase aims to carry out gene annotation, gene finding and gene 

mutation detection to ascertain the presence or absence of a cancer. They concluded that several methods 

can be used including regression, probability models, SVMs, NNs and deep learning. They also mentioned 

the many opportunities available to capture the relationship between nucleotide and 

feature extraction, since DNA sequencing involves a large amount of data in the form of a string sequence. 

In [7], the authors examined recent studies  applying deep learning to breast cancer with different 

imaging modalities. They organized these studies using the aspects of dataset, architecture, application and 

evaluation. They focused on deep learning frameworks developed in three breast imaging 

modalities (ultrasound, mammography and MRI). In their work, they attempted to provide state-of-the-art 

findings about breast cancer imaging utilizing DLR-based CAD systems. Their study included private 

datasets and classification using CNNs.  
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After studying these surveys, our contribution will involve studying genetic sequencing and imaging at the 

same time to predict breast cancer and to get more information that can help early diagnosis and treatment 

of breast cancer. We will also provide recommendations to researchers who wish to conduct research in 

this area. 

3. Methodology 
Our target topic is breast cancer detection using deep learning. We ended up using around 80 of the most 

recent papers related to breast cancer treatment and diagnosis. Some of the papers examined only deep 

learning, while others used a combination of machine learning and deep learning.  

In our search process, we mainly used the Scopus database to obtain the articles. This is to exclude non-

refereed publications However, in Figure 1, we state the distribution of selected papers among the existing 

databases. The top five databases are PubMed, ScienceDirect (Elsevier), IEEE, Springer and Nature. 

 

 

Figure 1 Papers distribution among databases 

We used the following search statement: (“breast cancer") AND ALL (“deep learning" OR "deep neural 

network") AND ALL ("gene" OR "genome" OR "microarray" OR "DNA" OR ”X-ray” OR 

“mammography” OR “MRI” OR “ultrasound”). More than 1,000 papers were found that were published 

between January 2010 and May 2020. The following figure shows the distribution of paper publication 

during this period.  

Papers Distribution Among Databases

PubMed ScienceDirect IEEE explore Spriger Nature Other
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Figure 2 Number of publications between 2010 and 2020. 

 

We can see that breast cancer study publications peaked around 2019 and 2020. We reduced the number of 

papers to 80 by including only papers using genetic expression and imaging and by focusing on journal and 

conference articles only. The imaging modalities we considered were ultrasound, radiography, 

mammography and magnetic resonance imaging (MRI), as well as various types of gene expression and 

gene sequencing. In this research, we focused on papers that implement the breast cancer detection using 

the techniques of AI, as well as papers that predict breast cancer using both gene data and image data. We 

applied the following eligibility criteria on each paper: (1) The language is English; (2) The topic is related 

to breast cancer detection and treatment; (3) The paper discusses hybrid models of machine learning and 

deep learning; (4) The paper purely discusses deep learning; (5) The paper discusses genetic expression 

data; (6) The paper discusses imaging data; (7) Only journal and conference publications are retained; (8) 

Only medical or biomedical engineering publications are kept which are related to the topic. Please note 

that non-refereed publications were excluded from the study. 

Firstly, we recorded the main information such as the name of the paper, year of publication, the list of 

authors and the publisher. Then, we included some information to conduct the systematic review, such as 

the algorithm used and whether the paper discusses only deep learning or a hybrid between DL and ML, 

the recorded accuracy and other performance evaluation parameters, the dataset, the features, and many 

other columns. We answered our research questions using these criteria. 

4. Results and Discussion 
In this systematic study, our initial search turned up 1,000 conference and journal papers. After eliminating 

duplicated papers and unrelated studies that were “purely medical or about cancer in general”, we ended up 

with 80 papers related to both ML and DL.  

We wanted to focus on DL approaches or DL-ML hybrid models, so only papers related to DL were 

selected. Figure 3 explains our search methodology. 
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Figure 3 Flow of information through the phases of a systematic review. 

 

1. Which deep learning models perform most effectively?  

The following tables (Tables 1 & 2) summarize the algorithms used and their performance, with some 

details related to both genetic and imaging data.  

 

Table 1 Models, classes, and performance for gene sequencing data in selected papers.

Paper 

Refer

ence  

Models/ Algorithm Binary or 

Multiclass 

Classes  Accuracy Other 

Performance 

Evaluation 

Parameters 

Anomaly 

Application/ 

Task    

[8] IABC-EMBOT, 

IHM-FFNN, PSO-

RM, 

ABCO-BCD and 

DNN-BCD 

Binary Negative, positive  0.975 _ BC detection  

[9] FNN, ANFIS, 

ANNFIS 

Binary  Negative, positive 0.92 Precision: 

0.944, recall: 

0.944, 

F1:0.944 

BC detection 

[10] Deep type, state-of-

the-art 

Multiclass Normal, luminal 

A, luminal B, 

basal and HER2 

_ _ Identifying 

cancer 

subtypes 

[11] BPNN Binary  Mutant and non-

mutant sequences  

0.998 Sensitivity=1 

Specificity=0.

9985 

Predication 

and 

Classification 

of Cancer 
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[12] CNN Multiclass  - 0.956 - BC subtype 

classification 

[13] DA Multiclass  - 0.95 - BC detection 

[14] DNN + Attention 

mechanism (Hybrid) 

Binary  - 0.87 - BC detection 

[15] GCN Multiclass - 0.919 AUC=0.84 Synergistic 

drug 

combinations 

[16] DNN+SVM 

(separately) 

Multiclass  Binary, 

Miotic/non  

0.94  F-score: 

0.556 

Accuracy: 

0.8319 

Detection  

[17] DNN Multiclass  4 classes - Basal-

like, HER2-

enriched, Luminal 

A, and Luminal B 

And binary (Basal, 

Non basal) 

0.83 AUC: 0.82 

Accuracy: 

0.8682 

Identify Risk 

categories  

[18] DL + ML 

(Separately) 

CNN, SVM, 

Random Forests, 

Boosting 

Multiclass  Axillary lymph 

node status, 

binary, cancer or 

not 

0.97 by 

SVM  

Accuracy: 

0.98 

AUC: 0.93 

Cancer 

subtype 

classification  

[19] DL + ML 

(Hybrid) 

Genetic Algorithm 

(GA) based MLP, 

Multilayer 

Perceptron (MLP),  

Logistic Regression 

(LR) 

Multiclass  Binary, cancer or 

not 

0.84  AUC: 0.84 Prediction of 

axillary lymph 

node status in 

breast cancer 

[20] Feed Forward 

Neural Network 

(FFNN) 

Binary  Binary, cancer or 

not  

0.983 Only 

accuracy 

BC detection 

[21] DNN  Multiclass  Cancer types  0.64 -  BC detection  

[22] CNN Binary Tumor or not 0.967  Only 

accuracy  

 

[23] CNN Multiclass   7 Cancer types 0.846 Only 

accuracy 

BC subtypes 

identification  

[24] PCA, PCA-AE-Ada Binary  Binary  0.85 SN=0.84m 

SP=0.55, 

AUC=0.74 

Predict clinical 

outcome of 

breast cancer 

[25] Deeptriage Multiclass  Normal, luminal 

A, luminal B, 

basal and HER2 

- F1- score= 

0.90  

BC subtypes 

identification 

[26] CNN+HASHI Multiclass - - NPV=0.97, 

TNR=0.92, 

FPR=0.08, 

FNR=0.13, 

PPV=0.72, 

Dice=0.76 

BC detection 

[27] CNN, GSS Binary Binary - Recall = 0.66 

Precision = 

0.826 

Mitosis 

detection 
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F- score = 

0.734 

[28] CNN Both Binary and 

(epithelium, 

stroma, and fat) 

0.92 and 

0.95 

- Identify and 

classify tumor-

associated 

stroma in 

diagnostic 

breast biopsies. 

 

[29] SVM, NB, RF Binary ER- and ER+ 0.85 - Cancer sub-

types (ER+ and 

ER−).   

[30] RF, ANN Multiclass 7 classes - - Gene 

prediction 

[31] Deep CNN Binary Epithelial and 

stromal 

0.88 - Epithelial and 

stromal 

[32] DNN Multiclass Basal-like, HER2-

enriched, Luminal 

A, and Luminal B 

0.87 - BC Molecular 

subtype 

classification 

[33] ANN, LR cascaded 

and individually 

Binary Death/ Survival 0.84 Sensitivity, 

specificity, 

AUC, various 

for different 

number of 

years and 

features 

BC survival 

according to 

different 

features 

[34] DNN Multiclass - 0.82 Precision = 

0.875 

Sensitivity = 

0.200 

Matthew’s 

correlation 

coefficient = 

0.356 

BC prognosis 

detection 

[35] AP + ANN Binary Malignant/ benign  0.983 Sensitivity = 

0.9803 

Specificity = 

0.9887 

Feature 

selection 

method 

[36] CNN Multiclass - - AUC = 0.902 

Dice 

coefficient = 

0.7586 

BC detection 

[37] PNN Binary Malignant/ benign 0.963 Sensitivity = 

0.9888 

 

BC early 

diagnosis 

[38] ANN Binary Malignant/ benign 0.989 - BC diagnosis 

[39] CNN, SVM Multiclass 4 tissue categories 0.9 F-score = 

0.94 

AUC = 0.99 

BC detection 

[40] CNN, Autoencoder Binary Positive/ Negative 0.986 Sensitivity = 

0.9812 

Specificity = 

0.9877 

Precision = 

0.9688 

BC diagnosis 
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F score = 

0.9750 

[41] KNN, ANN, SVM, 

LS-SVM 

Binary Positive/ Negative 0.953 - BC image 

classification 

[42] ANN Regression Tumor weight - R^2 = 0.897  

RMSE= 

0.271 

BC tumor 

detection 

[43] SVM, CNN, SLIC Binary Epithelial and 

non-epithelial 

0.942 Precision = 

0.9283 

Recall = 

0.992 

F score = 

0.958 

BC image 

classification 

[44] ANN Multiclass ER/HER2-, 

ER/HER2+, ER-

/HER2+, ER-

/HER2- 

 - - BC tumor 

detection 

[45] DNN Nuclei 

probability 

- - F score = 

0.59±0.14 

Precision = 

0.72±0.12 

Recall = 

0.56±0.2 

Specificity = 

0.9±0.06 

BC tumor 

detection 

[46] ANN, KNN, 

RBFNN, SVM 

Binary Malignant/ benign 0.965 F score = 

0.962 

Specificity = 

0.938 

Sensitivity = 

0.960 

BC detection 

[47] Pre-trained 

networks: VGG16, 

VGG19, and 

ResNet50  

Binary Malignant/ benign 0.926 ROC = 0.956 

Precision = 

0.959 

 

BC detection 

[48] NNC Binary Healthy/Cancer 0.971 AUC = 0.991 

Sensitivity = 

0.957 

Specificity = 

0.976 

BC detection 

[49] CNN, Hierarchical 

Classification 

 

Binary Malignant/ benign 0.954 Sensitivity = 

0.935 

 

BC detection 

[50] CNN, SVM Binary Low risk, high 

risk  

- (95% CI 

1.33–3.32, 

p=0.001) 

BC risk 

outcome 

[51] CNN Binary and 

Multiclass  

Malignant/ 

benign, subclasses 

0.98 F score = 

0.843 

Precision = 

0.842 

BC tumor 

detection 

[52] ANN, NB Binary Malignant/ benign 0.98 - BC tumor 

detection 

[53] ANN + (Correntropy 

+ Hinge + Cross-

Entropy) 

Binary Malignant/ benign  0.97 Precision = 

0.1 

Recall = 0.94 

BC tumor 

detection 



Artificial Intelligence in Medicine, Elsevier, Vol 127, May 2022 
 

F score = 0.97 

[54] ANN, Clustering Binary Malignant/ benign  0.96 - BC tumor 

detection 

[55] DBN, SVM Multiclass Normal, UC, UD, 

CD 

0.90 - BC gene 

classification 

[56] Constructive DNN Multiclass Low risk/ 

intermediate 

risk/high risk 

0.87 NPV = 0.92 

PPV = 0.48 

TNR = 0.93 

TPR = 0.50 

BC risk 

outcome 

[57] LR, DT, ANN, 

SVM, KNN, GNB, 

RF 

Multiclass Luminal A/ 

luminal B/ HER2-

Enriched/ basal-

like 

0.95 - BC subtype 

identification 

[58] DNN, Clustering Multiclass Luminal A/ 

luminal B/ HER2-

Enriched/ basal-

like 

- - BC subtype 

identification 

[59] CNN - - - F score = 

0.652 

Spearman = 

0.617 

Kappa = 

0.567 

BC detection 

[60] BAT, GSA, FNN Binary Malignant/ benign 0.942 Recall = 

0.943 

Specificity = 

0.893 

Precision = 

0.8403 

BC tumor 

detection 

[61] CNN, SVM - - 0.840 AUC = 0.852 

Sensitivity = 

0.867 

Specificity = 

0.833 

BC lymph 

node detection 

[62] NN Multiclass ER/PR/Her2 0.950 AUC = 0.890 BC tumor 

detection 

[63] CNN Binary Normal/tumor 0.987 Sensitivity = 

0.914 

Specificity = 

0.100 

Precision = 

0.100 

F score = 

0.955 

BC tumor 

classification 

[64] FCM, PCA, GLCM, 

KNN, SVM 

Binary Malignant/ benign - - BC tumor 

detection 

[65] Meta + SVM, 

Metalogistic 

regression, 

Integrative deep 

learning 

Multiclass - - Sensitivity = 

0.8284 

Specificity = 

0.9815 

BC gene 

identification 

[66] SVM, RF Binary Malignant/ benign 0.970 F score = 

0.950 

BC tumor 

detection 

[67] single-output 

Chebyshev-

Binary Malignant/ benign 0.994 - BC tumor 

detection 
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polynomial neural 

network (SOCPNN), 

and the modified 

SOCPNN 

[68] RF, CT, LR, MLP, 

LSTM, GRU 

Multiclass - - F score = 

0.820 

Tumor 

subclass 

detection  

[69] CNN Multiclass - 0.945 Precision = 

0.958 

Recall = 

0.956 

F score = 

0.964 

BC detection 

[70] MLP, RNN Binary Malignant/ benign - AUC = 0.998 

F score = 

0.980 

BC detection 

[71] CNN Binary Normal/cancer 0.956 Time = 80.3 

seconds 

BC type 

detection 

[72] DNN Multiclass ER-/ER+/Triple 

negative 

- Recall = 

0.950 

Precision = 

0.900 

F score = 

0.920 

BC tumor 

detection 

 

In the previous table, generally, the work in this area is divided into two main groups, the first involving 

binary classification (whether or not breast cancer is present) and the second classifying breast cancer types. 

We noticed that the use of binary classification results in the highest accuracy, and that it is generally more 

accurate than multiclass classification. In paper [11], the author used the BPNN algorithm in a highly 

effective way. We also see that most selected papers with binary classifications performed well in terms of 

most evaluation parameters. [18] However, the best performance for multiclass categorization or breast 

cancer subtypes classification obtained 97% accuracy. The author of the paper basically compared machine 

learning and deep learning on the task of breast cancer subtype classification. Most of the papers were 

strictly focused on accuracy and did not mention other parameters such as precision, recall, AUC, etc. This 

is an important limitation when we are talking about medical projects. Many models have been used, 

including CNN, DNN with attention mechanism, Feed Forward Neural Network (FFNN) and many other 

DL mechanisms. Because not all papers took into consideration the confusion matrix parameters, we will 

include only accuracy in our graphs. 

To state the findings from the above table, CNN model seems to be the number one used model among the 

papers for both binary and multiclass classification. A hybrid between machine learning and deep learning 

also seems to be affective for such models. We can see a hybrid between MLP and LR. As well as SVM 

algorithm from ML has been used a lot in these papers. 

Basically, when it comes to breast cancer detection using imaging data, we see high performance on binary 

classification. However, when it comes to classification of types, imaging did not produce results as 

accurately as gene expression data. Paper [77] obtained very high accuracy using a hybrid model between 

DL and ML for breast cancer detection.  

For multiclass differentiation or breast cancer subtype classification, the highest accuracy obtained using 

imaging data was 90% in a paper that uses ML. We can therefore see in the above table that in general, the 
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use of CNN results in excellent performance for both gene expression and imaging. An example of this is 

paper [75], which produced 97% accuracy for binary classification. The models used include both deep 

learning standalone models and hybrid models consisting of both machine learning and deep learning 

algorithms.  

Comparing between hybrid and deep learning standalone models in gene expression, we can see that the 

standalone deep learning models obtain consistently higher accuracy. The hybrid technique in paper [14] 

obtained 87% accuracy, which was the lowest accuracy in all the models. The CNN in paper [12] obtained 

an accuracy of 95%, while the algorithm BPNN achieved 99.8% accuracy. Many papers did not mention 

confusion matrix parameters. In fact, very few papers mentioned these parameters in which the authors 

mentioned sensitivity and specificity. Among the imaging papers, the highest accuracy was 99.7% for 

binary classification in paper [80], which used a hybrid model with both ML and DL. 

 

Table 2 Model, classes, and best performance for MRI imaging data  

Paper 

Reference  

Models/ 

algorithm 

Image 

Binary or 

Multiclass 

Classes  Accuracy  Other 

performance 

evaluation 

parameters  

Anomaly 

application  

[73] CNN Multiclass  Luminal A 

Luminal B 

HER2 

0.70 ROC=0.85 BC subtype 

classification  

[74] CNN Multiclass  Complete, 

partial, no 

response  

0.88  

Specificity of 

0.951, sensitivity 

of 0.739 

Predict breast 

tumor, 

Response to 

chemotherapy 

[75] CNN Binary  Negative and 

positive 

0.972 Sensitivity 0.983, 

and Specificity 

0.965 

BC detection  

[76] ANN, NB, 

 K-NN, DT, RF  

Multiclass  - 0.90 - BC subtype 

classification  

[77] CNN Binary  Negative and 

positive  

0.873   

[78] DL + ML 

(Hybrid) 

Logistic 

regression, 

random forest 

and deep neural 

network 

Binary   Negative and 

positive 

0.98 -  BC detection  

[79] 2CNN, 3CNN Binary  Negative and 

positive 

0.705  AUC=0.763, 

sensitivity=0.805, 

specificity=0.618 

 BC detection 

[80] DL + ML 

(Hybrid) 

Model 1: DBN-

ELM- BP 

Model 2: DBN-

BP-ELM 

Model 3: DBN + 

GA 

Binary  Negative and 

positive 

0.9975  - BC detection  
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According to the above table, the mostly used algorithm for breast cancer detecting and subtype 

classification is CNN, and that does make sense, since our data is MRI images and CNN considered the 

best for computer vision problems.  

To conclude, many algorithms were used in the studies. Some papers used several models in series, while 

others used only one model. According to Figure 4, ANN and CNN were the most widely used algorithms 

in both gene sequence and images data. Many other algorithms were used, such as DNN and SVM, but 

most of the papers used CNN and ANN with various parameters and properties.  

 

 

Figure 4 Most commonly used algorithms in the papers 

According to Figures 5 and 6, models with the highest accuracies are SOCPNN and CNN, respectively. 

 

 

Figure 5 Best models performance for gene sequence classifiers 
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Figure 6 Best models performance for images data classifiers  

 

2. What datasets are available for gene sequencing and MRI?  

According to the figure below, many public and private datasets were used. The private datasets were 

sourced from various universities in the US and EU.  

There were very few publicly available datasets that were not for free. Table 3 shows the public and private 

datasets available for gene sequencing. 

 

 
Figure 7 Dataset publicity 
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Table 3 Public and private datasets available for gene sequencing 

Paper 

reference 

Dataset Publicity availa

bility 

Link  # of 

instances   

[16] [13] 

[81] 

The cancer 

Genome Atlas 

Public Free Http://cancergenome.nih.gov 

 

11429 

[18] METABRIC 

datasets 

Public Free Https://ega-

archive.org/datasets/EGAD00010000268 

Https://www.cbioportal.org/study/summar

y?Id=brca_metabric 

 

543 

[82] Array express 

database 

Private  - - - 

[83] GEO database Public  Https://www.ncbi.nlm.nih.gov/geo/info/do

wnload.html 

 

404 

[15] STRING and 

BIOGRID 

Private  Free - - 

[84] NCI Genomic 

Data Commons 

(GDC) 

Public Paid Https://gdc.cancer.gov/ 

 

9114 

[85] Spark dataset Public Free Https://drive.google.com/file/d/1yd1gwk2

owgoooq9wi1k7puoakd7cbs8t/view 

 

106 

 

Although gene expression data is not as common as imaging data, we found many public and private 

datasets containing gene expression data for both healthy and sick people. The most well-known of these 

is the cancer Genome Atlas [86], which is a project aiming to identify the complete set of DNA changes in 

many different types of cancer. Studying these changes may help researchers understand how different 

types of cancer form. The dataset contains gene data for many cancer types, including breast cancer. The 

second most commonly used dataset is the METABRIC dataset, which contains clinical traits, expression, 

CNV profiles and SNP genotypes derived from breast tumors collected from participants of the 

METABRIC trial. The GEO database contains genome data and DNA sequencing from cancer detection 

research. NCI Genomic Data Commons (GDC) also provides researchers with a large number of gene 

related data for cancer research and analysis.  

The most used dataset in the above table is the cancer Genome Atlas dataset. It provides researchers with a 

big number of instances. It provides a clinical data for each participants including some general information.  

Table 4 explains the available imaging datasets for detecting breast cancer.  

 

http://cancergenome.nih.gov/
https://ega-archive.org/datasets/EGAD00010000268
https://ega-archive.org/datasets/EGAD00010000268
https://www.cbioportal.org/study/summary?id=brca_metabric
https://www.cbioportal.org/study/summary?id=brca_metabric
https://www.ncbi.nlm.nih.gov/geo/info/download.html
https://www.ncbi.nlm.nih.gov/geo/info/download.html
https://gdc.cancer.gov/
https://drive.google.com/file/d/1yD1GWk2OWgOooq9WI1K7puoaKD7CbS8T/view
https://drive.google.com/file/d/1yD1GWk2OWgOooq9WI1K7puoaKD7CbS8T/view
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Table 4 Public and private datasets for MRI imaging 

 

More datasets are available for imaging data than for genetic data. The most used imaging dataset is the 

Wisconsin breast cancer dataset, which is obtained from the UCI repository. It contains features that are 

computed from a digitized image of a Fine Needle Aspirate (FNA) of a breast mass.  

Many other breast cancer imaging datasets could be found, most of them public and free. If the dataset is 

very large, like the DDSM dataset, it can be used on its own. If the dataset is not large enough to produce 

high performance results, it can be merged with another dataset to improve the data pool. 

Researchers mainly used Wisconsin breast cancer dataset and MRI dataset, as we can notice both of them 

are public and contain a lot of samples.   

 

Paper 

reference 

Dataset Publicity Cost Link No of 

instanc

es   

[87], [80] Wisconsin breast 

cancer dataset 

Public Free Https://archive.ics.uci.edu/ml/da

tasets/Breast+Cancer+Wisconsi

n+(Diagnostic) 

 

569 

[31] Helsinki University 

& Netherlands 

Cancer Institute & 

Vancouver General 

Hospital 

Private -  -  -  

[88] MRI dataset Public Free Https://wiki.cancerimagingarchi

ve.net/display/Public/RIDER+B

reast+MRI#2251275749b786f1a

f5747c39abd8eda0d12e2b7 

 

1500 

[89] University of 

Vermont Medical 

Center 

Private -  -   

[90] Digital Database for 

Screening 

Mammography 

(DDSM)  

Public Free Https://wiki.cancerimagingarchi

ve.net/display/Public/CBIS-

DDSM#225166295e40bd1f79d

64f04b40cac57ceca9272 

 

10239 

[91] Stanford Tissue 

Microarray 

Database (TMA)  

Private -  -  -  

[92] Mammographic 

Image Analysis 

Society (MIAS)  

Public Free Http://peipa.essex.ac.uk/benchm

ark/databases/index.html 

 

322 

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://wiki.cancerimagingarchive.net/display/Public/RIDER+Breast+MRI#2251275749b786f1af5747c39abd8eda0d12e2b7
https://wiki.cancerimagingarchive.net/display/Public/RIDER+Breast+MRI#2251275749b786f1af5747c39abd8eda0d12e2b7
https://wiki.cancerimagingarchive.net/display/Public/RIDER+Breast+MRI#2251275749b786f1af5747c39abd8eda0d12e2b7
https://wiki.cancerimagingarchive.net/display/Public/RIDER+Breast+MRI#2251275749b786f1af5747c39abd8eda0d12e2b7
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM#225166295e40bd1f79d64f04b40cac57ceca9272
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM#225166295e40bd1f79d64f04b40cac57ceca9272
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM#225166295e40bd1f79d64f04b40cac57ceca9272
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM#225166295e40bd1f79d64f04b40cac57ceca9272
http://peipa.essex.ac.uk/benchmark/databases/index.html
http://peipa.essex.ac.uk/benchmark/databases/index.html
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  3A. What are the most commonly used features for breast cancer classification?  

We can see that the features are divided into two categories: tumor information and protein types/status. 

The tumor information includes the size of the tumor and the grade, which depends on cancer type. The ER 

and PR status represent the proteins that exist in the area. Number of positive lymph nodes represents how 

many lymph nodes contain the cancer and is recorded as a real number. Metastasis records the number of 

sites the cancer has spread into, and may include the lungs, bones, etc. HER2 is another protein that indicates 

the growth of the cancer inside the breast area. PAM50 is an index or test that shows if breast cancers are 

likely to metastasize (spread to other organs). The following tables (Tables 5 & 6) show the features, their 

description and types for gene as well as imaging. 

Table 5 Genetic data features

Feature Description Feature type 

ER status Positive or negative Nominal 

PR status Positive or negative Nominal 

Tumor size In inches Numeric 

Tumor grade Grade A, B and C Nominal 

Number of positive lymph nodes Real number (counts) Nominal 

Metastasis Number of metastatic sites. Count 

variable 

Numeric 

Age Real number Numeric 

The Nottingham Prognostic 

Index 

Calculated using formula given set 

parameters. 

Numeric 

PAM50 index Prognosis test shows the breast 

cancer has a fairly high risk of 

metastasis (the PAM50 score is 

high) 

Numeric 

HER2 This protein promotes the growth 

of cancer cells 

Nominal 

Table 6 Imaging data features 

Feature Description Feature type 

Size of epithelial cells In inches Numeric 

Density of epithelial cells Real number Numeric 

Clump thickness Real number Numeric 

Symmetry 0 or 1 Nominal 

Uniformity of cell size 0 or 1 Nominal 

Marginal adhesion 0 or 1 Nominal 

Concave points 0 or 1 Nominal 

Compactness 0 or 1 Nominal 

 

When looking at imaging data, many general features are considered such as symmetry, compactness and 

concave points. Another type of feature is related to the breast image specifically. For example, marginal 

adhesion quantifies the degree to which cells on the outside of the epithelial wall tend to stick together. 

Another example is uniformity of cell size, which is represented by 0 if lacking uniformity and 1 if uniform. 
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Clump thickness describes if cells are mono- or multi-layered. Uniformity of cell size evaluates consistency 

in cell size in the sample. 

 

3B. What are the most effective feature selection and feature extraction methods?  

Feature extraction methods 
The literature discusses various methods for feature extraction. Feature-based Strategy (FES) is a method 

used in some of the papers for finding image displacements. This strategy pinpoints features (for example 

image edges, corners and other structures that can be localized in two dimensions) and tracks these as they 

move from frame to frame. This involves two stages. Firstly, the features are found in two or more 

consecutive images. The act of feature extraction, if done correctly, will reduce the amount of information 

to be processed (and so reduce the workload). It will also contribute to obtaining a higher level of 

understanding in the field, by its very nature of eliminating the unimportant information. Secondly, these 

features are matched between the frames. In the simplest and commonest cases, two frames are used and 

two sets of features are matched to produce a single set of motion vectors. Alternatively, the features in one 

frame can be used as seed points from which to use other methods (i.e.: gradient-based methods -- see the 

following section) to find the motion [23].  

Other authors used a multi-level wavelet transformation method, which is a wavelet-based discrete signal 

analysis method that can extract multilevel time-frequency features from a time series by decomposing the 

series level by level into low and high frequency sub-series. 

CNN was also used for feature selection and extraction. This is a very broad question, but you can look at 

general CNN architecture for two main types of imaging classification: “feature extractor” based on 

convolutional layers, and “classifier”, usually based on fully connected layers.  

Feature extraction usually refers to one of two options: either the last hidden layer – i.e.: the last layer before 

the output layer [see vgg16 example below, the 4096x1x1 layer], or the last convolutional layer after 

flattening [in vgg16 -the conv5 layer 7x7x512] [93].  

Feature selection methods  
Several feature selection methods were used, starting with XGboost. The authors in [94] used XGboost and 

a random forest multilayer network analysis of mRNA and protein expression profiles in breast cancer 

patients. Random forests are often used for feature selection in a data science workflow because the tree-

based strategies used by random forests naturally ranks features by how well they improve the purity of the 

node. This means that they assign each feature a status on whether they reduce impurity over all trees 

(called GINI impurity). Nodes producing the greatest decreases in impurity occur at the start of the trees, 

while nodes with the smallest reduction in impurity occur at the end of trees. Thus, by pruning trees below 

a particular node, we can create a subset of the most important features. 

 

On the other hand, authors in [83] used principal component analysis (PCA), a technique for reducing the 

dimensionality of datasets, increasing interpretability but at the same time minimizing information loss. 

They achieved this by creating new uncorrelated variables that successively maximize variance.  

 

4. Comparing gene sequence data with image data, for breast cancer detection problem, what is the 

drawbacks, challenges, and advantages for each? 

In this survey, we compare between genetic data and imaging data as they are related to breast cancer 

detection. Here, we summarize the findings and results. 
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Table 7 The differences between genetic sequencing data and imaging data

We collected papers that use either genetic sequencing data or imaging data to detect breast cancer or to classify it into 

subtypes. Both strategies produced good results. Regarding imaging data, many features could be easily extracted, but not 

all of them were effective. Genetic expression data contains fewer features but may be more effective. The best performance 

using imaging data in our systematic review produced 99.3% accuracy, whereas the most accurate use of genetic data 

resulted in 99.8% accuracy.  

In general, dealing with imaging data is much easier than dealing with genetic data. There are more ways to preprocess 

imaging data, and more techniques to extract features from it. On the other hand, in our survey, we found that genetic data 

is consistently more accurate, especially in the context of multiclass prediction. 

Imaging data requires more data cleaning work after a feature’s extraction phase because most techniques involve CNNs 

extracting related and nonrelated features, possibly leading to poor performance.  

On the other hand, dealing with genetic data poses more challenges. Genetic data processing is complex and expensive. It 

is much easier to find imaging data for breast cancer projects. When it comes to genetic data, it is hard to find datasets that 

are large enough with the right labels.  

We cannot conclude that gene expression will give better prediction and more accurate results, based on the above 

comparison we can state that each datatype contains drawbacks and challenges. 

5. Conclusions and Future Research Directions 
 

Most papers published in the field of breast cancer detection and subtype classification use machine learning techniques. 

However, deep learning models have not been heavily investigated in this domain. This presents researchers with 

opportunities to use various deep learning mechanisms to predict patient status such as LSTM, GAN and RNN, as these 

types of research have not yet been conducted in the field.  

Moreover, most papers focus only on the Accuracy metric to evaluate their performance and ignore confusion matrix 

parameters and AUC. This is insufficient since the Accuracy metric does not distinguish between false positive and false 

negative classifications. Future studies should include at least AUC and F-scores to assess the performance of each model.  

An important finding has been noticed which is the wide use of the CNN algorithm for both gene expression and MRI 

images data. Such models often obtain good results in comparison to other algorithms. Researchers might be interested to 

do further searching and implement more hybrid algorithms with CNN.  

 Image  Gene  

Features  More features, most obtained using CNN Fewer features but more effective  

Performance  Best accuracy is 0.993 Best accuracy is 0.998 

Advantage  Easy to use CNN, more available datasets  More accurate, more confidence 

Disadvantage  Many related and nonrelated features. Hard to obtain enough datasets, possibly 

expensive, complex.  

Medical confidence Most common  A focus of recent research.  
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Furthermore, we noticed that the Attention mechanism has not been used very often to classify images. So, this gives future 

researchers an opportunity to use Attention to improve the accuracy of deep learning models.  

Recently researchers are focusing on the gene sequence data as it is a wide area and there is always room for further research 

and results.  

There are several opportunities for future researchers to contribute by merging multiple gene sequencing datasets to predict 

additional outcomes with larger dataset.  

Future researchers may also focus on extracting significant features from genetic expression data to obtain better results, 

using confusion matrix parameters to increase accuracy. Additionally, researchers can focus on feature selection methods 

to eliminate non-significant features, leading to better performance.  

Most of the research we found, focused on breast cancer detection and subtype classification. This leaves room for future 

research to address various related topics such as identifying risk levels and predicting the possibility of recurrence. One 

direction for future research is related to implementing multiclass predictors using genetic data. Most research papers used 

genetic sequencing data only with binary classification, with the main focuses being breast cancer detection and likelihood 

of survival.  
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Appendix 1 

Acronym Explanation 

ANN Artificial Neural Network 

AI Artificial intelligence 

BC Breast cancer 

HIA Histopathological image analysis 

CNNs Convolution Neural Network 

NCDs Non-Communicable Diseases 

KNN K Nearest neighbor 

AUC Area Under the curve 

SVM Support vector machine 

NIC Natural inspired computing 

US Ultrasound 

CT Computed Tomography 

PET Portion Emission Tomography 

MRI Magnetic Resonance Imaging 

H&E Hematoxylin and Eosin 

DNA Deoxyribonucleic Acid 

DL Deep learning 

FNN Feed forward network 

BPNN Back propagation neural network 

GA Genetic Algorithm 
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PCA Principle component analysis 

NB Naïve bayes 

LR Linear regression 

DT Decision trees 

RF Random Forest 

RNN Recurrent Neural network 

LSTM Long short-term memory 

MLP Multilayer perception 

ROC receiver operating characteristic 

NN Neural Network 
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