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Abstract

Detection of a signal hidden by noise within a time series is an important
problem in many astronomical searches, i.e. for light curves containing the
contributions of periodic/semi-periodic components due to rotating objects
and all other astrophysical time-dependent phenomena. One of the most
popular tools for use in such studies is the periodogram, whose use in an
astronomical context is often not trivial. The optimal statistical properties of
the periodogram are lost in the case of irregular sampling of signals, which is a
common situation in astronomical experiments. Parts of these properties are
recovered by the Lomb-Scargle (LS) technique, but at the price of theoretical
difficulties, that can make its use unclear, and of algorithms that require
the development of dedicated software if a fast implementation is necessary.
Such problems would be irrelevant if the LS periodogram could be used
to significantly improve the results obtained by approximated but simpler
techniques. In this work we show that in many astronomical applications
simpler techniques provide results similar to those obtainable with the LS
periodogram. The meaning of the Nyquist frequency is also discussed in the
case of irregular sampling.
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1. Introduction

The search for characteristic frequencies in astrophysical phenomena re-
quires a careful analysis of the data with appropriate statistical tools. Given
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the simplicity of its use and the wide availability of efficient related software,
one of the most popular techniques for looking for periodicities within a time
series is the periodogram technique. In astronomical applications, however,
the use of this technique is not trivial. In fact, this tool exhibits its opti-

mal properties only in the case of signals sampled on a regular time grid, a
common situation in engineering applications but not always in astronomical
experiments. The analysis of a periodogram in the case of irregular sampling
is often limited by the possibility for fully fixing its statistical properties.
This is an old dated problem (e.g. Gottlieb et al. 1975) and there have been
many attempts to solve it. A partial solution has been found in the Lomb-

Scargle (LS) approach (Lomb 1976; Scargle 1982) but at price of theoretical
difficulties that make its use unclear and, if a fast implementation is needed
(e.g. in the case of very long time series), the necessity of dedicated software.
Of course, this would not constitute a relevant issue if LS periodogram could
be used to notably improve the results obtainable by the statistical analysis
of a time series. In this paper we argue that in astronomical applications of-
ten this is not the case. We show how the negligible improvements obtained
with LS are offset by the ease of interpretation and clarity of the results
provided by simpler techniques, which do not demand high computing power
and/or complicated algorithms.

In Sec. 2 the statistical analysis of sampled signals is addressed in the
case of a regular sampling, where the mathematical notation and formalism
are also outlined. The problems and advantages of an irregular sampling are
analyzed in Sec. 3. The real advantage of the LS periodogram with respect
to an approximated but simpler technique is considered in Sec. 4 on the
basis of theoretical arguments as well as numerical experiments based on
synthetic data and of an experimental time series. Finally, Sec. 5 derives our
conclusions.

2. Statistical analysis of regularly sampled signals

If a signal x(t) is sampled on a regular time grid with a constant time
step ∆t, a time series {xj}N−1

j=0 ≡ (x0, x1, . . . , xN−1) is obtained1. Often
the main problem is testing whether x(t) is due only to a noise n(t), or
whether some other component s(t) is present, i.e. xj = sj + nj. The most

1Typically it is assumed that ∆t = 1.
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popular approach consists of computing the periodogram {pk}N−1
k=0 for a set of

N equispaced frequencies {fk}N−1
k=0 ≡ {k/N}: pk = 1

N
|x̂k|2 with the discrete

Fourier transform (DFT) of {xj} being

x̂k =

N−1∑

j=0

xje
−i2πkj/N , k = 0, 1, . . . , N − 1; (1)

and {fk} being the Fourier frequencies. The original time series {xj} can be
recovered from {x̂k} via

xj =
1

N

N−1∑

k=0

x̂ke
i2πkj/N , j = 0, 1, . . . , N − 1. (2)

In the case where {xj} is only noise with {nj} a zero-mean, Gaussian, white-
noise stationary process with standard deviation σn, from Eq. (1) it can
be readily verified that, independently of k, p̂k/σ

2
n is given by the sum of

two squared independent, zero-mean, unit-variance, Gaussian random quan-
tities. As a consequence, the corresponding probability density function

(PDF) is the exponential distribution. Moreover, whenever k 6= k′ with
k, k′ = 0, 1, . . . , N/2, pk is independent of pk′. Hence, the probability α that
at least one of the pk is expected to exceed a level LFa is

α = 1−
[
1− e−pk/σ

2
n

]N∗

. (3)

Through this quantity it is possible to fix a detection threshold LFa,

LFa = −σ2
n ln

[
1− (1− α)1/N

∗]
, (4)

corresponding to the level that one or more peaks due to the noise would
exceed with a prefixed probability α when a number N∗ of (statistically
independent) frequencies are inspected. Threshold LFa is called the level

of false alarm.
For a periodic component with amplitude A, phase φl and frequency fl (in

units of 1/∆t) in the set of the Fourier frequencies {fk}, sj = A sin (2πfltj + φl),
the periodogram will show a prominent peak at k = l. Indeed, since x̂N−k+1

is the complex conjugate of x̂k, then cos [2π(N − k + 1)j] = cos [2πkj] and
sin [2π(N − k + 1)j] = − sin [2πkj]. Hence, Eq. (2) can be written in the
form (Chu 2008)

xj =
1

N

N−1∑

k=0

ak cos
2πkj

N
+ bk sin

2πkj

N
, (5)
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where

ak =

N−1∑

j=0

xj cos
2πkj

N
; (6)

bk =

N−1∑

j=0

xj sin
2πkj

N
, (7)

or

ak =
x̂k + x̂N−k+1

2
; (8)

bk = i
x̂k − x̂N−k+1

2
. (9)

Now, since

sj = al cos
2πlj

N
+ bl sin

2πlj

N
, (10)

only the coefficients x̂l and x̂N−l and hence only p̂l = (a2l + b2l )/N will be
different from zero. More generally, if xj = A sin (2πf ∗

l tj + φ) + nj, with f ∗
l

close but not identical to the Fourier frequency fl, the periodogram takes
the form of a squared “sinc” function centered at f ∗

l . Also in this case, it is
expected that pl > LFa for small values of α (typically 0.05 or 0.01). If s(t) is
semi-periodic or even non-periodic, the situation is more complicated since
more peaks are expected, but the basic idea does not change.

Regular sampling has many advantages, among them:

• The sine and cosine modes corresponding to the Fourier frequencies

constitute an orthonormal basis for signal {xj}. This makes operations
such as noise filtering, separation and/or detection of components of
interest easier;

• The spectrogram can be shown to derive from the least-squares fit of
model (5) to the observed signal (e.g. see Vio et al. 2010). This pro-
vides a physical interpretation of the quantity pk as energy associated
with the component at frequency fk;

• Under the pure noise hypothesis xj = nj and independently of k, ak
and bk are uncorrelated (independent) Gaussian quantities. As a con-
sequence pk contains all the available information. In other words, the
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use of the joint distribution of ak and bk does not provide any advan-
tage with respect to the use of pk. Moreover, the quantities {pk}N/2

k=0

are mutually independent and have a known PDF. All of these facts
permit the development of simple and effective detection techniques;

• Quite efficient algorithms are available for the computation of {pk}.
At the same time, however, it is necessary to stress that:

• The Fourier frequencies have no particular physical meaning. They
constitute kinds of natural frequencies that, however, are intrinsic to
the sampling characteristics and not to the signal under analysis. This
implies that the frequency of interest could not belong to such a set;

• If xj contains a sinusoidal component with frequency fu > fNy = 0.5
(in units of 1/∆t), the periodogram will show a peak in correspondence
to a frequency f = mod(fu, 2π) < fNy

2. This puts an upper limit fNy,
the so called Nyquist frequency, on the maximal frequency that can be
detected in a time series.

In conclusion, a regular sampling simplifies the analysis of the data as well as
the development of efficient algorithms. However, especially in the context
of exploratory data analysis, it suffers of some annoying limitations.

3. Periodogram analysis of irregularly sampled signals

3.1. Statistical issues

In Astronomy often the experimental conditions do not permit a regular
sampling of signals and this leads to the following. First, it is no longer possi-
ble to define a set of natural frequencies (such as the Fourier frequencies) for
which to compute the periodogram. Hence, there is no reason for the number
N of frequencies to be equal to the number M of the sampling time instants
t0, t1, . . . , tM−1. Therefore, we write the transformation corresponding to that
given by Eq. (1) in the general form

x̂f =

M−1∑

j=0

xtje
−i2πftj , (11)

2The function z = mod(x, y) provides the remainder z from the division of x by y.
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where, without loss of generality, we have t1 = 0. The spectrogram is still
defined as pf = |x̂f |2 /M . Similarly, Eqs. (8)-(9) become

af =
M−1∑

j=0

xtj cos 2πftj; (12)

bf =

M−1∑

j=0

xtj sin 2πftj, (13)

and

pf =
a2f + b2f

M
. (14)

Second, the quantity pf loses its physical meaning and it no longer pro-
vides the energy of a signal at frequency f . Indeed, for a given f , pf can be
obtained from the least-squares problem (Stoica et al. 2009)

pf =
1

M
|β̃f |2, (15)

β̃f = argmin
βf

[
M−1∑

j=0

|xtj − βfe
i2πftj |2

]
, (16)

since it is readily verified that β̃f = x̂f . If βf is expressed in the polar form
βf = |βf |ei2πφf , then the least-squares problem (16) can be rewritten in the
form

β̃f = argmin
βf

[
M−1∑

j=0

[xtj − |βf | cos (2πftj + φf)]
2 +

|βf |2
M−1∑

j=0

sin2 (2πftj + φf)

]
. (17)

The first term in this equation represents the least-squares fit of a sinusoidal
function, and it can have a physical meaning. The second term represents
a data-independent quantity with no meaning in the context of the model
fit. Therefore, Eq. (17) indicates that in the case of irregular sampling the
periodogram is not equivalent to the least-squares fit of sinusoidal functions
(see also Vio et al. 2010). Consequently, the coefficients af and bf given by
Eqs. (12)-(13) do not provide the corresponding amplitudes. Since Eq. (11)
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can be interpreted as the correlation between xtj and the sine and cosine
modes with frequency f , the periodogram becomes a simple statistical measure

of similarity between the experimental time series and a discrete sinusoidal

signal of frequency f .
Another issue linked to the irregular sampling is the fact that, even under

the hypothesis of a noise signal with M = N , although still with a Gaussian
PDF, af and bf are no longer uncorrelated. As a consequence, the quantities
pf/σ

2
n no longer have an exponential PDF. This problem has been solved by

Lomb (1976) and Scargle (1982). Their approach, however, is a bit tortuous.
A more intuitive, though equivalent, method is based on the least-squares
model (Stoica et al. 2009; Vio et al. 2010):

(ãf , b̃f ) = argmin
af ,bf

M−1∑

j=0

[xtj − af cos (2πftj)− bf sin (2πftj)]
2. (18)

The solution of this problem is
(

ãf
b̃f

)
= R

−1
f rf , (19)

where

Rf =

M−1∑

j=0

(
cos (2πftj)
sin (2πftj)

)(
cos (2πftj) sin (2πftj)

)
, (20)

rf =

M−1∑

j=0

(
cos (2πftj)
sin (2πftj)

)
xtj . (21)

The energy pf associated with frequency f is given by

pf =
M−1∑

j=0

( (
ãf b̃f

) (
cos (2πftj)
sin (2πftj)

) )2

, (22)

=
(
ãf b̃f

)
Rf

(
ãf
b̃f

)
, (23)

= r
T
f R

−1
f rf . (24)

In the case of a time series of a Gaussian, zero-mean, white-noise {ntj}M−1
j=0

with variance σ2
n, from Eq. (21) it is easily verifiable that the entries of the
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array rf are Gaussian, zero-mean, random quantities with covariance matrix
σ2
nRf . Since Rf is a positive definite matrix, it can be factorized in the

form Rf = R
1/2
f R

1/2
f with R

1/2
f the Cholesky factorization of Rf (Björck

1996). Therefore, the entries of the array r
∗
f = R

−1/2
f rf/σ

2
n are independent

Gaussian random quantities with unit variance and the PDF of pf/σ
2
n is

the exponential distribution. However, there is no guarantee that, whenever
f 6= f ′, pf is independent of pf ′ . In general it is not, since with the least-
squares model (18) a single sinusoid of frequency f is fitted per time. As
a consequence, in the expression for the threshold LFa as given by Eq. (4),
the number of frequencies N should be substituted by the number Nf ≤ N
of independent frequencies. The point is that Nf is not known in advance
and in principle, Nf can be obtained from the rank of the covariance matrix
Rf . This last procedure can be computationally quite expensive. However,
as stressed by Scargle (1982), the dependence of LFa on Nf is rather weak
and in many situations, Nf = M/2 provides a reasonable choice (e.g. see
Vio et al. 2010).

Before concluding this section, a final remark concerns the advisability
of working with mean-subtracted signals. If the mean value x of a signal is
different from zero, Eqs. (12), (13) imply that its contributions af and bf to
the coefficients af and bf are given by

af = x

M−1∑

j=0

cos 2πftj ; (25)

bf = x

M−1∑

j=0

sin 2πftj. (26)

From these equations it appears that, independently of f , both af and bf are
different from zero. In other words, x influences the entire periodogram and
not only in correspondence of the frequency f = 0 as in the case of a regu-
lar sampling. Moreover, the contribution is different for distinct frequencies
and, since for a given f it is E[afbf ] 6= 0, with E[.] the expectation opera-
tor, a spurious correlation is introduced between af and bf . Obviously, all
that makes more complicated the spectral analysis of the signal of interest.
Actually, if the time series are not too short, the mean-subtraction opera-
tion does not imply particular problems. In other cases case, modifications
such as the “floating-mean periodogram” have to be used. For a detailed
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discussion of such a question see Cumming et al. (1999); Reegen (2007);
Zechmeister & Kürster (2009); Vio et al. (2010).

3.2. Considerations about the Nyquist frequency

Data with irregular sampling carry information that can be exploited
in many ways. One of the benefits of an uneven sampling is the drastic
reduction of the frequency aliasing (i.e. the aliasing of high frequencies down
to lower ones). In other words, it is possible to identify periodic components
with frequencies much higher than the fNy corresponding to that of a time
series with an identical number of equispaced data spanning the same time
interval. When in Eq. (1) k > N/2, this frequency index can be written as
k = N/2 + k′. Then,

sin

(
2πkj

N

)
≡ sin

(
πj +

2πk′j

N

)
= (−1)j sin

(
2πk′j

N

)
(27)

and similarly for the cosine function. Hence, pk = pk′. As a consequence, a
sinusoidal component with frequency index k will produce a prominent peak
in the periodogram also at k′ < k. At the same time, a sinusoidal component
with frequency index k′ will produce a prominent peak in the periodogram
also at k > k′. Using a periodogram it is not possible to determine whether
a sinusoidal component is present in the signal with frequency index k or k′.
In the case of an irregular sampling Eq. (27) does not hold. This implies
that periodogram can be used to distinguish a sinusoid with frequency f
from another one with frequency f ′ also when f ′ > fNy. In particular,
Eyer & Bartholdi (1999) found that, if the sampling time grid is in the form

tj = qjδt, (28)

with qj integer numbers and δt the greatest common divisor for all tj, then

fNy =
1

2δt
≥ 1

2∆t
. (29)

This is explained as follows: if the sampling pattern is in the form given by
Eq. (28), then from {xtj} it is possible to obtain an even time series {x′

l}
MMq

l=0

where Mq = tM−1/δt and

x′

l =

{
xtj if lδt = tj ,

0 otherwise.
(30)
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The Nyquist frequency for this time series is given by Eq. (29). A formula
for its calculation is given in Koen (2006).

If the sampling pattern cannot be expressed in the form (28), then δt = 0.
In this case there is the surprising result that fNy = ∞. For example, this
happens when the sampling times are randomly and uniformly distributed
in the interval [0, T ]. If x(t) = sin (2πf0t + φ) it is possible to show that the
expected values of af and bf are, respectively,

Et[af ] =
M

2T

{
cos [2π(f − f0)T − φ]− cos [φ]

2π(f − f0)
−

cos [2π(f + f0)T − φ]− cos [φ]

2π(f + f0)

}
, (31)

Et[bf ] =
M

2T

{
sin [2π(f − f0)T − φ] + sin [φ]

2π(f − f0)
−

sin [2π(f + f0)T − φ]− sin [φ]

2π(f + f0)

}
, (32)

if f 6= f0 and

Et[af0 ] =
M

2T

{
cos [φ]− cos [4πf0T + φ]

4πf0
− T sin [φ]

}
, (33)

Et[bf0 ] =
M

2T

{
sin [φ]− sin [4πf0T + φ]

4πf0
+ T cos [φ]

}
, (34)

if f = f0. For increasing values of T, Et[af ] → −M sin (φ)/2 and Et[bf ] →
M cos (φ)/2. The equations that provide the expected standard deviations
σaf and σbf are horribly long but, for T sufficiently large with respect to f ,

both these quantities are approximately equal to
√
M/2. This implies that

the uniform random sampling introduces a noise that, however, becomes
rapidly negligible for increasing values of M . The remarkable point is that
these results are independent of the frequency f0. Hence, f0 can be arbitrarily
large. As an example, Fig. 1 shows Et[af ] and Et[bf ] together with the
corresponding standard deviations σaf and σbf for the case where f0 = 1
(i.e. twice the Nyquist frequency corresponding to the mean sampling time
step), φ = 0, M = 50 and T = M − 1. For comparison, the results obtained
from 500 numerical simulations are also displayed. In Fig. 2 the theoretical
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Et[af ] and Et[bf ] are compared with the result from a single simulation.
Finally, in Fig. 3 the corresponding periodograms are shown as well the
corresponding standard deviation as obtained from the numerical simulations
(the expected values of this quantity give rise to terrible long equations).
From these results, one could argue that it is possible to detect a periodic
component independently of its frequency. However, from the analysis of
Eqs. (31)-(32) it can be inferred that the width of the peak at frequency f0
is inversely proportional to T . As a consequence, if T is large, the peak will
be quite narrow and there is a concrete risk of missing it if the periodogram
is not computed for a sufficiently large number of frequencies. In addition
for very high frequencies, a periodogram can be deeply altered by even small
errors in the sampling times tj (see below).

3.3. Computational issues

A difficulty introduced by an irregular sampling is the lack of efficiency of
the algorithm for the computation of {x̂f}. Indeed, algorithms based on the
fast Fourier transform (FFT) are inapplicable and the direct implementation
of Eq. (11) requires an operation count of order MN that is computationally
quite inefficient. The solutions proposed for overcoming this problem are
based on algorithms/techniques that are not trivial (e.g. Press et al. 2007;
Keiner et al. 2008), that make it difficult to deal with the experimental sig-
nals if the computation of {pf} or of the coefficients {x̂f} represents only one
step in the analysis procedure. For example, after filtering in the frequency
domain, it could be necessary to Fourier invert the sequence {x̂f}. In the
case of irregular sampling, an inversion similar to that given by Eq. (2) does
not exist. A simple solution that makes things easier consists of rebinning
the original sampled signal onto an arbitrarily dense regular time grid. Ac-
cording to this approach, the time interval [t0, tM−1] is divided into a number
M−1 ≫ M of subintervals (bins) centered at {τl}M−1

l=0 time instants. A new
time series χτ0 , χτ1, . . . , χτM−1

is obtained by assigning each tj to the nearest
bin, i.e. by setting χτlj

= xtj if τlj is the time instant closest to tj , and zero

otherwise. More specifically, if an array {χτl} of M zeros is created, index lj
is given by

lj = round

[
(M− 1)

tj − t0
tM−1 − t0

]
, (35)

where round[t] is the operator that provides the integer closest to t. In this
way a grid of M time instants, regularly spaced with a time step ∆τ =
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(tM−1 − t0)/(M− 1), is obtained but in the resulting time series {χτl} some
of the entries are equal to zero. The FFT algorithm can be directly applied to
this time series and the LS periodogram computed through Eqs. (8)-(9) and
(22)-(24). Intuitively, this approach may be expected to provide satisfactory
results if the differences {δτl} = {tj − τl} are reasonably small with respect
to the frequencies of interest.

To quantify this assertion, let us suppose, without loss of generality, that
the signal under study is a sinusoid xtj = sin (2πftj + φ) which is rebinned
in such a way as to obtain a time series χτl = sin [2πf(τl + δτl) + φ]. Let sup-
pose also that {δτl} are randomly distributed in the interval [−0.5∆τ, 0.5∆τ ]
with E[δτl] = 0. From Eqs. (12)-(13)

af =
M−1∑

l=0

sin [2πf(τl + δτl) + φ] cos (2πfτl); (36)

bf =
M−1∑

l=0

sin [2πf(τl + δτl) + φ] sin (2πfτl). (37)

Now, if the terms sin [2πf(τl + δτl) + φ] are expanded up to the linear term,
one obtains

ãf =
M−1∑

l=0

[sin (2πfτl + φ) + 2πfδτl cos (2πfτl + φ)] cos (2πfτl); (38)

b̃f =

M−1∑

l=0

[sin (2πfτl + φ) + 2πfδτl cos (2πfτl + φ)] sin (2πfτl), (39)

or

ãf = af +
M−1∑

l=0

2πfδτl cos (2πfτl + φ) cos (2πfτl); (40)

b̃f = bf +

M−1∑

l=0

2πfδτl cos (2πfτl + φ) sin (2πfτl). (41)

If the time grid {τl} is fixed it results that Eδτ [ãf ] = af and Eδτ [b̃f ] = bf .
Moreover, if it is assumed that the quantities δτl are distributed indepen-
dently and identically from a uniform PDF as well as independent of {τl}, it
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happens that

σãf =
2πf∆τ√

12

√√√√
M−1∑

l=0

cos2 (2πfτl + φ) cos2 (2πfτl); (42)

σb̃f
=

2πf∆τ√
12

√√√√
M−1∑

l=0

cos2 (2πfτl + φ) sin2 (2πfτl). (43)

As expected, from this result it is evident that the error introduced by the
rebinning operation is proportional to the product of the frequency f and
the sampling time step ∆τ . Hence, an accuracy to any desired precision can
be obtained if ∆τ is chosen sufficiently small. In practical applications, such
choice does not represent a critical step: once the largest frequency fmax of
interest (in units of 1/∆τ) is set, it is sufficient that ∆τ ≪ 1/fmax.

For illustrative purposes, Fig. 4 shows the results of a numerical simula-
tion where a sinusoid xtj = sin (2πf0tj) is sampled on 100 times {tj}99j=0 that
are randomly and independently generated from a uniform distribution in
the interval T = [0, 10000] (in free units). The time instants {tj} have been
rebinned on a regular time grid [0, 10000] by setting τl = round[tj ]. Proceed-
ing in this way, the time instant τl approximates the corresponding tj with a
precision of four digits and ∆τ = 10−4. The frequency f0 is considered in the
interval [10−4, 0.1] in units of (∆τ)−1. From this figure it is evident that the
linear approximation in Eqs. (40)-(43) holds up to frequencies of about 0.01.
However, both the approximated coefficients {bf0} as well the approximated
periodogram pf0 are within some percent with respect to the true value up to
a frequency of 0.1 (for the coefficients {af} similar results hold). It is worth
stressing that f0 = 0.1 is a rather high frequency with respect to a mean
∆t ≈ 100.

4. Is the Lomb-Scargle periodogram really advantageous?

In Sec. 3.3 it has been shown that the LS periodogram can be computed
with accuracy to any desired precision without the necessity of dedicated
algorithms/software. At this point, assuming that the error of the approxi-
mation is negligible or even that an exact algorithm has been used, one can
go one step further and wonder whether, to test the statistical significance of
a peak, the decorrelation of the coefficients af and bf , which is at the heart of
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the LS periodogram, is really a necessary operation. Using arguments based
on the spectral windows Wf =

∑M−1

j=0 exp (−2πftj), Vio et al. (2010) have
suggested that this is not the case since the correlation coefficient ρ between
af and bf is typically close to zero. Here, to support this claim we follow a
different approach. If xtj ≡ {ntj}, with {ntj} the realization of a discrete,
zero-mean white-noise process with standard deviation σn, then En[af ] = 0,
En[bf ] = 0 and

ρ =
En[afbf ]

σ2
n

√∑M−1

j=0 cos2 (2πftj)
√∑M−1

j=0 sin2 (2πftj)
, (44)

where

En[afbf ] = σ2
n

M−1∑

j=0

cos (2πftj) sin (2πftj), (45)

=
σ2
n

2

M−1∑

j=0

sin (4πftj). (46)

In the regular sampling case, it results that En[afbf ] = 0 and consequently
ρ = 0. The same does not hold in the irregular sampling case. However,
since sin (4πftj) is an odd function, one may expect that En[afbf ] ≈ 0 and
hence ρ ≈ 0 if the angles {αj} = 4πf{tj} of a unit circle are uniformly
and/or symmetrically distributed. In practical applications this condition is
not infrequently met. For example, in the case of M independent sampling
time instants randomly and uniformly distributed in the interval [0, T ], one
finds that the expected correlation coefficient ρt,af bf is given by

ρt,af bf =
Et{En[afbf ]}
σt,afσt,bf

; (47)

=
1− cos (4πfT )√

(4πfT )2 − sin2 (4πfT )
, (48)

where σt,af and σt,bf denote the standard deviations with respect to the time
instants {tj}. From this equation it is clear that ρt,af bf goes rapidly to zero
for increasing values of T . For fixed times, a formal proof is difficult since it
is strictly dependent on the specific sampling pattern. However, it is improb-
able that the combination of the frequencies f and the times {tj} makes the
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distribution of the angles {αj} strongly nonuniform and/or asymmetric. For
example, high values of ρ can be obtained if all the angles αj are distributed
in an interval [α∗ − ǫπ, α∗ + ǫπ] ⊆ [0, π] with α∗ ∈ [0, π] a given angle and ǫ
a real number that takes its value in the interval min [α∗/π, 1− α∗/π]. The
condition for this to happen is

4πftj = α∗ + [2κπ ± ǫπ], (49)

with κ an integer, or

tj =
α∗

4πf
+

1

2f

[
κ± ǫ

2

]
. (50)

From this equation it results that 1) the sampling pattern must be constituted
by times distributed in equispaced time intervals with the same duration
which is proportional to ǫ; 2) such a sampling pattern is specific to each
frequency f . This means that, even in the case where the sampling is such
as to produce a high ρ for a given frequency, the same could not be true for
other frequencies. This is not a rigorous demonstration of the fact that a
nonuniform and irregular distribution of the angle αj is improbable. In fact,
combinations of sampling times, lags and frequencies are possible that can
do the job. However, the considerations above suggest that things have to
conspire to produce remarkable effects.

To support these conclusions, in Figs. 5-12 the results of a few numerical
simulations are presented. In particular, Figs. 5-6 show the histograms of
the time instants corresponding to two sets of simulated sampling patterns
ranging from regular to extremely irregular sampling. The reason for making
such a choice is to verify that high values of ρ are not linked to the degree
of irregularity of the sampling. For the first set, the time instants have
been generated starting from a grid of time instants {tj} regularly spaced
in the interval [−1, 1] and then setting tj = {sign[tj ](abs[tj])γ(M − 1) +
1}/2. For the second set, the starting regular grid is tj ∈ [0,−1] and tj =
tγj (M − 1). Here, sign[.] is the sign function, abs[.] indicates absolute value

and γ is a positive real number. In both cases γ = 1 corresponds to an
equispaced time grid. In the numerical experiment it has been assumed
that σn = 1 and several values of γ have been tested. Figs. 7, 9 show the
corresponding correlation coefficients. The values of M = 100 and M = 1000
have been taken as cases of a small and of a larger data set, respectively. In
both cases, the median time sampling step for the different values of γ lies
approximately within the interval (0.4, 1.1). A set of frequencies has been
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examined in the range [0.1, 3.0]. From these figures it is clear that, in spite of
the extremely irregular sampling under examination, significant correlation
between af and bf happens only for the small data set. Even in this case, the
correlation is weak (≤ 0.2). The fact that ρ depends on the distribution of
the angle αj is supported by Figs. 8, 10 where the distribution of the angles
{αj} on the unit circle is shown for the case M = 100 and γ = 2.5. It is
evident that also with this limited number of data, the distribution of the
αj is approximately uniform and symmetric. For the case M = 1000, the
distribution (not shown here) is even more regular and indeed, as visible in
Figs. 7, 9 the corresponding correlation coefficients are closer to zero.

Figures 11-12 show the results concerning a few sampling patterns of more
astronomical interest. In particular, for each value of η, chosen in the range
[0.1, 0.9], 500 sampling time instants tj have been generated according to

tj = (j − 1) + (100η− 99)/99×mod(j − 1, 100), j = 1, 2, . . . , 500. (51)

In this way, five equispaced observing sessions of duration 100η are simulated
each containing 100 equispaced data and covering a total fraction η of the
interval [0, 500]. Adjacent sessions are separated by a gap of length 100(1−
η). Fig. 11 shows the correlation coefficients ρ for a set of frequencies f
corresponding to different values of η. Again, most of them are small. Only
for η = 0.1 (i.e. very large gaps) and f = 0.02, does ρ attain the value ≈ 0.7.
Fig. 12 shows the distribution of the angles {αj} on the unit circle computed
for η = 0.1. So significant a correlation is due to a sampling pattern of the
type given by Eq. (50). A significant correlation for a given frequency does
not imply that the same holds for other frequencies.

4.1. Analysis of an experimental time series

For demonstration purposes, we check what happens in the case of an
experimental time series with periodic gaps. As explained above, this is a sit-
uation more favorable for a nonuniform distribution of the angles αj. In this
regard, the LS periodogram and the version as given in Eq. (14) are compared
in the case of the light curve of the low mass X-ray binary EXO0748−676
a source which shows an orbital period of 3.82 hr (Parmar et al. 1986).
This object shows 8.3 minute X-ray eclipses every orbital period, irregu-
lar dipping activity (energy-dependent absorption) and type I X-ray bursts.
EXO0748−676 has been extensively studied with the X-ray observatory
XMM-Newton. In particular, it was observed on seven occasions during
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September–November 2003 for a total exposure time of 570 ks. For each
observation, data were acquired simultaneously with all of the on-board
instruments. Here, we present the light curve of the optical/UV monitor
(Mason et al. 2001) during 12-13 November 2003. The data were originally
taken with a sampling of 500 ms. These data are quite noisy and the light
curve was rebinned to a sampling of 32 s to increase the signal-to-noise ratio
per bin. The sampling of this signal, shown in the top panel of Fig. 13,
is regular but some periodic gaps are present. Since these gaps are rather
short, we have considered two other situations where larger periodic gaps are
obtained by removing 20% and 70% of the data as shown in the central and
bottom panels of Fig. 13, respectively. In this way a time series with regular
sampling and wider periodic gaps is obtained. In spite of the presence of
large gaps, from Fig. 14 it clearly appears that the periodogram (14) and the
LS periodogram when computed for the mean-subtracted signal, are quite
similar. As is visible in Fig. 15, the same is not true without subtraction of
the sampling mean. This is not surprising since, as shown above, the mean
value introduces a spurious correlation between the af and bf coefficients.

5. Final remarks and conclusions

In this paper we have addressed the problems related to the spectral anal-
ysis of uneven time series. We have reexamined, with formalized arguments
and some numerical experiments, the pros and cons of an even vs. an uneven
sampling.

1. A regular data sampling simplifies the analysis as well as the develop-
ment of efficient algorithms. However, it permits one to retrieve only
the frequencies characteristic of the signal that are smaller than the
Nyquist frequency;

2. An irregular sampling introduces some computational as well statistical
problems but it permits one to retrieve information about frequencies
even much greater than the Nyquist frequency;

3. Although from the theoretical point of view techniques specific to the
spectral analysis of uneven sampled signals such as the Lomb-Scargle
periodogram could be of some interest, their effectiveness in practical
astronomical applications is limited. Indeed, approximated but simpler
techniques are able to provide similar results and are easier to use and
to modify to deal with situations different from those under which the
original LS periodogram has been developed.
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Before concluding, it is necessary to stress that often in Astronomy the spec-
tral analysis can be safely used only as a test to check whether a time series
contains a signal of interest or is constituted only of noise. For example, for
both the regular and the irregular sampling, the periodogram cannot provide
a reliable statistical characterization of a red noise signal if the experimental
time series spans an interval shorter than the time scale of the signal itself.
Moreover, in the presence of an irregular sampling and independently of the
technique used, the periodogram cannot be used to identify the frequencies
of a periodic signal because of the “interference” between the true peaks
and those due to sampling (Deeming 1975). In this case, other techniques
are necessary (e.g. Roberts et al. 1987; Foster 1995; Bourguignon et al.
2007).

Some software code and data can be made available upon request.
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Figure 1: Theoretical vs. estimated values of coefficients af , bf (cf. Eqs.(31), (32), (33),
(34), and the corresponding standard deviations σaf

, σbf ), for a signal xtj = sin (2πf0tj),
j = 0, 1, . . . , 99, when the sampling time instants tj are uniformly and independently
distributed in the interval [0, 99]. Here, f0 = 1 in units of the mean ∆t (= 1). The
estimated quantities are based on the mean of 500 different numerical experiments.
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Figure 2: Theoretical vs. estimated values of coefficients af , bf (cf. Eqs. (31), (32), (33),
(34), and the corresponding standard deviations σaf

, σbf ), for a signal xtj = sin (2πf0tj),
j = 0, 1, . . . , 99, when the sampling time instants tj are uniformly and independently
distributed in the interval [0, 99]. Here, f0 = 1 in units of the mean ∆t (= 1) and the
estimated quantities are based only on a single numerical simulation.
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Figure 4: Numerical experiment to test the effects of rebinning of an irregular time series
on a regular time grid. Here, xtj = sin (2πf0tj), j = 0, 1, . . . , 99, with the sampling
time instants independently and uniformly distributed in the interval [0, 10000] and then
rounded to the nearest integer. A number N = 5 × 103 of equispaced frequencies are
considered in the set [1/N, 2/N, . . . 0.5]. Top-left panel: linearly approximated vs. true
bf0 . The first 10

3 frequencies are plotted in green; Top-right panel: corresponding absolute
errors. The expected standard deviation interval derived from the linear approximation
is in plotted in red; Bottom-left panel: corresponding relative errors; Bottom-right panel:
relative errors of the corresponding periodogram.
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Figure 5: Distribution of the first set of irregular sampling time instants used to test
the effects of the rebinning operation on the accuracy of the computed Lomb-Scargle
periodogram. When γ = 1 the sampling is regular and becomes more and more irregular
when γ → 0 or γ → ∞. Here the case with M = 1000 sampling time instants is shown.
The distribution for the case M = 100 is similar.
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Figure 6: Distribution of the second set of irregular sampling time instants used to test
the effects of the rebinning operation on the accuracy of the computed Lomb-Scargle
periodogram. When γ = 1 the sampling is regular and becomes more and more irregular
when γ → 0 or γ → ∞. Here the case with M = 1000 sampling time instants is shown.
The distribution for the case M = 100 is similar.
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Figure 7: Correlation coefficients ρ, cf. Eq. (44), of af with bf (cf. Eqs.(36), (37)), against
the γ parameter for a set of different frequencies f and a number of sampling time instants
M = 100 (blue line) and M = 1000 (red line), distributed as shown in Fig. 5. In spite of
the extremely irregular sampling, significant ρ occurs only for small data sets. But even
in this case the correlation is weak.
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Figure 8: Distribution of the angles αj on the unit sphere for the set of frequencies f as in
Fig. 7 and a number of sampling time instants M = 100 distributed as in the bottom-right
panel of Fig. 5.
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Figure 9: Correlation coefficients ρ (cf. Eq. (44)), of af with bf (cf. Eqs.(36), (37)),
against the γ parameter for a set of different frequencies f and a number of sampling time
instants M = 100 (blue line) and M = 1000 (red line), distributed as shown in Fig. 6.
In spite of the extremely irregular sampling, significant ρ occurs only for small data sets.
But even in this case the correlation is weak.
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Figure 10: Distribution of the angles αj on the unit sphere for the set of frequencies f as in
Fig. 9 and a number of sampling time instants M = 100 distributed as in the bottom-right
panel of Fig. 6.
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Figure 11: Correlation coefficients ρ, cf. Eq. (44), of af with bf (cf. Eqs.(36), (37))
against the η parameter for a set of frequencies f and a number of sampling time instants
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Figure 12: Distribution of the angles αj on the unit sphere for the set of frequencies f and
the sampling time instants as in Fig. 11 for the case η = 0.1. Notice the distribution for
f = 0.02 that corresponds to the case when the correlation ρ is high.
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Figure 13: Top panel: original optical light curve of the transient low mass X-ray binaries
EXO0748−676Ṫhe time is in units of ∆t = 32s; Central and bottom panels: the same
light curve with 20% and 70% of the data removed in such a way as to simulate 5 different
observing sessions with the same duration and spaced with gaps again with the same
duration.
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Figure 14: Lomb-Scargle periodogram (LS) vs. the periodogram as given by Eq. (14) (here
indicated as “classic”) corresponding to the mean-subtracted time series in Fig. 13. The
frequency is in units of 1/∆t with ∆t the median sampling time step of the original light
curve from which the time series have been obtained.
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Figure 15: Like in Fig. 14 but without the subtraction of the mean from the signal. Notice
that, unlike for Fig. 14, here the Lomb-Scargle periodogram (LS) is different from the
periodogram as given by Eq. (14) (here indicated as “classic”) .
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