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(O Abstract

2 Nowadays, analyzing and reducing the ever larger astracardatasets is becoming a crucial challenge, especiallipfa cu-
< mulated observation times. THRTEGRAISPI X/y-ray spectrometer is an instrument for which it is essembiglrocess many
(\J exposures at the same time in order to increase the low signadise ratio of the weakest sources. In this contextctimwentional
methods for data reduction are ffieient and sometimes not feasible at all. Processing sexeaied of data simultaneously requires
——computing not only the solution of a large system of equatitt also the associated uncertainties. We aim at redtioéngom-
2 putation time and the memory usage. Since the SPI trangietifun is sparse, we have used some popular methods forltii@®so
~. of large sparse linear systems; we briefly review these ndsthw/e use the Multifrontal Massively Parallel Solver (MUS)Ro
- ‘compute the solution of the system of equations. We also teemmpute the variance of the solution, which amounts topgiing
selected entries of the inverse of the sparse matrix carreipg to our linear system. This can be achieved throughobiee
latest features of the MUMPS software that has been parttvated by this work. In this paper we provide a brief preaginh of
= this feature and evaluate itfectiveness on astrophysical problems requiring the psing®f large datasets simultaneously, such
(/) as the study of the entire emission of the Galaxy. We usea thlg®rithms to solve the large sparse systems arising fiehd&a
(D processing and to obtain both their solutions and the asmativariances. In conclusion, thanks to these newly dpeditools,
“—processing large datasets arising from SPI is now feasiltkehoth a reasonable execution time and a low memory usage.

— Keywords: methods: data analysis, methods: numerical, technigomesging spectroscopy, techniques: miscellaneous,
A gamma-rays: general

1. Introduction get a global view of the Galaxy emission and to determine the
contribution of the various emission components.

Astronomy is increasingly becoming a computationally in- The sky imaging with SPI is not direct. The standard data
tensive field due to the ever larger datasets delivered bgrebs analysis consists in adjusting a model of the sky and instru-
vational eforts to map ever larger volumes and provide evermental background to the data through a chi-square function
finer details of the Universe. In consequence, conventiondninimization or a likelihood function maximization. The-re
.— 'methods are often inadequate, requiring the development d&ted system of equations is then solved for the intensitfes
>< new data reduction techniques. The SRy-Xay spectrom- both sources and background. The corresponding sky images
= ‘eter, aboard théNTEGRAL observatory, perfectly illustrates are very incomplete and contain only the intensities of some
© this trend. The telescope is dedicated to the analysis &f botselected sky sources but not the intensities in all the pizél

point-sources and fluse emissions, with a high energy res-the image. Hence, images obtained by processing small sub-

olution (Me_dr_eun_e_e_t_ihlL_ZQb3). Its imaging capabilitietyr ~sets of data simultaneously cannot always be combinedteget

on a coded-mask aperture and a specific observation strate{go-added) to produce a single image. Instead, in order-to re

based on a dithering procedure (Jensenlet al.,| 2003). After s trieve the low signal-to-noise ratio sources or to map the lo

eral years of operation, it also becomes important to be ablgurface brightness “duse” emissions_(Bouchet et gl., 2011),

to handle simultaneously all the data, in order, for exapiple one has to process simultaneously several years of data and
consequently to solve a system of equations of large dimen-
sion. Grouping all the data containing a signal related toag
UBased on observations with INTEGRAL, an ESA project witttiasients ~ source of the sky allows to maximize the amount of infornmatio

and science data center funded by ESA member states (dptwaP| coun-  on this specific source and to enhance the contrast between th

tries: Denmark, France, Germany, ltaly, Spain, and Swérd), Czech Re-

public and Poland with participation of Russia and the USA. sky and the background. )
*Ibouchet@irap.omp.eu Ideally, the system of equations that connects the dataeto th
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sky model (where the unknown parameters are the pixels-inten
sities) should be solved for both source intensities anidés

ity timescales. This problem, along with the descriptiond an
treatment of sources variability, is the subject of anofber
per (Bouchet et al., 2013).

It is mandatory, for example when studying large-scale and
weak structures in the sky, to be able to process large ammount
of data simultaneously. The spatial (position) and temipora
(variability) description of sources leads to the detestion
of several tens of thousands of parameters.Gfyears of SPI
data are processed at the same time. Consequently, wittyput a
optimization, the systems to be solved can exceed rapigly th
capacities of most conventional machines. In this paperave d
scribe a technique for handling such large datasets.

Source—1

Source—2 “

2. Material and methods _ source-2 counts
2.1. The SPI spectrometer Blsooce i counts

2

SPl is a spectrometer provided with an imaging system sen-
sitive both to point-sources and extended sotdiffeise emis-
sion. The instrument characteristics and performance ean b
found in ||._(2_Qb3) a . ﬂ_a.l_._(JZ.OOS)_ Datlglgure 1: SPI imaging principle. The mask consists of eleém#ansparent or
are collected thanks to 19 hlgh purity Ge det?CtorS. |Ilumad§ opague to the radiation. The opaque elements (made of amgate shown
by the sky through a coded-mask . The resulting Field-ofaVie in black.The shadowgram of the mask casts onto the detelzne gcamera)
(FoV) is ~30° and the energy ranges from 20 keV to 8 MeV. depends on the source direction. Here the counts in tiiereiit detectors of

The instrument can locate intense sources with an accufacy gource—l and source-2 are shown in black and red. The cceousded by the

. etectors are the sum of all the contributions from all therses in the FoV.
a few arc minutes (Dubath etlal., 2005).

Detectors

2.2. Functioning of the “spectro-imager” SPI exposures, until the system becomes determined and thus sol

) ) able. An appropriate dithering strategy (Jensen et al.3P08s
The coded mask consists of elements which are opaqu§sen used where the spacecraft continuously follows arithe

(made of tungsten) or transparent to the radiation. Photoqﬁg pattern throughout an observation. In general, thetjygjn
coming from a certain direction cast a shadow of the mask ontg;rection varies around a target by steps dfvthin a five-by-

the detectors plane. The shadowgram depends on the directig, o square or a seven-point hexagonal pattern. A pointirg (€

of the source (Figuriel 1). The recorded counts rate in each dgg,qre) Jasts between 30 and 60 minutes. Thus, the dithering
tector of the camera is the sum of the contribution from al th allows to construct a solvable system of equations.

sources in the FoV. The deconvolution consists of solvingsa s However. in addition to the variable instrumental back-
tem of equation which relates a sky model to the data through g, nd, sources are also variable on various timescales ran
transfer function. In the case of SPI, the imaging properé&/  jng from hours (roughly the duration of an exposure) to years
on the coded aperture, but also on a specific observinggyrate This is not a major problem at high energy FE100 keV),

the dithering. since there are only few emitting sources, whose intessitie
rather stable in time with respect to the statistics. At loem-

2.2.1. Dithering and sources variability ergies (E< 100 keV) and in most cases, the source intensities
The reconstruction of all the pixels of the sky image endose vary during the time spanned by the all the exposures. The chi

in the FoV is not possible from a single exposure. Indeedddiv square, of the associated least-square problem, for thispgr

ing the sky into~2° pixels (the angular resolution), we obtain, can be relatively high, if sources intensity variations aog

for a 30 FoV,~(30°/2°)? = 225 unknowns. However, a single taken into account. In spite of this, it is possible to ineual

exposure contains only 19 data values which are the numbenodel of the source intensity variations in the formulatain

of observed counts in the 19 Ge detectors and does not perntiie problem and to re-optimize the system of equations decor

us to obtain the parameters necessary to determine the modegly (Bouchet et al., 2013). Nevertheless, including sesr

of the sky and background. The related system of equations igriability in the system of equations increases the nurober

thus undetermined. The dithering observation technigos ai unknowns to determing€(2.2.3) since intensities, in eaiche't

to overcome this diiculty. bin” (a segment of time where the intensity of a given source
By introducing multiple exposures for a given field that aredoes not change statistically), are to be determined simeit

shifted by an @fset that is small compared to the size of the FoV,ously along with the parameters which model the instrumenta

it is possible to increase the number of equations, by graupi background.

2




2.2.2. Cases where it is better to process large amount &f dat(Appendix A.4).

simultaneously

The two extreme cases, in terms of number of parameters to be

It is impossible from a single exposure (19 data values) tgletermined, are

obtain the sky image in the 3%oV; only a coarse image con-
taining at most 19 sources can be obtained. This coarse image®
is under-sampled and contains information on only 19 pixels
(there is no information on the other pixels). Hence, images
cannot always be combined together (co-added) to produce a
single image. Furthermore, crowded regions like the Galact
Center contain hundreds of sources and thus a single exposur
cannot provide the amount of information needed, even tid bui
only a coarse image. The grouping of the exposures, by select
ing all those that contain signal on a specific sky target, can
provide the necessary information. The FoV spanned by these
exposures is large (8@ 60°) and contains numerous sources.

2.2.3. Problem formulation

The signal (counts and energies) recorded by the SPI camera
on the 19 Ge detectors is composed of contributions from each
source in the FoV plus the background. IRgisources located
in the field of view, the dat®{" obtained from detectat dur-
ing an exposure (pointing), f%r a given energy band, can be
expressed by the relation:

DI = ZRdm S5+ B+ eap (1)

whereRy;,j is the response of the instrument for souj¢kinc-

tion of the source direction relative to the telescope pont
axis), I;] is the flux of sourcg during pointingp andB; bg the
background both recorded during the pointipdor detector

d. ep are the measurement errors on the , they are
assumed to have zero mean, to be independent and normally
distributed with a known varianceqp (eqp ~ N(O, [o-gp]) and

€dp = /Dgar‘)”).
For a given pointingp, DraW Rapj, and By g are vectors of

ng (sayng = 19 detectoE? elements For a given set of,
exposures, we have a systemngfx ng equations (Ed.J1). To
reduce the number of free parameters related to backgrawend,
take advantage of the stability of relative counts rate betw
detectors and rewrite the background term as:

Bbg:Ib

Fortunately,

First, when the sources and background intensities are as-
sumed to be constant throughout all the observation (time
spanned by the exposures), the relation between the data
and the sky model can be written, omitting the detector
indices, as

Ns
DY = 3" Rojl$+ Pyl ™ + ¢
=1

3)

The aim is to compute the intensitiE$j) of thens sources
and the background relative intensifif. Therefore, the
relation can be written in matrix form, as

bg raw
P1 Ri1 Ry ns I Dl €1
, . s Diaw
p R 1 2 e
s
2 2.Ng | by _ : i .
: A : raw
P' : . an—l €n,-1
s
np Rnp,ns |ns DKZW én,

We can rewrite the system in a more compact form as

ng+1
y=Hox+eory = Zhijxl‘ +gfori=1.,M (4)
=1

where Hg (elementsh;j) is anM x (ns + 1) matrix and
M = ng x np. The parameters to be determined =
(Ibg, I%,---,15) is a vectors of lengtms + 1. The data

, DY) and the associated statistical

— raw raw
y = (D s D2 EE
errorse = (e, €, -+ , &,) are vectors of lengtM.

Second, if the background or the sources are variable on
the exposure timescale, the number of unknowns (free pa-
rameters) of the set o, x ny equations is themg+1)xnp

(for theng sources and the background intensities, namely
IS and 1°9).This leads, unless the number of sources is

small, to an underdetermined system of equatiﬁns.

in real applications, many sources vary on

do 0% U9 x tgp (2)
Wherelgg is a normalization ca@icient per pointing related
to the background intensityl® is a background count rate pat-

tern (uniformity map) on the SPI camera for deteaiprand
tqp the dfective observation time for pointing and detector
d. The number of parameters necessary to model the bac

ground reduces top if U is assumed to be knolinHowever,

in some cases it can be determined while processing the daft%

1The number of functioning detectors could ixe = 16,17, 18 or 19 for
single events and up to 141, when all the multiple events sed in addition to
the single event$ (Rogues et al.. 2003).

2Derived from “empty-field” observations (Bouchet et al. 189

timescales larger than the exposure. This leads to a further
reduction of the number of parameters compared to the case
where all sources vary on the exposure timescale. In additio
many point sources are weak enough to be considered as having
constant flux within the statistical errors, especially fiagher
ls:nerg|es (E2 100 keV). Then then, x ns parameters related

to sources will reduce it parameters and, similarlyyy

r the background. As these parameters have also a temporal
connotation, they will hereafter be referred to as “timeshi

3Wwith the Compressed Sensing approdch_(Bobinlet al. (200&uxét 2l
(2009) and references therein), it is possible to find a speokition even if the
system is underdetermined and for systems in which the xratsparse.



If the source named or numberéds variable, then the total To give an idea, for the dataset which corresponds-® (
duration covered by tha, exposures is divided int&; sub-  years of data, the number of free paramehérs Nseff+Nb to be
intervals where the source intensity can be consideredaas stdetermined are betweeéyh ~ 5000 andN ~ 90 000 depending
ble/constant regarding the data statistics. The solukigis  on the energy band considered and hypotheses made on sources
expanded irK; segments, it takes the value “time-bi@‘"in and background variability timescale_(R.3).
segment k, and can be written in compact notation

2.3. Material
Ky 3 |if =1 ifte [tlg—l’ tlg[ The material is related to the analysis of data accumulaged b
X = ; Scli¢ with I7=0 otherwise tween 2003 and 2009 with the spectrometer SPI. The astrophys

ical application is the study of fluse emission of the Galaxy.

Actually the instant$|ﬂ correspond to the exposure acquisition The_detalls can be“founci hn-BQ-u-Qh-e-Lelt MOl_l)‘ The 903' IS
time (exposure number), witg=1 andti = np+ 1. There s to disentangle the “diuse emlssmn.(modeled with 3 ;patlally_
at least one and at mo} time segments for each sourde extended components) from the point-sources emissionrand i
) strumental background. We need to sample these large-scale

(x5 = [sl], L sJ(J] becoming a vector of lengtk;). The matrix  structures fiiciently over the entire sky and consequently use
Ho (eq[3) is to be modified accordingly. the maximum amount of data simultaneously, since a single ex

When expanding matri¥o, columnJ is expanded irK; posure covers only one-hundredth of the total sky area. The
new columns, hence the number of intensities (unknowns) indatasets consist of 38 699 exposures that yild= 649 992
creases. Schematicalljg (M x (ns + 1)) is mapped into a data points. In most cases considered here, the background i
matrix H (M x N), N being the sum of all sources intervals tensity is considered to be quite stable ontahours timescale,
(N = Z’J‘S:O Kj), that is the number of “time-bins” (the index which corresponds thl, ~ 5870 unknowns.

J=|Otct()jr:estﬁonbd tokthe ba(;:kghr.(})dtjr;d.)MMsthb(i :_ ',\\I/ll : KIO)I'S d (&) The highest energy bandg & 100 keV) are less prob-
related to the background whit(1 : M, Ko + 1 : N) is relate lematic in terms of number of parameters to determine, as

to the lsc:u(rjctes tr)espkonse. gara:jmet(als K_o)tand_>t<(Ko * 1t': ':25 illustrated by the 200-600 keV band. The sky model con-
are refated to background and source Intensity variatiatts w tains only 29 sources which are essentially not variable in

Lhe t|trrr]1e (””tmgjr_ ogex_pozl;res).tﬁox : |Itll_1;trates scheradyic time (given the instrument sensitivity). The number of un-
ow the matrixH is derived from the matrixo. knowns isN ~ 5900.

(b) The lowest energy bandg (< 100 keV) are more prob-
hip hi hig ... hiy lematic. We use the 25-50 keV band. The sky model con-
T tains 257 sources varigblg onfférent timescales. When

the background intensity is assumed to vary~@hhours
Ho=| hy; hap has . hay timescale,N ~ 22500 “time-bins” intensity are to be de-
. termined.

In some configurations, essentially used to assess the
results, background intensity glod strongest variable
sources vary on the exposure timescale, and the number of
unknowns could be as high &= 55000 toN =~ 90 000.
Nevertheless, the matrices associated with these problems
Dol T remain relatively structured.
0 O Ohwr O O hyz O hys O ... hyn (c) To avoid excessively structured matrices, we genetate a
matricesH, with a variable number of columns, the number
of segment&; for a particular source being a random num-
ber between 1 and,. This results in a dferent number of
parameterd.

hMl hM2 hM3 hMN

h11 0 0 O h12 0 0 h13 0 th .. 0
0 hpy O 0 hpy O O O hyghpy .o O
0 0 h31 0 O h32 0 O h33 0 .. h3N

—H =

Finally, the relation between the data and the sky modei; sim
larly as in eql4, is

Hx=y+e (5)
Another astrophysical application is the study of a patéicu
Physically, H corresponds to the transfer function or matrix, source or sky region, here the crowded central region of the
y to the data and to the unknown intensities (sources plus Galaxy. In this case, it is possible to use a smaller number of
background) to be determined (a vector of length N). exposures. We use 7147 exposures which cover a sky region of
Taking into account the variability of sources and instrame radius 30 around the Galactic center. We measure the intensity
tal background increases the size of the system of equatithn a variations of a set of 132 sources. The number of parameters t
the number of unknowns, but also increases the sparsityeof thrdetermineN = 3578 is relatively small. Details can be found
matrix related to the system of equations, which means tieat t inBouchet et &l.[(2013). A second matrix, used for verifimati
underlying matrices have very few non-zero entries. In gur a purposes, hald = 9437. It corresponds to the case where some
plication, the matrixHg is sparse, thus matrid is even sparser. sources are forced to vary on shorter timescales.
Objective methods to construct the matkixfrom Hp are de- The material consists of rectangular matriekand symmet-
scribed in Bouchet et al. (2013). ric square matriced (A = HTH) related to the above physical




problems[(Z2.Z]3). The characteristics of some of theseiceatr is (generally) no exact solution, but a “best” solution, imot
are described in Tablé 1. vated by statistical reason, obtained by minimizing théofel
The system we use in the experiments consists of an Intel iing merit function, which is the chi-squére
3517U processor with 8 GB main memory. We ran the exper-
iments on a single core, although our algorithms are amenabl )
to parallelism. 5 Yi = 2j=1 hij X
=),

T

(6)
i=1
Table 1: Sparsity of matricad andHT H.
N p(H)(%) p(A) (%)
3578 2.67 2.96 Central Galaxy (27-36 keV)

y = (y1,...,ym) is vector of lengthM representing the
data, k] a diagonal matrix of ordeM whose diagonal is

9437 1.01 1.05 (o1,...,0Mm), Whereo; is the measurement error (standard de-
5900 012 013 Ofuse emission 200-600 key  Viation) corresponding to the data pojnt These quantities are
22503 0.18 0.28 Diuse emission 25-50 keV assumed to be known (formaliy = /¥). H = hij is a matrix
55333 0.07 0.09 of sizeM x N. The least-square solution = (X, ..., Xy) IS
149526 0.03 0.04 Simulation (25-50 keV) obtained by solving the following normal equation:

p(Matrix) is the so-calledlensityof the matrix: the ratio between the
number of non-zero elements in the matrix and the total nurobe
elements in the matrix\| x N for H andN2 for A = HTH, whereM (HT[Z?]H)x = HT[Z?]y or asAx = b (7)

is the number of rows oH. The matrixH arising from the diuse ] o
emission study havél = 672495 rows. The number of non-zero Once the solution has been computed, the uncertainties on
elements is constaniz = 27 054 399 for the matrices witk > 22 503 the.estimated 50|Uti01.“ are needed as well. Th.e corresponding
corresponding to the 25-50 keV band andl = 4677821 for the Variance can be obtained by computing the diagonatéf

200-600 keV band. The matrix with = 3578 hadVl = 124 921 rows 1 1 1
andnz = 11 948 840 non-zero elements. Var(x) o & wherea; j refers to )i ; (8)

3. Theory

2.4. Methods

The mathematical problem described in Secfion 2.2.3 and-1- Processing large datasets: fiieient solution of large
developed in[Z4]1 requires the solution of several aldgebra sparse systems of equations
equations. First, if the chi-square statistic is used, edlifeast- Sparse matrices appear in numerous industrial application
squares problem has to be solved to estimate the paraméters(mechanics, fluid dynamics, .. .), and the solution of spkmse
the model. Second, elements (entries) of the inverse of axmat ear systems has been an active field of research since the.1960
have to be computed in order to determine the error bars-(varMany challenges still arise nowadays, because induspiai-a
ances of these parameters). Third, in some cases, the parapations involve larger and larger number of unknowns (up to a
eters are adjusted to the data through a multi-componeot algfew billions nowadays), and because hardware architestree
rithm based on likelihood tests (Poisson statistics);ghablem  increasingly complex (multi-core, multi-GPU, etc.).
leads to a non-linear system of equatigns (Appendix A.1). Exploiting sparsity can significantly reduce the number of

These three problems can be reduced to solving a lineaperations and the amount of memory needed to solve a linear
system with a square matrix: a linear least-squares problerystem. Let us take the example of a partidledential equa-
miny |[HX - y|| can be transformed into a square syst&r=b  tion to be solved on a 2D physical domain; the domain can be
by use of the normal equatith¢éA = HTH andb = HTy).  discretized on & x k 2D grid and using, say, finite fierences,
Similarly, computing entries of the inverse of a matrix amtsu  the equation can be transformed into a sparse linear sysi#m w
to solving many linear systems, as described in detail in SeaN = k x k unknowns. Without exploiting sparsity, this system
tion[3.3.1. For the above mentioned non-linear problem, weavould be solved irO(N®) operations (using an exact method),
chose a Newton-type method,; this involves solving sevéral | with a memory usage i®(N?). It has been shown that, for
ear systems as well. Our problems are large, but sparse (his particular case, the number of arithmetic operati@mste
Table[1), which justifies the use of sparse linear algebra-tec reduced taD(N%2), and space complexity ©(N log N) by ex-

nigues. In Sectioh 311, we describe how we selected a methgsloiting the sparsity of the matri . 3).

suitable for our application. Many methods exist for solving sparse linear sys-
tems (Dufet all,1989; Saad, 1996). Two main classes can

2.4.1. The least-square solution (LSQ) be distinguished:direct methodsthat rely on a matrix fac-

The system is, in most cases, overdetermined (there are mot@rization (e.g.A = L U), anditerative methodsthat build a
equations - or measures here - than unknowns), therefare thesequence of iterates that hopefully converges to the soluti

4For clarity, we omit to weight the matrix H and the data by tieerse of 5The number of counts per detector is high enough to use thes@au
the data standard deviation, see Sedfion P.4.1 statistics.



Direct methods are known to be numerically robust but ofter8.2.1. Analysis

have large memory and computational requirements, wigite it ~ The analysis phase applies numerical and structural pre-
ative methods can be less memory-demanding and often fastprocessing to the matrix, in order to optimize the subsegjuen
but are less robust in general. lterative methods often negghases. One of the main preprocessing operations, aaHed
to bepreconditionedi.e., to be applied to a modified system ordering aims at reducing théll-in, i.e., the number of non-
M~-1Ax = M~1b for which the method will converge more eas- zero elements which appear in the factors but do not exist in
ily; a trade-df has to be found between the cost of computingthe initial matrix; this step consists in permuting the rcamsl

and using the preconditiondt and how the preconditionerim- columns of the initial matrix in such a way that less fill-inlwi
proves the convergence. The choice of a method is often conbccur in the permuted matrix. Tallé 2 shows the amount of
plicated and strongly depends on the application. In oue,casfill-in for different problems coming from our astrophysical
we choose to use a direct method for the following reasons: application when the matrices are permuted using the nested

. dissection method. For each matrix, the number of non-zero
e Memory usage is often a bottleneck that prevents the usglements in the original matriA and in theL factor of the

of direct methods, but with the matrices arising from our|_ p LT factorization ofA are reported. Note that in our ap-
application, direct and iterative methods have roughly theylication, the fill-in is not very large: the number of norrae
same memory footprint. This is explained in the next secelements in the factors is of the same order of magnitude as
tion. in the original matrix. As a result, the use of sparse, direct
methods is likely to provide a good scalability with respiect
e The matrices from our application are numerically chal-the sjze of the matrix produced by the application. Morepver
lenging; we found that unpreconditioned iterative meth-ihjs implies that, for our application, direct and iteratimeth-
ods (we tried GMRES) have fiiiculties converging and  ogs will have roughly the same memory requirements; indeed,
that a direct method that does not implement robust Nup, an unpreconditioned iterative method, the memory fdotpr
merical features is also likely to fail (we illustrate this i g mainly due to the storage of the matéx while the major
Sectior(b). part of memory requirements of direct methods comes from the
) factors. Note that, while our application exhibit low ambun
 We need to compute error bars, which amounts to solvy fill.in, this not the case in other applications; in manypipr
ing a large numberQ(N)) of linear systems with dier-  |ems, especially those involving PDEs on 3D physical dosiain
ent right-hand sides but the same matrix. This is partiCUthe number of non-zero cigients in the factors can be as big
larly suitable for direct methods; indeed, once the matrixys gne hundred times more than in the original matrix. In this

of the system is factored (e.gh,= L U), the factorscanbe  ¢45e using an iterative method can be interesting memisg-w
reused to solve for elierent right-hand sides at a relatively

inexpensive cost. We describe this in Secfion 3.3.1. Matrix size 3578 9437 22503 55333 149526
nzZA) 378475 932143 1436937 2705492 9379127
In this work, we use thé¢AUMPS (Multifrontal Massively nZL) 519542 1380444 2885821 9189447 14432264

Parallel Solver) package. MUMP$_(Amestoy et al., 2001,

) aims at solving large problems on parallel architestu Table 2: l\#umber_of non-zeros in the original mattiand in theL factor of the
. . . =LDL' factorization for diferent problems of our experimental set.
Itis known to be very robust numerically, byfering a large va-

riety of numerical processing operations, and providesgela  ap important step of the analysis phase is siyenbolic fac-

panel of features. In the following section, we briefly d€Ser  (oyization this operation computes the non-zero pattern of the
how sparse direct methods work. We introduce the basic mat?éctors, on which the numerical factorization and the sofut

rial needed to understand the algorithm used for the COMPUtgjj| rely. The symbolic factorization computes the struetof
tion of error bars (described in Section 313.1). the factors by manipulating graphs, and also a structutectal
theelimination tree a tree-shaped graph witt vertices. This
3.2. Sparse direct methods tree represents tasks dependencies for the factorizatobthe
solution phases. We describe in more details the eliminatio
Direct methods are commonly based on Gaussian eliminaree since it is a key structure to explain and understangl (se
tion, with the aim to factorize the sparse matrix, #g8yof the  Sectior3.311) how to accelerate the solution phase sinte co
linear systenAx = binto a product of “simpler” matrices called puting entries in the inverse of the matrix corresponds to in
factors Typically, A can be factored inté\ = LU whereL  complete traversals of the elimination tree. Figure]2(lmwsh
andU are lower and upper triangular matrices respectively, oan elimination tree and we use it to illustrate some defingio
A = LDLT, whereD is a diagonal matrix ifA is symmetric  one of the nodes is designated to bethat; in the figure, this
(which is the case in our application). is node 6. For our purpose, the root is the node corresponding
Sparse direct methods depend on the non-zero pattern of the the variable of the linear system that is eliminated |@st.
matrix and are optimized in that sense; specialized mathemaancestorof a vertexv is a vertex on the path fromto the root.
ical libraries for tridiagonal, banded, cyclic matriceg @om-  Theparent(or father) of vis its first ancestor; all the nodes but
mon. If the pattern is more complex, then the method usuallyhe root have a parent. For example, on the figure, nodes 6 and
consists of three phasemnalysis factorizationandsolution 5 are ancestors of 4; 5 is the parent of 4ctAld of a vertexv is



a vertex of whichv is the parent. For example, 4 and 3 are the The forward substitution follows a bottom-up traversalref t
children of 5. A vertex without children is calledi@af; 1 and  elimination tree as in the factorization, while the backsvsub-

2 are leavesDescendantsf a vertexv are all the nodes in the stitution follows a top-down traversal of the tree. At eacide,
subtree rooted at, for example, 1, 2, 3 and 4 are descendantone component of the solution is computed, and some updates
of 5. are performed on the dependent variables (ancestor nodes fo
the forward phase, descendant nodes for the backward phase)

e ¢ G 3.3. Computing error bars: partial computation of the inser
? o o e o of a sparse matrix
’ i u e In our astrophysical application, once the solution, eitbe
T e o m the linear or non-linear problem, has been found, it is neargs
s o o H H e e e to compute the variances of the parameters of the fitted func-
. o o e tion. In the case of multiple regressions such as least sguar
. o 9 problems, the standard deviation of the solution can berdda
et e e by inverting the Hessian or covariance matrix. Howevergein
(a) Factord +LT. (b) Elimination tree ofA.

the inverse of a sparse matrix is structurally full, it is iragtical

to compute or store it (Dffiet al. [ 1988). In our case, the whole
Figure 2: The factors and the elimination tree of a symmetratrix A. (a) inverse of th,e covariance matrix is not requwed: smc_e wg on
pattern of thel + LT factors ofA with filled-in entries shown with squares, (b) Want the variances of the parameters (not their covarignees

the elimination tree oA where the children of a node are drawn below the node only need to compute the diagonal elements of the inverse.
itself. Some work has been done since the 1970s in order to com-

) ) o _ pute a subset of elements of the inverse of a sparse matrex. On
In the following subsectionsfdctorization and solution  f the first works i$ Takahashi etlal. (1973) which has been ex-

phasg, we describe briefly how a sparse direct solver uses elimganded ir Campbell & Davis (1995); this approach relies on a
ination trees; we will also rely on this notion in Section.d3 gjrect method (i.e. on a factorization). An iterative matho
for the computation of error bars. Further details abouttre |55 peen proposed in Tang & Sahd (2009) for matrices with a
st_ructi_on and the role of elimination trees in sparse sclege decay property. Some methods have also been developed for
given in(Liu (1990). matrices arising from specific applications; a more dedesler-
o vey is given in_Amestoy et all (2010). Many of these meth-

3.2.2. Factorization ods provide sophisticated ideas and interesting perfocman

After the preprocessing performed during the analysis@has specific problems, but no software package is publicly avail
the numerical factorization takes place and the matitrans-  gple, with the exception of the approach implemented within

formed into a product of factors (e.d.U). The factorization  MUMPS solver, that we describe in the next section.
consists in traversing the elimination tree followingastorder

that is atopological ordering(i.e. each parentis visited afterits 3.3.1. MUMPS Al feature

children) where the nodes in each subtree are visited consec  The A-L feature in MUMPS has been describedlin (Slalova,
tively. In Figure[2(B), 1-4-2-3-5-6is, for example, a posier.  [5094) and was motivated by tHNTEGRALSPI application,

At each node, a partial factorization of a plense matrix IS Peramong other applications that require the computation of in
formed. Note .that nodes that be_lon_g t(ﬁfelner)t branche; can verse entries, or, more generally, applications that ireol
be processed independently, which is especially usefupara  sparse right-hand sides (as explained in this section)s felai

allel setting. ture is able to compute any set of entriesfof, relying on

The factorization phase tries to follow as much as possiblg, traditional solution phase, i.e. by computing every regi
the preparation from the analysis phase, but sometimeaubec entrya! as:
|- as:

of numerical issues (typically, division by a “bad pivot'ei a

very small diagonal entry that could imply rounéterrors), it

has to adapt dynamically: the structure of the factors aed th a;jl = (AfleJT)i
scheduling of the tasks can be modified on the fly.

Using theL U factors ofA, this amounts to solving two trian-

3.2.3. Solution phase gular systems:
Once the matrix has been factored, the linear system is

solved. For example, in the case of th& factorization, the Lz = e,T

systemAx = b becomed.Ux = b and is solved in two steps a;jl = (U*lz)i

(two solutions of triangular systems):
The first triangular system in the equation above is particu-
lar because its right-hand sidfa is very sparse (only one non-
z=L""b “Forward substitution” zero entry). Furthermore, we do not need the whole solution
x=U"'z *“Backward substitution” of the second triangular system, but only one component Thi



information can be exploited to reduce the traversal of line-e  lenging operation due to the considerable amount of syraboli
ination tree; while a regular solution phase would consist i operations needed to compute the sparsity structufe dfor
visiting the whole elimination tree twice (a bottom-up teasal  this reason &icient algorithms have been developed in the past.
followed by a top-down traversal), computiag® consists in  To perform this operation we decided to use part of a largée co
two partial traversals of the tree: the first triangular eystis  developed bd@b@ for computing the QR factoiarat
solved by following the path from nodeto the root node, and of sparse matrices. The used part was originally developed t
the second triangular system is solved by following the patltompute only the structure of tifematrix and, thus, we had to
from the root node to nodi¢ this is referred to apruningthe  extend it in order to compute the diieients values. This was
elimination tree. Since each node of the tree correspongis-to  possible thanks to the help of the original code developer.
erations to be performed (arithmetic operations, or exgens  One important feature of this coddfers the possibility to
accesses to the factors in the out-of-core case), thisteasily-  update the elements éfthat are changed after modification of
nificant improvements in computation time. Moreover, sincesome numerical values of the columnsbfvithout recomput-
we do not have to manipulate dense solution vectors, this alsing the whole matrix (the technique used to compute simaltan
leads to significant savings in memory usage. ously the solution and the background pattern in the algarit
We illustrate this technique in Figure 3: entiyf is required,  is described if_Z213 and_Appendix _A.4).
thus the only nodes of tree that have to be visited lie on the
path from node 3 to the root node (6) and on the path from the _ _
root node to node 2. Therefore, one does not have to perform Table 3: Time for the computation &= HTH

operations at nodes 4 and 1. Matrix Improved Simple
A=HTH algorithn?  algorithn?

T, N = 22503
(L “= y)2 Full matrix 28.2 5779
5000 H columns modified 0.43 258
N = 149526
(5) Full matrix 412 18585
5000 H columns modified 0.13 31.7
e e Ly= es Times are in secondsH is anN by M matrix; hereM = 672495
andH has 27 054 399 non-zero elemerit8ased on an original pack-
age froml Pugliil (1993) and improved as suggested by theatth
c e N matrix vector product are used following the Compressedi@al
Storage scheme, but for each operation a dense vector dhldéhg

Figure 3: Computation od,. The traversal of the tree is reduced to the path (with many zero element), that represents a column of H it bui
from 3 to 6 and the path from 6 to 2; no computation is performedodes 1 place
and 4. '

When many entries of the inverse are requested, they cannot Tablel3 shows #he time reduction achieved for both the com-
generally be computed all at once (mainly because of memorfutation ofA = H'H and its update after the modifications of
usage), but they can be computed by blocks, which allows t§0mMe columns dfl. The results in the first column are obtained
take advantage offécient dense linear algebra kernels. Work With the code extracted from the software package by Puglisi
has been performed in order to find optimal ways to form th ) and improved as suggested by the author. The results o

blocks in diterent contextd (Amestoy etldl., 2010) and to im-the second column, instead, are obtained by compiNinga-
prove the parallelficiency. trix vector products where, for each product, a dense vexdtor

lengthM (with many zero elements) corresponding to a column

. of H is built in place.

4. Calculation The gain over a simple basic algorithm is significant (a fac-
A substantial time is spent in computifg= HTH with aba-  tor ~.300) arjd demonstrates the i.nterest of u_sing specialized li-

sic algorithm. The use of an appropriate algorithm to penfor Praries dedicated to sparse matrix computations.

the operatio’A = HTH helps to reduce the computation time

(see Section4l1). The MUMPS solver is used to solve the sy-2. Solving a sparse linear system

tem of equations as described in Secfion 4.2. Finally, therer ~ Here we briefly illustrate the interest of exploiting sparsif

bars on the solution are computed, which means the calenlati the matrix when solving a linear system. In Talble 4, we com-

of the diagonal elements of inverse matrix. The n&w fea-  pare the time for solving linear systems arising from ouriapp

ture of MUMPS is compared with several algorithms, in termscation using a dense solver (LAPACK (Andersen ét al., 1990))

of computation time in Sectidn 4.3. and a sparse solver (MUMPS). Times are in seconds and in-
. clude thel D LT factorization of a symmetric matrik of order
4.1. Improvements of the computation ofA"H N and the computation of the solutiarof the systemAx = b (x

The computation of the normal equatién= H'H is of  andbare vectors of lengtN). In the results related to MUMPS,
paramount importance in many problems, yet is a very chalthe time for the analysis phase is included. In the second row
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of the table, instead, the matrix is treated as dense, hésice i These results show that the brute force algorithm becomes
full storage is used and no analysis phase is performed. Fa@ompetitive with respect to the simple algorithm when the en
the largest two problems, the dense algorithm cannot be usedes are processed by blocks. The MUMRS' feature de-

as the memory requirements are roughly 23 GB and 167 GB rescribed i -3.311 is significantly faster than all other agtes
spectively. We can extrapolate that on this system, theinimt and the gain increases with the size of the problem. Pruning
would be around 22 hours for the largest problem (instead ofeads to clear gains over a strict traditional solution ghahe

6.7 seconds using a sparse algorithm). gainis even larger for the largest problem due to the godd-sca
bility of the A-* algorithm with respect to the problem size. The
simple, left-looking approach shows reasonable perfoo@an
for small problems, but could not be tested on our largest ma-
trix because numerical pivoting, not available in LDL pag&a

is needed during factorization to obtain an accurate soiuti

Table 4: Times (in seconds) for the computation of the smfuti
Matrix size 3578 9437 22503 55333 149526
Sparse 0.2 0.7 1.6 8.0 6.7
Dense 1.2 20.1 169.9 / /

. . . Table 5: Time to compute the diagonal elements of the invefsesymmetric
The results in Tabl€l4 confirm that sparse, direct solvers, iy P g Y

achieved a good scalability on the problems of our target ap-"Mmatrix size 3578 9437 22503 55333 149526

plication whereas dense linear algebra kernels quicklgestc  Left-looking 28.2 376.1 2567.9 489.1 /

the limit of modern computing platforms. MUMPS (1 RHS) 377 384 2041 13249 82305
MUMPS (128 RHS) 1.32 7.34 455 2456 2833.5
MUMPS A1 0.28 0.9 4.9 36.0 9.5

4.3. Time to compute error bars Execution times (in seconds) for the computation of all tregdnal

In this section we present experimental results relatetdo t entries of theA™ matrix with the left-looking, brute force and
Computation of error bars or, equiva|ent|y, of the d|agcm’a| MUMPS A-! methods. For the brute force approach results are
tries of the inverse matriA~2. Our approach that relies on the Provided for blocks of size 1 and 128.
pruned tree, presented in Section 3.3.1, is compared toathe b
sic, left-looking approach described m\/ 998)thie .
case of a symmetric matrix, this approach computes the diago 10
nal entries of the inverse matrix as

T T IIIIII||I|<3I0 Io’llb|I<II1I£_)IIo
— "Unresolved" sources

A e 107 —— Annihilation radiation 3
g = Z e ('Ei ) - — Diffuse continuum 3
k=1 i - — Total "diffuse” i

10° Lines Fe and Al

where we denoted with;* andl;;* the codficients of A" and

L=, respectively. This amounts to computing, one at a time, the

columns ofL~" and then summing the corresponding contribu-

tion onto thea;* coeficients. In this algorithm, the sparsity of

the right-hand side and of the factor mattixs exploited but

not completely, and the experimental results discusseairbel

show that this results in a higher execution time. Furtheeno

because of memory issues, this simple algorithm does not al-  1¢

low to simultaneously compute many diagonal entrie\of;

clearly this is also a limiting factor for performance. Onngle-

mentation of this method is based on the LDL pack avis, 10— '1'(')0 — '1'0'00 :
). As a second term of comparison we also provide experi- ENERGY(keV)

mental results for a brute force approach with no explatatif

sparsity of the right-side and solution vectors. For thigpse,

we use dlreCtIy the MUMPS package and solve several SyStenlE?gure 4: Diferent contributions to the total emission at hard X-ray aoftl s

Qf equations in Order_ to compute the inverse matrix. In_addi'gamma-ray energies in the central radian of the galaxy. Tdta goints
tion, we analyze the influence of grouping the computation othown in black (plus filled circle) correspond to the conttibn due to 270

the diagonal entries (1 right-hand-side (RHS) at a time & 12 point sources. The average spectrum of these sources camewedvat
ata time) httpy/sigma-2.cesr.fimtegral. The data points shown in blue correspond to

. .. the difuse emission.
The experimental results for the three methods described

above are reported in Tadlé 5. For the sake of this compari-
son, all these methods are executed in sequential modeighiho
the code of the brute force approach and of the MUM®PS
feature are parallel. The experiments were carried out en th  The MUMPS solver and it&\~! functionality are the core
above-mentioned system. tools to solve systems of equations related to the measuteme

10™
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http://sigma-2.cesr.fr/integral/

: T i to validate the performance reported in the experimentl se
M \ l o tion; for an exhaustive list see for exammt @000)

but they all lack a function to compute also the error bars on

s A s
-20 290 599 600 3750 6899 6900 7030 7160

R p— the solution quickly, which is mandatory in our astrophgsic
AR S PRI TR AT ) application.
i M W‘ ‘r ”“ “v O | R A i S M o

TheA! feature in MUMPS (computation of selected inverse
entries) did not exist before the beginning of this studg,| -
TEGRAISPIlapplication was actually one of the motivating ap-
plications for developing techniques for the computatibime
verse entries, and for releasing a publicly available cades
functionality allows to compute easily and rapidly the ebvars
on the solution. The gain in time over already optimized algo
rithms is important.

‘ Among other methods to solve the problem completely, so-
o | | 2000 4000 6000 lution and error bars, one should mention alternative meth-

Exposure number
ods such as Monte Carlo Markov Chains_(Metropolisét al.,
11953;| Hastings,_1970; Neal, 1993) or Simulated Annealing
Figure 5: Intensity evolutions (Red) of IGR J17464-3213, G3R5g-258,  (Kirkpatrick etal.| 1983). Such advanced statistical $ocin
GX 1+4, GS 1826-24 and GX 354-0 in the 27-36 keV band. These inten{provide the best fit and the variances of the solution of biath |
sity variations are compared to the time-series (“Quiakfaanalysis) obtained  ear and non-linear systems of equations. In particular MCMC
with the IBIS instrument (Ubertini et hl.. 2003) aboard t(NFEGRALobser-  athods could be usyeful when c?)mputing errgr bars, in case of
vatory. The time-series (30-40 keV) is shown in gray. . .
complex constraints on the function. However, these method
may be very prohibitive in time, especially if high precisio
of the sources intensity. Figufé 4 shows the applicatioméo t ©N the parameters is required; they have in general gweak or
determination of the dierent components of the Galaxy spec- non—guar_anteed convergence and are not the best suitedrfor o
trum. The related analysis is performed in 24 consecutive er'€€dS, given the complexity of our problem.
ergy bands in order to extract counts spectra. The counts spe
tra are then converted into photon spectra. The detailsieea g )
in Bouchet et dl.[(2011). Another application is the study of® Conclusions
the intensity variations of a peculiar source or sky regieig-
ure[B shows the intensity in function of the time (exposufe) o We have developed algorithms to process years of data and to
some of the sources located in the central crowded regidreoft €nhance the production Bi TEGRALhard Xsofty-ray survey
Galaxy. For this application, the end and start of the “tiies” ~ catalogs. These methods have been successfully appliesto a
are determined by a segmentation algorithm, which is based f ~6 years of datd (Bouchet eflal., 2011). We have shown that,
the dficientL D LT factorization of symmetric matrix provided for processing#iciently and accurately years of data, itis criti-
by MUMPS, details can be foundlin Bouchet et al. (2013). cal to use algorithms that take advantage of the sparsesteuc
We have demonstrated that even for the basic operation sudf the transfer function (matrix), such as those implemeitie
as sparse matrix product, it is better to use dedicateditiges  the MUMPS softwal It was also demonstrated that error bars
or libraries [@1). can be o_btalned at a relatively inexpensive cost (the sadex or
of magnitude as a simple problem solution) thanks to a récent
developed algorithmic feature thdfieiently computes selected
entries of the inverse of a matrix. In addition, thanks to ynan
efforts in optimization, gains are achieved both in memory us-
age and in computation time. Hence, it is possible to process
large datasets in a reasonable time and to compute the @igon
of the covariance matrix, and thus error bars, in a rathertsho
time. More generally, the ideas described here can be ajplie
a large variety of problems. Finally, we are today able teeol
sparse linear systems with millions, sometimes billiorisjre
knowns. Although we have not used explicitly parallel coitapu
ing but instead performed many sequential computatioriseat t
Rame time (for each energy band, etc..), the proposed agproa
2an also be used directly in a parallel setting on massivaty p
|a||el machines.

Counts.s” “.keV *.cm™?

The MUMPS solver is very féective on the sparse matrix
structure arising from astrophysical problems encoudtesith
SPI. This solver is robust and the matrix factorization & st
ble against rounding errors. It provides many numerical pre
processing options and implements robust pivoting sti@seg
which make it one of the most numerically stable solverslavai
able. The matrices arising from tiéTEGRAISPI application
are symmetric and indefinite; they are not

extremely challenging numerically, but they do requiretwo
by-two numerical pivoting for stability (in Tablgl 5 the LDL
package could not provide an accurate solution on our large
matrix). The proposed approach not only leads to substanti
time reduction but also enables the resolution of largesspar
system of equations which could not be solved using basic a
gorithms.

Other sparse linear systems solvers exists and have ba&n use SAvailable af hitg/mumps.enseeint/for http;/graal.ens-lyon. fMUMPS/
10
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In the near future, instruments will commonly create datase function (a vector of lengti) is used to define the search
of a few tens to a few hundreds of Terabytes for a single obser- direction. They are not usually as reliable dfigent as
vation project. Many of the current tools and techniques for  Newton-type methods and often a relatively large number
managing large datasets will not scale easily to meet ttas ch of iterations has to be performed before obtaining an ac-
lenge. Surveys of the sky already require parallel computin ceptable solution.
in order to be performed. New surveys will demand orders ofd) Simplex (Nelder & Mead,| 1965), simulated anneal-
magnitude increases in the available data and thereforatan d ing (Kirkpatrick etal.,| 1983) or Monte Carlo Markov
processing capabilities. It is also a challenge for scisitivho Chain (MCMC) (Neal[ 1993) can also be considered, but
need to extract a maximum of science from the data. Exciting they are often prohibitive in time.
scientific breakthroughs remain to be achieved as astrorsome o
manipulate and explore massive datasets, but they wilirequ ~ Methods (&) and (b) are known as order-2 optimization meth-

advanced computing capabilities, infrastructure andrittyms. 098 (gradient and Hessian used), (c) as an order-1 optiorzat
method (gradient used), while method (d) can use only the-fun

tion value.
Acknowledgments To use a Newton type method (order-2), we need to compute
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Appendix A. Schematic solution of the system of equations [4] is a diagonal matrix of ordeM whose diagonal is
d d ; -
Appendix A.1. Maximum Likelihood Estimator (MLE) of the(é" -1, )- As for the LSQ case, the variance of the solution
solution is obtained thanks to the mversion of the Hessian matrixe(no

In the case of a low number of counts, it is recommended téhat in the limit lims.q & ? - du - 2’ the likelihood Hes9 and
use the MLE of the solution instead of th@ solution. Follow- ~ Chi-squaref) Hessian matrices are the same). A guess solution

ing|Cashl[(1979), we maximize the likelihood function to this non-linear optimization problem is the LSQ solution

Appendix A.3. Codes for non-linear optimization

The fitting algorithm, based on the likelihood test statiss
a non-linear optimization problem. To optimize a non-linea
problem, potentially with bound constraints, a Newton type
whereg is the model of the data obtain through the relationmethod, known for its #iciency and reliability can be used,

M
L=-2x(> a-yIne) (A1)
i=1

e=Hx as we already have a solver for large sparse systems at hand. A
software package for large-scale non-linear optimizasioch
Appendix A.2. Optimization of the non-linear problem as IPOPTI (Interior Point OPTimizer) can be used. IPOPT

To optimize this non-linear problem, potentially with bain US€S & linear solver such as MUMPS or MA’
constraints (such as positivity of the solution), thereareast 2004) as a core algorithm. For more details on this large-
four approaches: scale non-linear algorithm, Sé_eAALthIe_r_&_B_LdghL(_iOO_ﬁ).

few similar software packages for large-scale non-lingsi-o

(a) Newton type methods (or modified Newton methods): theymization exist, among them LANCELO m 996),
use the Hessian matrix to define a search direction antINOS Mmag_e_t_ah 1,1982) and SNOPT (Gill ef 97)
hence need the solution of a large linear system of equa-
tions at least at each few iterations. They are the most powAppendix A.4. “Empty-field” auto-computation
erful methods available and can find the solution in a few Sometimes the “empty-field” or “uniformity mag has to
iterations. be computed with the solution. In order to preserve the tibea

(b) Quasi-Newton methods: they build an approximation ofof the problem, we have adopted the algorithm describedbelo
the Hessian at each iteration. They optimize a quadratigVe consider that if the solutioxis known,
function in at mosh iterations ( being the number of un-
knowns).

(c) Conjugate-gradient methods: unlike the Newton-type: an Z iy X + ;1 hij X = Y2 + ¥ (A-3)
guasi-Newton methods, conjugate gradients methods do o
not require the storage of amby n Hessian matrix and
thus are suited to solve large problems. The gradient of the 7IPOPT is available at httpgprojects.coin-or.ogtpopt
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Coming back to the detector and pointing number

D = D3, + U%15%g, (A.4)

In the above formulg® = D is the counts due to the

sources, assumed to be knowg? = Ud1%, is the back-
ground contribution|” is assumed to be known aidlis to be

Appendix A.5. “Empty-field” schematic construction

A sub-optimal algorithm to obtain both the sources and the
background fluxes, as well as the improved “empty-field” pat-
tern is described in Algorithi 1. We start with an approxima-
tion Ug and apply some iterative refinement. In practice, the
algorithm converges in a few iterations.

Algorithm 1 Computation of the “Empty field”, the solution

estimated. At this stage, using the model of the sky desgribeand its variance

, L (Of-D5)

by [A4, a rough estimate of the patterriJ§ ~ W
p=1"dpP

Appendix A.4.1. Expression for the detector pattern

For the LSQ statistic, we wish to minimize the following
quantities for each of the working detectors,

Draw _ DS _ Udlbgt 2
)=~ P ford=1..n,  (A5)
p-1 Tdp
The LSQ solutiorJ -5 9(d) is
(Draw DS ) % |bgtdp/0'2
ULS Q(d) — p=1 dp) p dp (A6)

bg 2
T (Iptap)?/ 0,

For the MLE statistic, we do not have to preserve the linear-

1: U = Ug, compute the structure of the Hessi@naf Hes9

2: for i=1to itermaxdo {Iterative computation of U andjx

3. Compute LSQ or MLE solution

4:  Compute a new approximation ¢ by minimizing
again LSQ or maximizing MLE statistics
UpdateH (The firstKy columns ofH and update the new
Hessian matrix (SeE4.1))

6: If y? stops decreasing or the likelihood function stops
increasing then go to step 8

7. end for

8: ComputeH at the solution (if not already done) and the

diagonal ofH ! to obtain the uncertainties on the solution
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Appendix B. Highlights
e INTEGRAISPI X/y-ray spectrometer data analysis

e Large astronomical data sets arising from the simultaneous
analysis of years of data.

e Resolution of a large sparse system of equations; solution
and its variance.

e The Multifrontal Massively Parallel Solver (MUMPS) to
solve the equations.

e MUMPS A! feature to compute selected inverse entries
(variance of the solution,...).
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