
ar
X

iv
:1

30
5.

56
83

v1
  [

as
tr

o-
ph

.IM
]  

24
 M

ay
 2

01
3

Simultaneous analysis of largeINTEGRAL/SPI✩ datasets: optimizing the computation of
the solution and its variance using sparse matrix algorithms

L. Boucheta,b,∗, P. Amestoyc, A. Buttarid, F.-H. Rouetc,e, M. Chauvina,b
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Abstract

Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cu-
mulated observation times. TheINTEGRAL/SPI X/γ-ray spectrometer is an instrument for which it is essentialto process many
exposures at the same time in order to increase the low signal-to-noise ratio of the weakest sources. In this context, theconventional
methods for data reduction are inefficient and sometimes not feasible at all. Processing severalyears of data simultaneously requires
computing not only the solution of a large system of equations, but also the associated uncertainties. We aim at reducingthe com-
putation time and the memory usage. Since the SPI transfer function is sparse, we have used some popular methods for the solution
of large sparse linear systems; we briefly review these methods. We use the Multifrontal Massively Parallel Solver (MUMPS) to
compute the solution of the system of equations. We also needto compute the variance of the solution, which amounts to computing
selected entries of the inverse of the sparse matrix corresponding to our linear system. This can be achieved through oneof the
latest features of the MUMPS software that has been partly motivated by this work. In this paper we provide a brief presentation of
this feature and evaluate its effectiveness on astrophysical problems requiring the processing of large datasets simultaneously, such
as the study of the entire emission of the Galaxy. We used these algorithms to solve the large sparse systems arising from SPI data
processing and to obtain both their solutions and the associated variances. In conclusion, thanks to these newly developed tools,
processing large datasets arising from SPI is now feasible with both a reasonable execution time and a low memory usage.

Keywords: methods: data analysis, methods: numerical, techniques: imaging spectroscopy, techniques: miscellaneous,
gamma-rays: general

1. Introduction

Astronomy is increasingly becoming a computationally in-
tensive field due to the ever larger datasets delivered by obser-
vational efforts to map ever larger volumes and provide ever
finer details of the Universe. In consequence, conventional
methods are often inadequate, requiring the development of
new data reduction techniques. The SPI X/γ-ray spectrom-
eter, aboard theINTEGRALobservatory, perfectly illustrates
this trend. The telescope is dedicated to the analysis of both
point-sources and diffuse emissions, with a high energy res-
olution (Vedrenne et al., 2003). Its imaging capabilities rely
on a coded-mask aperture and a specific observation strategy
based on a dithering procedure (Jensen et al., 2003). After sev-
eral years of operation, it also becomes important to be able
to handle simultaneously all the data, in order, for example, to
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and science data center funded by ESA member states (especially the PI coun-
tries: Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Re-
public and Poland with participation of Russia and the USA.
∗ lbouchet@irap.omp.eu

get a global view of the Galaxy emission and to determine the
contribution of the various emission components.

The sky imaging with SPI is not direct. The standard data
analysis consists in adjusting a model of the sky and instru-
mental background to the data through a chi-square function
minimization or a likelihood function maximization. The re-
lated system of equations is then solved for the intensitiesof
both sources and background. The corresponding sky images
are very incomplete and contain only the intensities of some
selected sky sources but not the intensities in all the pixels of
the image. Hence, images obtained by processing small sub-
sets of data simultaneously cannot always be combined together
(co-added) to produce a single image. Instead, in order to re-
trieve the low signal-to-noise ratio sources or to map the low
surface brightness “diffuse” emissions (Bouchet et al., 2011),
one has to process simultaneously several years of data and
consequently to solve a system of equations of large dimen-
sion. Grouping all the data containing a signal related to a given
source of the sky allows to maximize the amount of information
on this specific source and to enhance the contrast between the
sky and the background.

Ideally, the system of equations that connects the data to the
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sky model (where the unknown parameters are the pixels inten-
sities) should be solved for both source intensities and variabil-
ity timescales. This problem, along with the description and
treatment of sources variability, is the subject of anotherpa-
per (Bouchet et al., 2013).

It is mandatory, for example when studying large-scale and
weak structures in the sky, to be able to process large amounts
of data simultaneously. The spatial (position) and temporal
(variability) description of sources leads to the determination
of several tens of thousands of parameters, if∼6 years of SPI
data are processed at the same time. Consequently, without any
optimization, the systems to be solved can exceed rapidly the
capacities of most conventional machines. In this paper we de-
scribe a technique for handling such large datasets.

2. Material and methods

2.1. The SPI spectrometer

SPI is a spectrometer provided with an imaging system sen-
sitive both to point-sources and extended source/diffuse emis-
sion. The instrument characteristics and performance can be
found in Vedrenne et al. (2003) and Roques et al. (2003). Data
are collected thanks to 19 high purity Ge detectors illuminated
by the sky through a coded-mask . The resulting Field-of-View
(FoV) is ∼30◦ and the energy ranges from 20 keV to 8 MeV.
The instrument can locate intense sources with an accuracy of
a few arc minutes (Dubath et al., 2005).

2.2. Functioning of the “spectro-imager” SPI

The coded mask consists of elements which are opaque
(made of tungsten) or transparent to the radiation. Photons
coming from a certain direction cast a shadow of the mask onto
the detectors plane. The shadowgram depends on the direction
of the source (Figure 1). The recorded counts rate in each de-
tector of the camera is the sum of the contribution from all the
sources in the FoV. The deconvolution consists of solving a sys-
tem of equation which relates a sky model to the data through a
transfer function. In the case of SPI, the imaging properties rely
on the coded aperture, but also on a specific observing strategy:
the dithering.

2.2.1. Dithering and sources variability
The reconstruction of all the pixels of the sky image enclosed

in the FoV is not possible from a single exposure. Indeed, divid-
ing the sky into∼2◦ pixels (the angular resolution), we obtain,
for a 30◦ FoV,∼(30◦/2◦)2 = 225 unknowns. However, a single
exposure contains only 19 data values which are the number
of observed counts in the 19 Ge detectors and does not permit
us to obtain the parameters necessary to determine the model
of the sky and background. The related system of equations is
thus undetermined. The dithering observation technique aims
to overcome this difficulty.

By introducing multiple exposures for a given field that are
shifted by an offset that is small compared to the size of the FoV,
it is possible to increase the number of equations, by grouping

Figure 1: SPI imaging principle. The mask consists of elements transparent or
opaque to the radiation. The opaque elements (made of tungsten) are shown
in black.The shadowgram of the mask casts onto the detector plane (camera)
depends on the source direction. Here the counts in the different detectors of
source-1 and source-2 are shown in black and red. The counts recorded by the
detectors are the sum of all the contributions from all the sources in the FoV.

exposures, until the system becomes determined and thus solv-
able. An appropriate dithering strategy (Jensen et al., 2003) has
been used where the spacecraft continuously follows a dither-
ing pattern throughout an observation. In general, the pointing
direction varies around a target by steps of 2◦ within a five-by-
five square or a seven-point hexagonal pattern. A pointing (ex-
posure) lasts between 30 and 60 minutes. Thus, the dithering
allows to construct a solvable system of equations.

However, in addition to the variable instrumental back-
ground, sources are also variable on various timescales rang-
ing from hours (roughly the duration of an exposure) to years.
This is not a major problem at high energy (E& 100 keV),
since there are only few emitting sources, whose intensities are
rather stable in time with respect to the statistics. At lower en-
ergies (E. 100 keV) and in most cases, the source intensities
vary during the time spanned by the all the exposures. The chi-
square, of the associated least-square problem, for this group
can be relatively high, if sources intensity variations arenot
taken into account. In spite of this, it is possible to include a
model of the source intensity variations in the formulationof
the problem and to re-optimize the system of equations accord-
ingly (Bouchet et al., 2013). Nevertheless, including sources
variability in the system of equations increases the numberof
unknowns to determine (2.2.3) since intensities, in each “time-
bin” (a segment of time where the intensity of a given source
does not change statistically), are to be determined simultane-
ously along with the parameters which model the instrumental
background.
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2.2.2. Cases where it is better to process large amount of data
simultaneously

It is impossible from a single exposure (19 data values) to
obtain the sky image in the 30◦ FoV; only a coarse image con-
taining at most 19 sources can be obtained. This coarse image
is under-sampled and contains information on only 19 pixels
(there is no information on the other pixels). Hence, images
cannot always be combined together (co-added) to produce a
single image. Furthermore, crowded regions like the Galactic
Center contain hundreds of sources and thus a single exposure
cannot provide the amount of information needed, even to build
only a coarse image. The grouping of the exposures, by select-
ing all those that contain signal on a specific sky target, can
provide the necessary information. The FoV spanned by these
exposures is large (30◦ to 60◦) and contains numerous sources.

2.2.3. Problem formulation
The signal (counts and energies) recorded by the SPI camera

on the 19 Ge detectors is composed of contributions from each
source in the FoV plus the background. Forns sources located
in the field of view, the dataDraw

dp obtained from detectord dur-
ing an exposure (pointing)p, for a given energy band, can be
expressed by the relation:

Draw
dp =

ns
∑

j=1

Rdp, j I
s
p, j + Bbg

dp+ ǫdp (1)

whereRdp, j is the response of the instrument for sourcej (func-
tion of the source direction relative to the telescope pointing
axis), I s

p, j is the flux of sourcej during pointingp andBbg
dp the

background both recorded during the pointingp for detector
d. ǫdp are the measurement errors on the dataDraw

dp , they are
assumed to have zero mean, to be independent and normally
distributed with a known varianceσdp (ǫdp ∼ N(0, [σ2

dp]) and

ǫdp =
√

Draw
dp ).

For a given pointingp, Draw
dp , Rdp, j, andBbg

dp are vectors of

nd (say nd = 19 detectors1) elements. For a given set ofnp

exposures, we have a system ofnp × nd equations (Eq. 1). To
reduce the number of free parameters related to background,we
take advantage of the stability of relative counts rate between
detectors and rewrite the background term as:

Bbg
dp = Ibg

p × Ud × tdp (2)

whereIbg
p is a normalization coefficient per pointing related

to the background intensity,Ud is a background count rate pat-
tern (uniformity map) on the SPI camera for detectord, and
tdp the effective observation time for pointingp and detector
d. The number of parameters necessary to model the back-
ground reduces tonp if U is assumed to be known2. However,
in some cases it can be determined while processing the data

1The number of functioning detectors could bend = 16, 17, 18 or 19 for
single events and up to 141, when all the multiple events are used in addition to
the single events (Roques et al., 2003).

2Derived from “empty-field” observations (Bouchet et al., 2010).

(Appendix A.4).
The two extreme cases, in terms of number of parameters to be
determined, are

• First, when the sources and background intensities are as-
sumed to be constant throughout all the observation (time
spanned by the exposures), the relation between the data
and the sky model can be written, omitting the detector
indices, as

Draw
p =

ns
∑

j=1

Rp jI
s
j + PpIbg+ ǫp

with Pp = tdp× Ud

(3)

The aim is to compute the intensitiesI s( j) of thens sources
and the background relative intensityIbg. Therefore, the
relation can be written in matrix form, as
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We can rewrite the system in a more compact form as

y = H0x+ ǫ or yi =

ns+1
∑

j=1

hi j x j + ǫi for i = 1, ..,M (4)

whereH0 (elementshi j ) is an M × (ns + 1) matrix and
M = nd × np. The parameters to be determined,x =
(Ibg, I s

1, · · · , I
s
ns

) is a vectors of lengthns + 1. The data
y = (Draw

1 ,D
raw
2 , · · · ,D

raw
np

) and the associated statistical
errorsǫ = (ǫ1, ǫ2, · · · , ǫnp) are vectors of lengthM.

• Second, if the background or the sources are variable on
the exposure timescale, the number of unknowns (free pa-
rameters) of the set ofnp×nd equations is then (ns+1)×np

(for thens sources and the background intensities, namely
I s and Ibg).This leads, unless the number of sources is
small, to an underdetermined system of equations.3

Fortunately, in real applications, many sources vary on
timescales larger than the exposure. This leads to a further
reduction of the number of parameters compared to the case
where all sources vary on the exposure timescale. In addition,
many point sources are weak enough to be considered as having
constant flux within the statistical errors, especially forhigher
energies (E& 100 keV). Then thenp × ns parameters related
to sources will reduce intoNe f f

s parameters and, similarly,Nb

for the background. As these parameters have also a temporal
connotation, they will hereafter be referred to as “time-bins”.

3With the Compressed Sensing approach (Bobin et al. (2008); Wiaux et al
(2009) and references therein), it is possible to find a sparse solution even if the
system is underdetermined and for systems in which the matrix is sparse.
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If the source named or numberedJ is variable, then the total
duration covered by thenp exposures is divided intoKJ sub-
intervals where the source intensity can be considered as sta-
ble/constant regarding the data statistics. The solutionxJ is
expanded inKJ segments, it takes the value “time-bins”sJ

k in
segment k, and can be written in compact notation

x j =

KJ
∑

k=1

sJ
k I J

k with















I J
k = 1 if t ∈ [tJ

k−1, t
J
k [

I J
k = 0 otherwise

Actually the instantstJ
k correspond to the exposure acquisition

time (exposure number), witht0=1 andtJ
k = np + 1. There is

at least one and at mostnp time segments for each sourceJ

(xJ = [sJ
1,
..., sJ

KJ
] becoming a vector of lengthKJ). The matrix

H0 (eq. 4) is to be modified accordingly.
When expanding matrixH0, column J is expanded inKJ

new columns, hence the number of intensities (unknowns) in-
creases. SchematicallyH0 (M × (ns + 1)) is mapped into a
matrix H (M × N), N being the sum of all sources intervals
(N =

∑ns

J=0 KJ), that is the number of “time-bins” (the index
J=0 correspond to the background). MatrixH(1 : M, 1 : K0) is
related to the background whileH(1 : M,K0 + 1 : N) is related
to the sources response. Parametersx(1 : K0) andx(K0+1 : N)
are related to background and source intensity variations with
the time (number of exposures). Box I illustrates schematically
how the matrixH is derived from the matrixH0.
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Finally, the relation between the data and the sky model, simi-
larly as in eq. 4, is

Hx = y+ ǫ (5)

Physically,H corresponds to the transfer function or matrix,
y to the data andx to the unknown intensities (sources plus
background) to be determined (a vector of length N).

Taking into account the variability of sources and instrumen-
tal background increases the size of the system of equation and
the number of unknowns, but also increases the sparsity of the
matrix related to the system of equations, which means that the
underlying matrices have very few non-zero entries. In our ap-
plication, the matrixH0 is sparse, thus matrixH is even sparser.
Objective methods to construct the matrixH from H0 are de-
scribed in Bouchet et al. (2013).

To give an idea, for the dataset which corresponds to (∼6
years of data, the number of free parametersN = Ne f f

s +Nb to be
determined are betweenN ∼ 5 000 andN ∼ 90 000 depending
on the energy band considered and hypotheses made on sources
and background variability timescale (2.3).

2.3. Material
The material is related to the analysis of data accumulated be-

tween 2003 and 2009 with the spectrometer SPI. The astrophys-
ical application is the study of diffuse emission of the Galaxy.
The details can be found in Bouchet et al. (2011). The goal is
to disentangle the “diffuse” emission (modeled with 3 spatially
extended components) from the point-sources emission and in-
strumental background. We need to sample these large-scale
structures efficiently over the entire sky and consequently use
the maximum amount of data simultaneously, since a single ex-
posure covers only one-hundredth of the total sky area. The
datasets consist of 38 699 exposures that yieldM = 649 992
data points. In most cases considered here, the background in-
tensity is considered to be quite stable on a∼6 hours timescale,
which corresponds toNb ≃ 5870 unknowns.

(a) The highest energy bands (E & 100 keV) are less prob-
lematic in terms of number of parameters to determine, as
illustrated by the 200-600 keV band. The sky model con-
tains only 29 sources which are essentially not variable in
time (given the instrument sensitivity). The number of un-
knowns isN ≃ 5900.

(b) The lowest energy bands (E . 100 keV) are more prob-
lematic. We use the 25-50 keV band. The sky model con-
tains 257 sources variable on different timescales. When
the background intensity is assumed to vary on∼6 hours
timescale,N ≃ 22 500 “time-bins” intensity are to be de-
termined.
In some configurations, essentially used to assess the
results, background intensity and/or strongest variable
sources vary on the exposure timescale, and the number of
unknowns could be as high asN ≃ 55 000 toN ≃ 90 000.
Nevertheless, the matrices associated with these problems
remain relatively structured.

(c) To avoid excessively structured matrices, we generate also
matricesH, with a variable number of columns, the number
of segmentsKJ for a particular source being a random num-
ber between 1 andnp. This results in a different number of
parametersN.

Another astrophysical application is the study of a particular
source or sky region, here the crowded central region of the
Galaxy. In this case, it is possible to use a smaller number of
exposures. We use 7147 exposures which cover a sky region of
radius 30◦ around the Galactic center. We measure the intensity
variations of a set of 132 sources. The number of parameters to
determineN = 3 578 is relatively small. Details can be found
in Bouchet et al. (2013). A second matrix, used for verification
purposes, hasN = 9 437. It corresponds to the case where some
sources are forced to vary on shorter timescales.

The material consists of rectangular matricesH and symmet-
ric square matricesA (A = HTH) related to the above physical
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problems (2.2.3). The characteristics of some of these matrices
are described in Table 1.

The system we use in the experiments consists of an Intel i7-
3517U processor with 8 GB main memory. We ran the exper-
iments on a single core, although our algorithms are amenable
to parallelism.

Table 1: Sparsity of matricesH andHT H.

N ρ(H)(%) ρ(A)(%)
3578 2.67 2.96 Central Galaxy (27-36 keV)
9437 1.01 1.05
5900 0.12 0.13 Diffuse emission 200-600 keV

22503 0.18 0.28 Diffuse emission 25-50 keV
55333 0.07 0.09

149526 0.03 0.04 Simulation (25-50 keV)
ρ(Matrix) is the so-calleddensityof the matrix: the ratio between the
number of non-zero elements in the matrix and the total number of
elements in the matrix (M × N for H andN2 for A = HT H, whereM
is the number of rows ofH. The matrixH arising from the diffuse
emission study haveM = 672 495 rows. The number of non-zero
elements is constantnz= 27 054 399 for the matrices withN ≥ 22 503
corresponding to the 25-50 keV band andnz = 4 677 821 for the
200-600 keV band. The matrix withN = 3 578 hasM = 124 921 rows
andnz= 11 948 840 non-zero elements.

2.4. Methods

The mathematical problem described in Section 2.2.3 and
developed in 2.4.1 requires the solution of several algebraic
equations. First, if the chi-square statistic is used, a linear least-
squares problem has to be solved to estimate the parameters of
the model. Second, elements (entries) of the inverse of a matrix
have to be computed in order to determine the error bars (vari-
ances of these parameters). Third, in some cases, the param-
eters are adjusted to the data through a multi-component algo-
rithm based on likelihood tests (Poisson statistics); thisproblem
leads to a non-linear system of equations (Appendix A.1).

These three problems can be reduced to solving a linear
system with a square matrix: a linear least-squares problem
minx ||Hx− y|| can be transformed into a square systemAx= b
by use of the normal equations4 (A = HTH and b = HTy).
Similarly, computing entries of the inverse of a matrix amounts
to solving many linear systems, as described in detail in Sec-
tion 3.3.1. For the above mentioned non-linear problem, we
chose a Newton-type method; this involves solving several lin-
ear systems as well. Our problems are large, but sparse (cf.
Table 1), which justifies the use of sparse linear algebra tech-
niques. In Section 3.1, we describe how we selected a method
suitable for our application.

2.4.1. The least-square solution (LSQ)
The system is, in most cases, overdetermined (there are more

equations - or measures here - than unknowns), therefore there

4For clarity, we omit to weight the matrix H and the data by the inverse of
the data standard deviation, see Section 2.4.1

is (generally) no exact solution, but a “best” solution, moti-
vated by statistical reason, obtained by minimizing the follow-
ing merit function, which is the chi-square5:

χ2 =

M
∑

i=1




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







yi −
∑N

j=1 hi j x j

σi















2

(6)

y = (y1, . . . , yM) is vector of lengthM representing the
data, [Σ] a diagonal matrix of orderM whose diagonal is
(σ1, . . . , σM), whereσi is the measurement error (standard de-
viation) corresponding to the data pointyi . These quantities are
assumed to be known (formallyσi =

√
yi). H = hi j is a matrix

of size M × N. The least-square solutionx = (x1, . . . , xN) is
obtained by solving the following normal equation:

(HT [Σ−2]H)x = HT [Σ−2]y or asAx= b (7)

Once the solution has been computed, the uncertainties on
the estimated solutionx are needed as well. The corresponding
variance can be obtained by computing the diagonal ofA−1:

Var(xi) ∝ a−1
i,i wherea−1

i, j refers to (A−1)i, j (8)

3. Theory

3.1. Processing large datasets: efficient solution of large
sparse systems of equations

Sparse matrices appear in numerous industrial applications
(mechanics, fluid dynamics, . . . ), and the solution of sparselin-
ear systems has been an active field of research since the 1960s.
Many challenges still arise nowadays, because industrial appli-
cations involve larger and larger number of unknowns (up to a
few billions nowadays), and because hardware architectures are
increasingly complex (multi-core, multi-GPU, etc.).

Exploiting sparsity can significantly reduce the number of
operations and the amount of memory needed to solve a linear
system. Let us take the example of a partial differential equa-
tion to be solved on a 2D physical domain; the domain can be
discretized on ak× k 2D grid and using, say, finite differences,
the equation can be transformed into a sparse linear system with
N = k × k unknowns. Without exploiting sparsity, this system
would be solved inO(N3) operations (using an exact method),
with a memory usage inO(N2). It has been shown that, for
this particular case, the number of arithmetic operations can be
reduced toO(N3/2), and space complexity toO(N logN) by ex-
ploiting the sparsity of the matrix (Hoffmanet al., 1973).

Many methods exist for solving sparse linear sys-
tems (Duffet al., 1989; Saad, 1996). Two main classes can
be distinguished:direct methods, that rely on a matrix fac-
torization (e.g.,A = L U), and iterative methods, that build a
sequence of iterates that hopefully converges to the solution.

5The number of counts per detector is high enough to use the Gaussian
statistics.
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Direct methods are known to be numerically robust but often
have large memory and computational requirements, while iter-
ative methods can be less memory-demanding and often faster
but are less robust in general. Iterative methods often need
to bepreconditioned, i.e., to be applied to a modified system
M−1Ax = M−1b for which the method will converge more eas-
ily; a trade-off has to be found between the cost of computing
and using the preconditionerM and how the preconditioner im-
proves the convergence. The choice of a method is often com-
plicated and strongly depends on the application. In our case,
we choose to use a direct method for the following reasons:

• Memory usage is often a bottleneck that prevents the use
of direct methods, but with the matrices arising from our
application, direct and iterative methods have roughly the
same memory footprint. This is explained in the next sec-
tion.

• The matrices from our application are numerically chal-
lenging; we found that unpreconditioned iterative meth-
ods (we tried GMRES) have difficulties converging and
that a direct method that does not implement robust nu-
merical features is also likely to fail (we illustrate this in
Section 5).

• We need to compute error bars, which amounts to solv-
ing a large number (O(N)) of linear systems with differ-
ent right-hand sides but the same matrix. This is particu-
larly suitable for direct methods; indeed, once the matrix
of the system is factored (e.g.,A = L U), the factors can be
reused to solve for different right-hand sides at a relatively
inexpensive cost. We describe this in Section 3.3.1.

In this work, we use theMUMPS (Multifrontal Massively
Parallel Solver) package. MUMPS (Amestoy et al., 2001,
2006) aims at solving large problems on parallel architectures.
It is known to be very robust numerically, by offering a large va-
riety of numerical processing operations, and provides a large
panel of features. In the following section, we briefly describe
how sparse direct methods work. We introduce the basic mate-
rial needed to understand the algorithm used for the computa-
tion of error bars (described in Section 3.3.1).

3.2. Sparse direct methods

Direct methods are commonly based on Gaussian elimina-
tion, with the aim to factorize the sparse matrix, sayA, of the
linear systemAx= b into a product of “simpler” matrices called
factors. Typically, A can be factored intoA = L U whereL
andU are lower and upper triangular matrices respectively, or
A = L D LT , whereD is a diagonal matrix ifA is symmetric
(which is the case in our application).

Sparse direct methods depend on the non-zero pattern of the
matrix and are optimized in that sense; specialized mathemat-
ical libraries for tridiagonal, banded, cyclic matrices are com-
mon. If the pattern is more complex, then the method usually
consists of three phases:analysis, factorizationandsolution.

3.2.1. Analysis
The analysis phase applies numerical and structural pre-

processing to the matrix, in order to optimize the subsequent
phases. One of the main preprocessing operations, calledre-
ordering, aims at reducing thefill-in , i.e., the number of non-
zero elements which appear in the factors but do not exist in
the initial matrix; this step consists in permuting the rowsand
columns of the initial matrix in such a way that less fill-in will
occur in the permuted matrix. Table 2 shows the amount of
fill-in for different problems coming from our astrophysical
application when the matrices are permuted using the nested-
dissection method. For each matrix, the number of non-zero
elements in the original matrixA and in theL factor of the
L D LT factorization ofA are reported. Note that in our ap-
plication, the fill-in is not very large: the number of non-zero
elements in the factors is of the same order of magnitude as
in the original matrix. As a result, the use of sparse, direct
methods is likely to provide a good scalability with respectto
the size of the matrix produced by the application. Moreover,
this implies that, for our application, direct and iterative meth-
ods will have roughly the same memory requirements; indeed,
in an unpreconditioned iterative method, the memory footprint
is mainly due to the storage of the matrixA, while the major
part of memory requirements of direct methods comes from the
factors. Note that, while our application exhibit low amount
of fill-in, this not the case in other applications; in many prob-
lems, especially those involving PDEs on 3D physical domains,
the number of non-zero coefficients in the factors can be as big
as one hundred times more than in the original matrix. In this
case, using an iterative method can be interesting memory-wise.

Matrix size 3578 9437 22503 55333 149526
nz(A) 378475 932143 1436937 2705492 9379127
nz(L) 519542 1380444 2885821 9189447 14432264

Table 2: Number of non-zeros in the original matrixA and in theL factor of the
A = L D LT factorization for different problems of our experimental set.

An important step of the analysis phase is thesymbolic fac-
torization: this operation computes the non-zero pattern of the
factors, on which the numerical factorization and the solution
will rely. The symbolic factorization computes the structure of
the factors by manipulating graphs, and also a structure called
theelimination tree, a tree-shaped graph withN vertices. This
tree represents tasks dependencies for the factorization and the
solution phases. We describe in more details the elimination
tree since it is a key structure to explain and understand (see
Section 3.3.1) how to accelerate the solution phase since com-
puting entries in the inverse of the matrix corresponds to in-
complete traversals of the elimination tree. Figure 2(b) shows
an elimination tree and we use it to illustrate some definitions:
one of the nodes is designated to be theroot; in the figure, this
is node 6. For our purpose, the root is the node corresponding
to the variable of the linear system that is eliminated last.An
ancestorof a vertexv is a vertex on the path fromv to the root.
Theparent(or father) of v is its first ancestor; all the nodes but
the root have a parent. For example, on the figure, nodes 6 and
5 are ancestors of 4; 5 is the parent of 4. Achild of a vertexv is
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a vertex of whichv is the parent. For example, 4 and 3 are the
children of 5. A vertex without children is called aleaf; 1 and
2 are leaves.Descendantsof a vertexv are all the nodes in the
subtree rooted atv; for example, 1, 2, 3 and 4 are descendants
of 5.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

(a) FactorsL + LT . (b) Elimination tree ofA.

Figure 2: The factors and the elimination tree of a symmetricmatrix A. (a)
pattern of theL + LT factors ofA with filled-in entries shown with squares, (b)
the elimination tree ofA where the children of a node are drawn below the node
itself.

In the following subsections (factorization and solution
phase), we describe briefly how a sparse direct solver uses elim-
ination trees; we will also rely on this notion in Section 3.3.1
for the computation of error bars. Further details about thecon-
struction and the role of elimination trees in sparse solvers are
given in Liu (1990).

3.2.2. Factorization
After the preprocessing performed during the analysis phase,

the numerical factorization takes place and the matrixA is trans-
formed into a product of factors (e.g.,L U). The factorization
consists in traversing the elimination tree following apostorder,
that is atopological ordering(i.e. each parent is visited after its
children) where the nodes in each subtree are visited consecu-
tively. In Figure 2(b), 1-4-2-3-5-6 is, for example, a postorder.
At each node, a partial factorization of a dense matrix is per-
formed. Note that nodes that belong to different branches can
be processed independently, which is especially useful in apar-
allel setting.

The factorization phase tries to follow as much as possible
the preparation from the analysis phase, but sometimes, because
of numerical issues (typically, division by a “bad pivot”, i.e. a
very small diagonal entry that could imply round-off errors), it
has to adapt dynamically: the structure of the factors and the
scheduling of the tasks can be modified on the fly.

3.2.3. Solution phase
Once the matrix has been factored, the linear system is

solved. For example, in the case of theL U factorization, the
systemAx = b becomesLUx = b and is solved in two steps
(two solutions of triangular systems):















z= L−1b “Forward substitution”

x = U−1z “Backward substitution”

The forward substitution follows a bottom-up traversal of the
elimination tree as in the factorization, while the backward sub-
stitution follows a top-down traversal of the tree. At each node,
one component of the solution is computed, and some updates
are performed on the dependent variables (ancestor nodes for
the forward phase, descendant nodes for the backward phase).

3.3. Computing error bars: partial computation of the inverse
of a sparse matrix

In our astrophysical application, once the solution, either for
the linear or non-linear problem, has been found, it is necessary
to compute the variances of the parameters of the fitted func-
tion. In the case of multiple regressions such as least squares
problems, the standard deviation of the solution can be obtained
by inverting the Hessian or covariance matrix. However, since
the inverse of a sparse matrix is structurally full, it is impractical
to compute or store it (Duff et al., 1988). In our case, the whole
inverse of the covariance matrix is not required: since we only
want the variances of the parameters (not their covariances), we
only need to compute the diagonal elements of the inverse.

Some work has been done since the 1970s in order to com-
pute a subset of elements of the inverse of a sparse matrix. One
of the first works is Takahashi et al. (1973) which has been ex-
tended in Campbell & Davis (1995); this approach relies on a
direct method (i.e. on a factorization). An iterative method
has been proposed in Tang & Saad (2009) for matrices with a
decay property. Some methods have also been developed for
matrices arising from specific applications; a more detailed sur-
vey is given in Amestoy et al. (2010). Many of these meth-
ods provide sophisticated ideas and interesting performance on
specific problems, but no software package is publicly avail-
able, with the exception of the approach implemented within
MUMPS solver, that we describe in the next section.

3.3.1. MUMPS A−1 feature
TheA−1 feature in MUMPS has been described in (Slavova,

2009) and was motivated by theINTEGRAL/SPI application,
among other applications that require the computation of in-
verse entries, or, more generally, applications that involve
sparse right-hand sides (as explained in this section). This fea-
ture is able to compute any set of entries ofA−1, relying on
a traditional solution phase, i.e. by computing every required
entrya−1

i j as:

a−1
i j =

(

A−1e†j
)

i

Using theLU factors ofA, this amounts to solving two trian-
gular systems:















Lz = e†j
a−1

i j =
(

U−1z
)

i

The first triangular system in the equation above is particu-
lar because its right-hand sidee†j is very sparse (only one non-
zero entry). Furthermore, we do not need the whole solution
of the second triangular system, but only one component. This
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information can be exploited to reduce the traversal of the elim-
ination tree; while a regular solution phase would consist in
visiting the whole elimination tree twice (a bottom-up traversal
followed by a top-down traversal), computinga−1

i j consists in
two partial traversals of the tree: the first triangular system is
solved by following the path from nodej to the root node, and
the second triangular system is solved by following the path
from the root node to nodei; this is referred to aspruning the
elimination tree. Since each node of the tree corresponds toop-
erations to be performed (arithmetic operations, or expensive
accesses to the factors in the out-of-core case), this leadsto sig-
nificant improvements in computation time. Moreover, since
we do not have to manipulate dense solution vectors, this also
leads to significant savings in memory usage.

We illustrate this technique in Figure 3: entrya−1
23 is required,

thus the only nodes of tree that have to be visited lie on the
path from node 3 to the root node (6) and on the path from the
root node to node 2. Therefore, one does not have to perform
operations at nodes 4 and 1.

L z = y)
2

= eL y 3

6

2

3

5

4

1

(
T

Figure 3: Computation ofa−1
23. The traversal of the tree is reduced to the path

from 3 to 6 and the path from 6 to 2; no computation is performedat nodes 1
and 4.

When many entries of the inverse are requested, they cannot
generally be computed all at once (mainly because of memory
usage), but they can be computed by blocks, which allows to
take advantage of efficient dense linear algebra kernels. Work
has been performed in order to find optimal ways to form the
blocks in different contexts (Amestoy et al., 2010) and to im-
prove the parallel efficiency.

4. Calculation

A substantial time is spent in computingA = HTH with a ba-
sic algorithm. The use of an appropriate algorithm to perform
the operationA = HTH helps to reduce the computation time
(see Section 4.1). The MUMPS solver is used to solve the sys-
tem of equations as described in Section 4.2. Finally, the error
bars on the solution are computed, which means the calculation
of the diagonal elements of inverse matrix. The newA−1 fea-
ture of MUMPS is compared with several algorithms, in terms
of computation time in Section 4.3.

4.1. Improvements of the computation of A= HT H

The computation of the normal equationA = HTH is of
paramount importance in many problems, yet is a very chal-

lenging operation due to the considerable amount of symbolic
operations needed to compute the sparsity structure ofA. For
this reason efficient algorithms have been developed in the past.
To perform this operation we decided to use part of a larger code
developed by Puglisi (1993) for computing the QR factorization
of sparse matrices. The used part was originally developed to
compute only the structure of theA matrix and, thus, we had to
extend it in order to compute the coefficients values. This was
possible thanks to the help of the original code developer.

One important feature of this code offers the possibility to
update the elements ofA that are changed after modification of
some numerical values of the columns ofH without recomput-
ing the whole matrix (the technique used to compute simultane-
ously the solution and the background pattern in the algorithm
is described in 2.2.3 and Appendix A.4).

Table 3: Time for the computation ofA = HT H

Matrix Improved Simple
A = HTH algorithma algorithmb

N = 22 503
Full matrix 28.2 5 779
5000 H columns modified 0.43 258

N = 149 526
Full matrix 41.2 18 585
5000 H columns modified 0.13 31.7

Times are in seconds.H is an N by M matrix; hereM = 672 495
andH has 27 054 399 non-zero elements.a Based on an original pack-
age from Puglisi (1993) and improved as suggested by the author. b

N matrix vector product are used following the Compressed Column
Storage scheme, but for each operation a dense vector of length M
(with many zero element), that represents a column of H is built in
place.

Table 3 shows the time reduction achieved for both the com-
putation ofA = HTH and its update after the modifications of
some columns ofH. The results in the first column are obtained
with the code extracted from the software package by Puglisi
(1993) and improved as suggested by the author. The results on
the second column, instead, are obtained by computingN ma-
trix vector products where, for each product, a dense vectorof
lengthM (with many zero elements) corresponding to a column
of H is built in place.

The gain over a simple basic algorithm is significant (a fac-
tor ∼300) and demonstrates the interest of using specialized li-
braries dedicated to sparse matrix computations.

4.2. Solving a sparse linear system

Here we briefly illustrate the interest of exploiting sparsity of
the matrix when solving a linear system. In Table 4, we com-
pare the time for solving linear systems arising from our appli-
cation using a dense solver (LAPACK (Andersen et al., 1990))
and a sparse solver (MUMPS). Times are in seconds and in-
clude theL D LT factorization of a symmetric matrixA of order
N and the computation of the solutionx of the systemAx= b (x
andb are vectors of lengthN). In the results related to MUMPS,
the time for the analysis phase is included. In the second row
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of the table, instead, the matrix is treated as dense, hence its
full storage is used and no analysis phase is performed. For
the largest two problems, the dense algorithm cannot be used
as the memory requirements are roughly 23 GB and 167 GB re-
spectively. We can extrapolate that on this system, the run time
would be around 22 hours for the largest problem (instead of
6.7 seconds using a sparse algorithm).

Table 4: Times (in seconds) for the computation of the solution.

Matrix size 3578 9437 22503 55333 149526
Sparse 0.2 0.7 1.6 8.0 6.7
Dense 1.2 20.1 169.9 / /

The results in Table 4 confirm that sparse, direct solvers
achieved a good scalability on the problems of our target ap-
plication whereas dense linear algebra kernels quickly exceed
the limit of modern computing platforms.

4.3. Time to compute error bars

In this section we present experimental results related to the
computation of error bars or, equivalently, of the diagonalen-
tries of the inverse matrixA−1. Our approach that relies on the
pruned tree, presented in Section 3.3.1, is compared to the ba-
sic, left-looking approach described in (Stewart, 1998). In the
case of a symmetric matrix, this approach computes the diago-
nal entries of the inverse matrix as

a−1
ii =

N
∑

k=1

1
dkk

(

l−1
ki

)2

where we denoted witha−1
i j andl−1

i j the coefficients ofA−1 and
L−1, respectively. This amounts to computing, one at a time, the
columns ofL−T and then summing the corresponding contribu-
tion onto thea−1

ii coefficients. In this algorithm, the sparsity of
the right-hand side and of the factor matrixL is exploited but
not completely, and the experimental results discussed below
show that this results in a higher execution time. Furthermore,
because of memory issues, this simple algorithm does not al-
low to simultaneously compute many diagonal entries ofA−1;
clearly this is also a limiting factor for performance. Our imple-
mentation of this method is based on the LDL package (Davis,
2005). As a second term of comparison we also provide experi-
mental results for a brute force approach with no exploitation of
sparsity of the right-side and solution vectors. For this purpose,
we use directly the MUMPS package and solve several systems
of equations in order to compute the inverse matrix. In addi-
tion, we analyze the influence of grouping the computation of
the diagonal entries (1 right-hand-side (RHS) at a time or 128
at a time).

The experimental results for the three methods described
above are reported in Table 5. For the sake of this compari-
son, all these methods are executed in sequential mode although
the code of the brute force approach and of the MUMPSA−1

feature are parallel. The experiments were carried out on the
above-mentioned system.

These results show that the brute force algorithm becomes
competitive with respect to the simple algorithm when the en-
tries are processed by blocks. The MUMPSA−1 feature de-
scribed in 3.3.1 is significantly faster than all other approaches
and the gain increases with the size of the problem. Pruning
leads to clear gains over a strict traditional solution phase. The
gain is even larger for the largest problem due to the good scala-
bility of the A−1 algorithm with respect to the problem size. The
simple, left-looking approach shows reasonable performance
for small problems, but could not be tested on our largest ma-
trix because numerical pivoting, not available in LDL package,
is needed during factorization to obtain an accurate solution.

Table 5: Time to compute the diagonal elements of the inverseof a symmetric
matrix.

Matrix size 3578 9437 22503 55333 149526
Left-looking 28.2 376.1 2567.9 489.1 /

MUMPS (1 RHS) 3.77 38.4 204.1 1324.9 8230.5
MUMPS (128 RHS) 1.32 7.34 45.5 245.6 2833.5
MUMPS A−1 0.28 0.9 4.9 36.0 9.5

Execution times (in seconds) for the computation of all the diagonal
entries of theA−1 matrix with the left-looking, brute force and
MUMPS A−1 methods. For the brute force approach results are
provided for blocks of size 1 and 128.
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Figure 4: Different contributions to the total emission at hard X-ray and soft
gamma-ray energies in the central radian of the galaxy. The data points
shown in black (plus filled circle) correspond to the contribution due to 270
point sources. The average spectrum of these sources can be viewed at
http://sigma-2.cesr.fr/integral/ . The data points shown in blue correspond to
the diffuse emission.

5. Results and discussion

The MUMPS solver and itsA−1 functionality are the core
tools to solve systems of equations related to the measurements
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Figure 5: Intensity evolutions (Red) of IGR J17464-3213, GRS 1758-258,
GX 1+4, GS 1826-24 and GX 354-0 in the 27-36 keV band. These inten-
sity variations are compared to the time-series (“Quick-look” analysis) obtained
with the IBIS instrument (Ubertini et al., 2003) aboard theINTEGRALobser-
vatory. The time-series (30-40 keV) is shown in gray.

of the sources intensity. Figure 4 shows the application to the
determination of the different components of the Galaxy spec-
trum. The related analysis is performed in 24 consecutive en-
ergy bands in order to extract counts spectra. The counts spec-
tra are then converted into photon spectra. The details are given
in Bouchet et al. (2011). Another application is the study of
the intensity variations of a peculiar source or sky region.Fig-
ure 5 shows the intensity in function of the time (exposure) of
some of the sources located in the central crowded region of the
Galaxy. For this application, the end and start of the “time-bins”
are determined by a segmentation algorithm, which is based on
the efficientL D LT factorization of symmetric matrix provided
by MUMPS, details can be found in Bouchet et al. (2013).

We have demonstrated that even for the basic operation such
as sparse matrix product, it is better to use dedicated algorithms
or libraries (4.1).

The MUMPS solver is very effective on the sparse matrix
structure arising from astrophysical problems encountered with
SPI. This solver is robust and the matrix factorization is sta-
ble against rounding errors. It provides many numerical pre-
processing options and implements robust pivoting strategies,
which make it one of the most numerically stable solvers avail-
able. The matrices arising from theINTEGRAL/SPI application
are symmetric and indefinite; they are not

extremely challenging numerically, but they do require two-
by-two numerical pivoting for stability (in Table 5 the LDL
package could not provide an accurate solution on our largest
matrix). The proposed approach not only leads to substantial
time reduction but also enables the resolution of large sparse
system of equations which could not be solved using basic al-
gorithms.

Other sparse linear systems solvers exists and have been used

to validate the performance reported in the experimental sec-
tion; for an exhaustive list see for example Bai et al. (2000),
but they all lack a function to compute also the error bars on
the solution quickly, which is mandatory in our astrophysical
application.

TheA−1 feature in MUMPS (computation of selected inverse
entries) did not exist before the beginning of this study, the IN-
TEGRAL/SPIapplication was actually one of the motivating ap-
plications for developing techniques for the computation of in-
verse entries, and for releasing a publicly available code.This
functionality allows to compute easily and rapidly the error bars
on the solution. The gain in time over already optimized algo-
rithms is important.

Among other methods to solve the problem completely, so-
lution and error bars, one should mention alternative meth-
ods such as Monte Carlo Markov Chains (Metropoliset al.,
1953; Hastings, 1970; Neal, 1993) or Simulated Annealing
(Kirkpatrick et al., 1983). Such advanced statistical tools can
provide the best fit and the variances of the solution of both lin-
ear and non-linear systems of equations. In particular MCMC
methods could be useful when computing error bars, in case of
complex constraints on the function. However, these methods
may be very prohibitive in time, especially if high precision
on the parameters is required; they have in general a weak or
non-guaranteed convergence and are not the best suited for our
needs, given the complexity of our problem.

6. Conclusions

We have developed algorithms to process years of data and to
enhance the production ofINTEGRALhard X/softγ-ray survey
catalogs. These methods have been successfully applied to aset
of ∼6 years of data (Bouchet et al., 2011). We have shown that,
for processing efficiently and accurately years of data, it is criti-
cal to use algorithms that take advantage of the sparse structure
of the transfer function (matrix), such as those implemented in
the MUMPS software6. It was also demonstrated that error bars
can be obtained at a relatively inexpensive cost (the same order
of magnitude as a simple problem solution) thanks to a recently
developed algorithmic feature that efficiently computes selected
entries of the inverse of a matrix. In addition, thanks to many
efforts in optimization, gains are achieved both in memory us-
age and in computation time. Hence, it is possible to process
large datasets in a reasonable time and to compute the diagonal
of the covariance matrix, and thus error bars, in a rather short
time. More generally, the ideas described here can be applied to
a large variety of problems. Finally, we are today able to solve
sparse linear systems with millions, sometimes billions, of un-
knowns. Although we have not used explicitly parallel comput-
ing but instead performed many sequential computations at the
same time (for each energy band, etc..), the proposed approach
can also be used directly in a parallel setting on massively par-
allel machines.

6Available at http://mumps.enseeiht.fr/ or http://graal.ens-lyon.fr/MUMPS/
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In the near future, instruments will commonly create datasets
of a few tens to a few hundreds of Terabytes for a single obser-
vation project. Many of the current tools and techniques for
managing large datasets will not scale easily to meet this chal-
lenge. Surveys of the sky already require parallel computing
in order to be performed. New surveys will demand orders of
magnitude increases in the available data and therefore in data
processing capabilities. It is also a challenge for scientists who
need to extract a maximum of science from the data. Exciting
scientific breakthroughs remain to be achieved as astronomers
manipulate and explore massive datasets, but they will require
advanced computing capabilities, infrastructure and algorithms.
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Appendix A. Schematic solution of the system of equations

Appendix A.1. Maximum Likelihood Estimator (MLE) of the
solution

In the case of a low number of counts, it is recommended to
use the MLE of the solution instead of theχ2 solution. Follow-
ing Cash (1979), we maximize the likelihood function,

L = −2× (
M
∑

i=1

ei − yi ln ei) (A.1)

whereei is the model of the data obtain through the relation
e= Hx.

Appendix A.2. Optimization of the non-linear problem

To optimize this non-linear problem, potentially with bound
constraints (such as positivity of the solution), there areat least
four approaches:

(a) Newton type methods (or modified Newton methods): they
use the Hessian matrix to define a search direction and
hence need the solution of a large linear system of equa-
tions at least at each few iterations. They are the most pow-
erful methods available and can find the solution in a few
iterations.

(b) Quasi-Newton methods: they build an approximation of
the Hessian at each iteration. They optimize a quadratic
function in at mostn iterations (n being the number of un-
knowns).

(c) Conjugate-gradient methods: unlike the Newton-type and
quasi-Newton methods, conjugate gradients methods do
not require the storage of ann by n Hessian matrix and
thus are suited to solve large problems. The gradient of the

function (a vector of lengthn) is used to define the search
direction. They are not usually as reliable or efficient as
Newton-type methods and often a relatively large number
of iterations has to be performed before obtaining an ac-
ceptable solution.

(d) Simplex (Nelder & Mead, 1965), simulated anneal-
ing (Kirkpatrick et al., 1983) or Monte Carlo Markov
Chain (MCMC) (Neal, 1993) can also be considered, but
they are often prohibitive in time.

Methods (a) and (b) are known as order-2 optimization meth-
ods (gradient and Hessian used), (c) as an order-1 optimization
method (gradient used), while method (d) can use only the func-
tion value.

To use a Newton type method (order-2), we need to compute
the gradientG and the HessianHessof the function

G j =
∂L
∂x j
= 2×

M
∑

i=1

Hi j

(

1− di

ei

)

for j = 1, ..,N

andHess=
1
2
∂2L
∂2x
= HT

[

d
e2

]

H

(A.2)

[ d
e2 ] is a diagonal matrix of orderM whose diagonal is

( d1

e2
1
,. . . ,dM

e2
M

). As for the LSQ case, the variance of the solution

is obtained thanks to the inversion of the Hessian matrix (note
that in the limit lime7→d

di

e2
i
= 1

di
= 1
σ2

i
, the likelihood (Hess) and

chi-square (A) Hessian matrices are the same). A guess solution
to this non-linear optimization problem is the LSQ solution.

Appendix A.3. Codes for non-linear optimization

The fitting algorithm, based on the likelihood test statistic, is
a non-linear optimization problem. To optimize a non-linear
problem, potentially with bound constraints, a Newton type
method, known for its efficiency and reliability can be used,
as we already have a solver for large sparse systems at hand. A
software package for large-scale non-linear optimizationsuch
as IPOPT7 (Interior Point OPTimizer) can be used. IPOPT
uses a linear solver such as MUMPS or MA57 (Duff & Red ,
2004) as a core algorithm. For more details on this large-
scale non-linear algorithm, see Wächter & Biegler (2006).A
few similar software packages for large-scale non-linear opti-
mization exist, among them LANCELOT (Conn et al., 1996),
MINOS (Murtagh et al., 1982) and SNOPT (Gill et al., 1997).

Appendix A.4. “Empty-field” auto-computation

Sometimes the “empty-field” or “uniformity map”U has to
be computed with the solution. In order to preserve the linearity
of the problem, we have adopted the algorithm described below.
We consider that if the solutionx is known,

yi =

K0
∑

j=1

hi j x j +

N
∑

j=K0+1

hi j x j = yB
i + yS

i (A.3)

7IPOPT is available at https://projects.coin-or.org/Ipopt
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Coming back to the detector and pointing number

Draw
dp = DS

dp + UdIbg
p tdp (A.4)

In the above formulayS
i ≡ DS

dp is the counts due to the

sources, assumed to be known.yB
i ≡ UdIbg

p tdp is the back-
ground contribution,Ibg is assumed to be known andU is to be
estimated. At this stage, using the model of the sky described

by A.4, a rough estimate of the pattern isUd ≃
∑np

p=1(Draw
dp −DS

dp)
∑np

p=1 tdp
.

Appendix A.4.1. Expression for the detector pattern
For the LSQ statistic, we wish to minimize the following

quantities for each of the working detectors,

χ2(d) =
np
∑

p=1

















Draw
dp − DS

dp − UdIbg
p tdp

σdp

















2

for d = 1, ...,np (A.5)

The LSQ solutionULS Q(d) is

ULS Q(d) =

∑np

p=1(Draw
dp − DS

dp) × Ibg
p tdp/σ

2
dp

∑np

p=1(Ibg
p tdp)2/σ2

dp

(A.6)

For the MLE statistic, we do not have to preserve the linear-
ity of the problem and hence the computation of the improved
“empty-field” pattern can be done during the non-linear opti-
mization process. On another side, the algorithm is simplified
if we proceed similarly as in the LSQ case. Then, we wish to
maximize the following quantities for each of the working de-
tectors,

L(d) = − 2

















np
∑

p=1

DS
dp + UdIbg

p tdp − Draw
dp ln [DS

dp + UdIbg
p tdp]

















for d = 1, ...,np

(A.7)

The MLE solutionUMLE(d) is

UMLE(d) =

∑np

p=1(Draw
dp − DS

dp)
∑np

p=1 Ibg
p tdp

(A.8)

One should mention that it is possible to compute, similarly,
an “empty-field” pattern on some restricted time interval in-
stead of the whole dataset; the best “empty field” for pointing
intervalspk to pk+1 is then,



























UMLE(d, k) =
∑pk+1

p=pk
(Draw

dp −DS
dp)

∑p(k+1)
p(k) Ibg

p tdp

ULS Q(d, k) =
∑pk+1

p=pk
(Draw

dp −DS
dp)×Ibg

p tdp/σ
2
dp

∑p(k+1)
p(k) (Ibg

p t2dp)
2/σ2

dp

(A.9)

Appendix A.5. “Empty-field” schematic construction

A sub-optimal algorithm to obtain both the sources and the
background fluxes, as well as the improved “empty-field” pat-
tern is described in Algorithm 1. We start with an approxima-
tion U0 and apply some iterative refinement. In practice, the
algorithm converges in a few iterations.

Algorithm 1 Computation of the “Empty field”, the solution
and its variance

1: U = U0, compute the structure of the Hessian (A or Hess)
2: for i=1 to itermaxdo {Iterative computation of U and x}
3: Compute LSQ or MLE solution
4: Compute a new approximation ofU by minimizing

again LSQ or maximizing MLE statistics
5: UpdateH (The firstK0 columns ofH and update the new

Hessian matrix (Sec. 4.1))
6: If χ2 stops decreasing or the likelihood function stops

increasing then go to step 8
7: end for
8: ComputeH at the solution (if not already done) and the

diagonal ofH−1 to obtain the uncertainties on the solution
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Appendix B. Highlights

• INTEGRAL/SPIX/γ-ray spectrometer data analysis

• Large astronomical data sets arising from the simultaneous
analysis of years of data.

• Resolution of a large sparse system of equations; solution
and its variance.

• The Multifrontal Massively Parallel Solver (MUMPS) to
solve the equations.

• MUMPS A−1 feature to compute selected inverse entries
(variance of the solution,. . . ).
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