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Abstract

The dark matter halo mass function (HMF) is a characteristic property of cosmological structure formation models,
quantifying the number density of dark matter haloes per unit mass in the Universe. A key goal of current and planned
large galaxy surveys is to measure the HMF and to use it to test theories of dark matter and dark energy. We present a
new web application for calculating the HMF – the frontend HMFcalc and the engine hmf. HMFcalc has been designed
to be flexible, efficient and easy to use, providing observational and theoretical astronomers alike with the means to
explore standard functional forms of the HMF or to tailor their own. We outline the theoretical background needed to
compute the HMF, we show how it has been implemented in hmf, and finally we provide worked examples that illustrate
HMFcalc’s versatility as an analysis tool.

1. Introduction

There is now a wealth of compelling observational ev-
idence that we live in a Universe whose matter content is
predominantly dark („84%; cf. Ade et al., 2013) and non-
baryonic in nature (cf. Bergström, 2000). Our theories
of cosmological structure formation predict that this dark
matter clusters into massive gravitationally bound struc-
tures called haloes. The dark matter halo mass function
(hereafter HMF) quantifies the number of these haloes per
unit comoving volume of the Universe as a function of their
mass. The HMF is sensitive to the cosmological param-
eters, primarily the mass-energy density of dark matter
Ωc and dark energy ΩΛ (e.g. Murray et al., 2013), but it
also depends on the nature of the dark matter. The stan-
dard Cold Dark Matter (CDM) model predicts an HMF
in which the number of haloes increases with decreasing
halo mass M approximately as M´1.8 (e.g. Lukić et al.,
2007; Bhattacharya et al., 2011), whereas viable Warm
Dark Matter (WDM) models predict fewer haloes than
the CDM model at low masses(e.g. Schneider et al., 2013;
Pacucci et al., 2013). The potential of the HMF as a probe
of dark matter and dark energy is widely recognised (e.g.
Tinker and Kravtsov, 2008; Vikhlinin et al., 2009) and is
one of the key science drivers of current and planned future
galaxy surveys (Driver, 2011; Pierre et al., 2011).

Cosmological N -body simulations are now established
as the tool for studying the HMF (cf. the recent review
by Knebe et al., 2013), but the information contained in
a simulation is usually distilled and recast in a more com-
pact form. Usually this is the comoving number density
of haloes per unit logarithm of the halo mass M ,

dn

d lnM
“M ¨

ρ0

M2
fpσq

ˇ

ˇ

ˇ

ˇ

d lnσ

d lnM

ˇ

ˇ

ˇ

ˇ

; (1)

here σ and ρ0 are the cosmology-dependent mass vari-
ance and mean density and fpσq represents the functional
form that defines a particular HMF fit. Eq 1 is not dif-
ficult to compute, but neither is it straightforward. We
have developed an easy-to-use and flexible web-application
to compute Eq 1, which we call hmf, and its frontend
HMFcalc which can be accessed at http://hmf.icrar.

org. HMFcalc can be used in a number of ways, including
as

• a standard against which to check one’s own code;

• an easy-to-use interface to generate HMFs against
which to check observational/simulations data; and

• a visually intuitive way to explore the effects of cos-
mology on the HMF.

The objective of this paper is to present a detailed overview
of hmf and HMFcalc, describing its implementation and the
underlying philosophy for this approach, as well as provid-
ing some worked examples that illustrate its usefulness and
versatility.

The paper is structured as follows. In §2 we provide the
theoretical background necessary to compute the HMF,
setting out a compilation of HMF fitting functions drawn
from the literature and demonstrating how the HMF dif-
fers in CDM and WDM models. In §3 we describe our
implementation of hmf and HMFcalc and discuss the algo-
rithms and methods used. In §4 we present some worked
examples using HMFcalc and finally in §5 we summarise
our plans for extending HMFcalc’s functionality and us-
ability.
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2. The Halo Mass Function (HMF)

The HMF quantifies the number of dark matter haloes
per unit mass per unit comoving volume of the Universe,

dn

d lnM
“M ¨

ρ0

M2
fpσq

ˇ

ˇ

ˇ

ˇ

d lnσ

d lnM

ˇ

ˇ

ˇ

ˇ

where fpσq is the fitting function that we shall return to
shortly, ρ0 is the mean density of the Universe and σ is
the rms variance of mass within a sphere of radius R that
contains mass M ,

M “
4πρ0

3
R3. (2)

The mass variance is calculated via the integral,

σ2pRq “
1

2π2

ż 8

0

k2P pkqW 2pkRqdk (3)

where k “ 2π{λ is the wavenumber corresponding to the
wavelength λ of the fluctuation, P pkq is the linear power
spectrum (see below) and W pkRq is the Fourier transform
of the top-hat window function1 (a sphere with sharp edges
in real space), i.e.

W pkRq “
3 rsinpkRq ´ kR cospkRqs

pkRq3
. (4)

The right-most factor of Eq 1 can be written as

d lnσ

d lnM
“

3

2σ2π2R4

ż 8

0

dW 2pkRq

dM

P pkq

k2
dk (5)

using Eq 2 to relate M to R, and writing

dW 2

dM
“ rsinpkRq ´ kR cospkRqs ˆ

„

sinpkRq

ˆ

1´
3

pkRq2

˙

` 3
cospkRq

kR



.(6)

The window function and its derivative are functions of
the product kR, but we evaluate Eqs 3 and 5 by integrating
over k. For this reason care must be taken when solving
the integrals numerically to ensure that the results are
converged. We demonstrate why in Fig 1, where we plot
şkR

0
W 2pxqdx and

ş8

kR
W 2pxqdx. The integral

şkR

0
W 2pxqdx

allows us to identify an upper limit on the minimum kR
required for convergence; we want the range of kR for any
R to have a minimum that bounds the non-zero parts of
the function. As a rule of thumb, we identify this as the
value of kR for which 95% of

ş8

0
W 2pxqdx is kept; from

1Note that there is freedom in the choice of window function; we
follow the convention in which the window function is a top-hat in
real space, but we could adopt a Gaussian in real space, or a top-
hat in Fourier space. The dependence of σ on the choice of window
function is well known and the implications have been explored in
studies such as Schneider et al. (2013). We shall return to this point
in §5.
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Figure 1: The integral of the window function gives an upper limit
of 0.1 on the minimum of the kR range, and a lower limit of 3 on
the maximum of the kR range, with a 95% contribution of the total
integral.

Fig 1, this corresponds to kR “ 0.1 and so we have the
condition,

kminRmax ă 0.1 (7)

Repeating this exercise for
ş8

kR
W 2pxqdx, we deduce

kmaxRmin ą 3. (8)

These bounds on kR are implemented in hmf by default,
which issues a warning if they are not obeyed. Usually the
limits on k to which the power spectrum is extrapolated
far exceed these rules for any sensible mass range, but
instances can arise where more stringent limits on k are
required (cf. §4.2).

The linear power spectrum P pkq characterises the dis-
tribution of matter density perturbations as a function of
wavenumber k; formally it is computed by averaging over
ˇ

ˇ

ˇ

ˆ
δp~kq

ˇ

ˇ

ˇ
, the square of the Fourier-transformed real-space

density fluctuations δp~xq “ ρp~xq{ρ̄´ 1, where ~x and ~k are
the spatial coordinate and wave vector respectively. We
express it as

P pkq “ AknT 2pkq, (9)

where T pkq is the transfer function, A is the normalisation
constant and n is the spectral index. We follow conven-
tion and use the cosmological parameter σ8, which mea-
sures the mass variance on a scale of 8h´1Mpc, to calculate
A. The primordial power spectrum, imprinted during the
epoch of inflation during the first moments after the Big
Bang, is expected to have a form P pkq9kn. The transfer
function quantifies how this primordial form is modified
on different scales, and it is particularly sensitive to the
nature of the dark matter and the baryon density param-
eter Ωb. We use the public Code for Anisotropies in the
Microwave Background (CAMB) (Lewis et al., 2000) to
compute our transfer functions.

2.1. Fitting Functions

As noted in the introduction, it is the fitting function
fpσq that defines a particular HMF fit. Early analytical

2
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Figure 2: Upper: all fitting functions at redshift zero over a large
mass range (limits placed as appropriate on each function). Lower:
each fitting function divided by the Sheth-Tormen fit.

work by Press and Schechter (1974) (hereafter PS) and
Bond et al. (1991) established a simple form for fpσq by
assuming that haloes form by spherical collapse, finding

fpσq “

c

2

π

δc
σ

exp

ˆ

´
δ2
c

2σ2

˙

, (10)

where δc » 1.686 is the critical overdensity for spherical
collapse.

However, N -body simulations of cosmological structure
formation have revealed that the PS form underestimates
the abundance of higher mass haloes and overestimates
the abundance of lower mass haloes. (e.g. Sheth et al.,
2001; White, 2002; Lukić et al., 2007). Sheth et al. (2001)
(hereafter ST) explored an extension to the PS formalism
by considering ellipsoidal rather than spherical collapse
and obtained a form for the mass function that is identical
to Eq 1 but with a modified fpσq. Subsequent studies
have largely adopted the same philosophical approach of
assuming that the HMF can be expressed in the form of
Eq 1 and using fpσq to characterise the HMF.

Table 1 provides a concise summary of the forms for
fpσq that have appeared in the literature to date and which
are included in HMFcalc, and we list also the cosmology
and mass and redshift ranges over which the fits have been
made2. Each of these fitting functions are plotted in Fig
2 for comparison.

2.2. Redshift Dependence

In general it is assumed that the form of the fitting
function fpσq is insensitive to redshift, and so it is through
the rms mass variance σpM, zq that redshift dependence is

2Note the parameters A, a, b, c for the Tinker fit are actually de-
pendent on ∆vir. See Tinker and Kravtsov (2008) or the code for
details.

captured. The evolution of σpM, zq is governed by the
growth factor,

dpzq “
D`pzq

D`pz “ 0q
. (11)

where D`paq is

D`pzq “
5Ωm

2

Hpzq

H0

ż 8

z

p1` z1qdz1

rHpz1q{H0s
3
, (12)

and H0 is the present-day Hubble parameter with

Hpzq “ H0

a

Ωmp1` zq3 ` p1´ Ωmq (13)

its value at z.

2.3. Warm Dark Matter Models

The default in HMFcalc is to calculate the HMF assum-
ing an underlying Cold Dark Matter (CDM) model, but we
have included the option to calculate the HMF in Warm
Dark Matter (WDM) alternatives. Small-scale power is
suppressed in a WDM model compared to its CDM coun-
terpart, reflecting the free-streaming of WDM particles in
the early Universe, dispersing small-scale density pertur-
bations that would otherwise collapse via gravitational in-
stability to form low-mass dark matter haloes. The influ-
ence of the dark matter model on structure formation is
readily apparent in Fig 2.3, which shows the projected dark
matter density at z=0 in a 20 h´1Mpc patch in a fiducial
CDM model (left panel) and in a WDM model assuming
a WDM particle mass of mX “ 0.5keV{c2. Although the
large-scale features (filaments and voids, positions of the
most massive haloes) are the same in both runs, a wealth
of small-scale structure – low mass dark matter haloes –
is evident in the CDM run but not in the WDM run.

The standard approach to capturing the effect of WDM
on the power spectrum is to filter the corresponding CDM
power spectrum on small scales by an additional transfer

function, i.e. P pkq “ PCDMT
X
k

2
. The transfer function

of Bode et al. (2001) is widely used, and it is the one we
adopt in HMFcalc; here

TXk “
`

1` pαkq2ν
˘´5{ν

, (14)

with ν “ 1.2 and

α “ 0.048

ˆ

ΩX
0.4

˙.15 ˆ
h

.65

˙1{3 ˆ
1

mX

˙1.15 ˆ
1.5

gX

˙.29

(15)

with ΩX the current fractional density of the WDM par-
ticle (this can be taken as equivalent to the CDM density
Ωcdm in a single-species WDM model), mX is the particle
mass in keV, and gX controls the abundance of the species
relative to photons and has the fiducial value of 1.5 for a
light neutrino.

By default in HMFcalc, we assume that ν and gX are
set to their fiducial values and allow only a single-species
model; the only free parameter that we allow is mX . Fig
2.3 shows a fiducial CDM and WDM HMFs for mX= 0.5,

3



Table 1: Compilation of Fitting Functions

Ref. Fitting Function fpσq Mass Range Redshift
Range

Cosmology
Fitted

Press and
Schechter
(1974)

fPSpσq “
b

2
π
δc
σ exp

”

´
δ2
c

2σ2

ı

– – –

Sheth et al.
(2001)

fSTpσq “ A
b

2a
π

”

1`
´

σ2

aδ2
c

¯pı
δc
σ exp

”

´
aδ2
c

2σ2

ı

,

A “ 0.3222, a “ 0.707, p “ 0.3.

– – Einstein-de
Sitter

Jenkins
et al. (2001)

fJpσq “ 0.315 exp
“

| lnσ´1 ` 0.61|3.8
‰

´1.2 ă lnσ´1 ă

1.05
0 – 5 τCDM, ΛCDM

Reed et al.
(2003)

fR03pσq “ fST pσq exp
”

´0.7
σ coshp2σq5

ı

´1.7 ă lnσ´1 ă

0.9
0 – 15 ΩM “ 0.3,

ΩΛ “ 0.7

Warren
et al. (2006)

fWpσq “ 0.7234
`

σ´1.625 ` 0.2538
˘

exp
“

´1.1982
σ2

‰

1010M@ ăM ă

1015M@

0 ΛCDM:
WMAP1

Reed et al.
(2007)

fR07pσq “ ν exp

«

´
ca

δ2c
σ2

2 ´
0.03p δcσ q

0.6

pneff`3q2

ff

ˆA
b

2a
π

„

1`

ˆ

1
δ2c
σ2 a

˙p

` 0.6G1pσq ` 0.4G2pσq



neff “ 6d log σ´1

d logM ´ 3, G1pσq “ exp
”

´
lnpσ´1

´0.4q2

0.72

ı

,

G2pσq “ exp
”

´
lnpσ´1

´0.75q2

0.08

ı

´1.7 ă lnσ´1 ă

0.9
0 – 30 ΛCDM:

WMAP1

Tinker and
Kravtsov
(2008)

fTpσ, zq “ A
´

`

b
σ

˘a
` 1

¯

exp
“

´ c
σ2

‰

,

A “ 0.186 p1` zq
´0.14

, a “ 1.47 p1` zq
´0.06

,
b “ 2.57 p1` zq

´α
,c “ 1.19,

α “ exp

„

´

´

0.75
lnp∆vir{75q

¯1.2


´0.6 ă lnσ´1 ă

0.4
0 – 2.5 ΛCDM:

WMAP1,
WMAP3+

Crocce
et al. (2010)

fCrpσq “ A pσ´a ` bq exp
“

´ c
σ2

‰

,

A “ 0.58 p1` zq
´0.13

, a “ 1.37 p1` zq
´0.15

,

b “ 0.3 p1` zq
´0.084

, c “ 1.036 p1` zq
´0.024

1010.5M@ ăM ă

1015.5M@

0 – 2 pΩM ,ΩΛ, n, h, σ8q

“ p0.25, 0.75,
0.95, 0.7, 0.8q

Courtin
et al. (2010)

fCopσq “ fSTpσq,
A “ 0.348, a “ 0.695, p “ 0.1

´0.8 ă lnσ´1 ă

0.7
0 ΛCDM:

WMAP5

Bhattacharya
et al. (2011)

fBpσ, zq “

A
b

2
π exp

”

´
aδ2
c

2σ2

ı

„

1`
´

a
δ2
c

σ2

¯´p


´

δ2
c

σ2

?
a
¯q

,

A “ 0.333 p1` zq
´0.11

, a “ 0.788 p1` zq
´0.01

,
p “ 0.807, q “ 1.795

1011.8M@ ăM ă

1015.5M@

0 – 2 wCDM+

Angulo
et al. (2012)

fApσq “ A
”

`

b
σ

˘a
` 1

ı

exp
“

´ c
σ2

‰

,

pA, a, b, cq “ p0.201, 1.7, 2.08, 1.172q or
pA, a, b, cqSUB “ p0.265, 1.9, 1.675, 1.4q

108M@ ăM ă

1016M@

0 ΛCDM:
WMAP1

Watson
et al. (2013)

fWFOF
pσ, zq “ fTpσ, zq,

A “ 0.282, a “ 1.406, b “ 2.163, c “ 1.21
´0.55 ă lnσ´1 ă

1.31
0 – 30 ΛCDM:

WMAP5

Watson
et al. (2013)

fWSO
pσ, zq “ Γp∆, σ, zqfTpσ, zq,

pA, a, b, cqz“0 “ p0.194, 2.267, 1.805, 1.287q,
pA, a, b, cqzą6 “ p0.563, 874, 3.810, 1.453q,
pA, a, b, cq0ăză6 “

ΩM pzq ˆ p1.907p1` zq´3.216 ` 0.074,
3.136p1` zq´3.058 ` 2.349,
5.907ˆ p1` zq´3.599 ` 2.344, 1.318q,

Γp∆, σ, zq “ Cp∆q
`

∆
178

˘dpzq
exp

„

pp1´ ∆
178 q

σq



,

Cp∆q “ 0.947 exp
“

0.023
`

∆
178 ´ 1

˘‰

,
dpzq “ ´0.456ΩM pzq ´ 0.139, p “ 0.072,
q “ 2.130.

´0.55 ă lnσ´1 ă

1.05 (z “ 0),
´0.06 ă lnσ´1 ă

1.024 (z ą 0)

0 – 30 ΛCDM:
WMAP5

4



Figure 3: Visual impression of the projected dark matter density in a cosmological N -body simulations of a 20 h´1Mpc box, modelling the
growth of structure in a fiducial CDM model (left panel) and its WDM counterpart (right panel). For the WDM model we assume a particle
mass of mX=0.5 keV/c2. Note the absence of small-scale structure (i.e. low mass dark matter haloes) in the WDM run compared to the
CDM run.
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Figure 4: The HMF calculated assuming a fiducual CDM model and
three different WDM models with particle masses of mX=0.5, 1 and
2 keV/c2. Note the suppression of the number density of lower mass
haloes.

1 and 2 keV/c2 – as the WDM particle mass decreases,
so too does the number density of lower mass haloes, as
we would expect. However, as we note in § 5, there have
been recent developments in the modelling of Warm Dark
Matter models (e.g. Schneider et al., 2013; Pacucci et al.,
2013; Benson et al., 2013) that we will incorporate in future
versions of HMFcalc.

3. Implementation

HMFcalc has been designed to be visually intuitive,
easy to learn and use, flexible and extensibility. These
requirements guided our implementation;

• The code is written in Python, an extremely versa-
tile language that is widely used in the astronomical
community.

• The user interface is a web-app frontend, which is
designed to work across multiple platforms and for
its ease of use.

• The web-framework is provided by Django. It is flex-
ible, easy to use and being written in Python, it in-
tegrates easily with the hmf backend.

• The whole code has been made open-source at https:
//github.com/steven-murray/HMF. This way the
code can be examined and updated, and also under-
stood by those wishing to learn about the HMF.

We have also chosen to take an object-oriented ap-
proach, which makes sense because many of the HMF
calculations share attributes. Class structures3 provide
a way to define common attributes and make them avail-
able throughout all methods of the class, which in our case
enables faster updating of parameters.

In the following subsections we describe in detail the
backend hmf (§ 3.1), before introducing the web-application
(hereafter web-app) frontend HMFcalc.

3Objects to which attributes and methods may be attached.
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3.1. HMFcalc’s engine, hmf

The calculation of the HMF is performed using hmf,
which consists of three python modules;

1. tools.py contains functions necessary for e.g. im-
porting or generating (as required) the transfer func-
tion, calculation of the mass variance, interpolating
the transfer function etc...;

2. cosmography.py contains functions that calculate
cosmological distances and other cosmographic quan-
tities;

3. hmf.py contains a single class dedicated to comput-
ing the HMF, as well as quantities such as the power
spectrum, the mass variance, etc...

The handling of the transfer function in tools.py is done
in one of two ways. If a filename is provided, the relevant
file will be read and used as the transfer function. This
file must be either produced by CAMB or in CAMB format.
If no filename is provided, CAMB is called via pycamb4, an
open-source python wrapper for CAMB. This enables effi-
cient shared-memory multi-core calculation of the transfer
function for a range of input parameters. The tools.py

module also contains a function that checks the bounds on
kR, as discussed in §2.

hmf.py is the central engine of hmf, containing a single
class named Perturbations that contains all attributes
needed to calculate the HMF (the power spectrum, limits
in k, the redshift, cosmology and mass variance etc.) and
all the methods needed to calculate these quantities.

The constructor for the Perturbations class initialises
an ‘empty’ object with a range of cosmological and numer-
ical parameters set. The various quantities associated with
the object are calculated only when necessary, by using the
@property decorator that allows the getting, setting and
deleting of class properties in a flexible manner. These in-
clude the power spectrum (power), mass variance (sigma),
growth factor (growth), effective spectral index (n_eff),
fitting function (fsigma) and most importantly the differ-
ential and cumulative mass functions (dndlnm and ngtm).

Each fitting function is defined as a single method within
the Perturbations class. However, the dndlnm method
chooses between them using a dictionary indexed by string
identifiers (such as ‘ST’ for Sheth et al. (2001) or ‘Reed03’
for Reed et al. (2003)). Extending the range of fitting func-
tions is as straightforward as writing a method containing
the function definition, and registering it in the dictionary
with a unique string identifier. However, users also have an
option to pass a function in the format of a simple string
that the class will parse and use as the fitting function.

Algorithm 1 summarises the steps necessary for the
calculation of the differential HMF in hmf. Interpolation
of the transfer function is performed with linear splines
on the function in log-space, in which the function is al-
most perfectly linear over much of its range. This is con-
sequently re-gridded between the given k-bounds in 4097

4https://github.com/joezuntz/pycamb

steps, to ensure sufficient accuracy for for romberg inte-
gration. Calculation of the cumulative HMF, npą Mq, is
likewise performed using linear spline interpolation and ex-
trapolation up toM “ 1018M@h

´1 and consequent romberg
integration using 4097 steps defined for each mass.

Users may want to re-calculate the HMF for different
cosmological parameters, redshifts or fitting functions. To
optimise this process, hmf tracks dependencies of quanti-
ties through chaining immediate links. For example, algo-
rithm 1 demonstrates that the unnormalised power spec-
trum at the current epoch is dependent on the transfer
function (and therefore all cosmological and numerical pa-
rameters involved in that calculation), and also the spec-
tral index, but it does not depend on redshift, normalisa-
tion, or overdensity (either virial or critical). Any variable
can be updated by calling the update() method with rel-
evant keyword arguments; quantities that depend directly
on the updated variables are deleted, which triggers dele-
tion of quantities that depend directly on these and so
forth. The next time any of these quantities are required,
they are automatically re-calculated, using the updated
variable. This system ensures that only the quantities that
need to be re-calculated are re-calculated.

Algorithm 1 Calculate Halo HMF

if No Transfer File then
k,T Ð CAMB()

else
k, T Ð ImportTransferFile()

end if
Tf pq Ð Interpolate T
if Extrapolating Power Spectrum then

Set New k Bounds
end if
Re-grid k between bounds
T Ð Tf pkq
P0pkq “ knT 2 Ź Eq 9
σ̂8 Ð σpM “ 8, z “ 0q Ź Eq 3

P pkq Ð
´

σ8

σ̂8

¯2

P0pkq Ź Normalise

if WDM then
Find TWDM pkq Ź Eq 14
P pkq Ð P pkq ˚ T 2

WDM Ź Eq 14
end if
σ0pMq Ð σpM, z “ 0q Ź Eq 3

K Ð
d lnpσq
d lnpMq Ź Eq 5

Find dpzq Ź Eqs 11 - 13
P pkq Ð P0pkqd

2pzq Ź Apply Linear Growth
σpM, zq Ð σ0pMqdpzq Ź Apply Linear Growth
Calculate fpσq with appropriate form
HMF Ð ρ0

M ˚ fpσq ˚K Ź Eq 1

This updating method allows for the optimal calcu-
lation of many HMFs for varying parameters in an effi-
cient and error-free manner. We have used it in Murray
et al. (2013), generating 20,000 varying HMF realisations
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for each of 11 different fitting functions. On average the
cascading method reduces processing time by 50% in tests
where each available parameter is changed one time, al-
though the size of reduction depends on which parameters
are most often modified (e.g. changing only redshift re-
duces computations on average by more than 94%).

3.2. HMFcalc’s web interface and the Django Framework

Django provides a web-framework tuned to fast devel-
opment and performance. Although developed with online
newsrooms in mind, Django is easily adapted to scientific
applications. A scientific Django web-app will generally
be built around four parts – urls, views, templates and
calculation – and Fig 3.2 depicts the flow of information
within this framework5. The user initiates the information
flow by pointing their browser at a particular URL. This
URL is transformed to an address and contacts the Apache
server on which HMCcalc is operating. The server trans-
lates the URL for input to the app’s own urls.py mod-
ule, which parses it and uses the information to choose
a view function from the views.py module. This func-
tion may also be passed extra arguments from the input
URL, based on query strings. The view chosen does all
the logic, and dictates what should be seen on the final
page. In the case of HMFcalc, one of the views accesses a
form within the forms.py module for display. This form
is passed through to a template, which is an enhanced html
file. The template controls the presentation logic, putting
the form fields down in appropriate positions on the page
(with the help of CSS). The final template is then passed
through to the server to be displayed by the browser.

We utilise a standard approach to the Django imple-
mentation. Nevertheless, we note some aspects of the de-
sign. Most of the views are defined as generic class-based
views. This enables simpler construction and more flex-
ibility in function. It also supports the creation of dy-
namic tabs for the user’s navigation, via the plugin django-
tabination. This implementation of the views is most im-
portant in the view that displays the main input form.

The view that displays the form is non-standard be-
cause there are two variants of it – one is for the initial
creation of data, the other is to add more data. The forms
for these differ in that the first lets the user choose a mass
range (and grid), while the second does not – it uses the
mass range specified previously. To create this functional-
ity in the simplest way, we define a base form view, which
implements the same logic for each form (i.e. what to do
with the data after it has been successfully entered). We
then create two subclasses, one for creation and one for
addition of data. Each of these passes different arguments
to the form class, which dynamically adds or removes the
mass range inputs. This construction also allows for each

5Note that the ‘Calculation Module’ node is a black-box for the
actual calculations using the hmf backend, which has been described
already.

of these subclasses to define their own tab for user naviga-
tion.

Upon successful submission of the form, the base form
view performs the main analysis. To do this, it takes the
parsed input arguments and passes them to an external
function that wraps around the hmf backend. For each
combination of the input parameters, an HMF is produced
and saved as an entry in a python dictionary with a key
unique to the combination of parameters. This process is
greatly simplified by using the update() method of the
hmf package.

To enable later retrieval of the data for plotting and/or
addition of extra data, the input parameters and calcu-
lated HMFs are saved to the session object, which runs
continuously throughout the course of a user’s session. It
can be accessed by any view and provides a convenient
way to transfer data. This is used as sparingly as possible,
however, because it increases overall memory usage.

In terms of presentation, we utilise Django’s templat-
ing system, combined with the bootstrap6 CSS framework.
This system allows for template inheritance – base tem-
plates can be written that define certain blocks that sub-
templates may alter. This is convenient because we define
a single base template for the whole site, which provides
the general layout, including the navigation bar. The tem-
plate for each page needs only to specify the unique con-
tent, which simplifies the design greatly. We use the boot-
strap framework as it provides a simple means to create
an aesthetically pleasing design.

Output and presentation of the calculations is done by
means of the creation of figures and generation of down-
loadable ascii data. For both of these options, all files and
resources are served in memory – nothing is written to disk
on the server. This enhances performance and increases
simplicity server-side. We have chosen to use matplotlib

(Hunter, 2007), the standard scientific plotting library of
Python, to drive the plotting for the application. This is
used to produce PNG images for dynamic display on the
web, and PDF images for optional download. Currently
the plotting process is quite static – the data itself is the
only dynamic aspect. This may result in plots that are not
drawn in the best possible way for a given set of parame-
ters. However, it is expected that those who wish to plot
many different combinations will likely download the data
file and come to their own plotting solution.

3.3. Usage

Using HMFcalc is straightforward – generation of a
HMF is as easy as pressing “Calculate!” because the web
form is populated with default parameters. Submission
of the form generates a page with a plot of the calcu-
lated HMF with relevant legend, as well as a drop-down
menu for choosing the particular additional functions to
be displayed. These include the mass variance, the fitting

6http://twitter.github.io/bootstrap/
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functions, the cumulative HMF and the power spectrum.
Furthermore, an additional drop-down menu allows the
user to download the currently viewed plot, all calculated
plots, or data files from the calculation. Below the plot
additional cosmographic quantities that have been calcu-
lated are presented (e.g. age of Universe at redshift z, dis-
tances, growth factors, etc...). In the following subsections
we provide a glossary of parameters used in HMFcalc.

3.3.1. Parameters

The first category of parameters are the ‘run parame-
ters’, which control the calculation (cf. Table 2). Where
multiple parameters are possible, all combinations of pa-
rameters will be used in the calculation. This means that
the number of HMFs generated can rise rapidly and so we
place a limit on the total number of possible combinations.

The second category of parameters are the ‘cosmolog-
ical parameters’ (cf. Table 3). The key parameter is the
transfer function, which is invoked in one of three modes;

1. Pre-calculated (default); there are several transfer
functions pre-calculated for commonly used cosmolo-
gies, each produced at high resolution by CAMB.

2. Custom; the user may upload their own transfer
function, assumed to have been produced either us-
ing CAMB or in CAMB format.

3. On-the-fly; CAMB is run at invocation to produce the
required transfer function.

If a pre-calculated transfer function is chosen, all cosmo-
logical parameters are set as read-only on the form; if a
custom transfer function is used, the user must ensure that
the cosmological parameters entered in the web-app match
those used to generate the transfer function.

In Table 3, we use T, H and B to indicate whether
or not a parameter affects the transfer function (T), the
HMF (H) or both (B). Note that those that affect both
need special care if the user uploads their own transfer
function.

3.3.2. An Important Caveat

HMFcalc will calculate a HMF given any set of cos-
mological parameters and fitting function. However, most
HMFs are empirical fits to the results of cosmological N -
body simulations and are tied to specific cosmologies (but
see, e.g. Jenkins et al., 2001; Courtin et al., 2010)); whether
or not the HMF is universal remains a topic of active re-
search (see discussion in Tinker and Kravtsov 2008, Bhat-
tacharya et al. 2011 and Murray et al. 2013). For this
reason we caution the careful user to compare the results
of HMFcalc against N-body simulations of the appropriate
cosmology.

3.4. Comparison To Other Codes

A small number of public codes are available for cal-
culating the HMF – eg. genmf7, MF_Code8, and the HMF
calculator in the yt project9. We have tested hmf against
these codes and find excellent consistency. However, we
note that HMFcalc has a number of advantages over these
codes; it is inherently visually interactive and cross-platform,
it allows for dynamic accurate calculation of the transfer
function with CAMB and efficient and self-consistent param-
eter updates, and it can be easily extended by the user with
bespoke fitting functions.

4. Example Applications

We have designed HMFcalc to be a useful tool for ob-
servers and theorists alike, and we expect the primary use
of HMFcalc to be the quick and straightforward generation
of HMFs for different fitting functions and as a function
of cosmological parameters and cosmic epoch. However,
HMFcalc should be a particularly useful aid to those who
work with cosmological simulations, and we demonstrate
how with two examples.

4.1. Box Size for One Halo of Mass M

A cosmological simulation follows the growth of struc-
ture in a periodic cubic box of volume L3Mpc3h´3 contain-
ing Np particles. In principle L can be arbitrarily large,
but normally it’s set by requiring that the smallest resolved
haloes contain a minimum number of particles, or equiva-
lently the particle mass mp9L

3{Np. Given this restriction
on L enforced by mp, it is interesting to ask how large the
periodic box needs to be to contain at least one halo of
mass ąM . We require

npąMqL3 ě 1 Ñ L ě npąMq´1{3. (16)

We have chosen to create a method in Perturbations()

(from the hmf backend) to derive Eq 16. We add the fol-
lowing code to the class:

@property
de f how big ( s e l f ) :

t ry :
r e turn s e l f . how big

except :
r e turn s e l f . ngtm∗∗(´1./3 . )

@how big . d e l e t e r
de f how big ( s e l f ) :

t ry :
de l s e l f . how big

except :
pass

7http://icc.dur.ac.uk/Research/PublicDownloads/genmf_v1.

01.tar
8http://cosmo.nyu.edu/~tinker/massfunction/MF_code.tar
9http://yt-project.org/

9
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Table 2: Description of Run Parameters

Parameter Mult? Description

Redshift 4 Epoch at which the HMF is calculated; default is z=0. Affects HMF through
growth parameter (cf. §2.2), quick to update. Some recent fitting functions contain
explicit redshift dependence.

Virial Overdensity
∆vir

4 Defines the extent of a halo; default is 178. Assumes haloes correspond to spherical
overdensities of ∆vir times the critical density at that epoch. Note Tinker and
Kravtsov (2008) and Watson et al. (2013) HMFs depend explicitly on ∆vir.

WDM Mass mX 4 WDM particle mass in single-species models, in units of keV/c2; default is 0. This
is used to calculate the WDM transfer function and consequently the power
spectrum (cf. Eq 14).

Fitting Function 4 Defines fraction of mass collapsed at a given mass scale. See §2.1 for more details.

Custom Fitting
Function

6 User-defined fitting function, written in Python syntax as a string, with
independent variable named x corresponding to the mass variance; default is
empty. To add more complex functions, the user will need to edit the source code
itself.

Extrapolate? 6 Enables/disables extrapolation the transfer function in wavenumber k beyond
tabulated bounds; default is enabled. Assumes transfer function is linear (in log
space) near bounds and so can be easily extrapolated.

Min & Max k 4 Minimum and maximum wavenumber (k) for the power spectrum; defaults are
„ 10´8 and 2000 in units of hMpc´1 for accurate prediction (cf. §2)

Min & Max Mass 6 Defines minimum and maximum halo mass bounds for plotted HMF; defaults are 8
and 15 in units of log10 h

´1M@.

Mass Bin Width 6 Defines logarithmic mass bin width; default is 0.05 dex.

Table 3: Description of Cosmological Parameters

Parameter Affects Description

Transfer Function – Choose from drop-down menu. Either pre-calculated and based on popular
cosmologies or customised based on the available parameters.

HMF Labels – Must be unique – one for each parameter set plotted. Appears in plots as legends
and in downloadable data as column headers.

δc H Critical overdensity for collapse. Although cosmology-dependent, we assume the
Einstein-de Sitter value of 1.686 as default.

ns H Spectral index of power spectrum – see §2).

σ8 H Mass variance on scale of 8 h´1Mpc at z=0 used to normalise power spectrum –
(see §2).

H0 T Hubble Parameter at z=0.

Ωb B Baryon density at z=0.

Ωc B Dark matter density at z=0.

ΩΛ B Dark energy density at z=0.
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This is all that is needed to use hmf to calculate Eq 16.
Note the @property decorator ensures that the value of
how_big will change as the value of ngtm is modified.
We extend the web interface to output this information
by adding the following to the function hmf_driver() in
utils.py towards the end of the loops;

i f ’ get L ’ in e x t r a p l o t s :
mass data [ ”L(N=1) ”+getname ( l a b e l s ) ] =

pert . how big

Here, the extra_plots variable is a list that contains
the names of the extra plots to be calculated (defined
in the form later). The function is saved to the existing
mass_data array, under a label beginning with L(N=1)_,
which describes the “box size needed for one halo”. The
Perturbations() object has been previously initialized
as pert, and thus all we must do is access its how_big

property.
As we have noted, we must implement the choice of

calculating this function on the form. To do this we add
the entry

( ’ get L ’ , ’Box S i z e f o r One Halo ’ ) ,

to the optional_plots list variable in the HMFInput()

class in forms.py. Its information will be passed to the
form template, which will render it automatically in the
‘Optional Extra Plots’ fieldset.

We also need to create a conditional entry for the func-
tion in the drop-down menu of the results page, so that we
can view the plot. To do this we add the following code
to the __init__() method of the PlotChoices() class of
forms.py:

i f ’ get L ’ in s e s s i o n p l o t s :
e x t r a p l o t s . append ( ( ’L ’ ,

’Box S i z e f o r One Halo ’ ) )

Here we add the choice only if get_L was checked on the
initial input form. The first argument is the name of the
choice internally, while the second is the label that the user
sees.

The only remaining task is to create the plot definition
for the function, in views.py. We add the following code
to produce the required axis labels and extract the LpN “

1q function from the whole dataset:

e l i f p l o t type == ’L ’ :
keep=[ s t r i n g f o r s t r i n g in mass data \

i f s t r i n g . s t a r t s w i t h ( ’L(N=1) ’ ) ]
t i t l e=”Box Size , L , f o r One Halo”
ylab= ”Box Size , L (Mpc/h) ”
y s c a l e = ’ l og ’

and add the plottype to the first list, mass_plots, spec-
ifying that the x-axis will be based on the mass grid.
Here the plottype refers to the internal label from the
PlotChoice() form. The first line chooses all the columns
whose labels begin with the specified string, correspond-
ing to our custom function. Note that these code samples
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are merely indicative, nevertheless, the pattern will remain
conceptually the same in future versions.

The result, for the WMAP7 cosmology at z=0, is shown
in Fig 5; it is computed by default by the web-app. We
have also determined how many haloes are expected in a
simulation of box size L (see Fig 6). This is not currently
implemented in the web-app, but it will be in future ver-
sions.

4.2. The Impact of Finite Box Size

Cosmological simulations model the growth of struc-
ture over cosmic time by following the evolution of matter
density perturbations in a periodic box. Because the box
has a finite size L, the longest wavelength perturbation
that can be reliably modeled will have a wavenumber kmin

of

kmin “
2π

L
. (17)

This means that the effect of perturbations with wave-
lengths longer than the box size cannot be captured, and
implies that the mass variance we would expect (cf. Eq 3)
will be larger than the one that we measure. This effect,
and its influence on the HMF at higher masses, has been
noted in previous studies (e.g Bagla and Ray, 2005; Power
and Knebe, 2006; Lukić et al., 2007).

We can use HMFcalc to quantify this effect for boxes
of size 50, 100, 250 and 500 h´1Mpc, corresponding to
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´1 in smaller boxes.

kmin = 0.1257, 0.0628, 0.02513 and 0.01257 hMpc´1 in
Eq 17. We use the inbuilt functionality of HMFcalc to
enter as input all of these minimum k bounds at once, plus
a baseline of kmin “ 10´8 that corresponds to the limit of
infinite box size. The result is shown in figure 4.2, which
shows that the effect of box size is most severe for the
50 h´1Mpc, with the number density of 1014M@h

´1 mass
haloes enhanced by „50%; is weaker for the 100 h´1Mpc
box; and is negligible for box sizes as large as 250 h´1Mpc.
These results are in good agreement with the findings of
Power and Knebe (2006).

5. Future Development

5.1. Extending Range of Dark Matter and Dark Energy
Models

In the current version of HMFcalc, we have considered
only the fiducial Cold Dark Matter model and a straight-
forward extension to model Warm Dark Matter, using the
framework set out in (Bode et al., 2001). In forthcom-
ing versions of HMFcalc, we shall update the framework
to account for more recent developments in the modelling
of Warm Dark Matter models (e.g. Schneider et al., 2013;
Pacucci et al., 2013; Benson et al., 2013), as well as alter-
native dark energy models such as those explored in, for
example, Francis et al. (2009) and Courtin et al. (2010).

5.2. Calibrating Synthetic Galaxy Surveys

“Halo Occupation Distribution” (HOD) models param-
eterise how likely galaxies are to occupy dark matter haloes
and provide a convenient framework for creating synthetic
galaxy surveys. Formally, the HOD defines a probability
P pN |Mq of finding N luminous galaxies in a halo of mass
M (Berlind and Weinberg, 2002), and it allows a popu-
lation of dark matter haloes to be mapped to a synthetic

galaxy population whose abundance and spatial clustering
can be tuned to reproduce the observed galaxy population.
We will extend HMFcalc so that we can take as input a
given set of cosmological parameters, a dark matter and
dark energy model, and a set of observational constraints
(e.g. 2-point correlation function in different wavelength
bands) and calibrate HOD parameters to reproduce the
properties of the observed galaxy population. With this
framework we will develop empirically-motivated synthetic
galaxy surveys using both the outputs from both cosmo-
logical N -body simulations (e.g. Springel et al., 2006) as
well as faster, more approximate schemes such as 2nd order
Lagrangian perturbation theory (e.g. Manera et al., 2013),
vital in the coming era of large galaxy surveys.

5.3. Dynamic and Adaptable User Interface

We are developing HMFcalc into a dynamic and adapt-
able online tool that will give the user finer and more var-
ied control over the generation of data. For example, we
would like users to be able to explore how variations in the
cosmological parameters influence the HMF and to see the
resulting HMF update in real-time. A similar framework
will be used to allow users to explore how HOD-derived
galaxy population observables vary with changes in cos-
mological parameters and dark matter/dark energy pa-
rameters. We would also like users to be able to explore
how, for example, changing from the traditional top-hat
window function (cf. Eq 4) to sharp-k filter window func-
tions (cf. Schneider et al., 2013) influence the predicted
HMF, especially in WDM models. Such an online toolbox
will provide an invaluable community resource for both
observers and theorists alike.

6. Summary

We have presented HMFcalc, a flexible, efficient and
easy to use web application for calculating the dark mat-
ter halo mass function (HMF), a fundamental property
of cosmological structure formation models. HMFcalc and
its engine hmf are implemented in Python, which offers a
simple yet powerful and extensible cross-platform method
for building community software. Observers and theorists
alike should find HMFcalc a valuable resource to rapidly ex-
plore the effects of cosmological parameters, redshift and
fitting function on the predicted HMF, while cosmolog-
ical simulators will find it a useful tool for understand-
ing, for example, the biases introduced by finite simula-
tion volume. In future work we will extend HMFcalc to
give the user greater flexibility in how they interact with
their data; we will broaden the range of dark matter and
dark energy models considered; and finally, we will use the
framework provided by HMFcalc to develop the infrastruc-
ture for fast approximate methods for generating bespoke
synthetic galaxy surveys.
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