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Abstract

An important point in analysing the dynamics of a given stellar or plan-
etary system is the reliable identification of the chaotic or regular behaviour
of its orbits. We introduce here the program LP-VIcode, a fully operational
code which efficiently computes a suite of ten variational chaos indicators
for dynamical systems in any number of dimensions. The user may choose
to simultaneously compute any number of chaos indicators among the fol-
lowing: the Lyapunov Exponents, the Mean Exponential Growth factor of
Nearby Orbits, the Slope Estimation of the largest Lyapunov Characteristic
Exponent, the Smaller ALignment Index, the Generalized ALignment Index,
the Fast Lyapunov Indicator, the Othogonal Fast Lyapunov Indicator, the
dynamical Spectra of Stretching Numbers, the Spectral Distance, and the
Relative Lyapunov Indicator. They are combined in an efficient way, allow-
ing the sharing of differential equations whenever this is possible, and the
individual stopping of their computation when any of them saturates.
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1. Introduction

The structure and the dynamics of a self-consistent stellar system are
related to each other; in particular, the orbits of the stars determine the
mass distribution of the system. Thus, in order to model stellar systems,
it is of interest to characterize the orbits supported by the astrophysical
potential giving rise to the model. Schwarzschild (1979, 1982), for exam-
ple, was able to construct steady state distribution functions of stellar sys-
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tems starting from a given potential and a well chosen set of regular orbits
supported by the former. Since these pioneer works, his method has been
used by many authors (e.g. Merritt and Fridman, 1996; van den Bosch et al.,
2008; Deibel et al., 2011, among many others). This led to the now com-
mon claim that regular orbits constitute a dynamical skeleton for stellar
systems. Moreover, those regular orbits that turn out to be resonant and
stable are the most important ones, because they spawn entire regular fami-
lies around them; thus, they constitute the backbone of the system. On the
other hand, the existence of chaotic orbits in realistic models is nowadays be-
yond doubt (e.g., Valluri and Merritt, 1998; Voglis et al., 2002; Muzzio et al.,
2005; Deibel et al., 2011; Zorzi and Muzzio, 2012). They are important to
the dynamical evolution of a stellar system because their diffusion through
their allowed phase space may impact the system as a whole (e.g. Mahon et al.,
1995; Kandrup and Siopis, 2003); even a new version of the Jeans theorem
was advanced regarding the role of chaotic orbits that the traditional version
ignores completely (Kandrup, 1998). Another interesting point regarding
the relationship between the dynamics of a system and its chaotic orbits
is that, among the latter, those obeying only one isolating integral of mo-
tion (dubbed fully chaotic) and those obeying two such integrals (partially
chaotic) occupy quite different spatial regions (Muzzio and Mosquera, 2004;
Zorzi and Muzzio, 2012). This suggests different dynamical roles for each
type of chaoticity, though what the roles may be is still unknown. Although
for different reasons, the dynamics of planetary systems also strongly de-
pends on the chaoticity of their orbits, in particular, in terms of the stability
of those systems (Laskar, 1990).

Thus, an important aspect of the dynamical study of a given stellar or
planetary system consists in identifying the chaotic or regular behaviour of its
orbits. Since the early work of Hénon and Heiles (1964), the number of indi-
cators of chaos has steadily grown as time went by. Aside from the qualitative
method of the Poincaré surfaces of section (e.g. Binney and Tremaine, 2008),
the tools for such analyses are based either on the study of the fundamental
frequencies of the trajectories (e.g. Binney and Spergel, 1982; Laskar, 1990;
Šidlichovský and Nesvorný, 1996; Carpintero and Aguilar, 1998; Papaphilippou and Laskar,
1998), or else on the study of the evolution of deviation vectors, the so-called
variational chaos indicators (CIs hereinafter, see bibliography below). How-
ever, among the available plethora, only a few of them are usually employed
by most dynamicists. Therefore, it would prove useful to have a tool with
which one can compute several CIs in an easy and fast way. This is the main
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motivation of the present LP-VIcode, which stands for La Plata Variational

Indicators code.

The alpha version was first introduced in Darriba et al. (2012a). Here, we
present a significantly improved code which constitutes the first stable ver-
sion of the program. The main achievement of the code is its speed: neither
the orbit nor any of the sets of variational equations are computed more than
once in each time step, even when they may be requested by more than one
CI. The library of CIs in the present version include the following: the numer-
ically computed Lyapunov Exponents, known as Lyapunov Indicators, Lya-
punov Characteristic Exponents, Lyapunov Characteristic Numbers, or even
Finite-Time Lyapunov Characteristic Numbers (LIs, Benettin et al., 1976,
1980a,b); the Mean Exponential Growth factor of Nearby Orbits (MEGNO,
Cincotta and Simó, 2000; Cincotta et al., 2003); the Slope Estimation of the
largest Lyapunov Characteristic Exponent (SElLCE, Cincotta et al., 2003);
the Smaller ALignment Index (SALI, Skokos, 2001); the Generalized ALign-
ment Index (GALI, Skokos et al., 2007); the Fast Lyapunov Indicator (FLI,
Froeschlé et al., 1997; Lega and Froeschlé, 2001); the Orthogonal Fast Lya-
punov Indicator (OFLI, Fouchard et al., 2002); the Spectral Distance (SD,
Voglis et al., 1999); the dynamical Spectra of Stretching Numbers (SSNs,
Voglis and Contopoulos, 1994; Contopoulos and Voglis, 1996); and the Rel-
ative Lyapunov Indicator (RLI, Sándor et al., 2000, 2004).1 The potential of
the dynamical system, which must be supplied by the user together with the
corresponding accelerations and variational equations, may have any number
of dimensions (or degrees of freedom). The user may then choose to compute
simultaneoulsy any subset of the abovementioned CIs.

As already stated, the main goal of the program is to compute, for one
or more orbits in a given potential, the set of chosen CIs at the same time
and in an efficient way. This means that whenever two or more CIs need the
same differential equations, the last would be integrated only once. Thus, at
each run of the program the set of equations adaptes to the set of CIs the
user has chosen to compute.

1A minimal package of CIs for analysing a general Hamiltonian system is studied in
Maffione et al. (2011); Darriba et al. (2012b); Maffione et al. (2013).
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2. Structure of the code

The program is written in standard Fortran772, except for the common
nonstandard extensions DO-ENDDO, INCLUDE, DOWHILE, lowercase characters,
inline comments, names longer than 6 characters, and variable names contain-
ing the nonstandard character ” ”. All real variables are DOUBLE PRECISION.

The program reads initial conditions (hereinafter, i.c.) for one or more
orbits, and integrates them, computing at the same time the set of CIs chosen
by the user. The integrator is a standard Bulirsch-Stoer routine. The fixed
time step asked by the user is internally split whenever either the absolute or
relative error of the step is greater than the allowed tolerance, set to 10−13 for
our experiments except for the MEGNO, for which the tolerance was set to
10−12. This difference turns out to be not important at all for the MEGNO,
but avoids the slowing down of the code when this CI is combined with any
other.

The code is organized as a main program which controls the flux of the
computation, plus a set of routines to accomplish the different tasks. These
routines are grouped into four categories: those which take care of the input,
initialization and output, those which compute the CIs themselves, those
which are mathematical tools, and those which deal with the dynamics of
the system. This last category includes the routines the user must supply,
i.e., those that correspond to the potential being studied.

2.1. The main program

The main program begins with a call to the input routine, after which
the main loop sweeps the different orbits. Inside this loop, the differential
equations are adjusted to the set of CIs to be computed. Then, any needed
deviation vector (DV) is generated, and the equations of motion as well as
the variational equations are integrated. At each step, only one call to the
integration routine is done, irrespective of the CIs being computed. After
that, the chosen CIs are computed. If any of the CIs saturates during the
integration of an orbit, the last value of the former is output, and the corre-
sponding equations are deleted if none of the other CIs is using them. This
continues until the integration loop is finished, in which case a new set of i.c.

2There is also a version written in Fortran90 for parallel computing, though in a devel-
oping stage.
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is read, the differential equations are reset for the new orbit, and the whole
process is repeated.

2.2. Input, initialization, and output

The user provides the input parameters (time step, length of the inte-
gration, choice of the CIs, frequency of the output, where to find the i.c.,
etc.) through a file. Although not strictly an input from the user, he/she
should also provide the routines with which the potential, the accelerations
and the variational equations should be computed. The syntax of these rou-
tines, as well as the structure of the input file and of the possible outputs,
are described in detail in the User’s Guide provided with the program.

The initialization is a three-step process. First, the DVs are generated.
Second, the initial phase space values and the initial deviation vectors (here-
inafter IDVs) are stored in a matrix which therefore holds all the dependent
variables of the problem. Finally, according to the chosen CIs, the bookkeep-
ing of equations and DVs to be used is done (more on this below).

2.3. Indicators

We briefly introduce here the corresponding definitions and algorithms of
the indicators used in the code. Consider the Hamiltonian H(w), with w =
(p,q) a phase-space vector, q the position of the orbit and p its momentum.
Introducing the function F:

F(w) = (∂H/∂q, −∂H/∂q), (1)

the equations of motion can be written as

ẇ = F(w). (2)

Solving this system of first order ordinary differential equations with i.c.
w0, we obtain the solution

w(t) = Φtw0, (3)

where Φt is the operator evolution. Now, taking the first variation of Eqs.
(3), we obtain the so-called variational equations

δw(t) = d
w
Φtδw0, (4)

where δw is a DV and d
w
stands for the operator derivative with respect to

the components of w.
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2.3.1. The LI, the MEGNO and the SElLCE

We can gain fundamental information about the Hamiltonian flow in the
neighborhood of any orbit through the so-called LIs (Benettin et al., 1976,
1980a,b):

LIj(t) =
1

t
ln

‖δwj(t)‖

‖δwj0‖
, (5)

where ‖ · ‖ is some norm (usually the Cartesian one), and the subindex j
indicates that the calculation is to be performed using the jth deviation
vector. For a system of n dimensions, there will be 2n LIs, n of which will
be positive and the other n will be their respective opposites. Since, before
the actual computation, the deviation vectors should be orthonormalized
(Benettin et al., 1980a,b), we do this in the code by means of a Modified
Gram-Schmidt procedure. It is worth noticing that, having tried both the
discrete and continuous Eckmann and Ruelle algorithms of orthogonalisation
(Eckmann and Ruelle, 1985), we have decided to discard them because, in
the first case (discrete), the integration time within which the results were
reliable turned out to be limited, whereas in the second case (continuous) the
computing time was about 250 per cent that of the Gram-Schmidt procedure.

Among the set of LIs, the largest one is the most important, since it
suffices to determine whether an orbit is regular or chaotic: if it tends to a
positive value, then the orbit is chaotic, regardless of the behaviour of the
rest of the LIs. On the other hand, if the largest LI tends to zero, the rest of
LIs will also tend to zero, and the orbit in this case is regular. Hereinafter,
we will refer to the largest LI just as LI.

The LI is the truncated (in time) value of the largest Lyapunov Charac-
teristic Exponent σ1 that can be defined in an integral form as:

σ1 = lim
t→∞

1

t

∫ t

0

‖δ̇w(t′)‖

‖δw(t′)‖
dt′, (6)

where δ̇w is a shorthand for d(δw)/dt′. Both σ1 and the LI tend to a positive
value for chaotic orbits, and tend to 0 for regular orbits.

Now we introduce the MEGNO Y (Cincotta and Simó, 2000; Cincotta et al.,
2003) through the expression:

Y (t) =
2

t

∫ t

0

‖δ̇w(t′)‖

‖δw(t′)‖
t′dt′. (7)
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The actual expression of the indicator used in the code is its time average:

Y (t) =
1

t

∫ t

0

Y (t′) dt′. (8)

The asymptotic behavior of Y can be described as Y (t) → a · t + b, where
a = σ1/2 and b = 0 for irregular, stochastic motion, while a = 0 and b = 2 for
quasi-periodic motion. It is also possible to estimate the LI of the orbit from
a · t + b by applying a linear least-squares fitting on Y (t). This estimation
is the SElLCE indicator (Cincotta et al., 2003), in the computation of which
only the last 80 per cent of the orbit is used, in order to avoid any initial
transient.

2.3.2. The SALI and the GALI

Let δw1 and δw2 be two DVs belonging to the same orbit, linearly in-
dependent at t = 0, and let δŵi(t) = δwi(t)/‖δwi(t)‖, i = 1, 2 be the
corresponding unit DVs. The parallel and antiparallel alignment indices are
then defined as d− = ‖δŵ1 − δŵ2‖ and d+ = ‖δŵ1 + δŵ2‖, respectively
(Skokos, 2001). Since, in a chaotic motion, two linearly independent DVs are
expected to align with the same direction, we will have d− → 0 and d+ → 2
or d− → 2 and d+ → 0. On the other hand, if the motion is regular, d−
and d+ will oscillate within the interval (0, 2). The SALI (Skokos, 2001) is
defined as the smaller of these two indices:

SALI(t) = min(d+, d−), (9)

so that SALI → 0 if the orbit is chaotic, whereas SALI 6→ 0 if the orbit is
regular.

Skokos et al. (2007) generalize the SALI introducing an alternative way
to compute it. They evaluate the wedge product ‖δŵ1 ∧ δŵ2‖ ≡ (d+ · d−)/2,
that is, the area of the parallelogram formed by the two DVs, which has the
same behaviour as the SALI for regular and chaotic motions. Taking more
independent IDVs, the wedge product can be generalized up to k factors,
2 < k ≤ 2n, with n the number of degrees of freedom, representing the
volume of the parallelepiped formed by the k DVs. The GALIk is defined as
the volume of this k-parallelepiped:

GALIk(t) = ‖δŵ1(t) ∧ δŵ2(t) ∧ . . . ∧ δŵk(t)‖. (10)
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The implementation of Eq. (10) in the code is made through a singular
value decomposition of the matrix of DVs (Skokos et al., 2008). As in the
case of the SALI, the GALIk for chaotic orbits tend to zero, although giving
more information about the dynamics of the orbit than the SALI. On the
other hand, if GALIk tends to a non-zero value as t increases, the motion is
regular.

2.3.3. The FLI and the OFLI

Given n linearly independent DVs in a 2n dimensional phase space, the
FLI (Froeschlé et al., 1997; Lega and Froeschlé, 2001) at time t is defined as
the greatest of the norms they had between t = 0 and the current t:

FLI(t) = supt [‖δw1(t)‖, ‖δw2(t)‖, . . . , ‖δwn(t)‖] . (11)

It turns out that the FLI grows exponentially for chaotic motion and linearly
for regular motion.

The OFLI (Fouchard et al., 2002), on the other hand, is computed like the
FLI, but only the component orthogonal to the flow of each DV is taken into
account. This modification makes the OFLI a CI that can easily distinguish
periodicity of a regular motion: in this case, it oscillates around a constant
value, while for chaotic and quasiperiodic motion it has the same behavior
as the FLI.

2.3.4. The SSNs and the SD

The stretching number si (Voglis and Contopoulos, 1994; Contopoulos and Voglis,
1996) is defined as:

si =
1

∆t
ln

‖δŵ(ti)‖

‖δŵ(ti−1)‖
, (12)

where ∆t is the step of integration, and ti = i∆t, i ∈ N. The spectrum of
the si, called SSN, is defined as the probability density of their values. If the
si are binned into blocks of width ∆s, then the SSN can be computed as:

SSNj(t) =
1

Z

∆Zj

∆s
, j = 1, . . . , N, (13)

where N is the number of blocks of the histogram, Z is the total number
of si and ∆Zj is the number of si in the j-th interval. However, when the
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sample is very large, the analysis of the orbits by means of the SSN is no
longer reliable. Thus, Voglis et al. (1999) introduce the SD:

SD2(t) =
N
∑

j=1

[SSNj,1 − SSNj,2]
2 ·∆s, (14)

where SSNj,i is the SSNj corresponding to a DV δŵi. If the orbit is chaotic,
the SD decreases towards zero. If, instead, the orbit is regular, the SD tends
to a constant non-zero value.

2.3.5. The RLI

Let w(t) be an orbit with i.c. w0 (the base orbit), and w(t) + ∆w(t)
be another orbit with i.c. w0 + ∆w0 (the shadow orbit), where ∆w0 is
small. From the LIs of these orbits LI0(t) and LI1(t), respectively, the RLI
(Sándor et al., 2000, 2004) is defined as:

RLI(t) = ‖LI1(t)− LI0(t)‖. (15)

Since the LI usually has fast fluctuations, it is better to smooth those
out by averaging with respect to time, so the RLI is usually redefined and
computed as

RLI(t) =
1

t

t/∆t
∑

i=1

RLI(ti), (16)

where ∆t is the step of integration and ti = i∆t, i ∈ N. The RLI values for
chaotic motion exceed by several orders of magnitude those associated with
regular motion.

2.4. Saturation

After the requested CIs are computed, the code takes care of any possible
saturation: since there are CIs that tend to infinity when chaos is present,
they are not further integrated after reaching a given threshold in order to
avoid overflows (1016 in the case of the FLI and the OFLI, and 30 in the case
of the MEGNO). Similarly, there are CIs (SALI and GALIs) that tend to 0
when chaos is present; for these CIs, we stop their computation when a value
of 10−16 is reached, i.e., we take the machine precision as a numerical zero.
In all cases, the differential equations are adapted to the new set of CIs by
removing those which correspond to the saturated ones.
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2.5. Mathematical and dynamical routines

The purely mathematical routines are standard ones; some of them are
adaptations of those published in Press et al. (1992). The dynamical rou-
tines comprise two sets: those already written down, and those that must
be provided by the user. In the first group, besides the computation of the
energy, there is a routine which sets all the equations of motion and varia-
tional equations that are the same irrespective of the potential used. These
equations are the following. Let x be the position vector in an n-dimensional
space. The equations of motion corresponding to some potential Φ on this
space are:

ẍ = −∇Φ(x), (17)

which, for the sake of their numerical integration, are usually broken into the
first-order differential equations

ẋ = v, (18)

v̇ = −∇Φ(x), (19)

where v is the velocity vector. As can be seen, Eqs. (18) contain no references
to the potential, so we have already coded them into our program. The same
goes for the variational equations. Let w = (x,v) be a phase-space vector,
and let F be such that Eqs. (18) and (19) are written as in Eq. (2). Then,
the variational equations are

d(δw)

dt
=

∂F

∂w

∣

∣

∣

∣

w

δw, (20)

which are the same as Eq. (4), but now written in terms of the function F.
Again, the first n equations, namely

δ̇x = δv (21)

are independent of the potential, so we have wired them into the code.
The routines the user must supply should only contain, then, the n equa-

tions of motion (19) and the n variational equations (20) which do depend on
the potential, plus a routine to compute the value of the potential itself. The
User’s Guide contains a complete example which can be used as a template.
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3. Management of the differential equations

We took advantage of the passing-by-address paradigm of the Fortran77
language to manage the equations to be integrated according to the CIs being
computed, i.e., those requested minus those that have saturated.

To this end, we first split the CIs into three groups, according to the type
of DVs they use. These groups are:

(I) Normalized and orthogonalized DVs (LI).

(II) Normalized DVs (SALI, GALI, SD, SSN, RLI; the RLI needs also a
second (shadow) orbit with its own normalized DV.)

(III) Unnormalized DVs (MEGNO, SElLCE, FLI, OFLI).

Then, we set up a N×(M+1) matrix (Fig. 3), where N is the dimension
of the phase space (which depends on the potential being studied), and M
is the total number of DVs to be integrated, which is computed from the
requested CIs as follows. If the group (I) is to be computed, it requires
N DVs. In group (II), one DV is needed if only the SD and/or the SSNs
and/or the RLI are sought (the second orbit of the RLI is not counted in;
an additional DV is integrated separately for the shadow orbit), two DVs if
the SALI is present, or N DVs if the GALIs enter the computation. If there
are a combination of these CIs to be computed, only the greater number of
DVs are set up; the CIs requiring a number of DVs less than this maximum
will share the DVs with the others. Finally, group (III) asks for only one
DV, irrespective of the number of indicators present. But, if the MEGNO or
the SElLCE are requested, an additional column is set up to hold the two
additional dependent variables of the differential equations that are needed
to compute those CIs (marked as aux in Fig. 3). Note that these last two
dependent variables remain two in number irrespective of N . The remaining
(first) column of the matrix holds the coordinates of the orbit itself.

If, for example, the potential is 2D (as in Fig. 3), and the GALI is not
computed, the program eliminates the DVs that belongs exclusively to this
CI (DV7 and DV8), leaving the other two of group (II) for the computation
of the other CIs. When a CI which is being computed saturates, the program
also eliminates its DVs, though only if they are not being used by another
CI. In this way, the computing time is fully optimized.
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orbit DV1 DV2 DV3 DV4 DV5 DV6 DV7 DV8 DV9 aux

LI SD,SSN,RLI

SALI
GALI

FLI,OFLI

MEGNO,SElLCE

Figure 1: Matrix of dependent variables, for a 2D potential (i.e., 4D phase space). Rows
are coordinates of the phase space, columns are the various sets of dependent variables,
that is, orbit and DVs. The columns are separated into the three groups of DVs defined
in the text. Here, the matrix corresponds to all the CIs switched on.

4. Results

We chose two astronomical potentials, the 2D Hénon-Heiles (Hénon and Heiles,
1964) and a 3D triaxial NFW profile (Vogelsberger et al., 2008), in order to
show the performance of the code, as well as some additional characteristics.
In all cases we used an Intel Core i5 with four cores, CPU at 2.67 GHz, 3 GB
of RAM, an OS of 32 bits, and the gfortran compiler of gcc version 4.4.4,
without any optimizations.

4.1. The Hénon-Heiles potential

For the Hénon-Heiles potential, we took three sets of i.c. For each of
these sets, we recorded the elapsed times in computing all the indicators
both together and individually, in order to assess the saved time.

The first set, dubbed H1, consisted of four orbits lying on the x = py = 0
line (Cincotta et al., 2003). Table 1 shows the i.c., which correspond to
a stable periodic orbit sp, a quasi-periodic orbit qp, a quasi periodic orbit
near an unstable periodic orbit up, and a chaotic orbit c1, all lying on the
E = 0.118 energy surface.

12



Table 1: Initial conditions for the experiment H1.

Name x y px py
sp 0 0.295456 0.407308431 0
qp 0 0.483000 0.278980390 0
up 0 0.469120 0.291124891 0
c1 0 0.509000 0.254624859 0

Table 2: CPU times of the code. T1 stands for the sum of all the previous rows; T2 is
the time elapsed when all the indicators were computed at the same time. All times in
seconds, rounded to the first decimal.

H1 H2 H3 N1 N2
orbit 0.4 — — — —
LI 1.5 36.0 4534.9 137.2 —
SALI 0.9 21.8 2750.1 44.5 —
GALIs 2.5 64.5 8061.5 135.3 135.3
SD 0.9 22.5 2834.6 44.6 —
RLI 1.2 29.7 3753.4 50.9 50.9
MEGNO 0.8 19.7 2473.2 32.8 32.8
FLI 0.7 15.4 1947.2 28.0 28.0
T1 8.9 209.6 26355.4 473.4 247.1
T2 5.2 126.0 15770.5 370.5 204.6

We integrated the orbits until 1000 time units (t.u.), with a time step
of 0.05 t.u.; the output to screen was enabled. The values of the indicators
were dumped to files every 20 time steps. The IDVs were chosen at random
and orthonormalized. Column H1 of Table 2 shows the outcome; as can be
seen comparing T1 (individual CIs) with T2 (simultaneous CIs), a reduction
of about 40 per cent in time was obtained by computing all the indicators
at the same time. Taking into account that GALI2 is the same as SALI
(though they are computed through different algorithms), we repeated the
above experiment but without the computation of the SALI, which in this
case is superfluous. The resulting times (T1 = 8.0, T2 = 5.1) gave a reduction
of 36 per cent.
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Orbit # 1 10% 20% 30% 40% 50% 60% 70% 80% 90% DE = 2.16E-13

Orbit # 2 10% 20% 30% 40% 50% 60% 70% 80% 90% DE = 9.03E-13

Orbit # 3 10% 20% 30% 40% 50% 60% 70% 80% 90% DE = 5.88E-13

Orbit # 4 10% 20% 30% 40% 50% 60% 70% 80% 90% DE = 3.91E-13

Orbit # 5 10% 20% 30% 40% 50% 60% 70% 80% 90% DE = 1.18E-14

Figure 2: Typical output to screen: orbit number, progress of the integration (with per-
centages appearing on the screen as the integration progresses), and conservation of the
energy for each orbit.

The second set, dubbed H2, was built with 1000 i.c. taken from the
region x = 0, y ∈ [−0.1, 0.1], py = 0, with the energy fixed at E = 0.118.
The integration time was 100 t.u., the time step was set to 0.05 t.u., the IDVs
were chosen as in experiment H1, and the output to screen was disabled. The
indicators were dumped only at their last values. The orbits were not dumped
to file, in the understanding that when there are lots of i.c., the user probably
won’t focus in studying the aspect of each orbit in the configuration space.
Column H2 of Table 2 shows the elapsed times. Again, a reduction of about
40 per cent in time was obtained. We repeated the experiment without the
SALI, obtaining T1 = 188.2 and T2 = 125.8, i.e., a reduction of 33 per cent.

The third set, dubbed H3, consisted of 125,751 i.c. from the region x = 0,
y ∈ [−0.1, 0.1], py =∈ [−0.05, 0.05], with the energy fixed at E = 0.118. The
parameters were the same as in experiment H2. As can be seen from column
H3 of Table 2, in this longer experiment the time saved was again about 40
percent. Without the SALI, we obtained T1 = 23604.7 and T2 = 15734.1,
again, a reduction of 33 per cent.

In order to show some actual input/output of the code, we now compute
for the Hénon-Heiles potential a subset of CIs (the MEGNO, the LI, the
RLI, the GALI3 and the OFLI) using the i.c. of experiment H1, plus a
second chaotic orbit lying in a large chaotic sea, dubbed c2, with i.c. x = 0,
y = 0.56, py = 0.112 and E = 0.118 (Cincotta et al., 2003). The integration
time was 15,000 t.u. for each orbit, whereas the total cpu time was 55.5 s.

If the flag for visual control of the processing is enabled, the progress of
the computation and the energy conservation of each orbit should appear on
the screen, as is shown in Fig. 2.

One of the input parameters the user should give is an alphanumeric
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1 E = 0.11799999984378129 DE = 2.16281795019983474E-013

2 E = 0.11800000000227605 DE = 9.03349899574294735E-013

3 E = 0.11799999987237160 DE = 5.88277073642108224E-013

4 E = 0.11799999974371828 DE = 3.90695010149895051E-013

5 E = 0.11799999989039134 DE = 1.17608371361909766E-014

Figure 3: Typical output to file *.ene: orbit number, energy and conservation of the
energy for each orbit.

0.1499500000000000E+05 0.5138152865503478E+03 0.1340629863642921E+01

0.1500000000000000E+05 0.5139749984798356E+03 0.1340629863642921E+01

0.9700000000000000E+03 0.8812457069534003E+16 0.8635444202241726E+16

0.9704500000000000E+03 0.1000000000000000E+17 0.1000000000000000E+17

Figure 4: Typical output to file *.fli (only the two last rows for the first and last orbits
are shown): time, FLI and OFLI.

prefix for the output files. Choosing for example hh for the prefix of the
present run, the output files would be hh.ene, hh.megno, hh.rli, hh.gali
and hh.fli. The first one will contain the energy and its conservation for
each orbit, as shown in Fig. 3.

The files hh.megno, hh.rli, hh.gali and hh.fli will contain the values
of the CIs. Fig. 4 shows the last two lines of the first and last orbits on the
file hh.fli of our example. It can be seen that the first orbit reached the
end of the integration (i.e., the FLI didn’t saturate), whereas the FLI of the
last one saturated at t = 970.45 t.u., from which time the integration of this
CI stopped.

Figs. 5, 6 and 7 show the resulting CIs for the five orbits considered.
The top left panel of Fig. 5 shows the behaviour of the MEGNO for the
three regular orbits. We can see that the orbit sp tends to 2 from below and
the orbit up tends to 2 from above, as expected from the dependence of the
MEGNO on the stability of the orbit (Cincotta et al., 2003). On the other
hand, the orbit qp quickly increases to 2, again as expected. The top right
panel of Fig. 5 shows the behaviour of the MEGNO for the chaotic orbits.

15



0

0.5

1

1.5

2

2.5

3

3.5

2000 4000 6000 8000 10000 12000

M
E

G
N

O

Time

sp
qp
up

100

200

300

400

1 1000 2000 3000 4000 5000 6000 7000 8000

2*
M

E
G

N
O

Time

c1
c2

 1e-13

 1e-12

 1e-11

 1e-10

 1  10  100  1000  10000

R
LI

Time

sp
qp
up

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1  10  100  1000  10000

R
LI

Time

c1
c2

Figure 5: Examples of the time evolution for the MEGNO (top panels) and the RLI
(bottom panels).
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Figure 6: Examples of the time evolution of the LI1 and LI4 (top panels), and of the LI2
and LI3 (bottom panels)

It is clearly seen that, once the MEGNO reached its saturation value, its
computation was stopped. These plots should be compared with those of fig.
1(d) and (c) of Cincotta et al. (2003). The bottom panels of Fig. 5 show the
RLI for the five orbits of the sample. As expected, the RLI maintains very
small values for regular orbits, and reaches relatively high values for chaotic
ones.

Fig. 6 shows the evolution of the different LIs for the three regular orbits
(left panels) and for the two chaotic orbits (right panels). The top panels
show the evolution of LI1 and LI4, whereas the bottom ones show the values
of LI2 and LI3. These figures should be compared with figures 1(d) and 1(e) of
Cincotta et al. (2003). In all cases, the LI behaves as expected. Though the
LI1 curve for the c1 orbit seems to be tending to zero, it is really tending to
a constant value greater than zero. This can be clearly seen in a logarithmic
scale; we refrained to use that scale in order to be able to show all the LIs,
both positive and negative.
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Figure 7: Examples of the time evolution for the GALI3 (top panels) and the OFLI
(bottom panels).

The top panels of Fig. 7 show the GALI3 for our regular (left) and chaotic
(right) orbits. The indicator behaves, again, as expected: a polynomial de-
crease in the case of regular orbits, and an exponential decrease in the chaotic
case. The bottom panels of Fig. 7 present the OFLI for the five previous
orbits. On the left panel, the CI shows a linear increment with time for the
orbits qp and up, and a constant value for the orbit sp. The behaviour for the
orbit sp reflects its proximity to a periodic orbit. For chaotic orbits, instead,
the OFLI grows exponentially fast. It is seen that this CI reached the satu-
ration value (1016) for both chaotic orbits before the end of the integration,
and their computation was therefore stopped.

Additionally, we have reproduced many other plots from papers in which
different potentials and/or CIs were studied. We refrain from showing these
plots because they are identical with the original ones. Suffice to say that we
didn’t find any instance of a different result from those of the literature.
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Table 3: Constants used for the ΦN potential.

A 4158670.1856267899
rs 19.044494521343964
a 1.3258820840000000
b 0.86264540200000000
c 0.70560584600000000

4.2. The triaxial NFW potential

We also probed our code with a 3D potential, which is a triaxial extension
of the NFW profile (Vogelsberger et al., 2008):

ΦN = −
A

rp
ln

(

1 +
rp
rs

)

, (22)

where A and rs are constants, and

rp =
(rs + r)re
rs + re

, (23)

with

re =

√

(x

a

)2

+
(y

b

)2

+
(z

c

)2

, (24)

a, b, c constants, and r =
√

x2 + y2 + z2. The values of the constants we
used are listed in Table 3. In this experiment, dubbed N1, in which we
integrated 140 orbits, the total integration time was 13 t.u., which with our
choice of constants corresponds to 13 Gyr. The time step was 0.005 t.u., and
the rest of parameters were as in experiment H1. In column N1 of Table 2
we list the CPU times of this experiment. The saved time was, in this case,
around 22 per cent. Avoiding the SALI as in the former cases, the runs lasted
T1 = 428.9 t.u. and T2 = 369.6 t.u., a 14 per cent of saved time.

We repeated this last experiment but with only the GALIs, the RLI, the
MEGNO and the OFLI enabled (experiment N2). Since the SALI and the
DS share equations with the GALIs, we expect that the saved time will be
less than before. This is confirmed in column N2 of Table 2, where we can
see now that the percentage gained is about 17 per cent.
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7.004d0 1.566d0 1.757d0 90.786d0 65.561d0 -43.003d0 130.0d0

6.903d0 -1.000d0 1.020d0 -37.876d0 8.507d0 41.721d0 13.0d0

5.743d0 1.221d0 -0.576d0 -8.451d0 10.923d0 21.592d0 1.3d0

Figure 8: Initial conditions for experiment N3. For each orbit (row) the given data are:
x, y, z, ẋ, ẏ, ż and the desired time of integration.

Finally, we tested the implementation of the CIs that have not been used
in the last experiment. In this new run, N3, we computed the LIs, the SALI
and the FLI of three orbits for different intervals of integration. The values of
the IDVs were taken random and orthonormal. The i.c. are listed in Fig. 8,
just like it would appear in the i.c. file. Notice that, since we want the orbits
to be integrated for different time intervals, the latter may be inserted at the
end of each row of i.c.; in this way, the program automatically understands
that the time of integration should be taken from these numbers.

Fig. 9 shows the results. The vertical dashed lines mark the three different
times of integration used in the experiment. The top left panel shows the LI:
it decreases for the three orbits, thus identifying them as regular. However,
the SALI (top right panel) decreases exponentially fast by the end of the
time interval for orbit (a), which means that the latter is chaotic. The SALI
of the other two orbits, on the other hand, seem to oscillate around a finite
value, that is, they have the behaviour corresponding to regular motion. The
bottom panel shows the FLI. It grows exponentially for orbits (a) and (b),
implying that both orbits are chaotic. Therefore, it is clear that 13 and 1.3
t.u. (the integration times used for orbits (b) and (c), respectively) are not
enough to reliably classify them. Nevertheless, the FLI and the SALI prove
to be faster indicators than the LI, as many papers in the literature stand
for (e.g., Skokos, 2001; Sándor et al., 2004).

We have also probed the LP-VIcode with a variety of other astronomical
potentials, both 2D and 3D, playing with different combinations of indica-
tors, and obtained the expected results in all cases. For example, adding the
computation of the FLI to an experiment in which the MEGNO is already
enabled, does not involve any additional computational time. Or, in com-
puting the LIs and the GALIs at the same time, the only gain is that the
orbit is computed only once, due to the fact that these indicators don’t share
any variational equations.
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5. Conclusions

The main goal of the LP-VIcode is to cluster in a single, easy-to-use tool
the plethora of CIs that are nowadays in the literature. The starting point is
the present code, which is ready to use, except for the routines that compute
the potential, the accelerations and the variational equations of the system,
which should be provided by the user. The program can handle any number
of dimensions, and is not limited to stellar or planetary systems, but it works
with any dynamical system in which the abovementioned equations can be
written down. The code is optimized to achieve the maximum speed, given
a set of CIs to compute.

We expect researchers to collaborate with their own methods in devel-
oping newer versions of the code containing larger CIs’ libraries. Also, we
are open to people who might be interested in making the code more user-
friendly, for example, changing the present command-driven interface to a
menu-driven interface, etc.

The code, the User’s Guide and complete examples are available at
www.fcaglp.unlp.edu.ar/LP-VIcode/.
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