
Comparison of Strong Gravitational Lens Model

Software II. HydraLens: Computer-Assisted Strong

Gravitational Lens Model Generation and Translation I

Alan T. Lefor

Astronomical Institute, Faculty of Science, Tohoku University, Sendai Japan

Abstract

The behavior of strong gravitational lens model software in the analysis of
lens models is not necessarily consistent among the various software available,
suggesting that the use of several models may enhance the understanding of
the system being studied. Among the publicly available codes, the model in-
put files are heterogeneous, making the creation of multiple models tedious.
An enhanced method of creating model files and a method to easily create
multiple models, may increase the number of comparison studies. HydraLens
simplifies the creation of model files for four strong gravitational lens model
software packages, including Lenstool, Gravlens/Lensmodel, glafic and Pixe-
Lens, using a custom designed GUI for each of the four codes that simplifies
the entry of the model for each of these codes, obviating the need for user
manuals to set the values of the many flags and in each data field. HydraLens
is designed in a modular fashion, which simplifies the addition of other strong
gravitational lens codes in the future. HydraLens can also translate a model
generated for any of these four software packages into any of the other three.
Models created using HydraLens may require slight modifications, since some
information may be lost in the translation process. However the computer
generated model greatly simplifies the process of developing multiple lens
models. HydraLens may enhance the number of direct software comparison
studies, and also assist in the education of young investigators in gravita-
tional lens modeling. Future development of HydraLens will further enhance
its capabilities.

IHydraLens is available at http://ascl.net/1402.023
Email address: alefor@astr.tohoku.ac.jp (Alan T. Lefor)

Preprint submitted to Astronomy and Computing February 13, 2015

ar
X

iv
:1

50
2.

02
20

2v
2 

 [
as

tr
o-

ph
.I

M
] 

 1
2 

Fe
b 

20
15

http://ascl.net/1402.023


Keywords:
strong gravitational lensing, model generation, computer-assisted

1. Introduction

The present time has been referred to as the ”Golden Age” of Precision
Cosmology (Coe, 2007). Strong gravitational lensing data is a rich source of
information about the structure and dynamics of the universe, and these data
are contributing significantly to this notion of precision cosmology. Strong
gravitational lens studies are highly dependent on the software used to create
the models and analyze the components such as lens mass, Einstein radius,
time delays etc. A comprehensive review of available software has been con-
ducted by Lefor et al. (2012). While many such software packages exist,
most studies to date utilize only a single software package for analysis. Fur-
thermore, most authors of strong gravitational lensing studies use their own
software only. More recently, the status of comparative studies of strong
gravitational lens models has been reviewed by Lefor and Futamase (2013).

One of the barriers to conducting comparative studies is the heterogene-
ity of the lens modeling software that currently exists, which includes data
input, calculation algorithms, and data output. This heterogeneity is not
surprising since all of the software has been independently developed. There
are also some common elements among the software being used. This hetero-
geneity presents one of the greatest barriers to the use of multiple modeling
codes in the study of strong gravitational lenses. The data files used by each
model code are quite different, and the formats can be confusing for someone
wanting to use an unfamiliar lens modeling code. This is a major barrier to
comparative studies. Until the present time, software designed to facilitate
model entry is only available for Gravlens (Alfaro, 2008). Using this pro-
gram is somewhat hampered by the difficulty in compiling it with multiple
dependencies. For all other existing lens model software, lens models files
are entered as a simple free text file, and the user must be careful to count
exactly the number of parameters entered on each line and carefully set the
values of dozens of numerical flags. Small errors in entry of the file will make
the results unpredictable and unusable.

Some of the software used in lensing studies remains inaccessible to all in-
vestigators except the one who developed the software (Shamir et al., 2013).
In addition to preventing other investigators from duplicating analyses, the

2



lack of availability of software presents another barrier to comparative stud-
ies. The Orphan Lens Database (Moustakas and Brownstein, 2013) contains
a database of 24 strong gravitational lens modeling software codes. Of these,
16 have been identified as being used in research studies, of which five (Mi-
rage, ZB, WSLAP, SaWLens and GLEE) are not publicly distributed and
are used almost exclusively by their developers. The remaining 11 strong
gravitational lens model software packages are available for download by in-
terested investigators (Lenstool, Lensview, Gravlens, Lensmodel, GRALE,
PixeLens, SimpLens, glafic, LensPerfect, IGLOO and GLAMROC).

1.1. HydraLens Software

The software described herein is called ”HydraLens” in reference to the
multi-headed creature of Greek mythology, and it directly addresses the diffi-
culties associated with writing a lens model for four different, publicly avail-
able strong gravitational lens model codes. HydraLens is freely available, and
easy to compile with no-cost compilers, as a single, unified program. There
are no dependencies on other software or interfaces. HydraLens facilitates
the entry of lens model files for the four codes implemented, by using a sim-
ple graphical user interface (GUI) instead of entering multiple parameters in
simple text files. Models are entered using a GUI, which has common ele-
ments and layout for all four model codes implemented, largely obviating the
need for manuals and references. In addition, HydraLens can translate lens
model files among the four software packages implemented. HydraLens serves
two purposes. First, the ability of HydraLens to translate among modeling
codes may assist in the conduct of comparative studies. Second, HydraLens
is useful for those learning about strong gravitational lens models, enabling
straightforward creation of multiple input files.

1.2. Organization of this paper

This paper is organized as follows. In section §2 we discuss the detailed
organization of the HydraLens software. In section §2.5 we discuss the com-
mand structure and input files used by each of the four lens model software
codes implemented in order to delineate the issues in lens model translation.
In section §3, we discuss the details of lens model generation and translation
as implemented in HydraLens. In section §4 we discuss issues in compar-
ative lens model studies as well as limitations and future development of
HydraLens.

3



2. Methods

2.1. Strong Gravitational Lens Models

Each lens model software package uses a different input data format to
construct the model. They do have some features in common, and some are
more similar than others. All of them use simple text files as input, but the
format of the text files, available functionality and command structures are
very dependent on the particular software. Some of the lens model software
uses multiple accessory files to provide other data. Each of them has a unique
list of commands, with great variability. For example, Lenstool uses a number
of commands in the French language. The fact that they use a wide range of
flags, with a wide range of meanings, makes writing a lens model file difficult,
especially for the uninitiated. HydraLens was written to simplify the process
of creating lens model input files to facilitate direct comparison studies, and
to assist those starting in the field.

2.2. HydraLens Software Development

The use of a simple GUI was considered essential in the development of
HydraLens, which was implemented in Visual Basic (VB, Microsoft Corp,
Redmond WA USA) since VB offers a commonly recognized and easy to
code GUI, as well as the fact that VB software runs in nearly any Windows
(Microsoft Corp) environment. VB compilers are available at no cost. Hy-
draLens is easily read and modified making HydraLens more generally useful
to the astrophysics community. There are extensive comments embedded in
the code to allow customization as desired and a user manual supplied.

2.3. Overview of HydraLens

For each lens model software implemented, HydraLens has four basic
functions: model generation, model write, model parsing and model transla-
tion. Each of these functions is implemented using a modular approach, for
each of the four strong gravitational lens software packages in the system.
Each of these four basic modules interacts with a common set of data struc-
tures that are configured specifically for the lens model software, as shown
in Figure 1.

The model generation function accepts input from the user from a GUI
window, and fills in a data structure with the information for that type
of model. Alternatively, the data structure can be filled in by a parsing
an existing model by reading each line, then putting the commands and

4



data into the same data structures as the model generation function uses.
For example, one might have an existing model for a particular lens system
written for Lenstool. This existing model can be read in by HydraLens
(model parsing) and then translated to any or all of the other three model
types supported. Once the model information is in the model-specific data
structure (through model generation or through model parsing), it can be
written out as a lens model input file, or it can be translated.

Model	  
Data	  

Structures	  

Model	  
Generate	  

Model	  
Parse	  

Model	  
Translate	  

Model	  
Write	  

Figure 1: Basic data structure of HydraLens showing the interactions of the four modules
with the data arrays

2.4. Common Parameter Entry

Most of the information for each model type is entered on a single GUI
screen, visible after the user selects the model type to be generated. However,
some of the models require the user to enter a number of parameters for each
of many lines, such as the .obs file used in glafic which has up to eight
parameters for each image for each of the sources entered in glafic. Entering
these in a simple text editor is acceptable, but requires the user to be aware
of what is typed in each column, with no assistance. For each group of
parameters needed, in each program, the software uses a common screen for
parameter entry that simply labels each text box, allowing the user to enter
text in an appropriately labeled area, then generating the appropriate line
for the data file. This parameter entry screen is common to all routines in
HydraLens, and greatly simplifies data input (Figure 2).

5



Figure 2: Parameter entry is greatly facilitated using a common parameter window, obvi-
ating the need to count columns as parameters are entered into labeled text boxes

2.5. Lens Model Input files

In this section, we discuss the model files for each of the four lens model
codes implemented, focusing on aspects of the input file format important for
the generation and translation of the model. Since HydraLens is concerned
only with writing lens model files, there is no discussion of output from any
of the software. In order to understand the scope of the models available
with each of the software packages implemented, it is important to review in
some detail the design of each model and the commands available.

2.5.1. Lenstool

Lenstool (http://ascl.net/1102.004) was developed by Kneib, described
in 1997 and has undergone several improvements to its algorithms (Jullo
et al., 2007). It has been used in many studies in the literature, and uses a
combination of light traces mass (LTM, previously known as ’parametric’)
and non-light traces mass (non-LTM, previously known as ’non-parametric’)
approaches. Lenstool is available for download as source code and has de-
pendencies on several other software packages to build the software. It is
accompanied by a User’s Manual (Kneib, 2012), and there is also a manual
written by a third-party which is very useful (McCourt, 2006). Sample lens
model input files are available for download.

The Lenstool command structure consists of first and second identifiers.
The first identifiers are a group of 15 keywords that are basically groups,

6

http://ascl.net/1102.004


under which the second identifiers are stated along with values of the pa-
rameters. For each of the first identifiers, there is a group of specific second
identifiers. Each second identifier is followed by parameters unique to that
second identifier such as numerical flags or file names. Each model file does
not necessarily contain all of the first identifiers.

The 15 first identifiers in Lenstool include: (Descriptions from the Lenstool
Users manual (Kneib, 2012))

1. runmode: Reference coordinates can be set (reference), images and
arclets (image, arclet) can be defined with the name of input files, a
source file (source) can be specified, as well as other second identifiers.

2. grille: this defines parameters such as number of potential modes, grid
mode, polar / rectangular shape of the grid, number of clumps that
define the lens potential, and size of the grid.

3. potentiel: Defines the gravitational potential. The profile used is iden-
tified by a number, and includes SIS, circular sphere, elliptical sphere,
pseudo-elliptical, point mass, PIEMD, plane mass, and NFW profile.
For the potential selected, the user specifies a position, ellipticity, an-
gle, and zlens. Each different mass model is defined by a numerical flag.
Position, mass, ellipticity, velocity dispersion are also set here.

4. limit: Defines constraints on the potential and is used for optimization.

5. potfile: Default parameters for galaxy scale mass components that ac-
count for perturbations to the cluster potential by the galaxies. This
includes a filename of the galaxy catalog, mass profile (PIEMD is the
default), velocity dispersion, rcore, rcut among others.

6. cline: Parameters to compute critical and caustic lines, including the
location of the source plane, area to search for critical lines and step
between searches.

7. cosmologie: Specifies the value of constants such as Ωm, Λ, H0.

8. champ: Define size of the field used in some calculations such as di-
mension of the grid

9. grande: Define representation of the computer deformation of objects

10. observ: Define noise (seeing or Poisson) that is added to a gravitational
image.

11. source: Specifies details of the source, including zsource.

12. image: Specifies the input data file (object file, with secondary param-
eter ’multfile’) and characteristics of images, multiple images or arclets.

7



13. cleanlens: Define parameters to retrieve the shape of the source know-
ing a pixel-frame of the image

14. image: Define characteristics of images, multiple images or arclets

15. fini: Tells Lenstool to stop reading the .par file. This is mandatory.

Lenstool also uses a group of input data files, including:

Object File A list of objects characterized by their position, shape and
redshift with an integer identifier for each object and six parameters.
This format is used for arclets or sources.

Marker File A list of marker points in the image plane, with an identifier
and xy-coordinate for each.

IPX Pixel Image File IPX is a simple format for pixel-images data with
a 4 line header.

FITS pixel image File This controls the reading of FITS pixel-frames.

A basic Lenstool model includes the model parameter file (.par file) with
primary and secondary identifiers as well as an image file (.cat, in the format
of an object file) to define the source images.

2.5.2. gravlens/lensmodel

Gravlens/lensmodel (http://ascl.net/1102.003) was developed by Kee-
ton, and described in 2001 (Keeton, 2001b). These two codes are similar,
sharing the same command structure, except that lensmodel adds function-
ality to the Gravlens kernel. These use a LTM approach to lens models. A
paper detailing the mathematics of the mass models in GRAVLENS is also
available (Keeton, 2001a). The GRAVLENS package is available for down-
load as two executable files, and is accompanied by a User Manual (Keeton,
2004). The two executables include gravlens and lensmodel.

Sample data files are available for download. Basic commands include:

Set commands These are used to set the values of parameters such as Ω,
Λ, zlens and zsource. There are also a set of flags for gravlens regarding
grid format, parity checking, source plane χ2, tiling and others. In
the main data entry screen these values are pre-populated with typical
values.

8

http://ascl.net/1102.003


Data This command specifies the name of the input data file to use.

Startup Specifies the number of galaxies for each mass model and the num-
ber of mass models, which is followed by a line to specify the mass
model selected and the flags for parameters that will be optimized.
Once the user selects a particular lens model, the parameters screen
opens and the parameters specific to that model are listed with labeled
text boxes for entry. Optimization flags are entered separately on the
main GUI screen.

Commands Gravlens has many commands available for use. Some of them
require entry of numerous parameters and some are standalone words.
The commands allow optimization, varying parameters, data plotting,
checking the code, and simple lensing calculations. Common commands
are used to set the type of tiling (grid mode), compute the lensing
properties on the specified grid (maketab), check the code (checkder,
check mod), create plots of data (plotgrid, plotcrit), and perform simple
lensing calculations (calcRein, finding).

The data file specifies the image data for the lens, including:

• Number of galaxies

• Position, Reff , PA and e for each galaxy

• Number of sources

• Number of images for that source

• Location, flux, and time delays for each image as well as an identifier

A basic gravlens/lensmodel lens model consists of two files. The first is
the input file, specifying parameters and data file name, the mass model to
use with optimization parameters, and commands. The second file is the
data file which specifies the data for each galaxy and source, as well the
images for each of the sources. HydraLens facilitates the creation of both of
these files with a GUI interface.

9



2.5.3. glafic

Glafic (http://ascl.net/1010.012) was developed by Oguri and de-
scribed in 2010 (Oguri, 2010). It has been used in a wide range of studies,
and is a LTM approach to strong gravitational lens models, using an adap-
tive mesh method with increased resolution near the critical curves. Glafic
uses functional lens model optimizations with many options. It is available
for download as an executable file, and is accompanied by a detailed User
Manual (Oguri, 2013). Sample lens models are available for download as
well. The structure of glafic is somewhat close in appearance to gravlens.
A glafic input file has three parts. The first part sets the values of various
parameters such as Ωm and Λ. The second part defines the lenses, extended
sources and point sources. The third part is the list of commands. There is
an optional section to define optimizations.

Parameter settings in glafic:

Primary parameters Each of the primary parameters is associated with
a flag, file name, etc. These include Ω, Λ, H0, zlens, output file name,
rectangular region of the lens plane, pixel size for extended sources and
point sources, and adaptive meshing recursion level.

Secondary parameters These include the name of the gals data file, the
extended source model arcs file, seed for random number generation,
and a number of other parameters and flags that control the behavior
of glafic.

Definition of lenses, extended sources and point sources in glafic:

lenses There are 21 different lens mass models in glafic. Each is stored with
its name and up to eight parameters. A single lens plane is supported.
Most are characterized by a mass scale, x and y coordinates, ellipticity
and position angle, and other parameters as needed for the specific
mass model.

extended sources There are five different extended source types, each of
which has up to 8 parameters, including source redshift, coordinates
and up to 5 other parameters as indicated.

point sources Point sources are stored only as redshift with x and y coor-
dinates.

10

http://ascl.net/1010.012


Glafic uses a number of secondary files as data for the model, including
a galaxy file (galfile.dat), a source file (srcfile.dat), an observation file (obs),
and a priors file (prior). Each of these is saved simply as strings based on
how many parameters are used in each line.

Data files used by glafic include:

obs file File with data of an image of lensed arcs read with command read-
obs point or readobs extend (for point sources, extended sources)

gals file Mass model gals data file (galfile.dat) contains coordinates, lumi-
nosity, ellipticity and position angle of each galaxy

src file Data file used to enter extended source model arcs (srcfile.dat)

prior file List of priors on parameters, read by ’parprior’ command

flux file Read with the command ’point flux’, this file contains fluxes for
point sources

mask file Optional file read by ’readobs extend’

sigma file A list of σ values for Markov-Chain Monte Carlo optimization,
read by ’mcmc sigma’

Optimization Commands in glafic:

Preparation read an image of lensed arcs from a file, calculate noise from
observed image, read data file for point source optimization, read text
file of priors

Setting optimization parameters Perform model optimization, random-
ize optimization parameters, calculate a one dimensional χ2 slice, vary
cosmological parameters.

Commands in glafic:

Lens properties Compute various lensing properties for an image, com-
pute Einstein radii for a source redshift, compute mass, write lensing
properties to an output file, compute convergences

Extended sources Write images of lensed extended sources to an output
file, calculate total flux, peak count and peak location, and write time
delay surfaces

11



Point sources Find lensed images for point sources, move source position,
compute critical curves and caustics, write mesh pattern, and write
time delay surfaces

Other Commands Other commands are available for composite sources,
morsel optimization, and other optimization commands.

Utilities available in glafic:

Markov-Chain Monte-Carlo Read a list of σ values for model parame-
ters, perform MCMC calculations, read a resulting chain file. Needs a
file of σ values.

General Utility functions Change a parameter value, change optimiza-
tion flags, moving lens positions, print model parameters or optimiza-
tion flags, and compute a physical critical surface mass density

A basic glafic lens model includes a parameter / command file (.input)
and an image (obs) file.

2.5.4. PixeLens

PixeLens (http://ascl.net/1102.007) was developed by Saha and de-
scribed in 2006 (Saha et al., 2006). PixeLens is a non-LTM lens model code,
and is written in Java which is downloaded as a .jar file and run locally
(Read, 2012b). It is accompanied by explanatory documentation as well as a
tutorial explaining the details of the input file (Read, 2012a). Sample model
files are available on the website. The model files for Pixelens are the simplest
among the four codes implemented in HydraLens. Model input can be done
through a GUI or through the command line as a batch file that is called
when Pixelens in invoked through Java. The model consists of a group of
constants and image data.

Constants Pixelens requires an object name, the radius of the mass map in
pixels and zlens and zsource to be specified. Optionally, one can specify
the map symmetry, radius of the mass amp, shear, number of models,
Hubble time, minimum steepness, maximum steepness, annular density
and cosmological parameters such as Ωm and ΩΛ.

Image Data Images are given in double or quad format. For each image,
one specifies the x and y coordinates as well as the time delay. The

12

http://ascl.net/1102.007


redshifts are specified in the first section above. Images must be listed
in arrival time order. There is also a ’multi’ format used for cluster
lenses, useful if there are several source redshifts, or if the image is not
a double or quad image.

A PixeLens model can be entered directly into the Java GUI, or saved
as a single text file which contains all the information. HydraLens generates
the text file for input to the Java applet.

3. Implementation

When HydraLens is started, the user is presented with an input screen (see
Figure 3) to define the name of the model, the directory to store the model
and then select the target software from available choices. After selecting
the type of model to generate, the user is brought to screens specific for each
model.

Figure 3: The opening screen allows the user to choose to generate a new model, read in
an existing model, and translate a model

3.1. Lens Model Generation

3.1.1. Lenstool

The user first generates any accessory files needed including image file,
source file or arclet file. Selecting a button for each file type brings the user
to a special screen to build that file type. Upon return to the main model

13



entry screen, the user is presented with detailed entry panels for each of
seven commonly used primary parameters in Lenstool, including runmode,
grille, potential, limit, cosmologie, image and source. The entry panel for
each primary identifier is pre-populated with commonly used values, and
parameters are selected using check boxes. When the ’finished’ button is
pressed, the final lens model is created in the directory selected by the user
in the initial screen.

3.1.2. gravlens/lensmodel

HydraLens creates the model file (.input), starting with setting the basic
parameter which are on the main gravlens screen pre-populated with typical
values. After finalizing the primary parameters, that part of the window
becomes invisible, leading the user to enter secondary parameters. The user
then specifies secondary parameters as desired. Last, the desired commands
are entered from a scrolled list of available commands. The resulting model
file has four sections, including primary parameters, secondary parameters,
models / optimizations and commands. The ’data’ command loads the data
from a specified file. Once the data command is entered, a button appears
on the screen to allow entry of the data file containing the information for
each lens galaxy, source, and images for that source. The data file is written,
including appropriate comment lines.

3.1.3. glafic

After selecting a glafic model, the user selects the type of file to generate
(Main model, gals, obs, priors or source) and then goes to a screen specific
for that file type. The main model file has a panel for the primary and sec-
ondary parameters. Lens models with extended sources and points sources
are constructed next followed by entry of desired commands. All available
commands are divided into basic calculations, sources, optimization and util-
ities and selected from lists on the screen.

3.1.4. PixeLens

After selecting a PixeLens model, the user is brought to the PixeLens
screen (see Figure 4). The values of required and optional parameters are
entered on the left and mage data is entered on the right. Note that the
’action’ buttons in the middle and right panels are ’grayed out’. These but-
tons become active as the user finishes each portion of building the model,

14



to lead them through each step of the process. When the ’Finished’ (red,
lower right) is pressed, the model is written to the file.

Figure 4: The PixeLens model generation entry screen

3.1.5. Completion

After going through the software specific screens to generate the model,
the user is informed that the file has been written and is then brought back
to the main screen. At this point the user’s only choice is to stop, having
generated the model, or to translate it into one of the other three model
types.

3.2. Lens Model Translation

The process of translation is performed with no user interaction. After
generating a model or specifying the file path to an existing model, and
returning to the main HydraLens window, the user selects the software target
for translation. The software generates a new model, with an appropriate file
name extension and returns to the main HydraLens window so the user can
exit. There are four model types supported in HydraLens, so there are 12
different translation modules. Each translation module reads the model that
the user just generated from the data structure for that model, translates the
parameters and puts them in the data structure for the target model type,
then calls the model write routine to write new target model file from the
data structure.

15



As an example of using HydraLens for translation, a simple model can
be easily written and tested in PixeLens, as a way of ”rapid prototyping”.
This simple model can then be translated to models for Lenstool, Lensmodel
and glafic in a matter of minutes. The models generated will be functional,
but may need modification since many features in glafic, for example, do not
exist in PixeLens such as optimizations. The user must then edit the glafic
model to set the optimization parameters as desired. In most cases, this is
still much faster and simpler than starting with an empty screen in a basic
text editing program. Similarly, translation to PixeLens will often result in
a simpler model than the original. Another example of information that
cannot be translated relates to specific limitations of the codes. In Lenstool,
each potential can have its own lens plane, while in the other three codes,
only one lens plane is permitted. Thus, translating from Lenstool with such
a model necessarily will not include the multiple lens planes.

It is not possible to transfer all data and/or commands from one type of
model to another because of differences in the requirements of each model
code. Despite the possible loss of information, the models produced by Hy-
draLens will generally work, and then may need minor modifications to allow
for differences in the lens model codes.

Another difficulty associated with translation is the differences in com-
mands used by the various codes. For example, glafic will calculate the
Einstein radius and mass inside the Einstein radius for a Single Isothermal
Ellipsoid model by ignoring the ellipticity. Lensmodel generates an error
message when one tries to calculate the Einstein radius for a Single Isother-
mal Ellipsoid model. Due to the wide range of commands, HydraLens does
not translate commands, but rather gives each model a standard group of
functioning commands that can be modified by the user.

The model translation feature offers two important advantages over writ-
ing a model using a text editor. First, when creating a new type of model,
the image coordinates are easily transferred into the target model, without
concern for typing long lists of numbers and counting columns of parameters
with proper formatting of the image files. Second, an input file is created
with many of the important fields already populated. A minor review of
the resulting input file may be necessary, but based on testing to date, the
models created will be functional in the target software.

16



4. Discussion

HydraLens facilitates creation of strong gravitational lens models for more
than one lens model code, in order to facilitate direct comparison studies of
strong gravitational lens models. In view of the paucity of direct compara-
tive studies in the literature (Lefor et al., 2012; Lefor and Futamase, 2013),
HydraLens may help increase the number of future comparative studies by
simplifying the process of model development. Additionally, HydraLens may
serve an important role in education where students are just starting to use
strong gravitational lens modeling codes . HydraLens allows students to eas-
ily explore a number of available software packages. The study of strong
gravitational lensing is no longer limited to investigators, but has now ex-
tended to being a part of the curriculum in some undergraduate and graduate
programs (Seitz, 2013; Kalas, 2010), as well as being taught to students in
specialized intensive education programs (Gradolph, 2012). The use of lens
model software by students may be enhanced by using a tool such as Hy-
draLens to facilitate the writing of lens model input files.

The use of HydraLens, by both investigators to facilitate comparative
studies and by students to use the available software in their studies, is
enhanced by the two main functions of HydraLens including lens model file
generation and lens model file translation.

4.1. Limitations

The major limitation of HydraLens is that it is subject to the unbreakable
rule of computing, ”garbage-in, garbage-out”. HydraLens cannot write a
model in the absence of appropriate input data, and for this reason is referred
to as computer-assisted model generation rather than ”automatic” model
generation. A person totally naive to lens models will not necessarily benefit
from HydraLens, without some guidance. Similarly, a person who is an
expert at writing lens models for a particular software may not benefit from
HydraLens. The people most likely to find HydraLens of value are those who
have begun to write lens models and have some minimal level of experience,
or people who are capable with one model software and want to begin using
another to conduct direct comparison studies.

The software described herein is functional and available, and facilitates
the writing of lens model files for a variety of available strong gravitational
lens model software. For the purpose of writing lens models, HydraLens
could be viewed as a specialized text editor. In this role, its major advantage

17



is that the user will rarely need to refer to a reference source for the meaning
of most parameters as they are clearly described in the GUI at the time of
entry. The input files for lens model software uses simple text files. When
writing a model using only a text editor, the user must be very careful about
values of flags and parameters, which requires constant reference to users’
manuals. HydraLens greatly simplifies that task by entering all fields using
a GUI, but the models generated may require some editing. There is no
substitute for scientific insight when writing a gravitational lens model.

In its role as lens model translation software, HydraLens may not al-
ways construct a perfect model. Another limitation of model translation is
that features vary greatly from one lens model software to another, so that
translation may necessitate the loss of some information or capabilities. For
example, glafic accepts data on image flux which is not included in Lenstool
models. The model created by HydraLens serves as a starting point and
eliminates the need for starting the process with a blank piece of paper.
Translated models from HydraLens greatly simplifies the tedium of writing
an initial model file, especially in regard to image geometry. Generated mod-
els are easily edited since they are all simple text files.

5. Future Development and Conclusions

5.1. Further Development

HydraLens is undergoing further development, especially to improve in-
ternal consistency checking within the model. Due to its modular nature,
other strong gravitational lens model codes are being built into the system
to expand its repertoire of models to generate and translate. These features
are being added, and will be included in future releases.

5.2. Conclusions

Previous reviews have shown that there are few comparative studies of
strong gravitational lens models in the existing literature (Lefor et al., 2012),
yet such comparisons are very important to advance the field. Furthermore,
given the differences in results from various strong gravitational lens model
codes, such comparitive studies are of great importance (Lefor and Futamase,
2013).

Barriers to comparative studies include the lack of availability of some
software, and the heterogeneity of the input files used in model codes which

18



are available. HydraLens allows the user to enter a lens model with an easy-
to-follow GUI rather than entering a tedious text file, for four commonly used
strong gravitational lens modeling codes, all of which are freely available for
download. Furthermore, HydraLens is capable of translating the data files
among the four model codes implemented to allow rapid development and
testing of other models for comparison. These features may serve to facilitate
direct comparison studies, and also to enhance the educational application
of strong gravitational lens model software. Further development is already
underway to provide more features and improve the usability of HydraLens.

Acknowledgements

The suggestions of the anonymous reviewers are gratefully acknowledged,
which facilitated significant strengthening and clarification of this manuscript.

References

Alfaro, F., 2008. Keetons interface. http://cinespa.ucr.ac.cr/software/
xfgl/index.html.

Coe, D., 2007. Towards an understanding of dark matter: Precise gravi-
tational lensing analysis complemented by robust photometric redshifts.
Ph.D. thesis. Johns Hopkins Univ.

Gradolph, E., 2012. Canary islands winter school of astrophysics. http:

//www.iac.es/winterschool/2012/.

Jullo, E., Kneib, J.P., Limousin, M., Eĺıasdóttir, Á., Marshall, P.J., Ver-
dugo, T., 2007. A Bayesian approach to strong lensing modelling of galaxy
clusters. New Journal of Physics 9, 447. 0706.0048.

Kalas, P., 2010. Lab 6 gravitational lensing. http://astro.berkeley.edu/

~kalas/labs/documents/ay122_lab6_v2.pdf.

Keeton, C., 2004. Software for gravitational lensing. http://redfive.

rutgers.edu/~keeton/gravlens/.

Keeton, C.R., 2001a. A Catalog of Mass Models for Gravitational Lensing.
ArXiv Astrophysics e-prints arXiv:astro-ph/0102341.

19

http://cinespa.ucr.ac.cr/software/xfgl/index.html
http://cinespa.ucr.ac.cr/software/xfgl/index.html
http://www.iac.es/winterschool/2012/
http://www.iac.es/winterschool/2012/
0706.0048
http://astro.berkeley.edu/~kalas/labs/documents/ay122_lab6_v2.pdf
http://astro.berkeley.edu/~kalas/labs/documents/ay122_lab6_v2.pdf
http://redfive.rutgers.edu/~keeton/gravlens/
http://redfive.rutgers.edu/~keeton/gravlens/
arXiv:astro-ph/0102341


Keeton, C.R., 2001b. Computational Methods for Gravitational Lensing.
ArXiv Astrophysics e-prints arXiv:astro-ph/0102340.

Kneib, J.P., 2012. Lenstool project web page. http://lamwws.oamp.fr/

lenstool/.

Lefor, A.T., Futamase, T., 2013. Comparison of Strong Gravitational Lens
Model Software I. Time delay and mass calculations are sensitive to
changes in redshift and are model dependent. ArXiv e-prints 1307.4600.

Lefor, A.T., Futamase, T., Akhlaghi, M., 2012. A Systematic Review of
Strong Gravitational Lens Modeling Software. ArXiv e-prints 1206.4382.

McCourt, M., 2006. Lenstool for dummies. http://www.oamp.fr/

cosmology/lenstool/.

Moustakas, L., Brownstein, J., 2013. The orphan lens project. http://www.
masterlens.astro.utah.edu.

Oguri, M., 2010. The Mass Distribution of SDSS J1004+4112 Revisited.
Proceedings Astr Soc Japan 62, 1017–.

Oguri, M., 2013. glafic user’s manual. http://www.slac.stanford.edu/

oguri/glafic/.

Read, J., 2012a. Pixelens tutorial. http://www.itp.uzh.ch/~justin/

Astro/Lectures/PixeLens/tutorial.pdf.

Read, J., 2012b. Pixelens web page. http://www.qgd.uzh.ch/projects/

pixelens/.

Saha, P., Read, J.I., Williams, L.L.R., 2006. Two Strong-Lensing Clusters
Confront Universal Dark Matter Profiles. ApJ Letters 652, L5–L8. arXiv:
astro-ph/0610011.

Seitz, S., 2013. Astrophysics lab: Strong gravitational lens-
ing. http://www.usm.uni-muenchen.de/people/stella/praktikum/

linsen/sl_english.pdf.

Shamir, L., Wallin, J.F., Allen, A., Berriman, B., Teuben, P., Nemiroff, R.J.,
Mink, J., Hanisch, R.J., DuPrie, K., 2013. Practices in source code sharing
in astrophysics. ArXiv e-prints .

20

arXiv:astro-ph/0102340
http://lamwws.oamp.fr/lenstool/
http://lamwws.oamp.fr/lenstool/
1307.4600
1206.4382
http://www.oamp.fr/cosmology/lenstool/
http://www.oamp.fr/cosmology/lenstool/
http://www.masterlens.astro.utah.edu
http://www.masterlens.astro.utah.edu
http://www.slac.stanford.edu/oguri/glafic/
http://www.slac.stanford.edu/oguri/glafic/
http://www.itp.uzh.ch/~justin/Astro/Lectures/PixeLens/tutorial.pdf
http://www.itp.uzh.ch/~justin/Astro/Lectures/PixeLens/tutorial.pdf
http://www.qgd.uzh.ch/projects/pixelens/
http://www.qgd.uzh.ch/projects/pixelens/
arXiv:astro-ph/0610011
arXiv:astro-ph/0610011
http://www.usm.uni-muenchen.de/people/stella/praktikum/linsen/sl_english.pdf
http://www.usm.uni-muenchen.de/people/stella/praktikum/linsen/sl_english.pdf

	1 Introduction
	1.1 HydraLens Software
	1.2 Organization of this paper

	2 Methods
	2.1 Strong Gravitational Lens Models
	2.2 HydraLens Software Development
	2.3 Overview of HydraLens
	2.4 Common Parameter Entry
	2.5 Lens Model Input files
	2.5.1 Lenstool
	2.5.2 gravlens/lensmodel
	2.5.3 glafic
	2.5.4 PixeLens


	3 Implementation
	3.1 Lens Model Generation
	3.1.1 Lenstool
	3.1.2 gravlens/lensmodel
	3.1.3 glafic
	3.1.4 PixeLens
	3.1.5 Completion

	3.2 Lens Model Translation

	4 Discussion
	4.1 Limitations

	5 Future Development and Conclusions
	5.1 Further Development
	5.2 Conclusions


