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Abstract

We construct a “hyperparameter matrix” statistical method for performing the joint analyses of multiple correlated astronomical
data sets, in which the weights of data sets are determined by their own statistical properties. This method is a generalization of the
hyperparameter method constructed by Lahav et al. (2000) and Hobson, Bridle, & Lahav (2002) which was designed to combine
independent data sets. The advantage of our method is to treat correlations between multiple data sets and gives appropriate
relevant weights of multiple data sets with mutual correlations. We define a new “element-wise” product, which greatly simplifies
the likelihood function with hyperparameter matrix. We rigorously prove the simplified formula of the joint likelihood and show
that it recovers the original hyperparameter method in the limit of no covariance between data sets. We then illustrate the method
by applying it to a demonstrative toy model of fitting a straight line to two sets of data. We show that the hyperparameter matrix
method can detect unaccounted systematic errors or underestimated errors in the data sets. Additionally, the ratio of Bayes’ factors
provides a distinct indicator of the necessity of including hyperparameters. Our example shows that the likelihood we construct for
joint analyses of correlated data sets can be widely applied to many astrophysical systems.

Keywords: Bayesian analysis, data analysis, statistical method, observational cosmology

1. Introduction

Due to the fast development of astronomical observations
such as the measurements of the cosmic microwave background
temperature anisotropy (e.g. WMAP (Hinshaw et al., 2013) and
Planck (Planck results XVI., 2013) satellites) and observations
of galaxy clustering (e.g. 6dF (Magoulas et al., 2012) and SDSS
(Nuza et al., 2013) galaxy surveys), more and more large-scale
data sets are available for studying a variety of astrophysical
systems. It is, therefore, a common practice in astronomy to
combine different data sets to obtain the joint likelihood for as-
trophysical parameters of interest. The standard approach for
this joint analysis assumes that the data sets are independent,
therefore the joint likelihood is simply the product of the like-
lihood of each data set. The joint likelihood function can then
be used to determine optimal parameter values and their asso-
ciated uncertainties. In the frequentist approach to parameter
estimation, this is equivalent to the weighted sum of the param-
eter constraints from the individual data sets, where the weight
of each data set is the inverse variance. Data sets with small
errors provide stronger constraints on the parameters.

There is a long history discussing the appropriate way to
combine observations from different experiments. In the con-
text of cosmology, the discussion can be traced back to Godwin
& Lynden-Bell (1987) and Press (1996), where weight param-
eters were assigned to different data sets to obtain joint con-
straints on the velocity field and Hubble parameter H0. In these
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approaches, however, the assignment of weights to data sets
with differing systematic errors was, in some ways, ad-hoc. For
instance, if a data set has large systematic error and is not re-
liable, it is always assigned a weight of zero and is effectively
excluded from the joint analysis. On the other hand, a more
trustworthy data set can be assigned a higher relative weight-
ing.

Due to the subjectivity and limitations of this traditional way
of assigning weights to different data sets, Lahav et al. (2000)
and Hobson, Bridle, & Lahav (2002) (hereafter HBL02) de-
veloped the original hyperparameter method. This allows the
statistical properties of the data themselves to determine the rel-
ative weights of each data set. In the framework developed by
Lahav et al. (2000) and HBL02, a set of hyperparameters is in-
troduced to weight each independent data set, and the posterior
distribution of the model parameters is recovered by marginal-
ization over the hyperparameters. The marginalization can be
carried out with a brute-force grid evaluation of the hyperpa-
rameters, or it can be explored by using Monte Carlo methods
which directly sample the posterior distribution. Such possibil-
ities include Markov chain Monte Carlo (MCMC) algorithms
such as Metropolis-Hastings and Simulated Annealing, or non-
MCMC methods such as Nested Sampling (Skilling, 2004).
The application of hyperparameters was considered for a vari-
ety of cases by HBL02. For instance, if the error of a data set is
underestimated, the direct combination of data sets (no hyper-
parameter) results in an underestimated error-budget, providing
unwarranted confidence in the observation and producing a fake
detection of the signal. The hyperparameter method, however,
was shown to detect such a phenomenon and act to broaden the
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error-budget, thus recovering the true variance of the data sets.
By using the hyperparameter method, the results of joint con-
straints become more robust and reliable. This approach has
also been applied to the joint analysis of the primordial tensor
mode in the cosmic microwave background radiation (CMB)
(Ma, Zhao, & Brown, 2010), the distance indicator calibration
(Erdogdu, Ettori, & Lahav, 2003), the study of mass profile in
galaxy clusters (Host & Hansen, 2011), and the cosmic peculiar
velocity field study (Ma, Branchini, & Scott, 2012).

Notably, the hyperparameter method established by Lahav et
al. (2000) and HBL02 is limited to independent data sets, where
“no correlation between data sets” is assumed in the joint analy-
sis. In the analysis of cosmology and many other astrophysical
systems, the data sets sometimes are correlated. For instance,
in the study of the angular power spectrum of the CMB temper-
ature fluctuations, the data from the Atacama Cosmology Tele-
scope (ACT), South Pole Telescope (SPT) and Planck satellite
share a large range of multipole moments ` (see Fig. 1 of Cheng,
Huang, & Ma 2013 and Fig. 11 of Planck results XV. 2013).
When combining these observations, one needs to consider the
correlated cosmic variance term since these data are drawn from
a close region of the sky. In addition, in the study of the cosmic
velocity field (Ma & Scott, 2012), the bulk flows from different
peculiar velocity surveys are drawn from the same underlying
matter distribution so, in principle, a non-zero correlation term
exists between different peculiar velocity samples. Therefore, a
method both using hyperparameter method and taking into ac-
count the correlation between different data sets is needed in the
study of astrophysics. Providing such a method is the main aim
of this paper.

For a clear presentation, we build up our method step-by-
step from the most basic level, explaining the concepts and
derivation process in a pedagogical way. The structure of the
paper is as follows. In Section 2, we review Bayes’ theorem
(Section 2.1) and the standard multivariate Gaussian distribu-
tion (Section 2.2) in the absence of any hyperparameters. Sec-
tion 2.3 provides a review of the hyperparameter method as pro-
posed in HBL02. In Section 2.4 we present the hyperparameter
matrix method, which is the core of the new method proposed
in this paper. We quote the appropriate likelihood function for
the hyperparameter matrix method for correlated data in Sec-
tion 2.4, leaving its derivation and proofs of its salient features
in Appendix A. The proof of the functional form for the joint
likelihood of correlated data sets makes use of several recon-
dite matrix operations and lemmas. These are laid out in Ap-
pendix B and Appendix C, while the main text simply quotes
their results. In Section 3, we apply our method to a straight-
line model while fitting two independent data sets. We vary the
error-budget and systematic errors in each data set to test the be-
haviour of the hyperparameter matrix method. In Section 3.4,
we also discuss the improvement of our hyperparameter ma-
trix method over the original method proposed by HBL02. The
conclusion and discussion are presented in the last section.

K value Strength of evidence
< 1 Negative (supporting H0)
1 to 3 Weak
3 to 10 Substantial
10 to 30 Strong
30 to 100 Very Strong
> 100 Decisive

Table 1: Jeffreys’ empirical criterion for strength of evidence (Jeffreys, 1961).

2. Statistical method

2.1. Bayes theorem

Let us suppose that our data set is represented by D and the
parameters of interest are represented by vector ~θ. Then by
Bayes’ theorem, the posterior distribution Pr(~θ|D) is given by

Pr(~θ|D) =
Pr(D|~θ)Pr(~θ)

Pr(D)
, (1)

where Pr(D|~θ) is called the likelihood function1, Pr(~θ) is the
prior distribution of parameters and Pr(D) is the Bayesian evi-
dence, an important quantity for model selection.

Given a data set D, let us suppose we have two alternative
models (or hypotheses) for D, namely H0 and H1. One can cal-
culate the Bayesian evidence for each hypothesis H ∈ {H0, H1}

as

Pr(D|H) =

∫
Pr(D|~θ)Pr(~θ) d~θ , (2)

where the integral is performed over the entire parameter space
~θ of each model H. Note that the models may have different
sets of parameters. The evidence is an important quantity in the
Bayesian approach to parameter fitting, and it plays a central
role in model selection (Jeffreys, 1961; Kass, 1995). Specifi-
cally, if we have no prior preference between models H1 and
H0, the ratio between two Bayesian evidences gives a model
selection criterion, or Bayes’ factor

K =
Pr(H1|D)
Pr(H0|D)

=
Pr(D|H1)
Pr(D|H0)

. (3)

The value of K indicates whether the model H1 is favoured
over model H0 by data D. Jeffreys (1961) gave an empirical
scale for interpreting the value of K, as listed in Table 1. We
will use this table as a criterion to assess the improvement of
statistical significance when using the hyperparameter matrix
method.

2.2. Multivariate Gaussian distribution

Let us now consider the combination of multiple data sets,
coming from a collection of different surveys S . Each survey
provides ni number of measurements (Di) of the quantity we
are trying to fit, whose expectation value by our hypothesis is

1Sometimes it is written as L(~θ), but here we stick to the notation Pr(D|~θ).

2



µi. For each survey S i we form the data vector ~xS i with the
following elements

xS i
j ≡ D j − µ j , j ∈ {1, . . . ni} . (4)

The data vector is the difference between the observed value
and the expected value, characterizing the error in the measure-
ment. As such, it is also referred to as the error vector. We
combine the different data sets by forming a total data vector ~x
from the individual survey vectors ~xS i

~x =


~xS 1

~xS 2

...
~xS N

 , (5)

resulting in a vector with dimension

dim(~x) =

N∑
i=1

ni = Nt . (6)

In the particular case where all of the data sets have the same
number of samples, the individual data vectors ~xS i have the
same dimension dim(~xS i ) = ni ≡ n (i = 1, ...N), and Nt = n · N.

The covariance matrix2 is, generically,

C̃ =
〈
~x~xT

〉

=


〈
~xS 1~xS 1T

〉 〈
~xS 1~xS 2T

〉
...

〈
~xS 1~xS N T

〉〈
~xS 2~xS 1T

〉 〈
~xS 2~xS 2T

〉
...

〈
~xS 2~xS N T

〉
... ... ... ...〈

~xS N~xS 1T
〉 〈

~xS N~xS 2T
〉

...
〈
~xS N~xS N T

〉


=


(
CS 1

) (
CS 1S 2

)
...

(
CS 1S N

)
(CS 1S 2 )

(
CS 2

)
...

(
CS 2S N

)
... ... ... ...

(CS 1S N ) (CS 2S N ) ...
(
CS N

)
 , (7)

where each CS iS j is an Ni × N j matrix, characterizing the auto-
or cross-correlation between the vectors ~xS i and ~xS j .

Finally, the χ2 statistic for the combined data vector ~x is

χ2 = ~xT C̃−1~x , (8)

and the Gaussian likelihood is

Pr(D|~θ) =
1

(2π)
Nt
2

√
det C̃

exp
(
−

1
2
~xT C̃−1~x

)
. (9)

Equation (9) is the Gaussian likelihood function of µi (i =

1, ...N) with respect to the data. However, the likelihood is a
multivariate Gaussian in parameter space only if the µi is a lin-
ear function of the parameters of interest. In a more general
case, both C̃ and µi (i = 1, ...N) in Eq. (9) may have a depen-
dence on the model parameters ~θ, so the likelihood function (9)
is not Gaussian in parameter space. But this is not a problem if
we evaluate the likelihood function numerically.

2Note, in Section 2.4 of this paper we use C to represent the covariance
matrix with hyperparameters. C̃ is the special case of C evaluated with all
hyperparameters set to unity.

Note that when we combine multiple surveys with correlated
data as in Eq. (9), we give each data set equal weight, and
combine them all together without distinguishing whether some
data set has poorer estimated error or unaccounted systematic
errors. If a data sets’ error and systematic effects are properly
accounted for, this method can give an unbiased estimate of the
parameters of interest. However, if errors or systematic errors
exist, the method can give biased results or exaggerated signif-
icance. We provide several such examples in Section 3, and
compare with our hyperparameter matrix method.

2.3. Combining independent data sets: Original hyperparam-
eter method

The original hyperparameter method, as proposed by Lahav
et al. (2000) and HBL02, assumes that different data sets are
independent of one another. That is CS iS j = δi jCS iS j , δi j being
the Kronecker-delta, in which case the covariance matrix be-
comes block diagonal. “Hyperparameters” αi are introduced as
a rescaling of the error vector

~xi → ~xi/
√
αi . (10)

This is equivalent to rescaling the individual blocks, or data
sets, of the covariance matrix

CS i → α−1
i CS i , (11)

for the ith survey.
With the hyperparameter rescaling of Equation (10) and the

assumption of independent data sets, the total covariance matrix
becomes

C =


α−1

1 CS 1 0 ... 0
0 α−1

2 CS 2 ... 0
... ... ... ...
0 0 ... α−1

N CS N

 . (12)

Since the autocorrelation CS i is the covariance of the ith data
set, the hyperparameters clearly act to re-weight the internal er-
rors of the survey S i. Exploring different values of the hyperpa-
rameters is equivalent to exploring potential systematic errors
and error estimates of the data set (see our examples in Sec. 3).
In this case the total χ2 for N combined data sets becomes

χ2 =

N∑
i=1

αiχ
2
i , (13)

and the joint likelihood, including hyperparameter and parame-
ters of interest, becomes

Pr(D|~θ, ~α) =

N∏
i=1

αni/2
i√

(2π)ni det
(
CS i

) exp
(
−

1
2
αiχ

2
i

)
. (14)

Equation (14) is obtained in HBL02 (eq. (32)) as the gen-
eral result of a likelihood function with hyperparameters. By
re-deriving it here, we emphasize the assumption of indepen-
dent data sets and show the effect of introducing hyperparame-
ters. Specifically, a large hyperparameter αi increases the error-
budget of the ith data set and reduces its’ constraint in the likeli-
hood function. Conversely, a small hyperparameter αi increases
the significance of the ith data set.
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2.4. Combining correlated data sets: Hyperparameter matrix
method

The original hyperparameter method shown in Section 2.3 is
only for the case where different data sets do not have cross-
correlation terms, i.e. all off-diagonal matrix entries CS iS j = 0
for i , j. In this section we generalize the hyperparameter
formulism to the case where correlations between individual
data sets is non-negligible, i.e. generalize to the case when C
includes CS iS j , 0 if (i , j).

As before, for each experiment i we introduce a hyperparam-

eter αi as a rescaling of the error vector

~xi → ~xi/
√
αi , (15)

but we drop the assumption of independent data sets. The (sub)
covariance matrices become

CS iS j → CS iS j/
√
αiα j . (16)

Therefore, for N correlated data sets, the full covariance matrix
with hyperparameters becomes

C =


α−1

1 CS 1 (α1α2)−1/2CS 1S 2 ... (α1αN)−1/2CS 1S N

(α1α2)−1/2(CS 1S 2 )T α−1
2 CS 2 ... (α2αN)−1/2CS 2S N

... ... ... ...
(α1αN)−1/2(CS 1S N )T (α2αN)−1/2(CS 2S N )T ... α−1

N CS N

 , (17)

where each CS i (i = 1, ...N) is an ni × ni symmetric, positive-
definite matrix, while CS iS j is an ni × n j asymmetric matrix if
ni , n j.

To simplify the matrix calculations in this case, we define an
N ×N hyperparameter matrix P with elements Pi j =

(
αiα j

)−1/2

(i, j = 1, ...N). Thus

P =


α−1

1 (α1α2)−1/2 ... (α1αN)−1/2

(α1α2)−1/2 α−1
2 ... (α2αN)−1/2

... ... ... ...
(α1αN)−1/2 (α2αN)−1/2 ... α−1

N

 . (18)

Note that the covariance matrices C (Eq. (17)) and C̃ (Eq. (7))
are Nt × Nt matrices, while P is an N × N matrix for the N data
sets, N ≤ Nt. The relation between C̃, P, ~C cannot be linked by
any ordinary matrix product. Here we define a new “element-
wise” product “�” which multiplies any N × N hyperparameter
matrix with any Nt × Nt covariance matrix, i.e.

C = P � C̃ . (19)

The � operation proceeds as follows. We first expand each
hyperparameter Pi j to an ni × n j matrix by multiplying the
(αiα j)−1/2 value to an ni×n j unit matrix Jnin j , where all elements
are equal to one3, while keeping the partition of Pi j values the
same as the hyperparameter matrix (18)—this is equivalent to
the Kronecker product. Then we do a Hadamard product (see
Appendix B) for the extended hyperparameter matrix with the
covariance matrix C̃ (Eq. (7)) to obtain the total covariance ma-
trix C (Eq. (17)).

We can now write the likelihood function which includes
both parameters of interest ~θ and hyperparameter vector ~α as

Pr(D|~θ, ~α) =
1

(2π)
Nt
2
√

det
(
C(~α)

) exp
(
−

1
2
~xT C(~α)−1~x

)
, (20)

3In order to distinguish the unit matrix from the identity matrix, we denote
this matrix with J and identity matrix with I; see Appendix B for illustration.

where we indicate, explicitly, the dependence of C on the hy-
perparameter vector ~α.

Since the values of hyperparameters ~α can take any values
between 0 and infinity, we might be worried for the positive def-
initeness of the covariance matrix C(~α). Fortunately there are
several important properties of the hyperparameter covariance
matrix C that make it positive definite, and therefore invertible
with a positive determinant. The rigorous proofs of these prop-
erties can be found in Appendix A. Here, we exploit these use-
ful properties to greatly simplify the generalized χ2 calculation,
so that Eq. (20) can be re-expressed as

Pr(D|~θ, ~α) =

 N∏
i=1

(
αi

2π

)ni/2
 1
√

det C̃
exp

(
−

1
2
~xT

(
P̂ � C̃−1

)
~x
)
.(21)

In the above expression, P̂ is the Hadamard inverse of the hy-
perparameter matrix P, C̃−1 is the inverse matrix of the corre-
lation matrix (Eq. (7)) without hyperparameters, and � is the
“element-wise” product.

This form of the likelihood function is a key result of this
work, which is a generalized expression for the joint distribu-
tion of combined, correlated data sets. As a consistency check,
we note that in the case of independent data sets, C̃−1 is block
diagonal, and Eq. (21) reduces to the original hyperparameter
likelihood function (Eq. (14)). As well, in the case of equal
weights to all data sets the hyperparameter matrix P is the unit
matrix, and one recovers the standard multivariate Gaussian dis-
tribution, Eq. (9).

3. Example of fitting a straight line

Having derived the joint likelihood function for correlated
data sets together with hyperparameters, we now investigate
a simple demonstrative example of fitting data with a straight
line. The goal is to combine two different data sets for im-
proved constraints on the posterior distribution Pr(~θ|D). As was
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shown in HBL02, the original hyperparameter method is partic-
ularly useful for overcoming the common problems of inaccu-
rately quoted error bars and the presence of systematic errors in
the measurements. We reproduce the results of HBL02 here as
a validation of our method, and show that the hyperparameter
matrix extension to correlated data sets also overcomes these
problems, and provides a preferred method for describing the
model parameters.

Starting with the assumption that the underlying model for
some process is a straight line with slope m = 1 and intercept
c = 1

y(x) = m x + c , (22)

we generated two independent sets of measurements D1 and D2
for the quantity y. For each data set five x-values were randomly
drawn from a uniform distribution over (0, 1), and the corre-
sponding y-values were drawn from a Gaussian distribution of
known variance σk and mean µk = m xk + c. In this way we
know the “true” values of the model parameters m and c, which
we attempt to recover. Following the notation of Section 2, the
parameters of interest are ~θ = (m, c), and the hyperparameters
for the two data sets are ~α = (α1, α2).

In this simple case, where the number of data sets, mea-
surements and parameters is small, one could determine the
posterior distribution (Eq. (1)) by evaluating the likelihood
function and prior distributions on a grid. However, this
method scales geometrically with the number of free param-
eters and exponentially with the number of grid points, and
can quickly become impractical to evaluate. Instead, in this
work the posterior distributions of the parameters and hyperpa-
rameters (if present) are obtained using Monte-Carlo Markov-
Chains (MCMC). Specifically, we use the default settings in the
PyMC (Patil et al., 2010) framework, which uses a Metropolis-
Hastings sampling of the prior distributions. In this way, the
marginalized posterior distributions for each parameter are re-
covered from the traces of the MCMC runs, and the evidence
integrals are determined from the trace of the likelihood func-
tion (Kass, 1995; Raftery, 2007). Weinberg (2010) points out
that using the mean or harmonic mean of the likelihood func-
tion can produce spurious results if there is a lot of variance
in the likelihood, but we have checked the evidence ratios are
consistent with his quadrature formulation.

In the following subsections we investigate the behaviour of
the original hyperparameter and hyperparameter matrix method
in comparison to the standard non-hyperparameter method. We
consider three different cases, as listed in Section 3.1-3.2. The
arrangement of these case studies is similar to that of HBL02,
though we add the case of correlated data sets. This facilitates
readers to directly compare the original hyperparameter method
and our hyperparameter matrix method. For ease of compari-
son, the Bayes’ factor from each of the different cases is pre-
sented in Table 2.

In all cases the prior distributions on the slope m and intercept
c are uniform over the interval (0, 2), and the prior for hyperpa-
rameters is Pr(α) = exp(−α) in the range (0, 10) 4. Recall that a

4The range of values are chosen in order to give enough sampling space for

hyperparameter of unity is equivalent to no additional weight-
ing, removing the effects of the weights. As such, it is natural
to use prior distributions for the hyperparameters which give a
mean of one, preferring an analysis with no re-weighting (as did
in HBL02). For Pr(α) = exp(−α), it is a properly normalized
prior function (

∫ ∞
0 Pr(α)dα = 1) with mean value equal to unity

(
∫ ∞

0 Pr(α)αdα = 1). Therefore in the following we will adopt
such prior function, and thus confirm that our results of Bayes’
factor are consistent with the values given by HBL02.

The posterior distributions for the parameters of interest are
obtained by O(105) MCMC steps, with a burn-in of 5000. We
denote the non-hyperparameter method as hypothesis H0, with
the likelihood given by Eq. (9). H1 is reserved for the original
hyperparameter method, appropriate for data sets with no cor-
relation, and whose likelihood is given by Eq. (14). Finally, we
denote the hyperparameter matrix method as H2, whose like-
lihood is given by Eq. (21), which allows for correlated data
sets.

3.1. Accurate error-bars and no systematic error
3.1.1. Independent data sets

In this first case, both data sets D1 and D2 are drawn from the
correct model m = 1, c = 1, with a noise rms of σ1 = σ2 = 0.1.
From the experimental side, both data sets are (correctly) as-
sumed to have an rms of 0.1 in the likelihood, or CS 1 = CS 2 =

0.01. The two data sets and the underlying model are shown
in the left panel of Fig. 1, with the middle panel depicting
the posterior distributions Pr(m, c|D,Hi) from the standard non-
hyperparameter analysis (H0) and the original hyperparameter
analysis (H1), and the right panel showing the posterior distri-
butions of the hyperparameters, Pr(~α|D,H1). In this case both
hyperparameters are consistent with unity, indicating that the
hyperparameter method is not playing an important role in pa-
rameter estimation.

Both hypotheses contain the true parameter values (m, c) =

(1, 1) within the 1σ confidence level, however the Bayesian ev-
idence ratio

Pr(D|H1)
Pr(D|H0)

= 0.61 (23)

indicates that the introduction of hyperparameters is marginally
disfavoured. Here we see one of the powerful results of a
Bayesian approach to combining data sets: the Bayes’ factor of-
fers a simple but distinct method for model selection (Jeffreys,
1961; Kass, 1995). The preference of H0 is not surprising in
this case, since both experiments “estimated” the correct vari-
ance in the underlying distributions, σ1 = σ2 = 0.1.

3.1.2. Correlated data sets
In this section we apply the hyperparameter matrix method,

but where the data sets are (anti) correlated at the 10% level,
ρ = CS 1S 2/

√
CS 1CS 2 = −0.1. As before, both data sets D1

and D2 are drawn from the correct model m = 1, c = 1, with
internal errors of σ1 = σ2 = 0.1. In addition, however, we

hyperparameters.
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Figure 1: Left: the two data sets D1 and D2, both drawn from a Gaussian distribution of mean µ = x + 1 and rms σ = 0.1. Middle: the posterior distributions
Pr(m, c|D,Hi) for the hyperparameter approach of HBL02 (H1, blue solid lines) and traditional, error-weighted approach (H0, red dashed lines) approach of
parameter estimation. Significance contours of 68.3%, 95.4% and 99.7% are shown. A black dot indicates the true values of the model parameters (m, c) = (1, 1).
Right: the posterior distributions of the hyperparameters Pr(~α|D,H1). Values of unity correspond to no re-weighting of the data sets, as expected in this case.

Figure 2: Left: same as Fig. 1 but two data sets have a correlation coefficient ρ = CS 1S 2/
√

CS 1CS 2 = −0.1. Middle: the posterior distributions Pr(m, c|D,Hi) for the
standard approach to parameter estimation (H0, red dashed lines) and the hyperparameter matrix method (H2, blue solid lines). Right: the posterior distribution of
hyperparameters Pr(~α|D,H2).

6



(correctly) assume a covariance between the two data sets of
CS 1S 2 = −1 × 10−3, a tenth of the variance of the two data sets.

With reference to Fig. 2 we see, again, that the correct model
parameters are consistent with both the original and hyperpa-
rameter matrix methods, but with an increased Bayesian evi-
dence factor of 2.56. This is weak support for the hyperparam-
eter matrix hypothesis (Table 1); however, even in this simplest
of examples, we begin to see that the extended hyperparameter
method provides a better fit to the correlated data sets than the
non-hyperparameter method.

3.2. Inaccurate error-bars and no systematic error
3.2.1. Independent data sets

In this case the data sets D1 and D2 are drawn from the same
distributions as in Section 3.1.1, but in the parameter estima-
tion procedure, we assume the values of σ1 = 0.02 (underes-
timated by a factor of 5) and σ2 = 0.1 in the likelihood func-
tion. In the frequentist approach to parameter estimation, this
underestimation of the noise in D1 would over-weight its’ con-
tribution to the parameter fits. With reference to Fig. 3, we see
that the standard non-hyperparameter approach also underesti-
mates the noise in the parameter fits, so the true value is well
outside the 3σ confidence level. The original hyperparameter
approach, H1, is consistent with the true parameter values at
the 3.5σ level and the Bayesian evidence ratio between the two
approaches is 2.5 × 104, heavily favouring the hyperparameter
approach. It should be noted that this value is very consistent
with the Bayes’ factor obtained by HBL02 in the same case
(sec. 6.2 in HBL02).

3.2.2. Correlated data
In this case we draw the two data sets with a correlation co-

efficient of ρ = CS 1S 2/
√

CS 1CS 2 = 0.01, so the off-diagonal
component of the covariance matrix in the joint likelihood be-
comes CS 1S 2 = 2 × 10−5. A comparison of the two posteriors
in Fig. 4 reveals very different distributions, with the standard
non-hyperparameter method being tightly constrained about the
maximum but inconsistent with the true value. This is a conse-
quence of the artificially low noise reported for the data set D1.
As before, the Bayesian evidence strongly favours the hyperpa-
rameter matrix approach (8.3 × 1011), and a comparison to the
evidence ratio for the case with no correlation between data sets
(Section 3.2.1) reveals that the hyperparameter matrix approach
deals better with correlated data sets.

3.2.3. Interpretation
Let us now understand the values of the hyperparameters. In

both cases of correlated and uncorrelated data sets, the joint
constraint of hyperparameters reveal α1 ' 0.05, and α2 ' 1
(right panels of Figs. 3 and 4). Recalling that the hyperparam-
eters act to rescale the error vector ~x → ~x/

√
α, and that the

error reported for data set D1 was underestimated by a factor of
5, we observe that the error recovered by the hyperparameters
is σ1/

√
α1 ' 0.1, close to the true value. Broadly, since α1 is

most likely less than α2, the average effect of the hyperparame-
ters is to reduce the reported weight of the first data set relative
to the second.

To show the importance of the generalized hyperparameter
(matrix) method, we redo the analysis ignoring the data set co-
variance, CS 1S 2 = 0, as would be done in the original hyperpa-
rameter method, despite the fact that the data were drawn from
a correlated distribution. A comparison of the evidence for the
two cases gives a Bayes’ factor of 1.46, so recognizing the data
sets having a covariance is a weakly-favoured hypothesis. That
is, the hyperparameter method (H1) is strongly favoured over
the standard joint analysis (H0), and the hyperparameter matrix
method (H2) is weakly favoured over the original hyperparam-
eter method (H1) when errors are mis-reported and correlation
between data set is present. In Sec. 3.4, we will sample the
correlation strength ρ and show that our hyperparameter matrix
approach provides more reliable fits than the original method of
HBL02.

3.3. Accurate error-bars with a systematic error

We have seen that the hyperparameter matrix approach to
combining data sets provides better model fitting than the stan-
dard approach when the reported error bars differ from the true
underlying error. This is true for both the case of uncorrelated
and correlated data sets. In this section we explore another issue
that can corrupt a joint analysis of data sets: systematic errors.
We introduce a systematic error into the data set D1 by draw-
ing its “observed” data from a straight line with m = 0.5 and
c = 0.5, while D2 is still drawn from m = 1, c = 1.

3.3.1. Independent data sets
Figure 5 shows the two data sets D1 and D2 together with the

underlying straight line models from which they were drawn
(left panel). The systematic differences of the two models are
quite apparent, which is reflected in the posterior distribution of
the hyperparameter analysis Pr(m, c|D,H1) (middle panel, blue
solid lines). Pr(m, c|D,H1) clearly indicates a bimodal distribu-
tion, recovering the underlying models (m, c) = (0.5, 0.5) and
(m, c) = (1, 1) at the 2σ level. In contrast, the standard non-
hyperparameter approach does not indicate the presence of a
systematic difference between the two data sets, and fails to re-
cover either of the models with any significance. The result of
the joint constraints clearly reports a wrong parameter space,
outside the input values by more than 3σ confidence level. The
evidence ratio of 6.1 × 1012 heavily favours the original hyper-
parameter approach.

3.3.2. Correlated data sets
In this case, we compare the non-hyperparameter likelihood

analysis (H0) with the hyperparameter matrix approach when
a systematic is present in one of the data sets, and there is
a correlation between the two with coefficient ρ = 0.01 (i.e.
CS 1S 2 = 1 × 10−4). The posterior distributions recovered in this
situation are shown in Fig. 6, with the similar result that the
hyperparameter approach reveals a bimodal distribution, indi-
cating the presence of a systematic difference in the data sets.
The Bayes’ factor comparing H2 to H0 is 1.5 × 1015.

Right panels in Figures 5 and 6 show the marginalized distri-
bution of hyperparameters α1 and α2. One can see that since the
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Figure 3: Left: same as Fig. 1, but with the reported error bars on data set D1 underestimated by a factor of 5. Middle: the posteriors Pr(m, c|D,Hi) corresponding
to the standard approach to parameter estimation (H0, red dashed lines) and the hyperparameter method (H1, blue solid lines). Right: the posterior distribution of
hyperparameters Pr(~α|D,H1).

Figure 4: Left: same as Fig. 3 (D1 underestimated error by a factor of 5) but with a correlation coefficient ρ = CS 1S 2/
√

CS 1CS 2 = 0.01 between two data sets.
Middle: the posteriors Pr(m, c|D,Hi) for the standard (H0, red dashed lines) and hyperparameter matrix (H2, blue solid lines) approach of parameter estimation.
Right: the posterior Pr(~α|D,H2) distributions of the hyperparameters.
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Figure 5: Left: the two data sets D1 and D2 with a systematic difference. One set is drawn from a Gaussian distribution of mean µ = 1
2 (x + 1) and rms σ = 0.1, the

other from µ = x + 1, σ = 0.1. Middle: the posteriors Pr(m, c|D,Hi) corresponding to the standard approach of parameter estimation (H0, red dashed contours) and
the hyperparameter approach (H1, blue solid contours). Right: the posterior distribution of hyperparameters Pr(~α|D,H1).

accurate systematic correlated Bayes’
error bars error data sets Factor

Y N N 0.6
Y N Y 2.6
N N N 2.5×104

N N Y 8.3×1011

Y Y N 6.1×1012

Y Y Y 1.5×1015

Table 2: Ratio of Bayes’ evidence factors of the hyperparameter analysis to the
standard non-hyperparameter analysis under varying cases of systematic errors,
inaccurate error bars, and correlated data sets. The last column is Bayes’ factor
K (Eq. (3)). We calculate this K factor with the original hyperparameter method
(H1) over standard non-hyperparameter analysis (H0) for uncorrelated data sets,
and the hyperparameter matrix method (H2) over standard Gaussian likelihood
analysis (H0) for correlated data sets. Note that throughout the calculation we
adopt the exponential prior on hyperparameters (Pr(α) = exp(−α)).

two data sets have systematic errors, the constraints on hyper-
parameters have two branches. In each branch, one parameter
takes an ordinary value while the other is close to zero. This is
a consequence of the presence of a systematic, since the error
is reduced by ignoring one of the data sets entirely instead of
combining them jointly.

3.4. The improvement on the original hyper-parameter method

The hyperparameter matrix method we propose here is the
most general method which can be used to combine arbitrary
number of multi-correlated experimental data. This greatly
breaks up the limitation of the original hyperparameter method
(Lahav et al. (2000) and HBL02) which can only deal with mul-
tiple independent data sets. It is always important, to include all

Figure 7: The difference between logarithmic Bayesian evidence (the factor
BE is defined as Eq. (2)) as a function of the correlation strength ρ. ρ is sam-
pled from 0 to −0.9 with each step −0.1. ∆ ln BE is equal to the value of the
Bayesian evidence with our hyperparameter matrix method to consider full co-
variance between data sets, minus the value of Bayesian evidence from the
original hyperparameter method (ignore the correlation between data sets). For
the specific experiment, please refer to Sec. 3.4.
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Figure 6: Left: same as Fig. 5 but two data sets have a correlation coefficient ρ = CS 1S 2/
√

CS 1CS 2 = 0.01. Middle: the posteriors Pr(m, c|D,H0) corresponding to
the standard approach of parameter estimation (H0, red dashed lines) and the hyperparameter matrix method (H2, blue solid lines). Right: the posterior distribution
Pr(~α|D,H2) of the hyperparameter matrix method.

of the correlation information between data sets to obtain cor-
rect parameter values and justify the goodness of fit.

To see the importance of our method, we design an illustra-
tive experiment to demonstrate this. We generate two data sets
with N = 5. For each data set, we generate the samples with
mean 1.0 and 0.0 with Gaussian error σ = 0.1 but correlated
between the two data sets. We take the correlation strength ρ as
0.0, −0.1, −0.2,..., −0.9.

Then we use these correlated data sets to do a parameter
estimation. We first use our hyperparameter matrix method,
which considers the full covariance matrix between two data
sets. Then in order to check the behaviour of the original hy-
perparameter method, we ignore the correlation part of the two
experiments and treat them as individual data sets. We calculate
the Bayesian evidence value (Eq. (2)) for both cases, and obtain
the difference between the two Bayesian evidence (BE) values.

In Fig. 7, we plot the difference between BE value for our hy-
perparameter matrix method and for the original hyperparam-
eter method. First, one can see that when ρ = 0.0, the two
methods are the same one so ∆ ln(K) = 0. But as the correla-
tion strength increases, the ∆ ln(K) increases as well, indicat-
ing that the hyperparameter matrix method provides better and
better fits than the original hyperparameter method. This can
be understood as the danger of ignoring correlation between
data sets, since the model becomes inadequate to fit the data
if the correlation is not included. In Fig. 7, one can see that
if |ρ| > 0.1, the Bayes’ factor becomes “Substantial”, and if
|ρ| > 0.4, the Bayes’ factor becomes “Decisive”. This strongly
indicates that when combining multiple correlated data sets, it is
very necessary to use our hyperparameter matrix method rather
than the original hyperparameter method.

4. Conclusion

In this paper we have reviewed the standard approach to pa-
rameter estimation when there are multiple data sets. This is
an important aspect to most scientific enquiries, where multiple
experiments are attempting to observe the same quantity. In the
context of a Bayesian analysis, the data can also be used for
model selection and tests of the null hypothesis. We reviewed
the original hyperparameter method of HBL02 for combining
independent data sets, showing how it can overcome inaccu-
rate error bars and systematic differences between multiple data
sets.

Here we developed the hyperparameter matrix method for
the case of correlated data sets, and we have shown that it is a
preferred model to the standard non-hyperparameter approach
of parameter estimation. We rigorously prove that the hyper-
parameter matrix likelihood can be greatly simplified and be
easily implemented. From this form of the likelihood, we can
recover the simple case of no hyperparameters where all of the
data sets have equal weights. As well, the original hyperpa-
rameter approach is recovered in the limit of no inter-data set
covariance (CS iS j = 0 if i , j), so our likelihood function pro-
vides a generalized form which covers hyperparameter and non-
hyperparameter analysis, as well as correlated and uncorrelated
data sets.

We test this statistical model by fitting two data sets to a
straight line, and looked at the consequences of mis-reported
error bars, as well as systematic differences between corre-
lated data sets. In all cases, with the assistance of Bayesian
evidence, we find that the hyperparameter matrix method is
heavily favoured over the traditional joint analysis. By using
an illustrative example to calculate the difference of Bayesian
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evidence value between the hyperparameter matrix method,
and the original hyperparameter method, we demonstrate that
the Bayes’ factor becomes very substantial (decisive) if |ρ| is
greater than 0.1 (0.4). This suggests that for the case where two
experiments are strongly correlated, our hyperparameter matrix
method is heavily favoured over the original hyperparameter
method.

The method proposed here can be used in a variety of as-
trophysical systems. In the context of cosmology, when cos-
mic variance is a common component to all large-scale obser-
vations, the data sets drawn from the same underlying density
or temperature field will be correlated to some degree. For in-
stance, in the study of CMB where multiple data sets drawn
from the same region of the sky are combined (such as Planck
(Planck results XVI., 2013), WMAP (Hinshaw et al., 2013),
SPT (Hou et al., 2012) and ACT (Sievers et al., 2013)), it is nec-
essary to consider the correlation between data sets since they
follow the same underlying temperature distribution. Therefore
our method can be an objective metric to quantify the poste-
rior distribution of cosmological parameters estimated from the
CMB. In addition, in the analysis of the galaxy redshift surveys
for cosmic density and velocity fields, when combining two sur-
veys data drawn from the similar cosmic volume, the cosmic
variance between different data sets should also be considered
as a part of the total covariance matrix since they all follow
the same underlying matter distribution. In the future survey
of 21 cm, if two or more surveys sample the neutral hydrogen
in the same (or close) cosmic volume, the correlation between
surveys should also be considered when combining data sets.
In this sense, our hyperparameter matrix method provides an
objective metric to quantify the probability distribution of the
parameters of interest when multiple data sets are combined.

In summary, when combining correlated data sets, the hy-
perparameter matrix method can provide an unbiased and ob-
jective approach that can wisely detect and down-weight any
unaccounted experimental errors or systematic errors, in this
way it provides the most robust and reliable constraints on as-
trophysical parameters.
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Appendix A. Theorem: positive-definiteness of the hyper-
parameter covariance matrix

The generalized form of the likelihood function for the hy-
perparameter analysis in the presence of correlated data sets
(Eq. (20)) must satisfy several properties in order to serve as
a probability density function. In particular, the generalized hy-
perparameter covariance matrix C = P�C̃ (Eq. (17)) must have
positive determinant, and must be invertible. However, since

the matrix P is a function of the hyperparameters ~α which, in
principle, vary from zero to infinity, the positive definiteness
and invertibility of C are not immediately clear.

The following theorem guarantees the feasibility of inverting
the total covariance matrix C, and the positive definiteness of
the determinant.

Theorem: The likelihood function of combining N corre-
lated data sets with hyperparameter matrix, i.e. Eq. (20) is
equivalent to

Pr(D|~θ, ~α) =

 N∏
i=1

(
αi

2π

)ni/2
 1
√

det C̃
exp

(
−

1
2
~xT

(
P̂ � C̃−1

)
~x
)
, (A.1)

where ni is the dimension of the ith data set, C̃ is the covari-
ance matrix between N data sets without the inclusion of hy-
perparameter (Eq. (7)), � is the element-wise product (same
as Eq. (19)), and P̂ is the “Hadamard inverse” of the P matrix
(see Appendix B).

We first prove the inverse relation,

C−1 ≡
(
P � C̃

)−1

= P̂ � C̃−1. (A.2)

Proof. (1) Let us multiply matrices
(
P � C̃

)
and

(
P̂ � C̃−1

)
,

then take the block element (i, j) of the matrix, i.e. “i, j, k” are
the block element which can take any value between (1, ...,N)[(

P � C̃
) (

P̂ � C̃−1
)]

i j

=
∑

k

(
P � C̃

)
ik

(
P̂ � C̃−1

)
k j

=
∑

k

(
C̃ik ∗ (αiαk)−1/2

) (
C̃−1

k j ∗
(
αkα j

)1/2
)

=
∑

k

(
C̃ikC̃−1

k j

) (
α j/αi

)1/2

= (δi j)Ini×n j

(
α j/αi

)1/2

= (δi j)Ini×ni , (A.3)

where in the second step, we use the property of block matrix
product. The final line of Eq. (A.3) indicates that, only if i = j,
the product is an ni ×ni identity matrix, otherwise it is all zeros.
Thus we prove the inverse relation (Eq. (A.2)). �

Next, let us prove the determinant relation

det(C) = det
(
P � C̃

)
= det C̃ ∗

 N∏
i=1

α−ni
i

 , (A.4)

where C is given by Eq. (17), C̃ is given by (Eq. (7)) and ni is
the dimension of the ith block matrix.

Proof. (2) In Appendix C, we have proved that a matrix of
type C̃ (7) follows the determinant Eqs. (C.3)-(C.7). We now
use Eqs. (C.3)-(C.7) to prove Eq. (A.4). From Eq. (C.3), we
have

det(C) =

N∏
k=1

det
(
α(N−k)

kk

)
= det

(
α(N−1)

11

)
∗ det

(
~α(N−2)

22

)
∗ ...

∗ det
(
α(1)

N−1,N−1

)
∗ det

(
α(0)

NN

)
, (A.5)
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where the α matrix stands for Eqs. (C.4)-(C.7) but replacing A
matrix for C matrix.

We then apply the same equation for the covariance matrix C̃

det C̃ =

N∏
k=1

det
(
α̃(N−k)

kk

)
= det

(
α̃(N−1)

11

)
∗ det

(
α̃(N−2)

22

)
∗ ...

∗ det
(
α̃(1)

N−1,N−1

)
∗ det

(
α̃(0)

NN

)
, (A.6)

where the α̃ matrix stands for Eqs. (C.4)-(C.7) but replacing A
matrix with C̃ matrix.

Now we compare the last terms in Eqs. (A.5) and (A.6).
Since α0

NN is indeed CNN as given by Eq. (C.4), we have

det
(
α(0)

NN

)
= det

(
α−1

N C̃NN

)
= α−nN

N det
(
C̃NN

)
= α−nN

N det
(
α̃(0)

NN

)
. (A.7)

We then calculate the ith term; following Eq. (C.4), we have

det
(
α(N−i)

ii

)
= Cii − σi,i+1 (CN−i)−1 ηi+1,i

= Cii −

N∑
m=i+1

N∑
n=i+1

Cim (C)−1
mn Cni. (A.8)

By using Eq. (A.2), we obtain

(C−1)mn = (αmαn)1/2(C̃−1)mn . (A.9)

Therefore we have

det
(
α(N−i)

ii

)
= α−1

i C̃ii −

N∑
m=i+1

N∑
n=i+1

(αmαi)−1/2

× C̃im(αmαn)1/2 (C)−1
mn (αiαn)−1/2Cni

= α−1
i

C̃ii −

N∑
m=i+1

N∑
n=i+1

C̃im

(
C̃
)−1

mn
C̃ni


= α−1

i det
(
α̃(N−i)

ii

)
. (A.10)

Thus, by mathematical induction, we have proved that all of the
terms in Eqs. (A.5) and (A.6) follow Eq. (A.10). Therefore the
relationship between Eqs. (A.5) and (A.6) is

det(C) = det(C̃) ∗

 N∏
i=1

α−ni
i

 , (A.11)

i.e. we have proved Eq. (A.4). �
Combining Proofs (1) and (2), we have shown that, in gen-

eral, when combining multiple correlated data sets with hyper-
parameters, the inverse and determinant of the covariance ma-
trix follow Eqs. (A.2) and (A.4). Therefore the likelihood func-
tion for combined correlated data sets is Eq. (A.1).

Equation (A.1) greatly simplifies the computation of hyper-
parameter likelihood, since one can always calculate the covari-
ance matrix for correlated data sets C̃ and then use “element-
wise” product � to calculate the covariance matrix with hyper-
parameters, and then numerically solve for the maximum like-
lihood solution.

Appendix B. Hadamard product and inverse

The Hadamard product is the element-wise product of any
two matrices with the same dimension. If A and B are the two
matrices with the same dimension m×n, the Hadamard product
A ◦ B is a matrix with the same dimension with element (i, j)
equal to

(A ◦ B)i j = Ai j · Bi j. (B.1)

The Hadamard inverse is an inverse operation which requires
that each element of the matrix is nonzero, so that each element
of the Hadamard inverse matrix is

Âi j = A−1
i j . (B.2)

Here we use a hat to denote the Hadamard inverse. Therefore
the Hadamard product of an m × n matrix and its Hadamard
inverse becomes a unit matrix where all elements are equal to
one, i.e.

A ◦ Â = (J)m×n. (B.3)

Appendix C. A lemma for determinant

We will use the following Lemma to prove the determinant
relation of the covariance matrix of hyperparameter likelihood,
Eq. (A.4).

Let A be an (Nt × Nt) real or complex matrix, which is parti-
tioned into N × N blocks, each of size is ni × n j,which satisfies

N∑
i=1

ni = Nt. (C.1)

A =


(A11)n1×n1

(A12)n1×n2
... (A1N)n1×nN

(A12)T
n2×n1

(A22)n2×n2
... (A2N)n2×nN

... ... ... ...
(A1N)T

nN×n1
(A2N)T

nN×n2
... (ANN)nN×nN

 . (C.2)

The determinant of A is given by

det A=

N∏
k=1

det
(
α(N−k)

kk

)
, (C.3)

where α(k) is defined as

α(0)
i j = Ai j

α(k)
i j = Ai j − σi,N−k+1

(
Āk

)−1
ηN−k+1, j, (k > 1), (C.4)

where vectors σT
i j and ηi j are defined as

σi j =
(
Ai j, Ai, j+1, ... Ai,N

)
, (C.5)

ηi j =
(
Ai j, Ai+1, j, ... AN, j

)T
, (C.6)

and Āk is defined as

Āk =


AN−k+1,N−k+1 AN−k+1,N−k+2 ... AN−k+1,N
AN−k+2,N−k+1 AN−k+2,N−k+2 ... AN−k+2,N

... ... ... ...
AN,N−k+1 AN,N−k+2 ... AN,N

 .(C.7)
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A particular case of this lemma, where each block matrix has
the same dimension n × n, is shown as a theorem in Powell
(2011). Here we extend the theorem shown in Powell (2011) to
a more general case where each diagonal block matrix may have
a different size, so the off-diagonal matrix can be a rectangular
matrix.

Proof. We start from the simplest case, where N = 2, i.e. A
is a 2 × 2 symmetric block matrix

A =

(
A11 A12
AT

12 A22

)
, (C.8)

where A11 and A22 are p × p and q × q semi-positive definite
symmetric matrix respectively, and A12 is a p × q matrix. The
determinant of A is

det A = det
(
A11 − A12A−1

22 AT
12

)
det (A22)

= det
(
A22 − A12A−1

11 AT
12

)
det (A11) . (C.9)

We can immediately check that this is indeed the simplest case
for Eqs. (C.3)-(C.7) where N = 2. Since if N = 2, Eq. (C.4)
gives det A= det

(
α(1)

11

)
det

(
α(0)

22

)
, where α(0)

22 = A22, and α(1)
11 =

A11 − A12A−1
22 AT

12, which is exactly Eq. (C.9).
Now we can use Eq. (C.9) for the N = 2 case to inductively

derive general equations (C.3)-(C.7). Let us treat matrix (C.2)
as a 2-by-2 matrix, where all of the matrices A22,A33, ...ANN are
grouped into a big matrix Ã22 :

A =

(
A11 Ã12

ÃT
12 Ã22

)
, (C.10)

where

Ã22 = .


A22 A23 ... A2N

AT
23 A33 ... A3N

... ... ... ...
AT

2N AT
3N ... ANN

 , (C.11)

is exactly ĀN−1 (Eq. (C.7)), and

Ã12 =
(

A12 A13 ... A1N

)
, (C.12)

is exactly the definition of σ12 (Eq. (C.5)). In addition,

ÃT
12 =

(
A21 A31 ... AN1

)T
, (C.13)

is exactly η21 (Eq. (C.6)). Now applying the second line of
Eq. (C.9) to this matrix, one has

det (A) = det
(
Ã22

)
∗ det

(
A11 − Ã12Ã−1

22 ÃT
12

)
= det

(
Ã22

)
∗ det

(
A11 − σ12Ā−1

N−1η21

)
. (C.14)

Now proceeding to det
(
Ã22

)
, again, Ã22 can be separated into

two big matrices as

Ã22 =

(
A22 Ã23

ÃT
23 Ã33

)
, (C.15)

where

Ã33 = .


A33 A34 ... A3N

AT
34 A44 ... A4N

... ... ... ...
AT

3N AT
4N ... ANN

 = ĀN−2, (C.16)

and

Ã23 =
(

A23 A24 ... A2N

)
= σ23,

ÃT
23 =

(
A32 A42 ... AN2

)T
= η32, (C.17)

therefore

det
(
Ã22

)
= det

(
Ã33

)
∗ det

(
A22 − Ã23Ã−1

33 ÃT
23

)
= det

(
Ã33

)
∗ det

(
A22 − σ23Ā−1

N−2η32

)
,(C.18)

so combining Eqs. (C.18) and (C.14), we have

det (A) = det
(
Ã33

)
∗ det

(
A22 − σ23Ā−1

N−2η32

)
∗ det

(
A11 − σ12Ā−1

N−1η21

)
. (C.19)

Repeating this operation until breaking down the first term, one
can eventually reach ANN , therefore the determinant of A is

det (A) = det (ANN)

∗ det
(
AN−1,N−1 − AN−1,N Ā−1

1 AN,N−1

)
∗ ... ∗ det

(
A22 − σ23Ā−1

N−2η32

)
∗ det

(
A11 − σ12Ā−1

N−1η21

)
. (C.20)

By comparing the brackets in Eq. (C.20) with Eq. (C.4), one
can find that each term is exactly the same, therefore the deter-
minant is given by Eq. (C.3). �
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