
Building an Archive with Saada

L.Michela, C.Motcha, H.N.Nguyenb, F.X.Pineaua

aObservatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11
rue de l’Université, F-67000 Strasbourg, France

bIGBMC - CNRS UMR 7104 - Inserm U 964 1 rue Laurent Fries / BP 10142 / 67404
Illkirch CEDEX / France

Abstract

Saada transforms a set of heterogeneous FITS files or VOTables of various

categories (images, tables, spectra . . .) in a database without writing code.

Databases created with Saada come with a rich Web interface and an Applica-

tion Programming Interface (API). They support the four most common VO ser-

vices. Such databases can mix various categories of data in multiple collections.

They allow a direct access to the original data while providing a homogenous

view thanks to an internal data model compatible with the characterization axis

defined by the VO. The data collections can be bound to each other with per-

sistent links making relevant browsing paths and allowing data-mining oriented

queries.

1. Introduction

Back in 2003, the Survey Science Consortium (SSC) of the XMM-Newton

ESA mission was looking for a database system able to store the information ex-

tracted from the data files generated by the reduction pipeline. A specificity of

that pipeline is to compute cross correlations between X-ray sources and a set of

about 200 archival catalogues and to pack them within the dataset delivered by

the SSC to ESA and to the scientific community. The SSC database system de-

veloped at Strasbourg has been designed to make the most from these correlation

links. It must store the links in a persistent way; it must restore the uniqueness

of archival sources correlated several times with different X-ray sources. It must

Preprint submitted to Journal of LATEX Templates August 21, 2018

ar
X

iv
:1

40
9.

03
51

v1
 [

as
tr

o-
ph

.I
M

]
 1

 S
ep

 2
01

4

allow the users to filter their selections of X-ray sources either with their intrinsic

characteristics or with the characteristics of correlated archival sources. In other

terms, the system must support a hierarchical model of linked data. The first

solution adopted was based on an object oriented database management system

(namely O2) now withdrawn. We then decided to build our own tool based on

open software. Considering that these features could be interesting for other

teams or missions we decided to offer it to the community. This tool is named

Saada (Système Automatique d’Archivage de Données Astronomiques). Saada

is a tool generating local databases (SaadaDBs) containing multiple collections

of heterogeneous data.

The paper starts with an overview of Saada. In section 3 we explain the

way heterogeneous data are stored within a SaadaDB. Section 4 adopts a user

point of view explaining briefly how to run the software. It is followed by a look

inside a SaadaDB.

2. Saada at a Glance

The purpose of Saada is to make as easy as possible the implementation of

archives containing a large variety of data products.

The name Saada is related to both the project as a whole and to the database

installer. The generic name for a database created by the Saada installer is a

SaadaDB which can be later renamed adequately. In this paper, the term Saada

refers to the global feature of the project whereas SaadaDB refers to the features

of a particular database created with Saada.

A SaadaDB is a standalone database including a storage system, a Web

interface and a data loader. It doesn’t need to be connected to some remote

service. It can be deployed on a laptop or on a big server. It can even work

without network. Saada can be used on Linux, MacOS, or MS Windows.

A SaadaDB has the ability to integrate images, spectra, tables or any other

files possibly linked to each other. It is managed with either a graphical tool or

by scripts and doesn’t require writing code. The data loader extracts keywords

values from input data files (FITS or VOTables) and stores them within a

2

relational database. Data can be seen either as tables of native values or as

instances of a data model compliant with the VO.

Data stored in the SaadaDB can be accessed in different ways:

1. As a relational database whose tables have been filled with data extracted

from the input files by the SaadaDB data loader. This database can

be accessed by any application having a connectivity with a relational

database management system (RDBMS).

2. As a VO resource providing a data access through one of the following

protocols (SIAP [1], SSAP [2], CSP or TAP [3]).

3. As a Web application.

Figure 1: SaadaDB modules

Figure 1 sketches the main modules constituting a SaadaDB:

• The relation database (RDBMS), entirely managed by the SaadaDB, can

however host data not managed by that SaadaDB.

• The repository is a file folder used by the SaadaDB as a storage area.

• The WEB interface, based on the Saada API, runs as a simple JEE [4]

application (servlets only) hosted by a Tomcat server.

• VO interfaces are managed by servlets which are actually part of the WEB

interface

Data can be queried in a classical way (sky search, keyword filtering) or with

more accurate queries as shown in the example below.

3

Select all XMM detections located near ABEL 426

and having a flux greater than 1e-13

and correlated with

at least one Simbad source

having an obj_type

containing the string ‘Radio’

This example uses the computed correlation links mentioned in the intro-

duction to filter data. The exact syntax is detailed in section 4.5.

3. Storing Collections of Heterogeneous Data

Figure 2: Data loading flowchart

3.1. Input data files - Data categories

The basic job of the data loader consists in extracting keywords values from

the input files and to arrange them in the database in a way that makes as easy

as possible to reply to user requests (fig 2).

Saada distinguishes two file categories:

1. Those from which one can extract data, currently FITS files and VOTa-

bles.

2. The flat-files from which no data is extracted. They are just stored as file

references.

Saada data model supports five categories of data whose definition matches the

common meaning in astronomy (see table 1). Data files are manually affected

to one category. As the structure of the input files can be rather complex

(multi-extension files) a selection must be done on the set of keywords to be

loaded. The keywords of the primary header (FITS) or of the first data table

4

Category Formats Extension
FLATILE Any No

MISC FITS, VOTable Any
SPECTRUM FITS, VOTable Table or image

IMAGE FITS Image
TABLE+ENTRY FITS, VOTable Table

Table 1: Product Categories

(VOTable) are always taken. The data-loader can also take the keywords of

another FITS extension, which can be either automatically detected or given

by the administrator. By default, the extension loaded is the first matching the

specified category.

For the TABLE category, row values are also stored in a sub category named

ENTRY. The row storage works exactly the same way to that of the others

categories, taking the column definition instead of the keywords. Pixels or table

data are never stored for the others categories. They can however be read to

extract the boundaries of the space or energy coverage.

3.2. Saada Collections

In a SaadaDB, data are distributed in separate collections created by the

administrator. A collection is an abstract container, identified by a name. Col-

lections creation and the choice of the collection where to store a given dataset

are completely free. It is a design issue that must be sorted out independently of

the products input format. The collection boundaries match the natural scope

of the SaadaQL queries (see 4.5).

Collections are split in six sub-containers, one per category plus the one for

the ENTRY. All have the same twofold internal structure:

1. The class level storage made of the tables containing the values extracted

from the file (except for the FLATFILEs).

2. The collection level storage containing one table with computed values

compliant with the Saada data model.

This data model includes the most relevant parameters in three axis (Space,

Time, Energy) of the VO characterization model [5] and some observation pa-

5

rameters. It is a subset of the ObsCore model [6]. It is always possible to add

by hand user-defined columns(see 4.1).

All class level tables are joined within the collection level table making the

retrieval of all fields from both levels easy.

3.3. From Heterogeneous Native Data to Homogeneous Mapped Data

3.3.1. Storing Heterogeneous Data at Class Level

The way native data are stored at class level is a bit tricky. By default,

data products having the same format are all put in the same class level table.

There is one different class level table for each format identified in the set of

loaded files. This rule is actually a bit more flexible since the administrator

can force different products to be stored together in the same class. In this

case, a class merger adds new columns to the table and when a type conflict

occurs (same keywords with different data-type) the type is downcasted toward

the more general one (from boolean to text). The class level tables use a name

given by the administrator or by default the name of the first loaded file. The

choice of merging data classes is made by the administrator. This operation

mode might be relevant in some cases such as storing in one class data from the

same origin (e.g. a reduction software).

3.3.2. Storing Mapped Data Stored at Collection Level

Mapping class level storage to data model is very challenging because there

are rarely one to one links between a keyword and a data model field:

• The vocabulary used to name a given quantity is very heterogenous;

• The quantities stored in datafiles are not always complete (e.g. missing

unit). The missing data must then be searched in keyword description or

in the comments included within the data file or even in the documentation

of the software used to generate the product;

• A data model quantity can result from a computation of multiple values

(e.g. applying a threshold on spectrum flux defined with WCS keywords);

• Relevant information can be spread over multiple extensions or resources.

6

To be accomplished automatically with a good success rate, this operation

should be based on a knowledge database identifying the origin of the data

product and returning the correct mapping rules. This issue is likely one of the

major justification of the Virtual Observatory.

In order to minimize the risk of mismatch when setting the data model

fields, the data mapper of Saada is currently limited to basic identifications.

Data model quantities are either searched among native keywords or given as

constant values. Sometimes they must be formatted (date) or a unit conversion

must be applied (energy range).

Saada offers two different ways to do this mapping:

1. The Autodetection mode: The data loader explores the keywords to find

out the relevant quantities. It can furthermore interpret WCS keywords

or column definitions of a data table or even image pixels. This mode is

fine for classical products, but it can lead to irrelevant values when applied

to more exotic data.

2. The Mapped mode: The administrator can set a data model field with a

constant value or with the name of a keyword from which the value will

be taken. If the keyword is not found, the field is no set, but the process

continues.

The two modes are run in parallel with priority level rules set by the adminis-

trator.

3.4. The Saada Relationships

In a SaadaDB, data collections can be linked to each other by persistent

relationships. A relationship is a named entity joining the data of one given

category in a given collection to the data of another category in another collec-

tion (or the same). The links in a relationship can be qualified with numerical

values, the qualifiers, which are part of the relationship definition. Links are

reported on the WEB interface and can be used to refine a data selection. They

are also used by the download facility to pack associated data with the selected

ones.

7

4. Saada in Action

4.1. Creating a SaadaDB

A graphical installer achieves the creation of a new SaadaDB. The adminis-

trator must set some local resources (location, RDBMS. . .), a global unit system

for the spectral range and a global space frame. Columns can also be added to

the collection level model. All functionalities used by the future SaadaDB are

checked at creation time.

4.2. Managing a SaadaDB

Figure 3: Admintool

All management operations can be controlled from the graphical tool. The

main functionalities are summarized in the table 2.

Most of these operations can also be run by ant utility tasks. The XML

description of the tasks can be downloaded from the graphical tool. These

scripts allow easy repetition of a management sequence on a wider scale.

8

Collection Creating, removing and describing collections
Data Loading data, removing data, indexing data, editing data-

loader filters
Meta data Editing UCDs [7], units or description attached to the data

columns.
Relationship Creating, populating, indexing removing relationships.
VO resources Editing VO registry records for specified data collections,

creating a TAP service or creating an ObsTap resource.

Table 2: Admintool Features

Figure 4: Web Interface

4.3. The Web Interface

The Web interface [8] is packed within the distribution. It must be de-

ployed (or re-deployed) after the database schema1 has been modified. It can

be deployed from the graphical administration tool, or more safely by a script

invoking the tomcat deployer. It is a Rich Internet Application (RIA) built

with JQuery and allowing an easy browsing of the database content. Very com-

plex queries can be setup with an editor stacking individual constraints edited

within the graphical interface. The final query string can be refined by hand.

1Structure of the database: classes and collections in the case of Saada.

9

The interface proposes a shopping cart feature where the user can store any sort

of data in a downloadable ZIP ball. Following a request made by the GBOT

project [9], the shopping cart content can be forwarded toward a third-party

server. This feature is used to feed a reduction pipeline with data selected from

the WEB interface. Finally, data can be sent from the Web interface to other

VO clients by using a Web profile SAMP connection [10].

4.4. Deploying the VO Services

Saada supports four VO protocols served each by one (or more) specific

servlet(s). Simple protocols are restricted to their relative Saada category (EN-

TRY for the cone search, IMAGE for SIAP and SPECTRA for SSA). Publishing

a simple service with Saada does not require any action. The service can be

connected once the Web interface is deployed just by building proper URLs.

The fourth protocol is TAP. It can endorse any data table. There is only

one TAP service attached to a SaadaDB. The service is set from the graphi-

cal administration tool by selecting the data collections to be published. The

TAP SCHEMA (see this A&C issue) is automatically updated. Joins between

collection storage and class storage tables are taken into account. The TAP

implementation uses the CDS/ARI library developed by G. Mantelet [11].

4.5. The Query Language

Saada has its own query language, SaadaQL, where the clause SELECT columns

FROM table is replaced with SELECT category FROM class IN collection.

The returned columns are not specified since the SaadaQL query always re-

turns a set of identifiers 2, which are used by the cache to provide the actual

data (see 5.2). SQL WHERE statement is replaced with four clauses with each

one having its own meaning. They are implicitly ANDed.

The query example given in section 2 is rephrased below with the SaadaQL

syntax.

2Saada relies on an internal identifiers mechanism encoding the location of any record

10

Table 3: SaadaQL Features

WherePosition {...} List of search positions
WhereAttributeSaada {...} SQL WHERE statement filtering on

collection level fields and on class
level fields if the scope of the query
is restricted to one class.

WhereRelation {...} List of patterns applied to the vectors
formed by the links starting from the
queried collection

WhereUCD {...} Filter expressed with Unified Con-
tent Descriptor (UCD), a formal vo-
cabulary for astronomical quantities

Select ENTRY From * In CATALOGUE

WherePosition {

isInCircle("49.94666+41.51305",1,J2000, ICRS)}

WhereAttributeSaada {

_ep_8_flux > 1e-13}

WhereRelation {

matchPattern { CatSrcToArchSrc,

AssObjClass{SimbadEntry},

AssObjAttSaada{ _obj_type LIKE ’%Radio’ }}}

SaadaQL is very intricate with the Saada inner data model. It has been designed

to be both concise and expressive to be easily readable on a Web page and

modifiable by the user (see 4.3). In some extent, the use of SQL statements

keeps SaadaQL familiar for SQL or ADQL users.

5. Inside a SaadaDB

Basically, a SaadaDB is a Java layer on top of a relational DBMS. This Java

code takes in charge most of the bothering database management (meta data

management, data consistency. . .) and let the users focus on its content. The

code has been designed in such a way that Saada can operate with as few OS

setup as possible. For this reason, Saada does not use Tomcat features such as

the connection spooler. It actually works with its own spooler well adapted to

the specificities of the different supported storage systems.

11

5.1. The Storage System

In theory the Java layer could run with any RDBMS through JDBC [12] but

in reality, each system having its own SQL dialect, the application must remain

aware to the RDBMS it is connected to. That is why Saada only supports three

DBMS:

1. PostgreSQL (PSQL) 8+: high performances, high scalability;

2. MySQL 5.1+: no real advantage compared to PSQL, but widely used in

many places;

3. SQLite: limited concurrency 3 features, but no installation, just a library

packed within the Saada distribution.

In order to remain RDBMS agnostic Saada does not use specific extension such

as PGSphere for PSQL. The sky search is based on Healpix [13]. All coordinates

are stored with their pixel number (level 14 hard coded). A few SQL procedures

are also used.

5.2. Java Objects and Persistence

Figure 5: Cache

Data access is a bit more sophisticated than a simple JDBC callback. It is

based on a tight coupling between the SQL storage and the Java classes. Each

3Ability of multiple users to access data at the same time

12

data record is modeled by a Java class. Basically the Java super-classes models

the collection level storage whereas the class level storage is modeled by business

classes (sub-classes). Business classes are built on the fly by the data loader and

dynamically linked with the application. The instances of the data classes are

stored in a cache using the SoftReference mechanism [14]. This allows the cache

to use the whole space available in the memory heap while leaving it available for

the garbage collector. When a record is loaded in memory, only the collection

level attributes are queried. The class level attributes are all retrieved at the

first attempt to access one of them.

The cache mechanism is very efficient to feed the Web interface, which dis-

plays on the same page a lot of heterogeneous objects (objects of different

classes). It is however bypassed when the query result must be downloaded

in a VOTable or in a ZIP archive. In this case, the data are read in streaming

mode and the response is formatted on the fly.

5.3. Table Indexation

By default, the data loader removes all indexes of the concerned tables before

to start and builds them again after the job is complete. All columns are

indexed by default. This behaviour can be disabled avoiding unnecessary index

computation. Indexes can be individually managed from the administration

tool.

5.4. Relationship Indexation

When the project started, the SQL system couldn’t efficiently process queries

using filters on linked data, especially when they contain numerical predicates

associated with a cardinality constraint such as shown by the example below:

Select all XMM detections

correlated with

more than 3 Simbad source

located at less than 3 arcsec

We took over this limitation by developing a query engine dedicated to the

processing of relationship patterns. It is based on hash maps stored in files and

loaded on demand in memory.

13

Catalogue ingestion 500 to 5000 rows/sec Depends on the column
number.

Spectrum ingestion 1 to 5/sec Depends on the keyword
number.

Images ingestion 1 to 3/sec Includes the vignette
generation.

Flat fules ingestion few 1000/sec
Source selection 1arcmin
around a position

100ms Done on a catalogue of
5,000,000 sources

Sources selection com-
bining filtering on both
collection and class level

2sec require a join between
both tables (5,000,000 X
1,000,000 rows)

Source selection by filter-
ing on relationship links

2sec The actual relation con-
tains 10,000,000 links

Table 4: Order of magnitude of the performance of a SaadaDB (measured on the XCatDB)

5.5. Performance

The flexibility of Saada prohibits to define performance criteria which are

both simple and relevant. A SaadaDB can host a lot of collections with very

different sizes. Data collections can host various number of classes, they can be

linked with relationships (see 3.4) having a very different number of qualifiers

and links. The data ingestion rate depends on the complexity of the collection

data mapping. The global performance of a SaadaDB is also driven by the effi-

ciency of both underlying RDBMS and JDBC driver. Taking this into account,

the values given below, issued from the experience with the XCatDB [15], must

be considered as orders of magnitude4.

The volumetry limitation also depends on the RDBMS. We consider that

Saada easily supports data collections containing a few tens of millions of entries.

Beyhond, some tuning must be done such as a replication at collection level of

the most used class level attributes.

44Core CPU at 2.4GHz, 16GbRAM, PSQL 8.4, Scientific Linux 6

14

6. Future and Prospects

After a first beta release [16], the concept of Saada has been adapted to the

bio-computing paradigm in the Bird project led by Hoan Nguyen Ngoc [17].

Both projects are still developed and supported, but separately.

The project evolution is mainly driven by user requests. The versioning is

managed in nightly build mode.

Saada has undergone a major evolution in 2014 with the convergence of the

inner data model toward the Obscore data model. The query engine now sup-

ports the search by regions. In parallel, a part of the code has been refactored

and the website has been redesigned. The foreseen evolutions will be focused on

both data loader and VO interfaces. The flexibility of the data loader will be

improved with the possibility of taking data from more than one FITS extension

or one VOTable resource and also with the implementation of arithmetic opera-

tions for the mapping between the native data and the collection level data. In

collaboration with the CDS, we are working on the design of the knowledge base

mentionned in 3.3.2. The support of the VO interfaces will also be improved

with the implementation of new standards such as SIAP-V2 and Datalink and

with the possibility for the administrator to do a fine-tuning on the content of

the VO responses. Looking further ahead, we are thinking about improving the

modularity and the flexibility of the WEB interface.

7. Conclusions

The initial goal of Saada was to pack into a single multiplatform tool two

basic functionalities: data management and the WEB interface deployment.

The VO interface quickly became the third pillar of the tool. This ambitious

way to integrate a large set of features probably contributed to give an image of

a product leaving little room for the user setup. That, combined with difficulties

encountered by some users to install PostgresQL or MySQL, slowed down the

usage of Saada. These matters have been overtaken by the development of the

script mode and the support of an embedded database in addition to dozen of

15

other improvements. Since then, Saada has showed it robustness especially with

the XCatDB hosting millions of data files from the XMM-Newton mission. It

remains one of the few tools able to transform a set of data files into a database,

to publish it in the VO and to provide a Web interface with a few clicks. Among

other projects and thanks to its ability to handle heterogeneous data collection,

Saada has been chosen by the CDS to host data attached to the Vizier catalogs.

References

References

[1] D. Tody, R. Plante, P. Harrison, IVOA Recommendation: Simple Image

Access Specification Version 1.0, ArXiv e-printsarXiv:1110.0499.

[2] D. Tody, M. Dolensky, J. McDowell, F. Bonnarel, T. Budavari, I. Busko,

A. Micol, P. Osuna, J. Salgado, P. Skoda, R. Thompson, F. Valdes, the

Data Access Layer working group, IVOA Recommendation: Simple Spec-

tral Access Protocol Version 1.1, ArXiv e-printsarXiv:1203.5725.

[3] P. Dowler, G. Rixon, D. Tody, IVOA Recommendation: Table Access Pro-

tocol Version 1.0, ArXiv e-printsarXiv:1110.0497.

[4] E. J. et al., The Java EE 6 Tutorial, http://docs.oracle.com/javaee/

6/tutorial/doc/.

[5] M. Louys, A. Richards, F. Bonnarel, A. Micol, I. Chilingarian, J. McDowell,

the IVOA Data Model Working Group, IVOA Recommendation: Data

Model for Astronomical DataSet Characterisation, ArXiv e-printsarXiv:

1111.2281.

[6] M. Louys, F. Bonnarel, D. Schade, P. Dowler, A. Micol, D. Durand,

D. Tody, L. Michel, J. Salgado, I. Chilingarian, B. Rino, J. D. Santander-

Vela, P. Skoda, IVOA Recommendation: Observation Data Model Core

Components and its Implementation in the Table Access Protocol Version

1.0, ArXiv e-printsarXiv:1111.1758.

16

http://arxiv.org/abs/1110.0499
http://arxiv.org/abs/1203.5725
http://arxiv.org/abs/1110.0497
http://docs.oracle.com/javaee/6/tutorial/doc/
http://docs.oracle.com/javaee/6/tutorial/doc/
http://arxiv.org/abs/1111.2281
http://arxiv.org/abs/1111.2281
http://arxiv.org/abs/1111.1758

[7] S. Derriere, N. Gray, R. Mann, A. Preite Martinez, J. McDowell, T. Mc

Glynn, F. Ochsenbein, P. Osuna, G. Rixon, R. Williams, IVOA Recom-

mendation: An IVOA Standard for Unified Content Descriptors Version

1.1, ArXiv e-printsarXiv:1110.0525.

[8] L. Michel, P. Bantzhaff, C. Frère, G. Mantelet, F. X. Pineau, A New Web

Interface for Saada, in: P. Ballester, D. Egret, N. P. F. Lorente (Eds.),

Astronomical Data Analysis Software and Systems XXI, Vol. 461 of Astro-

nomical Society of the Pacific Conference Series, 2012, p. 415.

[9] C. Barache, S. Bouquillon, T. Carlucci, F. Taris, L. Michel, M. Altmann,

VO-Compatible Architecture for Managing and Processing Images of Mov-

ing Celestial Bodies : Application to the Gaia-GBOT Project, in: D. N.

Friedel (Ed.), Astronomical Data Analysis Software and Systems XXII,

Vol. 475 of Astronomical Society of the Pacific Conference Series, 2013, p.

251.

[10] M. Taylor, T. Boch, M. Fitzpatrick, A. Allan, L. Paioro, J. Taylor, D. Tody,

IVOA Recommendation: SAMP - Simple Application Messaging Protocol

Version 1.3, ArXiv e-printsarXiv:1110.0528.

[11] G. M. et al., TAP Library, http://cds.u-strasbg.fr/resources/doku.

php?id=taplib.

[12] O. Inc., Lesson: JDBC Introduction, http://docs.oracle.com/javase/

tutorial/jdbc/overview/index.html.

[13] W. O’Mullane, A. J. Banday, K. M. Górski, P. Kunszt, A. S. Szalay, Split-

ting the Sky - HTM and HEALPix, in: A. J. Banday, S. Zaroubi, M. Bartel-

mann (Eds.), Mining the Sky, 2001, p. 638. doi:10.1007/10849171_84.

[14] M. Pawlan, Reference Objects and Garbage Collection, http://pawlan.

com/monica/articles/refobjs/, [Online; accessed 06-May-2014] (1998).

[15] C. Motch, L. Michel, F. X. Pineau, The XCATDB: a Complex Database

Based on Saada, in: R. A. Shaw, F. Hill, D. J. Bell (Eds.), Astronomical

17

http://arxiv.org/abs/1110.0525
http://arxiv.org/abs/1110.0528
http://cds.u-strasbg.fr/resources/doku.php?id=taplib
http://cds.u-strasbg.fr/resources/doku.php?id=taplib
http://docs.oracle.com/javase/tutorial/jdbc/overview/index.html
http://docs.oracle.com/javase/tutorial/jdbc/overview/index.html
http://dx.doi.org/10.1007/10849171_84
http://pawlan.com/monica/articles/refobjs/
http://pawlan.com/monica/articles/refobjs/

Data Analysis Software and Systems XVI, Vol. 376 of Astronomical Society

of the Pacific Conference Series, 2007, p. 699.

[16] L. Michel, H. N. Nguyen, C. Motch, How to Publish Local Data Into the

VO with Saada, in: C. Gabriel, C. Arviset, D. Ponz, S. Enrique (Eds.),

Astronomical Data Analysis Software and Systems XV, Vol. 351 of Astro-

nomical Society of the Pacific Conference Series, 2006, p. 25.

[17] H. Nguyen, L. Michel, J. Thomson, O. Poch, Heterogeneous biological data

integration with declarative query language, IBM J. RES. and DEV. 58.

Useful Links

http://saada.unistra.fr

http://xmmssc-www.star.le.ac.uk/

http://www.ivoa.net/

http://ant.apache.org/

http://www.sqlite.org/

https://bitbucket.org/xerial/sqlite-jdbc

http://pgsphere.projects.pgfoundry.org/

Acknowledgements

We would like to thank A. Nebot Gomez and F. Grisé (Strasbourg Observa-

tory) for reviewing this paper, Taro L. Saito (Treasure Data, Inc) for developping

and supporting the SQLite JDBC driver and all both contributors and users of

Saada.

18

	1 Introduction
	2 Saada at a Glance
	3 Storing Collections of Heterogeneous Data
	3.1 Input data files - Data categories
	3.2 Saada Collections
	3.3 From Heterogeneous Native Data to Homogeneous Mapped Data
	3.3.1 Storing Heterogeneous Data at Class Level
	3.3.2 Storing Mapped Data Stored at Collection Level

	3.4 The Saada Relationships

	4 Saada in Action
	4.1 Creating a SaadaDB
	4.2 Managing a SaadaDB
	4.3 The Web Interface
	4.4 Deploying the VO Services
	4.5 The Query Language

	5 Inside a SaadaDB
	5.1 The Storage System
	5.2 Java Objects and Persistence
	5.3 Table Indexation
	5.4 Relationship Indexation
	5.5 Performance

	6 Future and Prospects
	7 Conclusions

