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Abstract

In this paper we present results from the Mapping Dark Mattercompetition that expressed the weak lensing shape
measurement task in its simplest form and as a result attracted over 700 submissions in 2 months and a factor of
3 improvement in shape measurement accuracy on high signal to noise galaxies, over previously published results,
and a factor 10 improvement over methods tested on constant shear blind simulations. We also review weak lensing
shape measurement challenges, including the Shear TEstingProgrammes (STEP1 and STEP2) and the GRavitational
lEnsing Accuracy Testing competitions (GREAT08 and GREAT10).
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1. Introduction

Image analysis in cosmology is a process that in-
volves taking pixelised and noisy images of objects, ex-
tracting information from them, and using these to in-
fer properties of the large scale structure of the Uni-
verse. This is of paramount importance for the en-
deavour of understanding dark matter and dark energy,
those phenomena whose mass-energy account for ap-
proximately 26% and 70% of the Universe respectively
and whose fundamental nature is entirely unknown. Of
particular interest isweak lensingthat has been identi-
fied as one of the primary tools with which we can map
the large scale structure and evolution of the Universe

Email address:tdk@roe.ac.uk (T. D. Kitching)

(see reviews e.g. Albrecht et al., 2006; Peacock et al.,
2006; Massey, Kitching, Richard, 2010; Bartelmann &
Schneider, 2001; Weinberg et al., 2012 and references
therein).

Weak lensing is the effect whereby the integrated
mass along the line of sight acts to induce an additional
ellipticity to the observed light profile of an object, this
additional ellipticity is called shear. Distant galaxies
have a measurable additional ellipticity, because of the
large amount of integrated mass along the line of sight,
but local objects do not. If we can therefore measure
the ellipticity of distant galaxies we can make statistical
statements about the properties of the intervening dis-
tribution of matter; see Figure 1. These statements are
necessarily statistical because for an individual object
the additional ellipticity cannot be disentangled from
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the object’s ‘intrinsic’ (un-sheared) ellipticity; and to
make matters worse galaxies are inherently elliptical.
However we can assume that on average there is no pre-
ferred orientation for galaxies in the Universe, that the
mean ellipticity should be zero if there were no inter-
vening mass. Therefore by averaging over many galax-
ies any residual shear can then be attributed to the mat-
ter distribution. In general cosmological information
comes not from the mean but the variance of the ellip-
ticities (see Kitching et al., 2011).

In fact there are two ‘modes’ of using weak lensing
data to investigate the dark matter distribution, both are
statistical but treat the data and observations in different
ways. One is a ‘holistic’ measure (we use the word in
its meaning of emphasising the importance of the whole
and the interdependence of its parts) where power spec-
tra/correlation functions are created: one averages over
all galaxies in a survey and determines the two-point (or
more generally n-point) functions and compares these to
theoretical predictions. The second approach is ‘atom-
istic’ where we also look at individual mass peaks and
make dark matter maps: one identifies individual ob-
jects of interest (e.g. galaxy clusters) and generates a
visual map of dark matter.

The task of measuring the weak lensing effect is par-
ticularly difficult because of noise in the images, pixeli-
sation, and that we do not know in detail how to model
the surface brightness distribution of undistorted galax-
ies. As a result of these difficulties many methods have
been proposed to measure the weak lensing effect, either
using direct model-independentpixel-level extraction of
parameters (for example Kaiser, Squires & Broadhurst,
1995; Melchior et al., 2011) or using forward modelling
of the galaxies (for example Kuijken, 1999; Refregier
2003; Miller et al., 2007; Kitching et al., 2008).

Importantly for weak lensing, to test the ability of
a method to extract the shear information from an en-
semble of galaxies we cannot take an observation that
removes the shear effect, and because of the statistical
nature of the shear information we cannot compare the
fidelity of an individual object’s inferred shear against
what we would have hoped to observe in the presence of
perfect data. This is in contrast to photometric redshifts
for example where a spectra of an individual object can
be taken and compared to the photometrically inferred
redshift estimate. To test shape measurement methods
we therefore must have accurate simulations whose aim
is to test fidelity of these methods under controlled con-
ditions.

Within the weak lensing community a number of
such simulations were started and run as competi-
tions/challenges (the Shear TEsting Programme, STEP;

Heymans et al. 2006, Massey et al. 2007) under blind
conditions, which are a necessity so that algorithms can-
not be tuned with calibration factors. Reaching beyond
the weak lensing community these competitions were
opened up to public participation (the GRavitational
lEnsing Accuracy Testing, GREAT08 and GREAT10;
Bridle et al., 2009, Kitching et al., 2012) in an effort
to spawn new ideas and approaches to this algorith-
mic challenge. In this article we will review previous
shape measurement challenges, we will also present re-
sults from the most widely participated and success-
ful of these to date, the Kaggle1 Mapping Dark Mat-
ter challenge, which attracted over 700 submissions in
two months and saw an improvement in the achieved
accuracy of shape measurement methods by a factor 3,
over previously published results (Bernstein, 2010 and
Gruen et al., 2010), and a factor 10 improvement over
methods tested on blind simulations.

This article is arranged as follows in Section 2 we
will review shape measurement challenges STEP and
GREAT, and we refer the reader to Kitching et al.,
(2011, 2012) for a full review of the GREAT10 chal-
lenge. In Section 3 we will present the Mapping Dark
Matter challenge simulations and results as well as some
commentary on the nature of setting crowdsourcing
challenges in astronomy. In Section 4 we will discuss
conclusions.

2. Shape measurement challenges

Because we can never observe the unlensed elliptic-
ity of objects algorithms that attempt to measure shear
parameters must be tested against simulations. In these
simulations a set of simulated galaxies are sheared by
a known amount and this true/simulated shear is com-
pared to the measured shear provided by the algorithms.

There are five publicly available lensing simula-
tions from three related programmes: STEP (the
Shear TEsting Programme), GREAT (the GRav-
itational lEnsing Accuracy Testing) and Mapping
Dark Matter (more information can be found here
http://www.greatchallenges.info). We sum-
marise the main features of these simulations in Table
1. In the following we describe the challenges STEP1,
STEP2, GREAT08 and GREAT10 to provide context
for the Mapping Dark Matter results in Section 3; these
descriptions are pedagogical and describe the broad mo-
tivation behind each of the simulation efforts.

1http://www.kaggle.com/c/mdm
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Figure 1: This figure is reproduced from the GREAT10 Handbook(Kitching et al., 2011) with permission. As light propagates through the large
scale structure of the Universe an additional ellipticity ‘shear’ is imprinted on a galaxy’s observed image. We observesheared galaxies in the
presence of a blurring convolution kernel (PSF), pixelisation from detectors and in the presence of noise. Shape measurement algorithms must be
designed that measure the ellipticity of galaxies in the presence of these effects to enable the statistical properties of the shear field to be inferred.
Star images can be used to estimate the PSF, since they approximate a point-source response to the convolution and pixelisation but are not affected
by the shear.

STEP1 STEP2 GREAT08 GREAT10 MDM
Galaxy Model Simple Complex(shapelets) Simple Simple(non-coelliptical) Simple(non-coelliptical)
PSF Model Simple(w/diff. spikes) Realistic(ground) Simple(Moffat) Simple(Moffat) Simple(Moffat)
PSF Knowledge Unknown Unknown Known(functions) Known(functions) Known(pixelated images)
PSF Variation Constant(unknown) Constant(known) Constant(known) Variable(known) Variable(known)
Object Positions Random(unknown) Random(unknown) Gridded(known) Gridded(known) Postage Stamps(known)
Shear Variation Constant Constant Constant Variable Constant
Ngalaxies ∼ 0.7x106 ∼ 2x106 30x106 50x106 0.1x106

Metrics m, c, q m, c m, c, Q08 m, c, q, Q10, α, β,M,A RMSE,m, c, Q08
Publicity Shear Community Shear Community Open Open Open
Teams(Subs) 14 16 9(50) 9(100) 73(760)
Reference Heymans et al. 2006 Massey et al. 2007 Bridle et al. 2010 Kitching et al. 2012 this article

Table 1: A summary of the main features of each shape measurement challenge to date (c. 2012), the metrics used in the analysis and some details
of the accessibility of the challenge.Ngalaxies is the approximate number of galaxies in the simulations. The number of teams is shown and the
number of submissions in brackets.
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2.1. STEP1

STEP1 was run in 2005 as the first programme in
which shear simulations were generated and tested by
shape measurement methods under blind conditions. It
was inspired by the fact that there had been at least nine
attempts to measure the amplitude of the variance of
matter fluctuations on 8 Mpc scales,σ8, from differ-
ent data sets using different shape measurement meth-
ods and it was found that these measurements disagreed
at the 2-σ level. It was suspected that shape measure-
ment methods may be the source of this discrepancy and
it was decided that methods should be tested in a blind
way.

The motivation behind this first challenge was to gen-
erate realistic astronomical images, using existing im-
age generation software at the time, and ask the ques-
tion:

Can existing pipelines (including source detection, PSF
estimation and shape measurement) measure shear

accurately enough for current (c. 2006) data?

The software used wasSkyMaker2. The images con-
tained simulated galaxies and stars distributed in a real-
istic manner across the images. The galaxies had mod-
els that contained bulge plus disk components. There
were six separate types of PSF that were constant across
the images, the PSFs had models that ranged from cir-
cular Moffat functions to more complex functions that
included diffraction spikes. Participants were not told
the PSF, or whether it was constant or varying across
the field of view, but asked to estimate it as they would
in real data.

For each of the five PSF types there were 5 differ-
ent values of the shear (constant across the images)
with γ1 = (0.0, 0.005, 0.01, 0.05, 0.1) andγ2 = 0.0.
This meant for each different PSF type, and 5 different
shear values, there were 30 different data sets, and each
set consisted of 64 different images. Participants were
asked to measure the shear in each image, there were no
rules on which galaxies should be used or how the shear
was estimated, and indeed participants were not even
told how many galaxies there were or whether objects
were stars or galaxies. The challenge then was to test
the entire pipeline from source detection and identifica-
tion through to PSF estimation and shape measurement,
in this respect the simulations were relatively realistic
and well matched to the question posed. The submitted
shear values, that were kept constant in each image were

2http://www.astromatic.net/software/skymaker

scored using a metric that related the true input shear to
the measured shear values

γM
i = (1+mi)γT

i + ci + qγ2
i (1)

for each shear componenti, with a ‘multiplicative bias’
m and a ‘constant bias’c; a perfect method would
achieve results consistent withm = 0 andc = 0. The
quadratic term differs from that used subsequently in
GREAT10 that usedqγi |γi |.

The STEP1 results (see Figure 2 for a selection)
demonstrated that the methods that were available at the
time achieved an accuracy that was sufficient for data
sets available at that time. However there was evidence
for strong selection effects, biases that changed depend-
ing on whether participants made false detections of ob-
jects, and some strong condition-dependent biases (for
example biases that varied in a non-obvious way as a
function of magnitude).

2.2. STEP2
STEP2 was the second in the series of community

challenges and was launched soon after STEP1. En-
couraged by the results of STEP1 the next ‘step’ was to
complexify the simulations to lend further credence to
the existing methods abilities to measure shear for data
that existed at that time (c. 2007). The key area that was
identified as being not realistic in STEP1 was that the
galaxy models used were simple sums of exponential
Sersic functions. At the same time a shape measure-
ment method ‘shapelets’ (Refregier, 2003; Massey &
Refregier, 2005) was developed that made use of sums
of 2D basis functions to model complex galaxy mor-
phologies, it was realised that this approach could also
be used to generate simulations where each galaxy was
constructed using shapelets. This enabled galaxies to
be simulated with spiral aims, star forming regions and
simulated merging and irregular galaxies, using the im-
age simulation codeSImage (Massey et al., 2005; Ferry
et al., 2008; Dobke et al, 2010).

As a further sophistication it was realised that “shape
noise” was a potentially dominating factor in shape
measurement accuracy determination, where the vari-
ance of the intrinsic (unsheared) ellipticities of galaxies
meant that a large number of simulations were needed
to reduce this term though Poisson statistics. To cir-
cumvent this issue it was realised that if galaxies were
simulated in pairs which had the same shear but intrin-
sic ellipticities with opposite signs then when averaging
the observed ellipticity over the pair the intrinsic ellip-
ticity contribution would cancel to first order. This is
captured in the following average over such a pair

γ̂ = [(eint + γ)unrotated+ (−eint + γ)rotated]/2 (2)

4
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Figure 2: These figures are reproduced from the STEP1 results(Heymans et al., 2006) with permission. The left panel showsthe multiplicative bias
magainst the variance on the constant biasc, methods that had a strong non-linear behaviour were circled and theirq values shown. The right hand
panel shows an example of how a particular methods true minusmeasured shear (‘KSB+ HH’, an implementation of Kaiser, Squires & Broadhurst,
1995) varied as a function of simulated i-band magnitude.

whereγ̂ is the estimated shear,eint the unsheared intrin-
sic ellipticity andγ the true shear, we show only first
order terms. This transforme→ −ecorresponds to a 90
degree rotation in the source image plane. This meant
that images came in pairs one rotated by 90 degrees be-
fore the shear was added and the other unrotated, but
participants were not aware which of the images was
the corresponding partner.

STEP2 had a similar simulation structure to STEP1,
there were 6 different PSF types, each was constant
across the field of view and had a complex profile, in
particular for STEP2 the PSFs were simulated by mea-
suring the PSF using the shapelet decomposition from
a real ground-based telescope Subaru. The 90 degree
rotated pairs meant that the number of images needed
per shear value was much smaller (the 64 images per
shear value in STEP1 were required to remove shape
noise) so that only 2 images (1 rotated/un-rotated pair)
were required per shear value. This meant that by keep-
ing the simulation size approximately the same many
more shear values could be investigated, which meant
the simulation could not be reverse-engineered. STEP2
contained 128 images per PSF which meant 64 shear
values per PSF and 128x6 images in total. All other re-
alistic effects from STEP1 were kept, except that partic-
ipants did not have to identify stars from galaxies in the
images. The metric used to evaluate methods in STEP2

was again them andc parameters defined for STEP1.
The STEP2 results (see Figure 3 for a selection) again

demonstrated that for the data available at the time (c.
2007) the shape measurement methods available were
sufficient. Similarly to STEP1 however there was no
method that performed well as a function of galaxy
magnitude and size.

2.3. GREAT08

In the conclusion of STEP2 it was not clear what as-
pect of the shape measurement methods were causing
the biases in particular regimes. There was also a shift
in focus in the community from an emphasis on param-
eters such asσ8 towards dark energy parameters as it
was becoming clear that weak lensing is a particularly
good way of determining dark energy properties. Sev-
eral authoritative reports were published in late 2006
highlighting this fact (Albrecht et al., 2006; Peacock
et al., 2006) such that by late 2007, when the STEP2
results were being scrutinised there was an new imper-
ative for weak lensing studies. These realisations, with
the fact that shape measurement biases were not under-
stood in detail, added a new impetuous to the task of
shape measurement. GRavitational lEnsing Accuracy
Testing 2008 (GREAT08) was then conceived where the
aim was to reduce the problem to its simplest expression
(however in fact there were simpler expressions found

5



Figure 3: These figures are reproduced from the STEP2 results(Massey et al., 2007) with permission. The left panel shows the m andc values
for each method that participated in STEP2. The right hand panel shows an example of how a particular methods (‘RM’, an implementation of
shapelets Massey & Refregier, 2005)m andc values varied as a function of simulated r-band magnitude and galaxy size.

subsequently, see Section 3) in order to determine if in
the simplest case shape measurement could work and
to determine how and why shape measurement methods
biases were arising.

An additional motivation was a further realisa-
tion that in fact the problem is not an ‘astronomi-
cal/cosmological’ problem but an image analysis prob-
lem that could be accessible to non-cosmologists, in
particular computer scientists. In this tradition the sim-
ulations were run as a competition (sponsored by PAS-
CAL3) with ‘winners’ that were awarded prizes. The
questions posed by GREAT08:

Can we measure shapes under ideal circumstances?
Why and how are shape measurement methods biased?

were qualitatively different to that posed by STEP, that
focussed on the direct usefulness of methods on simula-
tions that were as realistic as possible.

The key changes from STEP2 were to provide partic-
ipants with an exact prescription for the PSF, as a func-
tional form, to arrange galaxies on a grid with known
position and known type; source detection and identi-
fication were not part of the challenge. The challenge
again used constant shear values across an image and
the rotated-unrotated method for reducing the simula-
tion size. In order to encourage participation GREAT08

3http://www.pascal-network.org/

used a live leaderboard where, instead of methods sub-
mitting to the organiser (as in STEP1 and STEP2), the
submissions were uploaded to a server that automati-
cally computed a score. For this challenge a new metric
was created that was the inverse of the mean square er-
ror of the true and measured shear

Q08 ≡
10−4

〈(〈gm
i j − gt

i j 〉 j∈k)
2〉ik

(3)

where the averages were over the shear components and
the images in the challenge. This relates to the STEP
m andc in a simple way, but does not capture all useful
information, the metric is mostly sensitive toc, and is
dependent on any noise present in a method (see Kitch-
ing et al., 2008). This metric however does provide a
measure for a methods performance and meant that the
leaderboard feedback could not be reverse-engineered
to trivially calibrate methods in order to win the chal-
lenge. The numerator was defined such that methods
tested on STEP1 and STEP2 would haveQ08 <∼ 50 (see
Figure 9) and methods that were limited only statisti-
cally (by pixel-noise in the size of the simulated data
set) would achieveQ08 ≃ 1000.

GREAT08 was a success in its goals to attract non-
cosmologists to the problem in that the winner, and 2 out
of 9 teams, were computer scientists. Methods used pre-
viously in STEP performed at approximately the same
level. A number of clear trends were identified includ-

6
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ing that methods were biased in particular at low signal
to noise and for small galaxies (relative to the PSF size).
The best performing methods used the fact that the shear
was constant across each image to stack all galaxies to-
gether (either in real or Fourier space) to cancel out in-
trinsic ellipticity further and any noise, such that it was
not clear how these methods, whilst performing well in
this regime, were applicable to real data.

2.4. GREAT10

The conclusion of STEP1, STEP2 and GREAT08,
designed to test methods using constant shear simula-
tions was that the best method to do this was to stack
all the galaxies in the images. Unfortunately such a
method, stacking all galaxies in a survey, would not
be possible on real data because the shear is not con-
stant4; furthermore in real data the PSF is not constant
across images. In addition to these realisations it was
clear that the metrics used to gauge the performance of
methods needed to be more directly related to the quan-
tity of interest when using weak lensing for dark energy
measurements, and that a realistic spatially varying field
would enable full correlations with PSF quantities (el-
lipticity and size) to be made (as can be done in real
data).

To this end GREAT10 introduced the concept of a
variable shear simulation where both the shear field and
the PSF varied spatially across the field of view in a
realistic manner. This enabled a variety of new metrics
including a new quality factor that relates the measured
shearpower spectrumto the true power spectrum

Q10 = 1000
5× 10−6

∫
d lnℓ|C̃EE

ℓ
−CEE,γγ

ℓ
|ℓ2

(4)

in this case the numerator has a well defined meaning as
the value of the denominator that a shape measurement
method would need to measure the dark energy equa-
tion of state parameterw0 (Linder, 2003) in an unbiased
way. In addition the variable shear field still allows for
the constant-shearm, c andq parameters to be extracted
(one-point estimators of shear as opposed to spatially
variable ones) and some additional metrics defined in
Kitching et al. (2012). The full results of GREAT10 are
in Kitching et al. (2012).

4It is an open question whether stacking over small areas, in which
the shear is approximately constant is feasible, although no such at-
tempt was made on the GREAT10 data.

2.5. Other Public Challenges

There were several other challenges that were not
published but have been public in the time since STEP1
to the publication of this article (c. 2012). There have
been several incarnations of STEP beyond STEP1 and
STEP25.

STEP1 and STEP2 simulated data as they would ap-
pear from a ground-based telescope since most weak
lensing data at the time (and still now c. 2012) came
from ground-based telescopes. However, significant ef-
fort was also going into weak lensing surveys with the
Hubble Space Telescope (e.g. Schrabback et al., 2007;
Heymans et al., 2005; Massey et al., 2007). At the end
of STEP2, it was decided that a similar exercise should
be done to obtain a snapshot of the status of the field
of weak lensing shape measurement as it pertained to
space-based data. Space-data is of significantly higher
resolution than ground based data and thus presented a
unique set of both challenges and advantages. SpaceS-
TEP (or STEP3), as it was called, followed nearly the
same model as STEP2. The three groups who were most
active in publishing weak lensing results with space
based data all participated. Their methods were shown
to be sufficiently accurate for the size of the surveys
at the time; the SpaceSTEP results were quite similar
to the results of STEP2, and thus a separate paper was
never published.

STEP4 was very similar to GREAT08 in that simple
galaxy models were arranged on a grid, in fact the
GREAT08 image simulation code was a conversion
of that used for STEP4. Mirror-STEP was a smaller
project designed to test how the mirror size of a
telescope affected shape measurement, and Data-STEP
was a link for people to download and analyses existing
weak lensing data. In the period between GREAT08
and GREAT10 there was a new realisation of GREAT08
made ‘GREAT08 reloaded’.

This concludes the short review of previous shape mea-
surement challenges. We will now present results from
the Mapping Dark Matter competition in the remaining
sections.

3. Mapping Dark Matter

The aim of the Mapping Dark Matter competition
was to shift the focus of shape measurement challenges
away from verification of methods on a large amount of
realistic data to that ofidea generation. It was run as

5http://goo.gl/SVWQ6
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a competition in partnership with Kaggle6 for 2 months
from June 2011 to August 2011.

The emphasis on idea generation was conceived as
a new focus for a number of reasons: the participation
rate of previous challenges was low (of order 10 to 15
teams in total) and the methods tried by new teams were
either not directly usable on real data or based on exist-
ing methods (the winner of GREAT08 used a method
that was based on a method already published in Kui-
jken, 1999). The philosophy posed by the challenge was
not as a question to investigate where methods behaved
well or poorly, and not to investigate whether methods
can perform on current or future data, or in particular
regime. The goal was to open up the problem to as wide
a community as possible and to encourage open experi-
mentation of ideas,

To make shape measurement approachable enough that
experimentation is easy.

If it becomes easy to experiment, with useful feedback
with minimal investment in time then new ideas, which
previously may have been difficult to assess due to bar-
riers of entry, become manageable to try.

In formulating the challenge a number of guiding
principles were followed, based on the previous chal-
lenges (STEP1, STEP2, GREAT08, GREAT10)

1. There must absolutely be no jargon; no FITS im-
ages, no ‘functional forms’, one must not need to
know what a star or galaxy is or even why this mea-
surement is required.

2. The simulation must be small enough to download
anywhere in the world over the slowest plausible
connection; it should be storable on a USB stick
and accessible via a modem.

3. The prize must be desirable; in GREAT08 and
GREAT10 the prize was a piece of hardware (i.e. a
laptop or similar), however something more unique
may be more motivating (e.g. a visit to university
or attendance of a conference)7.

4. The question posed to participants, and the data
asked for submissions, must be as simple as pos-
sible.

5. Given the submission data the metric must be read-
able and understandable with no specialist knowl-
edge or jargon.

6http://www.kaggle.com
7Although there is a strong correlation between those challenges

with the most participants and the monetary reward for success, in
science we can offer something unique: the chance to contribute to
our endeavour to understand the Universe.

6. There should be minimal limitation on submission
rate.

7. There should be training data that enable partici-
pants to test their methods before submission.

8. The challenge must be blind (participants only use
the data made available to them)8. The training
data allows for testing in a controlled way, how-
ever if the simulation code is available during a
competition then arbitrarily large training sets may
be generated which would render results question-
able.

Working under these principles, in partnership with
Kaggle the challenge was formulated as described be-
low.

3.1. Description of the simulations

The Mapping Dark Matter challenge was similar to
STEP1 in that it uses a small number of constant shear
images, and simple galaxies models. The simulation
data were composed of 100,000 simulated galaxies,
each galaxy was presented on a separate PNG postage
stamp that was 48x48 pixels in size. For every galaxy
postage stamp there was a corresponding postage stamp
that contained a pixelated representation of the PSF (a
‘star’ image).

The 100,000 postage stamps comprised of three
groups these were

• Training Data: 40,000 galaxies, these had zero
additional shear and participants were provided
with the input ellipticities.

• Public Test Data: 20,000 galaxies, these had zero
additional shear and participants were ranked in
the live leaderboard according to their score on this
data alone.

• Private Test Data: 40,000 galaxies, these had an
additional shear ofγ1 = 0.01 andγ2 = 0.01, par-
ticipants were not ranked in the live leaderboard
according to their score on this data.

To reduce the shape noise contribution to ellipticity es-
timates we used the 90 degree rotation transformation
as used in STEP2 such that for every galaxy there was a
corresponding partner that had the same shear but a 90
degree rotated intrinsic ellipticity in each of the groups.

8This is less important for problems where the ground-truth is
knowna priori and the task is to develop algorithms to recover this in
the most efficient manner. But in science domains where the ground
truth is not known the risk is that algorithms are trained to recover
simulated input signals only.

8
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Figure 4: The simulation structure of Mapping Dark Matter.R andUR refer to the rotated and unrotated galaxy pairs respectively. The 60,000
galaxies in the test data were randomised to participants however the leaderboard feedback was provided only on the zero-shear group. The
leaderboard provided feedback through the RMS error of the ellipticity, and the total test data (including the sheared group) allows for the constant
shear metricsm, c andQ08 to be analysed after the challenge in this article.

The Test Data was randomised so that participants
downloaded a set of 60,000 galaxies and were asked to
upload results for all these galaxies, they were informed
that the score was based on 30% of the data. Partici-
pants were asked to provide a CSV file that contained
60,000 rows where the challenge was, for each galaxy
to measure the ellipticity as accurately as possible. The
ellipticity was parameterised bye1 ande2, defined as

e1 =
a− b
a+ b

cos(2θ)

e2 =
a− b
a+ b

sin(2θ) (5)

wherea andb are the semimajor and semiminor axes
of the ellipse andθ is the position angle. A definition
of ellipticity defined in terms of quadrupole moments
was also provided. Participants were scored during the
challenge using the root mean squared error between the
submitted ellipticity and the true ellipticity

RMSE= 〈(esubmitted− etrue)2〉1/2 (6)

where the average was over all galaxies with zero shear.
This metric was a measure of methods ability to mea-
sure the ellipticities of galaxies (without recourse to
shear), which is the first order requirement for a good
shape measurement method even though it does not
equate to the quantity of interest (the shear). This metric
was also readily understandable, and the public/private

split of the data allows meaningful scores to be returned
on data without shear, whilst at the same time enabling
an investigation into shear after the challenge. In Figure
4 we show a schematic of the simulation structure.

The simulated galaxies were bulge and disk mod-
els using the same intensity profiles presented in the
GREAT10 Galaxy Challenge article (Kitching et al.
2012). The PSF was different for every object where the
distribution of simulated PSF sizes and ellipticities were
taken from the Jarvis, Schecter & Jain (2008) model as
described in (Kitching et al., 2012). We summarise the
galaxy and PSF properties in Table 2.

3.2. Shape measurement results
The team DeepZot (authors Kirkby and Mar-

gala) won the challenge by using a mixture of
maximum likelihood fitting of simple models with
a neural net training method on the ellipticity
values (see Appendix A). We provide the data
used to create the results in this Section here
http://great.roe.ac.uk/data/mdm figures/.

In Figure 5 we show the RMSE values for each of
the top 15 team’s submissions, and highlight the top 3
team’s submissions. Comparison of the RMSE with the
quality factorQ08 shows a correlation, with a minimum
RMSE limited by the signal-to-noise of the simulations.
The best methods achieve aQ08 ≃ 5000; this is a fac-
tor of 2 to 3 times the highest quality factor achieved
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Galaxy Property Value
Postage Stamp Size 48x48 pixels
Signal-to-Noise Ratio 40
Disk Scale Radius 4.8 pixels
Ellipticity [0.0, 0.6] in e1 ande2

Star Property Value
Moffatβ 3
FWHM [3, 4] pixels
Ellipticity [0.01, 0.1] in e1 ande2

Table 2: A summary of the main parameters that defined the Galaxy
and PSF models in Mapping Dark Matter. The Galaxy elliptic-
ity distribution used was the same as for the GREAT10 Galaxy
challenge (equation 47 in Kitching et al. 2012), the PSF ellip-
ticities and sizes were sampled from the Jarvis Schecter andJain
model as in the GREAT10 Galaxy challenge. The signal-to-noise
was scaled to match the default SExtractor (Bertin & Arnouts1996)
flux auto/flux err auto parameter combination.

by methods on constant shear simulations before this
challenge: the best reported values published after the
GREAT08 challenge to this article areQ08 ≃ 3000 from
Bernstein (2010) andQ08 ≃ 1300 from Gruen et al.
(2010). The best methods achieve RMSE≃ 0.015 this
can also be compared to the benchmark we used SEx-
tractor (Bertin & Arnouts, 1996), the source detection
and shape measurement technique most widely used in
astronomy, that achieved RMSE≃ 0.086.

The RMSE andQ08 results are reflected in the STEP
parameter results. In Figures 6 and 7 we show the STEP
m andc values for the top 15 teams, and highlight the
entries submitted by the top 3 teams; and in Figure 8
we show how the meanm relates the the quality factor
Q08

9. We find that thec1 and c2 biases are approxi-
mately anti-correlated for most methods, which leads
to a partial cancellation when showing the average〈c〉.
The majority of methods have negativem1 and m2 as
well as negativec1 andc2. We find a general correlation
betweenQ08 and 〈m〉, methods that have a small bias
also tend to have a high quality factor but note thatQ08

is mainly sensitive toc only.
In Figure 9 we show the progression of theQ08 and

m parameters as a function of time for constant shear

9We calculate the STEPQ08 values usingQ08 = 10−4/〈(mγT +

c)2〉 ≃ 10−4/(〈m2γT,2〉 + 〈c2〉) = 10−4/((〈m〉2 + σ2
m)(〈γT 〉2 + σ2

γ) +
〈c〉2 + σ2

c). For STEP1 we have (〈γT 〉, σ2
γ) ≃ (0.033, 0.0018) and we

havem, σm andσc values available from Heymans et al. (2006), and
for STEP2 where the shears were sampled from a flat PDF with shears
less than|γ| < 6% we have (〈γT 〉, σ2

γ) ≃ (0.0, 0.00108) and we have
m, σm, c andσc values available from Massey et al. (2007); but note
that these are only approximations (and there is a term 2〈mcγ〉 in the
denominator that is zero for STEP1 and STEP2). For GREAT08 the
values are from Table 4 and Figure C1 (Rgp/Rp = 1.4) of Bridle et al.,
(2010) for ‘low noise’ and Table 5 and Figure C3 (Rgp/Rp = 1.4) for
‘real noise’.

simulations (publication dates for STEP1, STEP2 and
GREAT08 were May 2006, March 2007 and July 2010
respectively). We find that since the year 2000 methods
have improved in accuracy by approximately a factor 10
every approximately 3.5 years

log10(Q08) ≈
[year− 2000]

3.5
. (7)

This is similar to, but slightly shallower than, Moore’s
Law in computing10.

3.3. Methods

In Appendix A we describe several of the meth-
ods submitted to the Mapping Dark Matter challenge.
These innovate over shape measurement methods im-
plemented before this challenge in a number of ways
that we summarise here:

1. There is extensive use of training methods, in par-
ticular neural networks and Gaussian processes

2. There is use of ‘direct’ principal component analy-
sis (PCA) on the data; extracting the model or vec-
tors from the data rather thana priori choosing a
model

3. The use of standard ‘off the shelf’ statistical tools
from statistics and particle physics

Most methods employed some variety of model fit-
ting using combinations of Sersic functions or Gaussian
functions and used maximum likelihood methods to find
best fit parameter combinations. Other approaches in-
cluded an implementation of Spergel (2010) (submis-
sions by Sogo) and use of wavelets and curvelets (sub-
missions by Larbi). In Appendix A we describe several
methods, we refer to methods by the name of the team
in the leaderboard (see Figure 10). We refer to future
investigations where the individual tunable aspects of
these algorithms will be tested.

3.4. Astrocrowdsourcing

In Figure 10 we show the leaderboard at the end
of the challenge period. We highlight the number of
submissions, as well as the competitive submission be-
haviour of the participants which is evident in the sub-
mission dates and times. The majority of the partici-
pants were not experienced in astronomy or cosmology,
this marks a major change in the demonstrated accessi-
bility of weak lensing data analysis and is a successful

10We observe that the timescale for improvement is approximately
the length of a typical postdoctoral contract (c.2012).
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Figure 5: The RMSE and the quality factorQ08 for each of the submissions for the top 15 teams (gray points). We highlight the top 3 teams using
red, green and blue points. The right hand panel is a copy of the left hand panel except with an expanded x-axis scale (the region is denoted by the
vertical lines in the left hand panel).

Figure 6: The STEPmandc values forγ1 andγ2 for each submission from the top 15 teams (gray points), we highlight the top 3 team’s submissions
(red, green and blue points).
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Figure 7: The mean STEPm andc values, averaged overγ1 andγ2; we show these values for the top 15 team’s submissions (graypoints) and
highlight the top 3 team’s submission (red, green and blue points).
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Figure 8: The quality factorQ08 and the mean STEPm value; we show this for each submission from the top 15 teams,and also show the values
from STEP1, STEP2, GREAT08 (‘low noise’) and GREAT08 (‘realnoise’) for comparison. This compares each constant shear simulation to date.
The shaded regions indicateQ ≤ 300, 300< Q ≤ 1000 andQ > 1000 to help guide the reader. GREAT08 low noise was S/N= 100 and GREAT08
real noise was S/N= 10 (using definitions consistent with STEP1/STEP2 and Mapping Dark Matter), STEP1 and STEP2 had S/N≃ 10-20, MDM
had S/N= 40.
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Figure 9: The quality factorQ08 and absolute value of the biasm for all constant shear simulations, STEP1, STEP2, GREAT08 (low noise) and
MDM as a function of publication date (for variable shear results see Kitching et al., 2012). We show the maximum value andthe mean value of
Q08 and the minimum value ofmover all participants. We show a rule of thumb fit for the progression ofQ08. High signal to noise simulations>

∼
40

are labelled with an asterisk, GREAT08 low noise was S/N= 100 (using a definition consistent with STEP1/STEP2 and Mapping Dark Matter),
STEP1 and STEP2 had S/N≃ 10-20, MDM had S/N= 40.
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Figure 10: The leaderboard at the end of the Mapping Dark Matter challenge, fromhttp://www.kaggle.com/c/mdm .
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example of crowdsourcing astronomical algorithm de-
velopment what we refer to as ‘astrocrowdsourcing’.

In Figure 11 we show how the top (best) score
changed as a function of time and highlight which par-
ticipant had submitted this score at each moment in the
challenge. We highlight from this Figure several as-
pects, that are symptomatic of a challenge that has been
successfully built to engage participants

• Rapid improvement early in the challenge. In two
weeks the score rapidly improved, and the frac-
tional change was the most significant. This re-
flects participants that apply existing methodology,
and have been engaged early

• The ‘Roger Bannister Effect’. Where imaginary
barriers are broken by one team that motivates
others to also achieve the same (in analogy to
the ‘impossible’ 4 minute mile that once achieved
by Roger Bannister was subsequently achieved by
several others in a short span of time and by over
1000 others to this date). This is seen in the pe-
riod in weeks 1 to 3 when Martin O’Leary held
the lead for sometime after which a succession of
lead-changes were seen.

• Alternating/battling teams. We see the lead change
hands between two or several teams alternately.

Similarly demonstrative of the accessibility of the Map-
ping Dark Matter challenge is the download rate of the
data over the challenge and the submission rate from
participants shown in Figure 12. The participation rate
was constant over the challenge with approximately 13
submissions per day over the 2 month period. The data
download followed a different trend where in the first
week 1500 downloads were made, which then reached
an equilibrium of approximately 26 downloads per day.

4. Conclusions

In this paper we present a review of weak lensing
shape measurement challenges to date, including the
Shear TEsting Programmes (STEP1 and STEP2) and
the GRavitational lEnsing Accuracy Testing competi-
tions (GREAT08 and GREAT10). From 2006 we have
seen a change in emphasis from competitions that test
methods on fully realistic images to creating simula-
tions that provide simple development environments
for methods. We also present results from the Map-
ping Dark Matter competition, which by simplifying the
shape measurement challenge to the point where it was
accessible to a wide audience, generated new avenues of

investigation for shape measurement by attracting over
700 submissions over 2 months and saw a factor of 3
improvement in shape measurement accuracy on high
signal-to-noise galaxies, over previously published re-
sults, and a factor 10 improvement over methods tested
on blind simulations.
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Appendix A. Method Descriptions

In this Section we describe several of the new meth-
ods submitted to the Mapping Dark Matter challenge.
We have shortened URLs where needed for typographi-
cal reasons.

Appendix A.1. Ali& Eu Jin: A. Hassaı̈ne and E. J. Lok

This method used techniques taken from two fields:
signature verification/writer identification and sound-
track restoration, along with other methods specifically
developed for the challenge11 A short list of the predic-
tors used were

1. Computinge1 and e2 for a Gaussian-smoothed
thresholded version of galaxy images.

2. Computinge1 and e2 for a Gaussian-smoothed
thresholded version of star images

3. Computinge1 and e2 for a convolved version of
galaxy images.

4. Creating structuring element from the star images
and using it to perform basic morphological oper-
ations on the galaxies.

5. Computing directions and curvatures of both
galaxy and star images.

6. Computing chain codes and edges features from
both galaxy and star images.

Several of these predictors are also computed on aπ/4
(45 degree) rotated version of the galaxy images. When-
ever a method has one or more parameters, each possi-
ble value of the parameter was used to generate a sep-
arate predictor. Finally all these predictors were com-
bined via linear fit.

Appendix A.2. woshialex: Q. Liu

This method uses the idea of reconstructing the
galaxy image with a model including the parameterse1

ande2, and fit the best parameters. The model is built
with physics insights about the shape of the galaxy, its
intensity distribution, and convolution. It starts from
a good initial guess of the parameters by other simple
methods (in this case, the unweighted quadrupole mo-
ments), and then generates a galaxy image based on the
model we build (try to reproduce the image). The pa-
rameters of the model are then tuned to minimise the
difference between the generated galaxy image and the
original image with the difference measured by theχ2.
The minimisation is achieved using thenlopt package

11For a list of predictors used seehttp://goo.gl/GjDXC, code
can be accessed from herehttp://goo.gl/Ty4UM.
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12. There are more descriptions on the challenge fo-
rum13. The main steps of the algorithm are as follow,

1. Fit the star image using a functional form 1/(1 +
r2)3 wherer2 = (x− xc1)2/a2

1 + (y− yc1)2/b2
1.

2. Generate an initial galaxy image using a func-
tional form exp((x− xc2)2/a2

2 + (y− yc2)2/b2
2)

1/2,
with initial parameters from the quadrupole mo-
ments.

3. Convolve this initial galaxy image with the fitted
star function, and we obtain a new galaxy image.
Our goal is to reproduce the provided galaxy image
by tuning the parameters in our model.

4. Use the nonlinear optimisation method provided
in the packagenlopt to minimise χ2 (the sum
of squares of the difference between the generated
image and the provided image at each pixel) by
tuning parametersa2 andb2 and others. Thene1

ande2 are calculated froma2 andb2.

A neural network training is applied to improve the final
fitted results ofe1 ande2, but no improvement is found.
So the final reported results are just the fitted value.

Appendix A.3. DeepZot: D. Kirkby and D. Margala

This methods consists of two steps. The first step is
a pixel-level maximum-likelihood fit to each star and
galaxy image to extract shape parameters (including the
ellipticities) and their covariance matrix. The second
step is to feed a subset of the fit outputs into a neural
network (configured for regression rather than classi-
fication) that is trained to provided corrections to the
fitted ellipticities. Only the second step was varied to
produce different submissions.

Skipping the second step entirely and using the fit-
ted outputs directly gave scores of 0.0151432 (public)
and 0.0152543 (private), so the fit is doing most of the
work in estimating ellipticity, but the neural net pro-
vided a small but significant improvement (that meant
that DeepZot won the challenge).

The fit minimisation engine (Minuit) and NN en-
gine (TMVA) used are both available as part of the
open source (LGPL) ROOT data analysis framework
(http://root.cern.ch) that is widely used by par-
ticle physicists.

For more details of this method see the GREAT10
results paper Kitching et al. (2012).

12 http://ab-initio.mit.edu/wiki /index.php/NLopt
13http://goo.gl/uZDcL

Appendix A.4. Zooma: S. Yurgenson
This method finds the principal components of the

galaxy images, and find those eigenfunctions that max-
imally correlate with the ellipticities. It can be sum-
marised in the following simple steps

1. First the centers of the galaxies and stars were
found using a weighted mean (moments) with a
threshold. Images were then recentered using
spline interpolation.

2. From the image stacks the primary principal com-
ponents were calculated.

3. The component amplitudes were then entered into
a neural net withe1 and e2 as targets. This was
repeated multiple times choosing several different
network configurations (using the training data) to
find the “best” networks, by slightly changing cen-
tering methods and networks parameters.

4. The mean prediction over multiple networks was
calculated. The best scoring submission (small-
est RMSE) was a mean of 35 predictors, each with
RMSE< 0.015 on the training set.

For a detailed method description with Matlab code
snippets seehttp://goo.gl/nLGmG.

Appendix A.5. Grannys Possum: B. L. Cragin
This method used a simple model similar to

woshialex’s. The images were additionally de-noised
using principal component analysis (PCA) decomposi-
tion and retaining only the first 16 terms in the eigen-
function expansion, prior to all other analysis. The star
images were then fit (using simpleχ2 minimisation with
a top-hat weighted to the middle half of the image) to an
elliptical Moffat distribution. This gave the semimajor
axesa, b and position angleθ and hence ellipticities of
the stars. This fit to the star image was then convolved
with another elliptical Moffat function (representing the
sought-after, pre-convolution galaxy), the parameters of
which were then iterated for best fit of the result to the
observed galaxy.

Considerable improvement was obtained in the form
of a “three-epsilon model”. In this model an ellipti-
cal Moffat profile was also fit to the observed galaxy
(with convolution), yielding a third pair of ellipticity
values. A simple linear regression and a Support Vec-
tor Machine (SVM) were then used to predict the pre-
convolved ellipticities. After its kernel and target pa-
rameters were optimised for least-cross-validation error,
the SVM performed as well as linear regression, but did
not outperform it14.

14The code for this was written in R, with the exception of the PCA
decomposition part which was done in SciLab.
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Appendix A.6. AMPires: A. M. Pires
In this investigation several methods were attempted.

The best results with smallest RMSE were obtained
with a combination of principal components analysis
and multiple linear regression. The main steps were

1. A central window on each image (different sizes
for stars and galaxies) was used, and moved in the
image plane by one pixel in every direction, gener-
ating 9 images for every galaxy and every star.

2. The 9 images were transformed into 9 vectors, and
a principal components analysis was performed in
these vectors, the first 3 eigenfunctions were then
kept. After this step there are 3 sets of images for
the galaxies and 3 sets of images for the stars. The
first set is similar to the result of applying a low
pass filter to the original images, the second and the
third may be interpreted as the result of applying
two Sobel filters.

3. A further principal component analysis was then
applied, this time to each of the 6 sets of 40000
images described in 2.

4. The final step was to build a linear regression
model using the first two components from the six
sets as explanatory variables and the ellipticities as
response variables. At this stage second order in-
teractions and powers up to 3 were included. It was
also necessary to take into account the structure of
the components to build a sensible model.

These final steps still have scope for improvement and
optimisation.

Appendix A.7. Marius: M. Cobzarenco
We experimented with a number of variations around

a generative probabilistic model of PSFs and galaxies.
The method is described at length this Masters thesis
Cobzarenco (2011)http://goo.gl/woh5s. The ba-
sic model was built around a sum of Sérsic profiles
with added Gaussian noise. The Sérsic profiles were
parametrized in terms ofI0, k,R andn (see for exam-
ple the GREAT10 results paper, Kitching et al., 2012)
together withσ2 (the variance of the noise) andµ(x, y)
(the coordinates of the center of the object). I used a
conjugate gradient algorithm to optimize for the max-
imum of the posterior distribution (MAP estimates of
seven parameters per image). Two of the variations sub-
mitted were:

1. Individual: Learning the parameters for the shape
of the stars to reproduce the observed image of the
star. Then learning the parameters for the shape of
the galaxy to reproduce the observed image of the
galaxy.

2. Joint: Learning the parameters for the shape of the
star to reproduce the observed image of the star,
and at the same time, learning the parameters for
the shape of the galaxy, such that when convolved
with the star reproduces the image of the galaxy.
The convolution was done numerically.

The final step common to both versions was to fit
a Sparse Gaussian process (Snelson and Ghahramani
2006) tolearn the mapping between the MAP param-
eter estimates and the PSFs/galaxy elipiticities.

Appendix A.8. Martin: M. O’Leary

This method used a linear combination of results
from a collection of disparate approaches. These con-
sisted primarily of maximum-likelihood estimates of
parameters for assumed functional forms. This ap-
proach was motivated by promising early results.

In the simplest iteration of this technique, both the
galaxy and kernel images were fitted individually us-
ing MLE as the sum of normally distributed white noise
and a Gaussian kernel. Noise parameters were then dis-
carded, and the kernels deconvolved analytically. Ap-
plying a linear correction to the results of this approach
yielded an RMSE of 0.0169 (0.0168 private), indicating
that the approach was viable. This value was reduced
to 0.0156 (0.0158 private) by calculating the principal
components of both the galaxy and kernel images, and
introducing the first six components from each as addi-
tional variables in the regression.

Additional contributions to the final ‘blend’ included
MLE fits using both Sersic and De Vaucouleurs profiles
for the galaxies, and both Gaussian and Moffatt pro-
files for the kernels. Two techniques were used for de-
convolution. In the first, the kernel was fitted initially,
and deconvolution was performed numerically, using
the Richardson-Lucy algorithm. The parameters for the
galaxy were then determined from the deconvolved im-
age. In the second technique, parameters for both the
galaxy and kernel were fitted simultaneously, based on
the convolution of both images. This approach was con-
siderably more computationally intensive, but provided
slightly better results.

The final blend was computed using linear regres-
sion on all solutions, as well as the principal compo-
nents previously mentioned. To avoid overfitting, for-
ward stepwise variable selection was employed, using
the Bayesian Information Criterion. Regression and
variable selection were performed separately fore1 and
e2, and results from each variable were included in re-
gressions for the other. This resulted in a final RMSE of
0.0150 (0.0152 private).
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