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Abstract methods such as GALFIT (Peng ef al., 2002), GIM2D
(Simard, 1999 Simard etlal., 2011), CAS (Conselice,
Structural properties posses valuable information ab@@03), Gini(Abraham et al., 2003), Ganalyzer (Shamir,
the formation and evolution of galaxies, and are in2011), and SpArcFiRe (Davis and Hayes, 2014). Data-
portant for understanding the past, present, and futdidven methods include binary classifiers that can
universe. Here we use unsupervised machine learnitifferentiate between broad galaxy morphological
methodology to analyze a network of similarities beypes of elliptical and spiral galaxies_(Shamir, 2009;
tween galaxy morphological types, and automaticalijeneses Cuadros etlal., 2009; Banerji et al., 2010), but
deduce a morphological sequence of galaxies. Appliso classifiers that can differentiate between four ba-
cation of the method to the EFIGI catalog show thaic objects|(Abd Elfattah et al., 2013), classification be-
the morphological scheme produced by the algorithmtigeen four basic Hubble morphological types of E,
largely in agreement with the De Vaucouleurs syster80, Sab, and Scd (Huertas-Company et al., 2010), and
demonstrating the ability of computer vision and maomprehensive analysis of galaxy images that include
chine learning methods to automatically profile galaxgpecific morphological features_(Baillard et al., 2006;
morphological sequences. The unsupervised analysisminski et al., 2014; Dieleman etlal., 2015). Classi-
method is based on comprehensive computer visifigation of galaxies can also be performed using spec-
techniques that compute the visual similarities betwetra in supervised (Ball et al., 2004) and unsupervised
the different morphological types. Rather than relyingAlmeida et al., 2010) manner.
on human cognition, the proposed system deduces the
similarities between sets of galaxy images in an auto-While supervised machine learning have demon-
matic manner, and is therefore not limited by the nurstrated reasonable efficacy in automatic classification of
ber of galaxies being analyzed. The source code of @@axies by their morphological types (Shamir, 2009;
method is publicly available, and the protocol of the edeneses Cuadros et all, _2009; Banerji ét al., 2010;
periment is included in the paper so that the experimétiertas-Company et al., 2010), discrete classifiers do
can be replicated, and the method can be used to amat- effectively conceptualize the continuous nature of
lyze user-defined datasets of galaxy images. galaxy morphology, and therefore galaxy morpholog-
Keywords: galaxies: structure — galaxies: evolutiofcal schemes are still defined by manual observation.
— methods: analytical — techniques: image processin@ne of the earlier and most widely used schemes is
the Hubble sequence (Hubble, 1936; Sandage,|1961),
which is a commonly used morphology classification
scheme that covers the morphology of most known
galaxies. Hubble’s initial work proposed a morphology
1 Introduction classification system based on attributes of observed
nebulae, originally consisting of three main morpho-
In the past few years, advancements in computagical types, commonly known as elliptical (E), nor-
tional tools and algorithms have started to allow amal spirals (S) and barred spirals (SB) (Hubble, 1936).
tomatic analysis of galaxy morphology. Approachdsumason et all(1956) revisited the Hubble Sequence,
to automatic galaxy classification include model-drivéntroducing lenticular galaxies (S0), creating what is
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most commonly known as the Hubble “tuning-fork” diresents the presence of a ring shape (r), spiral shape
agram|(De Vaucouleurs, 1959). It should be noted tha), or transition of the two (rs) within spiral galaxies,
although irregular (1) galaxies were recognized by Hubndstage represents the galaxy position along the main
ble, they were not included in Hubble’s classificatioaxis. Another feature of this classification scheme was
scheme since at the time they could not be distinctivedgsigning eaclstage along the main axis a numerical
classified|(De Vaucouleuts, 1959). integer value between -6 and 11. E galaxies being rep-
Since the Hubble morphological scheme was intreesented by the values -6 to -4, lenticular -3 to -1, spri-
duced, several modifications and enhancements hale0 to 9, and irregulars 10 to 11 for a more quantitative
been proposed. Morgan and Mayall (1957), proposadproach to the classification. Furthering the quantita-
a galaxy classification scheme based on the spectige approach to galaxy classification, De Vaucouleurs
showing the correlation between the spectra and the i994) also introduced measurable parameters show-
ral structure and spectral concentration (Morgan, 1958)g either a consistent mean increase or decrease along
and identified the cD phenomena_(Morgan and | eshge current classification sequence. Characteristics in-
1965).|van den Bergh (1960) proposed a classificatiolude bulge-to-disk ratios, integrated luminosity in the
system of late-type galaxies based on luminosity, driv8aband, the ratio of aperture diameters, total or effective
by the correlation between absolute luminosity and tiheagnitudes, mean surface brightness, and hydrogen in-
shape of the spiral arms. That work was followed hyex (De Vaucouleurs, 1994).
a galaxy classification scheme of spiral and SO galax-While proposing a guantitative scheme, the associ-
ies, and distinguished “early” and “late” type systemation of a galaxy to a morphological type is subjec-
by their disk-to-bulge ratia (Van Den Bergh, 1976). tive, and the annotations of two or more astronomers are
Sandade | (1961) showed thatS@ S0 galax- not necessarily identical in all cases (Naim et al., 1995;
ies do not feature an increase in flattening of tlue Lapparentetall., 2011). It has been therefore pro-
galaxies, and that normal spiral galaxies and $@sed that galaxy morphology classification schemes
galaxies form two parallel sequences _(Sandage et alil] involve computational methods (De Vaucouleurs,
1970;/ Van Den Bergh, 1976). _Kormendy and Bend&B94). Here we perform automatic unsupervised analy-
(1996) expanded the Hubble classification schersig of galaxy images of different morphological types to
with a more detailed morphological analysis of eproduce a computer-generated galaxy morphology se-
liptical galaxies |(Kormendy and Djorgovski, _1989)quence. The scheme is based on quantitative computer
Kormendy and Bender (1996) proposed some mod#inalysis of thousands of annotated galaxy images, pro-
cations to the Hubble sequence, including the twducing a network of similarities between the morpho-
component SO galaxies, and the addition of the Malggical types that is independent of the human percep-
ellanic irregulars. tion and the way humans quantify the similarities be-
One of the notable refinements and extensions tigeen these types.
the Hubble sequence was proposed by De Vaucouleurs
(1959), proposing a three dimensional system. This
classification included the four main broad morpholo@ Data
ical classes of elliptical, lenticular, spiral, and irrégyu
galaxies along a linear main axis from galaxy types E Tthe data used in the study are taken from the EFIGI cat-
I, including Hubble’s initial a, b, ¢ representation foalog (Baillard et al.; 2011; de Lapparentet al., 2011),
"early” to "late”. |Sandage (1961) refinement includedihich was compiled for the purpose of developing
d for "very late” and the division of SO galaxies intand testing computational methods related to galaxy
SO, SO, SO', as well as the inclusion of "m” for morphology. The catalog contains image data as
magellanic galaxies: E, € SO, S, S0", S,, S,, S., well as morphological annotation data of 4458 galax-
S¢, Sn, or l,, (De Vaucouleurs, 1994). The classifiies taken from PGC (Principal Galaiesy Catalogue),
cation was also extended to include intermediate stagéso included in SDSS (Sloan Digital Sky Survey)
between the initial a, b, ¢, d, and m stages such as ab,bata Release 4. Among other morphological fea-
cd, and dm. This scheme introduced a notation basedores, each galaxy was assigned with its morphologi-
family, variety, andstage, with family representing the cal type determined by 10 astronomers (Baillard ét al.,
absence of bars in a spiral galaxy (A), the presence2ffll) based on the updated RC3-based Hubble types
bars (B), or a transition of the two (AB)Mariety rep- (De Vaucouleurs etal!l, 1992). Other morphological



features include the bulge, spiral arms, as well as otlienction (Grigorescu et al., 2002).
features such as texture, appearance in the sky, and en-
vironment. Polynomial decomposition:

EFIGI contains images of each galaxy in the u, g,1. Radon transform features (Lim, 1990): Four series
r, and z bands (Baillard etal., 2011). To produce coloomputed for angles 0, 45, 90, 135 degrees, and then
images, the i, r, and g bands were combined to provide@nvolved into a 3-bin histogram, providing a total of
composite RGB image, such that gamma correction B2 numerical content descriptors.

1.3 was applied to the luminosity, and color saturatich  Chebyshev Statistics (Gradsteyn and Ryzhik,
was increased by a factor of 2. The color images wet894): A 32-bin histogram of a 400-bin vector pro-
converted to the PNG (Portable Network Graphics) fotuced by the Chebyshev transform of the with order of
mat using the STIFF software (Baillard ef al., 2011). N=20.

The EFIGI color images were converted to 25%5 3. Zernike features. Absolute values of the 72
color 24-bit TIFF (Tagged Image File Format) imagesoefficients of the Zernike polynomial approximation
using ImageMagick, and were separated into folder§Teague, 1980).
such that each folders contained galaxies of the satheChebyshev-Fourier features: A 32-bin histogram
type as annotated by EFIGI. Images of the same galat-the polynomial coefficients of a Chebyshev—Fourier
ies in the u, g, r, i, and z bands were converted ttansform [(Orlov et &l 2008) with maximum polyno-
monochrome TIFF, and were used without color infornial order of N=23.
mation.

The galaxy types are based on the numerical schehigh-contrast features:

(De Vaucouleurs, 1959) taken from the EFIGI catalol Fractal features, as described in (Wu et ial., 1992).
(Baillard et al., 2011). Each galaxy type had at leadt Edge features: Mean, median, variance, and 8-bin
142 samples, except for cE (-6), cD (-4), and dE (11)istogram of the magnitude and direction computed
which only had 18, 44, and 69 samples, respectivefyn the Prewitt gradient of the image, as well as edge
For their small size, these classes were not used in dieection homogeneity.
experiment. 3. High-contrast object statistics: Minimum, max-
imum, mean, median, variance, Euler number, and
10-bin histogram of the objects areas computed on the
3 | mage anal ysis method 8-connected objects found in the Otsu binary transform
of the image.
The image analysis method used in the experiment
is Wndchrm [(Shamir et al.| 2008a; Shemir, 2008,ixel statistics:
Shamir et al., 2009h, 2010a, 2013a), that has a featlire Multi-scale Histograms: Four histograms with
set of 4027 numerical image content descriptors, 8r 5, 7, and 9 bins computed on the pixel intensities
2885 numerical descriptors when color information #Hadjidemetriou et all, 2001).
not used. The numerical image content descriptors &e First 4 Moments. Mean, standard deviation,
the following: skewness, and kurtosis computed on image "stripes” in
four different directions (0, 45, 90, and 135 degrees).
Texture features:
1. Haralick textures: Energy and entropy computed on These features are extracted not just from the raw
the co-occurrence matrix of the image (Haralick et alzalues, but also from the two-dimensional transforms
1973), measured using 28 image descriptor valuesaasl combinations of multi-order transforms. The trans-
described in Shamir et al. (2008a). forms are Fourier transform, Chebyshev transform,
2. Tamura textures. Contrast, directionality and Wavelet (symlet 5, level 1) transform, color transform
coarseness of the Tamura textures| (Tamura et al(Shamir, 2006), and edge magnitude transform. A de-
1978). The coarseness descriptors are its sum andaited description and performance analysis of the im-
3-bin histogram, providing a total of six numericahge features extracted fromimage transforms and multi-
content descriptors. order transforms can be found In_(Shamir etlal., 2008a;
3. Gabor Filters: Gabor filters [(Gabor, 1946) usingShamir, 2008; Shamir et al., 2009b, 2010a, 2013a).
seven frequencies (1 through 7) and Gaussian harmonidhe comprehensive nature of the numerical image



content descriptors allows analyzing complex morphdFelsenstein,| _1993; Kuhner and Felsenstein, 11994),
ogy such as radiology._(Shamir et al., 2009b,a), mithich was originally developed for visualizing simi-
croscopy |(Shamir et al., 2008b; Manning and Shamiiarities between organisms by their genotypes, but in
2014), and visual art (Shamir et al., 2010a; Shamihis experiment used to visualize the similarities be-
2012b). In particular, the Wndchrm feature set has besveen galaxy types. It is used with randomized in-
proved to be informative for analysis of galaxy momput order of sequences where 97 is the seed, 10 jum-
phology, and was found useful for tasks such as galaxes, and the Equal-Daylight arc optimization. When
classification [(Shamir,_2009; Kuminski et al., 2014)airs of nodes are added, new nodes are created to pro-
and automatic detection of peculiar galaxies (Shamiide the optimal tree that represents the similarity ma-
2012a] Shamir and Wallin, 2014; Shamir etlal., 20144&)ix. PHYLIP first creates the tree in the form of a text
A complete and detailed description of the set of nfite that follows the Newick format, and then visual-
merical content descriptors and comprehensive perfaes it by using the DRAWTREE program. The edges
mance analysis is available in_(Shamir et al., 2008zetween the nodes reflect the degree of similarities be-
Orlov et al., 2008; Shamir, 2008; Shamir et al., 2010&yeen them, such that a shorter path between two nodes
2009h,8), and the source code is also publicly avaikflects a higher similarity between the images of these
able through the Astrophysics Source Code Libratyo classes. DRAWTREE automatically sets the angles
(Shamir et all, 2013b). such that the tree is convenient and easy to read. In the

As mentioned in Sectidd 1, the purpose of the methptylogeny created by PHYLIP each pair of nodes has
is not to automatically classify galaxies by their mojjust one possible path between them, and the length of
phology, but to quantitatively deduce a network of sinthe path includes all segments on that path, including
ilarities between the different morphological types ugdges between nodes added by PHYLIP during the tree
ing merely the galaxy images, and without using metaptimization process.
data or existing knowledge that is not in the image con-The method used to compute and visualize the sim-
tent. The unsupervised analysis (Shamir el al., 201Qarities between the galaxy types is described in de-
Shamir and Tarakhovsky, 2012; Shamir et al., 2013ajls in (Shamir et all, 2010a; Shamir and Tarakhovsky,
works by first allocating 140 galaxy images from ea@012; Shamir et al., 2014b), and was used for unsuper-
galaxy type as annotated by EFIGI to the training sefised analysis of simulated images of galaxy mergers
and assigning each numerical image content descripi®hamir et al., 2013a). It also demonstrated its ability
with its Fisher discriminant score (Bishop et al., 200@) profile continuous biomedical processes in which the
computed using the training samples. After the conteglinical stages are reflected by image morphologies that
descriptors were ranked based on their Fisher discrimhange on a continuous scale (Shamir et al., 2010b).
nant scores, the 85% of the least informative featur@stailed instructions including specific command lines
with the lowest Fisher scores, are rejected (Shamised to produce the results are describédlin A.
2009; Shamir et al., 2009b,c).

The similarity between each pair of galaxy images
is then computed using the Weighted Nearest Distarde Results
(WND) algorithm (Shamir et all, 2008a, 2010a). The
mean similarity between all test galaxies of typeand The application of the similarity estimation method de-
all training galaxies of type, determines the simi- scribed in Sectiohl3 to the EFIGI color image data de-
larity between these two galaxy morphological typescribed in Sectioh]2 produced the phylogeny displayed
The similarities between all pairs of galaxy types prdoy Figurel.
duce a similarity matrix, normalized such that the As the figure shows, the network of similarities be-
similarity between a certain type to itself is set to fiween the galaxy morphological types computed by the
(Shamir et al., 2008a, 2010a; Shamir and Tarakhovskygorithm is in agreement with the ordered sequence
2012;| Shamir et all, 2013a). The similarity matrix iproposed by De Vaucouleurs (1959). The algorithm
computed 20 times such that in each run different irproduced a graph starting with the ellipticals (-5), fol-
ages are randomly allocated to training and test sets, éowled by the lenticualr galaxies (-3 through -1). Then,
the final similarity matrix is generated by averaging theontinuing sequentially are the spiral galaxies from (1
20 similarity matrices. through 9) followed by the irregulars (10) in an order

The similarity matrix is visualized by PHYLIP with perfect agreement with_(De Vaucouleurs, 1959).



Figure 1: The network of similarities between the galaxy pmmiogical types as deduced automatically by the
algorithm

As mentioned in Sectionl 2, the cD (-4), cE (-6), angray-scale images provided results similar to the graph
dE types (11) were not included in the analysis due pooduced using the color images, showing that the order
the insufficient amount of sample images of these typsas not necessarily driven by pixel intensity or by the
in EFIGI. The probability that 15 elements are orderemlor. The random chance probability that 12 elements
in an ascending or descending order by mere chancels of 15 are ordered in ascending or descending order
2 =~ 15310712 is2- (15) 24 =~ 1.9-107C.

In another experiment we tested the method using thet is also noticeable that the SO galaxy types $¢8),
color images converted to gray-scale, and normalizgd (-2), and S (-1) do not follow the numerical order
for intensity such that all images had mean pixel valygoposed by De Vaucouletits (1959). That analysis of
of 100, and standard deviation of 25 (Shamir et athe computer is in agreement with the observation that
200813.) The normalization ensured that the order V\Sb_' SO)’ and SO ga|axies do not feature an increase
be determined by the shape, with no impact of color pf the flattening of the galaxies (Sanddge, 1961).

brightness. The resulting graph produced by the algo'Figure[$ shows the Fisher discriminant scores of the

rithm is displayed in Figurigl2. groups of numerical image content descriptors, reflect-
ing the measured informativeness of the descriptors and
consequently their impact on the analysis. The descrip-
tors are extracted from the image transforms and multi-
order transforms.

As the figure shows, the identification of the Hubble
stage depends on numerous image content descriptors
working in concert. The fractal features were the most
informative descriptors, indicating that the fractalify o
the galaxy is different across different galaxy morpho-
logical types. This agrees with the observation that frac-
tality can be used as a galaxy classification signature
(Lekshmi et al., 2003), and can assist in differentiating
between elliptical and spiral galaxies (Sharnir, 2009).
For instance, an elliptical galaxy has low fractality in
the absence of complex shape, but the fractality of a
Figure 2: The network of similarities between thgalaxy should become more dominant when the galaxy
galaxy types using normalized gray-scale images ~has more arms and split arms.

The graph shows that many other numerical im-
age content descriptors such as Haralick textures

As the figure shows, the analysis of the normaliz€Hiaralick et al.,l 1973) have an impact on the analy-
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Figure 3: Fisher discriminant scores of the different goapnumerical content descriptors, extracted from the
different image transforms

sis, and work in concert to quantify the similarities begalaxy images of the u, g, i, r, and z bands. The re-
tween the different galaxy morphological types. Tesulting phylogenies are displayed by Figlite 4.

ture features has been shown to be informative in sep-

arating between galaxies based on their morphologi-As the figure shows, the order of the galaxy types

cal types|(ALl 2006; Sharir, 2009; Baneriji et al., 2018pmewnhat violates tHe De Vaucouleurs (1959) scheme.
PPedersen et &

|., 2013). For instance, texture homogeTiee shorter segments between some of the galaxy types
ity/entropy may change as the galaxy becomes mafeow higher similarity deduced by the method, indicat-
sparse, and the texture also correlates with star fornirzg that in some cases the algorithm could not identify
tion rate (Pedersen etlal., 2013). the differences between these types. That shows that
although the order of the galaxy types deduced by the

ri{?{;orithm is largely in agreement with the sequence de-

tors did not show substantial difference between galas)gribed in(De Vi | 1959), processing just one

les of different Hubble stages. For instance, Radon f%aa[nd leads to loss of information, and consequently the

tures do not show a change between different gala(>)< der and automatic placement of the galaxy types is

types, as well as Tamura textures. The weak ability 9%t as close to the orderlof De Vaucoule 959) com-

Tamura textures to differentiate between galaxy typﬁraslred to the color images. Color has been identified to

is that the directionality can be offset by galaxies : ;
arms rotating to the opposite direction. That is diﬁereﬁgrrelate with galaxy type al.. 2001), and

: ; - therefore color information can contribute to the ability
from other texture analysis algorithms such as Haralic : I .
. ¥1e algorithm to analyze the similarities between dif-
where the texture entropy and energy are independeni o . o
the direction erent types of galaxies. The probability to have the or-

ders of the tree of the u, g, 1, i, and z filters by chance is
The experiment was also repeated with the EFIGI84-1075,6.84-107°,1.9-107°,1.6-1073,6.84-1075,
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Figure 4: The network of similarities between the galaxyetypsing the u, g, r, i, and z bands of EFIGI

respectively. automatic positioning in the same order proposed by
Also, the analysis of the u band shows strong sefi2e Vaucouleurs (1959).

ration between late type galaxies and the other galaxy

types, where Sa and Sab are positioned close to the

lenticular galaxies. A similar observation can be made Conclusion

with the analysis of galaxies in the g band. Ther, i, and

z bands show a more even distribution of the types aloAghough galaxy classification cannot be considered a

the main axis, but it is also noticeable that the earfyoal in itself (De Vaucouleurs, 1994), it is a key to un-

types are clustered on one side of the axis, while irregerstanding the physical properties of the past, present,

ular and Sd galaxies are grouped close to each otherapil future universe. Numerous galaxy morphological

the other side. schemes have been proposed by manual observation
Figurel4 also shows that the early type galaxies cowddd measurement of galaxy morphology and photom-

not be ordered correctly by the algorithm without ustry. Here we proposed a computer-based approach to

ing the color images, and that the individual bandglaxy morphology by using an unsupervised machine

or grayscale images did not have sufficient morphlearning system that can deduce the visual similarities

logical features of these galaxy types that allow thHeetween sets of images and reconstruct morphological



sequences of galaxies. The analysis is performed sachong millions of galaxies in Sloan Digital Sky Sur-

that the algorithm determines the network of similarirey, and performing quantitative assessment of these

ties between the different morphological classes autoergers|(Shamir and Wallin, 2014). Sky surveys such

matically, and without human guidance. as LSST will be able to image a much larger number of
The results show that when using the color EFIG@jalaxies, from which peculiar galaxies can be detected.

galaxy images the sequence deduced by the computatomatic detection methods such as (Shamir, 2012a;

is in large agreement with the De Vaucouleurs (1958hamir and Wallin, 2014) can assist in the detection of

scheme, even when using the colorimages as gray-sgadeuliar galaxies that are not associated with stages on

images. When using each band separately the deduttedHubble sequence, and analysis methods such as the

order was in weaker agreement with (De Vaucouleursgthod described here can be used to identify links be-

1959), showing that the composite color images cotween a large number of galaxy types.

tained more visual information that was used by the al-Source code of the analysis methods used in the ex-

gorithm to deduce the order of the morphological typgseriment are publicly available, as well as the protocol

The saturation and gamma correction applied to the described inJA.

EFIGI color images as described in Sectldn 2 could

also affect the way these images were analyzed. Ba-

sic statistical analysis shows very low probability oR ef er ences

~ 1.53 - 10712 for having the galaxy types ordered in

an ascending or descending order by mere chance. apd Elfattah, M., EI-Bendary, N., Abu Elsoud, M. A.,
The color images allowed the algorithm to deduce Hassanien, A. E., Tolba, M., 2013. An intelligent ap-
a sequence that is more consistent with the order ofyroach for galaxies images classification. In: Hybrid

De Vaucouleurs (1959) compared to the sequences promtelligent Systems (HIS), 2013 13th International
duced with each of the individual bands, indicating that conference on. IEEE, pp. 167-172.

the color images contained more information that was

used by the algorithm to deduce the order of the mgthraham, R. G., Van Den Bergh, S., Nair, P., 2003. A

phological typess. new approach to galaxy morphology. i. analysis of
One difference between the De Vaucouleurs (1959)the sloan digital sky survey early data release. The

scheme and the network of morphological similarities Astrophysical Journal 588 (1), 218.

produced by the algorithm is the SO galaxies, where

the computer algorithm did not find the exact same g&tmeida, J. S., Aguerri, J., Mufioz-Tufion, C., De Vi-

der identified by De Vaucouleurs (1959). The ability of cente, A., 2010. Automatic unsupervised classifica-

the computer to deduce a network of similarities that tion of all sloan digital sky survey data release 7

is largely in agreement with manual analysis demon-galaxy spectra. The Astrophysical Journal 714 (1),

strates the discovery power of the method, and its poten487.

tial ability to analyze larger datasets containing a higher

number of galaxy classes and identify and profile a pa&u, K., 2006. Inferring galaxy morphology through tex-

sible morphological sequence. That allows quantitativeture analysis. Ph.D. thesis, Carnegie Mellon Univer-

morphological of entire galaxies, rather than the quan-sity, ph.D Thesis.

tification of individual identifiable morphological fea-

tures (e.g., the number of spiral arms). Baillard, A., Bertin, E., de Lapparent, V., Fouqué, P.,
While the experiments described in this paper areArnouts, S., Mellier, Y., Pello, R., Leborgne, J.-F.,

focused on galaxies in the Hubble sequence, with thePrugniel, P., Makarov, D., et al., 2011. The efigi cata-

increasing importance of digital sky surveys imaging logue of 4458 nearby galaxies with detailed morphol-

billions of galaxies such as the Large Synoptic Surveyogy. Astronomy & Astrophysics 532, 74.

Telescope (LSST), automated methods are also impor-

tant to identify and analyze peculiar galaxies that caBaillard, A., Bertin, E., Mellier, Y., McCracken, H.,

not be associated with a defined morphological stage orGéraud, T., Pelld, R., Leborgne, F., Fouquég, P., 2006.

the Hubble sequence. The scheme of numerical imagéroject efigi: Automatic classification of galaxies. In:

content descriptors described in Secfidn 3 has demonAstronomical Data Analysis Software and Systems

strated its efficacy in detecting peculiar galaxy mergersXV. Vol. 351. p. 236.
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A Protocol chrm test -f0.15 -i#140 -12 -n20 -w -
p/path/to/phylip /path/to/efigioot folder/efigi.fit

All software tools used to produce the results afpath/to/efigirootfolder/efigi.html

open source, making it easier to replicate the reswithen done, a .ps file should be created in the folder

or analyze other datasets (Shamiretal., 2013tpath/to/efigirootfolder”.

Source code for the computer analysis method

(Shamir et al., 2008a) is available at the Astrophysiés To process the grayscale images step 4 should

Source Code Library| (Shamiretlal., 2013b) or &e replaced with the command line: ./wnd-

http://vfacstaff.ltu.edu/Ishamir/downloads/ImagesSiiechrm train -ml -S100:25 /path/to/efigbot folder

as well as its dependency libraries_(Shamir et alpath/to/efigiroot folder/efigi.fit

2013b). It also requires the installation of

the open source PHYLIP package, available at

http://evolution.genetics.washington.edu/phylip.hitm  The experiments were performed in Linux (Fedora)

The experiments also require computational resour@wironment. For further information or assistance

that can process the EFIGI catalog. The experimgnigase contact the authors.

in this paper was done with a 16-core Intel Core-i7

machine and 32GB of RAM, and took about three days

to complete.

To replicate the results, the following steps are
required:
1. Download the EFIGI catalog from

http://www.astromatic.net/projects/efigi

2. Convert the color FITS images (or PNG im-
ages) to TIF format by using ImageMagick. A batch
conversion can be done by the following command
line: find /path/to/efigi -name “*.FITS” -exec convert

{3 {3t

3. Separate the images into folders such that the
name of each folder is the T number, and its content
is the galaxy images of that T number as annotated by

EFIGI.

4, Compute the image features by
running the command line: Jwnd-
chrm train -mic /path/to/efigioot folder

/path/to/efigiroot folder/efigi.fit

That step might take several days to complete with
a single core, but the response time can be shorter
by running several instances of the process. The
process should not be stopped to avoid the creation of
empty .sig files. In case the process stopped before
completion, the following command line should be
used before running it again: find /path/to/efigi -name
“*sig” -exec rm{} \;

5. The phylogeny can be created by run-
ning the following command line: Jwnd-
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