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Abstract

Structural properties posses valuable information about
the formation and evolution of galaxies, and are im-
portant for understanding the past, present, and future
universe. Here we use unsupervised machine learning
methodology to analyze a network of similarities be-
tween galaxy morphological types, and automatically
deduce a morphological sequence of galaxies. Appli-
cation of the method to the EFIGI catalog show that
the morphological scheme produced by the algorithm is
largely in agreement with the De Vaucouleurs system,
demonstrating the ability of computer vision and ma-
chine learning methods to automatically profile galaxy
morphological sequences. The unsupervised analysis
method is based on comprehensive computer vision
techniques that compute the visual similarities between
the different morphological types. Rather than relying
on human cognition, the proposed system deduces the
similarities between sets of galaxy images in an auto-
matic manner, and is therefore not limited by the num-
ber of galaxies being analyzed. The source code of the
method is publicly available, and the protocol of the ex-
periment is included in the paper so that the experiment
can be replicated, and the method can be used to ana-
lyze user-defined datasets of galaxy images.

Keywords: galaxies: structure – galaxies: evolution
– methods: analytical – techniques: image processing

1 Introduction

In the past few years, advancements in computa-
tional tools and algorithms have started to allow au-
tomatic analysis of galaxy morphology. Approaches
to automatic galaxy classification include model-driven

methods such as GALFIT (Peng et al., 2002), GIM2D
(Simard, 1999; Simard et al., 2011), CAS (Conselice,
2003), Gini(Abraham et al., 2003), Ganalyzer (Shamir,
2011), and SpArcFiRe (Davis and Hayes, 2014). Data-
driven methods include binary classifiers that can
differentiate between broad galaxy morphological
types of elliptical and spiral galaxies (Shamir, 2009;
Meneses Cuadros et al., 2009; Banerji et al., 2010), but
also classifiers that can differentiate between four ba-
sic objects (Abd Elfattah et al., 2013), classification be-
tween four basic Hubble morphological types of E,
S0, Sab, and Scd (Huertas-Company et al., 2010), and
comprehensive analysis of galaxy images that include
specific morphological features (Baillard et al., 2006;
Kuminski et al., 2014; Dieleman et al., 2015). Classi-
fication of galaxies can also be performed using spec-
tra in supervised (Ball et al., 2004) and unsupervised
(Almeida et al., 2010) manner.

While supervised machine learning have demon-
strated reasonable efficacy in automatic classification of
galaxies by their morphological types (Shamir, 2009;
Meneses Cuadros et al., 2009; Banerji et al., 2010;
Huertas-Company et al., 2010), discrete classifiers do
not effectively conceptualize the continuous nature of
galaxy morphology, and therefore galaxy morpholog-
ical schemes are still defined by manual observation.
One of the earlier and most widely used schemes is
the Hubble sequence (Hubble, 1936; Sandage, 1961),
which is a commonly used morphology classification
scheme that covers the morphology of most known
galaxies. Hubble’s initial work proposed a morphology
classification system based on attributes of observed
nebulae, originally consisting of three main morpho-
logical types, commonly known as elliptical (E), nor-
mal spirals (S) and barred spirals (SB) (Hubble, 1936).
Humason et al. (1956) revisited the Hubble Sequence,
introducing lenticular galaxies (S0), creating what is
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most commonly known as the Hubble “tuning-fork” di-
agram (De Vaucouleurs, 1959). It should be noted that
although irregular (I) galaxies were recognized by Hub-
ble, they were not included in Hubble’s classification
scheme since at the time they could not be distinctively
classified (De Vaucouleurs, 1959).

Since the Hubble morphological scheme was intro-
duced, several modifications and enhancements have
been proposed. Morgan and Mayall (1957), proposed
a galaxy classification scheme based on the spectra,
showing the correlation between the spectra and the spi-
ral structure and spectral concentration (Morgan, 1958),
and identified the cD phenomena (Morgan and Lesh,
1965). van den Bergh (1960) proposed a classification
system of late-type galaxies based on luminosity, driven
by the correlation between absolute luminosity and the
shape of the spiral arms. That work was followed by
a galaxy classification scheme of spiral and S0 galax-
ies, and distinguished “early” and “late” type systems
by their disk-to-bulge ratio (Van Den Bergh, 1976).

Sandage (1961) showed that S01 to S03 galax-
ies do not feature an increase in flattening of the
galaxies, and that normal spiral galaxies and S0
galaxies form two parallel sequences (Sandage et al.,
1970; Van Den Bergh, 1976). Kormendy and Bender
(1996) expanded the Hubble classification scheme
with a more detailed morphological analysis of el-
liptical galaxies (Kormendy and Djorgovski, 1989).
Kormendy and Bender (1996) proposed some modifi-
cations to the Hubble sequence, including the two-
component S0 galaxies, and the addition of the Mag-
ellanic irregulars.

One of the notable refinements and extensions to
the Hubble sequence was proposed by De Vaucouleurs
(1959), proposing a three dimensional system. This
classification included the four main broad morpholog-
ical classes of elliptical, lenticular, spiral, and irregular
galaxies along a linear main axis from galaxy types E to
Im, including Hubble’s initial a, b, c representation for
”early” to ”late”. Sandage (1961) refinement included
d for ”very late” and the division of S0 galaxies into
SO−, SO0, SO+, as well as the inclusion of ”m” for
magellanic galaxies: E, E+, S0−, S00, S0+, Sa, Sb, Sc,
Sd, Sm, or Im (De Vaucouleurs, 1994). The classifi-
cation was also extended to include intermediate stages
between the initial a, b, c, d, and m stages such as ab, bc,
cd, and dm. This scheme introduced a notation based on
family, variety, andstage, with family representing the
absence of bars in a spiral galaxy (A), the presence of
bars (B), or a transition of the two (AB).Variety rep-

resents the presence of a ring shape (r), spiral shape
(s), or transition of the two (rs) within spiral galaxies,
andstage represents the galaxy position along the main
axis. Another feature of this classification scheme was
assigning eachstage along the main axis a numerical
integer value between -6 and 11. E galaxies being rep-
resented by the values -6 to -4, lenticular -3 to -1, spri-
als 0 to 9, and irregulars 10 to 11 for a more quantitative
approach to the classification. Furthering the quantita-
tive approach to galaxy classification, De Vaucouleurs
(1994) also introduced measurable parameters show-
ing either a consistent mean increase or decrease along
the current classification sequence. Characteristics in-
clude bulge-to-disk ratios, integrated luminosity in the
B-band, the ratio of aperture diameters, total or effective
magnitudes, mean surface brightness, and hydrogen in-
dex (De Vaucouleurs, 1994).

While proposing a quantitative scheme, the associ-
ation of a galaxy to a morphological type is subjec-
tive, and the annotations of two or more astronomers are
not necessarily identical in all cases (Naim et al., 1995;
de Lapparent et al., 2011). It has been therefore pro-
posed that galaxy morphology classification schemes
will involve computational methods (De Vaucouleurs,
1994). Here we perform automatic unsupervised analy-
sis of galaxy images of different morphological types to
produce a computer-generated galaxy morphology se-
quence. The scheme is based on quantitative computer
analysis of thousands of annotated galaxy images, pro-
ducing a network of similarities between the morpho-
logical types that is independent of the human percep-
tion and the way humans quantify the similarities be-
tween these types.

2 Data

The data used in the study are taken from the EFIGI cat-
alog (Baillard et al., 2011; de Lapparent et al., 2011),
which was compiled for the purpose of developing
and testing computational methods related to galaxy
morphology. The catalog contains image data as
well as morphological annotation data of 4458 galax-
ies taken from PGC (Principal Galaiesy Catalogue),
also included in SDSS (Sloan Digital Sky Survey)
Data Release 4. Among other morphological fea-
tures, each galaxy was assigned with its morphologi-
cal type determined by 10 astronomers (Baillard et al.,
2011) based on the updated RC3-based Hubble types
(De Vaucouleurs et al., 1992). Other morphological
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features include the bulge, spiral arms, as well as other
features such as texture, appearance in the sky, and en-
vironment.

EFIGI contains images of each galaxy in the u, g, i,
r, and z bands (Baillard et al., 2011). To produce color
images, the i, r, and g bands were combined to provide a
composite RGB image, such that gamma correction of
1.3 was applied to the luminosity, and color saturation
was increased by a factor of 2. The color images were
converted to the PNG (Portable Network Graphics) for-
mat using the STIFF software (Baillard et al., 2011).

The EFIGI color images were converted to 255×255
color 24-bit TIFF (Tagged Image File Format) images
using ImageMagick, and were separated into folders
such that each folders contained galaxies of the same
type as annotated by EFIGI. Images of the same galax-
ies in the u, g, r, i, and z bands were converted to
monochrome TIFF, and were used without color infor-
mation.

The galaxy types are based on the numerical scheme
(De Vaucouleurs, 1959) taken from the EFIGI catalog
(Baillard et al., 2011). Each galaxy type had at least
142 samples, except for cE (-6), cD (-4), and dE (11),
which only had 18, 44, and 69 samples, respectively.
For their small size, these classes were not used in the
experiment.

3 Image analysis method

The image analysis method used in the experiment
is Wndchrm (Shamir et al., 2008a; Shamir, 2008;
Shamir et al., 2009b, 2010a, 2013a), that has a feature
set of 4027 numerical image content descriptors, or
2885 numerical descriptors when color information is
not used. The numerical image content descriptors are
the following:

Texture features:
1. Haralick textures: Energy and entropy computed on
the co-occurrence matrix of the image (Haralick et al.,
1973), measured using 28 image descriptor values as
described in Shamir et al. (2008a).
2. Tamura textures: Contrast, directionality and
coarseness of the Tamura textures (Tamura et al.,
1978). The coarseness descriptors are its sum and its
3-bin histogram, providing a total of six numerical
content descriptors.
3. Gabor Filters: Gabor filters (Gabor, 1946) using
seven frequencies (1 through 7) and Gaussian harmonic

function (Grigorescu et al., 2002).

Polynomial decomposition:
1. Radon transform features (Lim, 1990): Four series
computed for angles 0, 45, 90, 135 degrees, and then
convolved into a 3-bin histogram, providing a total of
12 numerical content descriptors.
2. Chebyshev Statistics (Gradsteyn and Ryzhik,
1994): A 32-bin histogram of a 400-bin vector pro-
duced by the Chebyshev transform of the with order of
N=20.
3. Zernike features: Absolute values of the 72
coefficients of the Zernike polynomial approximation
(Teague, 1980).
4. Chebyshev-Fourier features: A 32-bin histogram
of the polynomial coefficients of a Chebyshev–Fourier
transform (Orlov et al., 2008) with maximum polyno-
mial order of N=23.

High-contrast features:
1. Fractal features, as described in (Wu et al., 1992).
2. Edge features: Mean, median, variance, and 8-bin
histogram of the magnitude and direction computed
on the Prewitt gradient of the image, as well as edge
direction homogeneity.
3. High-contrast object statistics: Minimum, max-
imum, mean, median, variance, Euler number, and
10-bin histogram of the objects areas computed on the
8-connected objects found in the Otsu binary transform
of the image.

Pixel statistics:
1. Multi-scale Histograms: Four histograms with
3, 5, 7, and 9 bins computed on the pixel intensities
(Hadjidemetriou et al., 2001).
2. First 4 Moments: Mean, standard deviation,
skewness, and kurtosis computed on image ”stripes” in
four different directions (0, 45, 90, and 135 degrees).

These features are extracted not just from the raw
values, but also from the two-dimensional transforms
and combinations of multi-order transforms. The trans-
forms are Fourier transform, Chebyshev transform,
Wavelet (symlet 5, level 1) transform, color transform
(Shamir, 2006), and edge magnitude transform. A de-
tailed description and performance analysis of the im-
age features extracted from image transforms and multi-
order transforms can be found in (Shamir et al., 2008a;
Shamir, 2008; Shamir et al., 2009b, 2010a, 2013a).

The comprehensive nature of the numerical image
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content descriptors allows analyzing complex morphol-
ogy such as radiology (Shamir et al., 2009b,a), mi-
croscopy (Shamir et al., 2008b; Manning and Shamir,
2014), and visual art (Shamir et al., 2010a; Shamir,
2012b). In particular, the Wndchrm feature set has been
proved to be informative for analysis of galaxy mor-
phology, and was found useful for tasks such as galaxy
classification (Shamir, 2009; Kuminski et al., 2014)
and automatic detection of peculiar galaxies (Shamir,
2012a; Shamir and Wallin, 2014; Shamir et al., 2014a).
A complete and detailed description of the set of nu-
merical content descriptors and comprehensive perfor-
mance analysis is available in (Shamir et al., 2008a;
Orlov et al., 2008; Shamir, 2008; Shamir et al., 2010a,
2009b,a), and the source code is also publicly avail-
able through the Astrophysics Source Code Library
(Shamir et al., 2013b).

As mentioned in Section 1, the purpose of the method
is not to automatically classify galaxies by their mor-
phology, but to quantitatively deduce a network of sim-
ilarities between the different morphological types us-
ing merely the galaxy images, and without using meta-
data or existing knowledge that is not in the image con-
tent. The unsupervised analysis (Shamir et al., 2010a;
Shamir and Tarakhovsky, 2012; Shamir et al., 2013a)
works by first allocating 140 galaxy images from each
galaxy type as annotated by EFIGI to the training set,
and assigning each numerical image content descriptor
with its Fisher discriminant score (Bishop et al., 2006)
computed using the training samples. After the content
descriptors were ranked based on their Fisher discrimi-
nant scores, the 85% of the least informative features,
with the lowest Fisher scores, are rejected (Shamir,
2009; Shamir et al., 2009b,c).

The similarity between each pair of galaxy images
is then computed using the Weighted Nearest Distance
(WND) algorithm (Shamir et al., 2008a, 2010a). The
mean similarity between all test galaxies of typet1 and
all training galaxies of typet2 determines the simi-
larity between these two galaxy morphological types.
The similarities between all pairs of galaxy types pro-
duce a similarity matrix, normalized such that the
similarity between a certain type to itself is set to 1
(Shamir et al., 2008a, 2010a; Shamir and Tarakhovsky,
2012; Shamir et al., 2013a). The similarity matrix is
computed 20 times such that in each run different im-
ages are randomly allocated to training and test sets, and
the final similarity matrix is generated by averaging the
20 similarity matrices.

The similarity matrix is visualized by PHYLIP

(Felsenstein, 1993; Kuhner and Felsenstein, 1994),
which was originally developed for visualizing simi-
larities between organisms by their genotypes, but in
this experiment used to visualize the similarities be-
tween galaxy types. It is used with randomized in-
put order of sequences where 97 is the seed, 10 jum-
bles, and the Equal-Daylight arc optimization. When
pairs of nodes are added, new nodes are created to pro-
vide the optimal tree that represents the similarity ma-
trix. PHYLIP first creates the tree in the form of a text
file that follows the Newick format, and then visual-
izes it by using the DRAWTREE program. The edges
between the nodes reflect the degree of similarities be-
tween them, such that a shorter path between two nodes
reflects a higher similarity between the images of these
two classes. DRAWTREE automatically sets the angles
such that the tree is convenient and easy to read. In the
phylogeny created by PHYLIP each pair of nodes has
just one possible path between them, and the length of
the path includes all segments on that path, including
edges between nodes added by PHYLIP during the tree
optimization process.

The method used to compute and visualize the sim-
ilarities between the galaxy types is described in de-
tails in (Shamir et al., 2010a; Shamir and Tarakhovsky,
2012; Shamir et al., 2014b), and was used for unsuper-
vised analysis of simulated images of galaxy mergers
(Shamir et al., 2013a). It also demonstrated its ability
to profile continuous biomedical processes in which the
clinical stages are reflected by image morphologies that
change on a continuous scale (Shamir et al., 2010b).
Detailed instructions including specific command lines
used to produce the results are described in A.

4 Results

The application of the similarity estimation method de-
scribed in Section 3 to the EFIGI color image data de-
scribed in Section 2 produced the phylogeny displayed
by Figure 1.

As the figure shows, the network of similarities be-
tween the galaxy morphological types computed by the
algorithm is in agreement with the ordered sequence
proposed by De Vaucouleurs (1959). The algorithm
produced a graph starting with the ellipticals (-5), fol-
lowed by the lenticualr galaxies (-3 through -1). Then,
continuing sequentially are the spiral galaxies from (1
through 9) followed by the irregulars (10) in an order
with perfect agreement with (De Vaucouleurs, 1959).
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Figure 1: The network of similarities between the galaxy morphological types as deduced automatically by the
algorithm

As mentioned in Section 2, the cD (-4), cE (-6), and
dE types (11) were not included in the analysis due to
the insufficient amount of sample images of these types
in EFIGI. The probability that 15 elements are ordered
in an ascending or descending order by mere chance is
2

15!
=∼ 1.53 · 10−12.

In another experiment we tested the method using the
color images converted to gray-scale, and normalized
for intensity such that all images had mean pixel value
of 100, and standard deviation of 25 (Shamir et al.,
2008a). The normalization ensured that the order will
be determined by the shape, with no impact of color or
brightness. The resulting graph produced by the algo-
rithm is displayed in Figure 2.
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Figure 2: The network of similarities between the
galaxy types using normalized gray-scale images

As the figure shows, the analysis of the normalized

gray-scale images provided results similar to the graph
produced using the color images, showing that the order
was not necessarily driven by pixel intensity or by the
color. The random chance probability that 12 elements
out of 15 are ordered in ascending or descending order
is 2 ·

(

15

12

)

1

12!
=∼ 1.9 · 10−6.

It is also noticeable that the S0 galaxy types S0− (-3),
S00 (-2), and S0+ (-1) do not follow the numerical order
proposed by De Vaucouleurs (1959). That analysis of
the computer is in agreement with the observation that
S0−, S00, and S0+ galaxies do not feature an increase
in the flattening of the galaxies (Sandage, 1961).

Figure 3 shows the Fisher discriminant scores of the
groups of numerical image content descriptors, reflect-
ing the measured informativeness of the descriptors and
consequently their impact on the analysis. The descrip-
tors are extracted from the image transforms and multi-
order transforms.

As the figure shows, the identification of the Hubble
stage depends on numerous image content descriptors
working in concert. The fractal features were the most
informative descriptors, indicating that the fractality of
the galaxy is different across different galaxy morpho-
logical types. This agrees with the observation that frac-
tality can be used as a galaxy classification signature
(Lekshmi et al., 2003), and can assist in differentiating
between elliptical and spiral galaxies (Shamir, 2009).
For instance, an elliptical galaxy has low fractality in
the absence of complex shape, but the fractality of a
galaxy should become more dominant when the galaxy
has more arms and split arms.

The graph shows that many other numerical im-
age content descriptors such as Haralick textures
(Haralick et al., 1973) have an impact on the analy-
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Fisher discriminant score

Image features

Figure 3: Fisher discriminant scores of the different groups of numerical content descriptors, extracted from the
different image transforms

sis, and work in concert to quantify the similarities be-
tween the different galaxy morphological types. Tex-
ture features has been shown to be informative in sep-
arating between galaxies based on their morphologi-
cal types (Au, 2006; Shamir, 2009; Banerji et al., 2010;
Pedersen et al., 2013). For instance, texture homogene-
ity/entropy may change as the galaxy becomes more
sparse, and the texture also correlates with star forma-
tion rate (Pedersen et al., 2013).

On the other hand, several numerical content descrip-
tors did not show substantial difference between galax-
ies of different Hubble stages. For instance, Radon fea-
tures do not show a change between different galaxy
types, as well as Tamura textures. The weak ability of
Tamura textures to differentiate between galaxy types
is that the directionality can be offset by galaxies or
arms rotating to the opposite direction. That is different
from other texture analysis algorithms such as Haralick,
where the texture entropy and energy are independent of
the direction.

The experiment was also repeated with the EFIGI

galaxy images of the u, g, i, r, and z bands. The re-
sulting phylogenies are displayed by Figure 4.

As the figure shows, the order of the galaxy types
somewhat violates the De Vaucouleurs (1959) scheme.
The shorter segments between some of the galaxy types
show higher similarity deduced by the method, indicat-
ing that in some cases the algorithm could not identify
the differences between these types. That shows that
although the order of the galaxy types deduced by the
algorithm is largely in agreement with the sequence de-
scribed in (De Vaucouleurs, 1959), processing just one
band leads to loss of information, and consequently the
order and automatic placement of the galaxy types is
not as close to the order of De Vaucouleurs (1959) com-
pared to the color images. Color has been identified to
correlate with galaxy types (Strateva et al., 2001), and
therefore color information can contribute to the ability
of the algorithm to analyze the similarities between dif-
ferent types of galaxies. The probability to have the or-
ders of the tree of the u, g, r, i, and z filters by chance is
6.84·10−5, 6.84·10−5, 1.9·10−6, 1.6·10−3, 6.84·10−5,
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Figure 4: The network of similarities between the galaxy types using the u, g, r, i, and z bands of EFIGI

respectively.
Also, the analysis of the u band shows strong sepa-

ration between late type galaxies and the other galaxy
types, where Sa and Sab are positioned close to the
lenticular galaxies. A similar observation can be made
with the analysis of galaxies in the g band. The r, i, and
z bands show a more even distribution of the types along
the main axis, but it is also noticeable that the early
types are clustered on one side of the axis, while irreg-
ular and Sd galaxies are grouped close to each other on
the other side.

Figure 4 also shows that the early type galaxies could
not be ordered correctly by the algorithm without us-
ing the color images, and that the individual bands
or grayscale images did not have sufficient morpho-
logical features of these galaxy types that allow the

automatic positioning in the same order proposed by
De Vaucouleurs (1959).

5 Conclusion

Although galaxy classification cannot be considered a
goal in itself (De Vaucouleurs, 1994), it is a key to un-
derstanding the physical properties of the past, present,
and future universe. Numerous galaxy morphological
schemes have been proposed by manual observation
and measurement of galaxy morphology and photom-
etry. Here we proposed a computer-based approach to
galaxy morphology by using an unsupervised machine
learning system that can deduce the visual similarities
between sets of images and reconstruct morphological
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sequences of galaxies. The analysis is performed such
that the algorithm determines the network of similari-
ties between the different morphological classes auto-
matically, and without human guidance.

The results show that when using the color EFIGI
galaxy images the sequence deduced by the computer
is in large agreement with the De Vaucouleurs (1959)
scheme, even when using the color images as gray-scale
images. When using each band separately the deduced
order was in weaker agreement with (De Vaucouleurs,
1959), showing that the composite color images con-
tained more visual information that was used by the al-
gorithm to deduce the order of the morphological types.
The saturation and gamma correction applied to the
EFIGI color images as described in Section 2 could
also affect the way these images were analyzed. Ba-
sic statistical analysis shows very low probability of
∼ 1.53 · 10−12 for having the galaxy types ordered in
an ascending or descending order by mere chance.

The color images allowed the algorithm to deduce
a sequence that is more consistent with the order of
De Vaucouleurs (1959) compared to the sequences pro-
duced with each of the individual bands, indicating that
the color images contained more information that was
used by the algorithm to deduce the order of the mor-
phological typess.

One difference between the De Vaucouleurs (1959)
scheme and the network of morphological similarities
produced by the algorithm is the S0 galaxies, where
the computer algorithm did not find the exact same or-
der identified by De Vaucouleurs (1959). The ability of
the computer to deduce a network of similarities that
is largely in agreement with manual analysis demon-
strates the discovery power of the method, and its poten-
tial ability to analyze larger datasets containing a higher
number of galaxy classes and identify and profile a pos-
sible morphological sequence. That allows quantitative
morphological of entire galaxies, rather than the quan-
tification of individual identifiable morphological fea-
tures (e.g., the number of spiral arms).

While the experiments described in this paper are
focused on galaxies in the Hubble sequence, with the
increasing importance of digital sky surveys imaging
billions of galaxies such as the Large Synoptic Survey
Telescope (LSST), automated methods are also impor-
tant to identify and analyze peculiar galaxies that can-
not be associated with a defined morphological stage on
the Hubble sequence. The scheme of numerical image
content descriptors described in Section 3 has demon-
strated its efficacy in detecting peculiar galaxy mergers

among millions of galaxies in Sloan Digital Sky Sur-
vey, and performing quantitative assessment of these
mergers (Shamir and Wallin, 2014). Sky surveys such
as LSST will be able to image a much larger number of
galaxies, from which peculiar galaxies can be detected.
Automatic detection methods such as (Shamir, 2012a;
Shamir and Wallin, 2014) can assist in the detection of
peculiar galaxies that are not associated with stages on
the Hubble sequence, and analysis methods such as the
method described here can be used to identify links be-
tween a large number of galaxy types.

Source code of the analysis methods used in the ex-
periment are publicly available, as well as the protocol
as described in A.
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A Protocol

All software tools used to produce the results are
open source, making it easier to replicate the results
or analyze other datasets (Shamir et al., 2013c).
Source code for the computer analysis method
(Shamir et al., 2008a) is available at the Astrophysics
Source Code Library (Shamir et al., 2013b) or at
http://vfacstaff.ltu.edu/lshamir/downloads/ImageClassifier,
as well as its dependency libraries (Shamir et al.,
2013b). It also requires the installation of
the open source PHYLIP package, available at
http://evolution.genetics.washington.edu/phylip.html.
The experiments also require computational resources
that can process the EFIGI catalog. The experiment
in this paper was done with a 16-core Intel Core-i7
machine and 32GB of RAM, and took about three days
to complete.

To replicate the results, the following steps are
required:

1. Download the EFIGI catalog from
http://www.astromatic.net/projects/efigi

2. Convert the color FITS images (or PNG im-
ages) to TIF format by using ImageMagick. A batch
conversion can be done by the following command
line: find /path/to/efigi -name “*.FITS” -exec convert
{} {}.tif \;

3. Separate the images into folders such that the
name of each folder is the T number, and its content
is the galaxy images of that T number as annotated by
EFIGI.

4. Compute the image features by
running the command line: ./wnd-
chrm train -mlc /path/to/efigiroot folder
/path/to/efigiroot folder/efigi.fit
That step might take several days to complete with
a single core, but the response time can be shorter
by running several instances of the process. The
process should not be stopped to avoid the creation of
empty .sig files. In case the process stopped before
completion, the following command line should be
used before running it again: find /path/to/efigi -name
“*.sig” -exec rm{} \;

5. The phylogeny can be created by run-
ning the following command line: ./wnd-

chrm test -f0.15 -i#140 -j12 -n20 -w -
p/path/to/phylip /path/to/efigiroot folder/efigi.fit
/path/to/efigiroot folder/efigi.html
When done, a .ps file should be created in the folder
“/path/to/efigi root folder”.

6. To process the grayscale images step 4 should
be replaced with the command line: ./wnd-
chrm train -ml -S100:25 /path/to/efigiroot folder
/path/to/efigiroot folder/efigi.fit

The experiments were performed in Linux (Fedora)
environment. For further information or assistance
please contact the authors.

12

http://vfacstaff.ltu.edu/lshamir/downloads/ImageClassifier
http://www.astromatic.net/projects/efigi

	1 Introduction
	2 Data
	3 Image analysis method
	4 Results
	5 Conclusion
	A Protocol

