oh.IM] 19 Jun 2015

astro

—

1506.06045v1

arXiv

Data compression for the First G-APD Cherenkov Telescope

M. L. Ahnen®, M. Balbo?, M. Bergmann®, A. Biland?, T. Bretz®%* J. Buf®, D. Dorner®, S. Einecke®, J. Freiwald®,
C. Hempfling®, D. Hildebrand?®, G. Hughes®, W. Lustermann?®, E. Lyard®*, K. Mannheim®¢, K. Meier®, S. Mueller?,
D. Neise?, A. Neronov®, A.-K. Overkemping®, A. Paravac®, F. Pauss®, W. Rhode®, T. Steinbring®, F. Temme®,
J. Thaele®, S. ToscanoP, P. Vogler®, R. Walter”, A. Wilbert®

CETH Zurich, Institute for Particle Physics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
b University of Geneva, ISDC Data Center for Astrophysics, Chemin d’Ecogia 16, 1290 Versoiz, Switzerland
¢ Unwwversitat Wiirzburg, Institute for Theoretical Physics and Astrophysics, Emil-Fischer-Str. 31, 97074 Wiirzburg, Germany
dNow at: RWTH Aachen, Physics Institute III A, Sommerfeldstrae, 52074 Aachen, Germany
¢TU Dortmund, Ezperimental Physics 5, Otto-Hahn-Str. 4, 44221 Dortmund, Germany

Abstract

The FACT telescope on the Canaries island of La Palma is the first Imaging Atmospheric Cherenkov Telescope (IACT) to use solid state photo-
multipliers. It generates up to two terabytes of data per night which motivated us to investigate how to reduce the volume of data. Reducing the
throughput enables us to efficiently acquire, store and process the observations data. This document presents the conclusions of this work, along with

the implementation of the custom compression algorithm and I/O layer that is currently in use to operate the telescope.

Keywords:

Gamma Astronomy, Lossless Compression, File Format.

1. Introduction

The First Geiger-mode Avalanche photodiode (G-APD)
Cherenkov Telescope (FACT) has been operating on the
Canary island of La Palma since October 2011. Opera-
tions were automated so that the system can be operated
remotelyﬂ Manual interaction is required only when the
observation schedule is modified due to weather conditions
or in case of unexpected events such as a mechanical failure
[, 2]. Automatic operations enabled high data taking effi-
ciency, which resulted in up to two terabytes of FITS files
[3] being recorded nightly and transferred from La Palma
to the FACT archive at ISDC in Switzerland. Since long
term storage of hundreds of terabytes of observations data
is costly, data compression is mandatory. This paper dis-
cusses the design choices that were made to increase the
compression ratio and speed of writing of the data with
respect to existing compression algorithms.

Following a more detailed motivation, the FACT com-
pression algorithm along with the associated I/0 layer is
discussed. Eventually, the performances of the algorithm
is compared to other approaches.

2. Motivations

A typical night of data taking generates up to two ter-
abytes of raw data. Several compression algorithms were
considered and tested to evaluate their performance on
Cherenkov data. Lossy compression was discarded to re-
tain all bits of information coming from the detector. As

*Corresponding authors
Thttp:/ /www.fact-project.org

Preprint submitted to The future of astronomical data formats

the first telescope using a new technology for photo detec-
tion, this choice was important to avoid any bias in the
characterization of the G-APDs. Insufficient throughput
disqualified the slowest algorithms (lzma [4] and bzip2 [5])
even though they provided excellent compression. gzip [6]
was selected for the commissioning of the telescope.

The classical separation between raw file format and
compression introduces several reads and writes to the
storage which could be avoided if the file format would na-
tively support compression. Several formats such as HDF5
[7] and ROOT [8] support compression natively but are
not widely employed by the astronomers community. On
the other hand, Tile-compressed FITS [J] is a convention
that allows to store compressed image data into binary ta-
bles. A recent evolution of the convention enables to also
compress binary tables natively [I0]. This convention is
fully FITS compliant with extra header keywords added
to accommodate for the compression.

The current Tile-compressed FITS implementation is
available from the CFITSIO library and via a set of two
executables, fpack and funpack, that can compress and
decompress FITS ﬁle&ﬂ Various compression algorithms
are already included [II]. Even though the compression
of images was a fully functional feature, the handling of
binary tables remained experimental at this time. More-
over, the specific noise pattern of the analog ring buffer
(see figure motivated us from investigating a specific
way to compress this data. Our primary goal was to im-
prove the compression ratio of raw data while maintaining
a high throughput. We also wanted to explore the possi-
bility to use calibration data of the analog ring buffer to

2http://heasarc.nasa.gov/fitsio/fpack

June 22, 2015

increase the compression ratio of raw data. To make sure
that this calibration data is exploited in the best possible
way it had to be applied by the I/O layer, thus making
the compression process more complex.

3. Compression

An overview of the implemented I/0 layer can be seen
in figure The FACT algorithm works on sixteen-bits
integer data and is lossless to allow to reconstruct the
original raw data from the compressed output. Our al-
gorithm consists of three separate steps. First the data is
reversibly pre-calibrated to reduce the quasi random noise
coming from the readout system to allow for high com-
pression rates. Then the data is preconditioned such that
number of bits needed for storage is reduced. Eventually,
the information is transformed such that only these signif-
icant bits are stored. These steps are discussed in more

details in sections and [3.3] respectively.

3.1. Drs Calibration

The FACT Camera [I] employs a Domino Ring Sam-
pler chip (DRS4, [12]) to continuously record the signal
from the detector plane. This chip is an analog ring buffer
that stores the signal before it is digitized and acquired.
Each DRS4 sample has an individual offset that must be
calibrated using pedestal values. Upon trigger, the sam-
pling is halted and the content of the buffer is readout. A
trigger can happen at any time, thus the readout window is
different from event to event. Therefore, not only the off-
sets are individual to each sample but also vary from event
to event. Although strictly speaking the offsets that are
added to the raw signal are deterministic, they will appear
as random to most algorithms and significantly decrease
the achieved compression ratio. To compensate for this
effect, the position of the readout window is recorded as
well so that the raw data can be calibrated with the offsets
individual to each sample before being analyzed [13]. In
Figure [1| (top) a raw signal is compared with a calibrated
one (bottom) while the statistics for an entire event can
be seen on figure

Applying this calibration reduces the amount of pseudo-
random noise. The downside is that this moves the data
from integer to floating-point space which would introduce
additional bytes in each sample. To stay in integer space
and allow to reverse the process, the compression algo-
rithm only applies the integer part of the offset. Since
the majority of offsets is larger than unity, this does not
significantly change the width of the resulting distribution
(by only 0.0011). Another advantage is that for a first
look at the data this calibration is fairly sufficient and,
therefore, allows easy access to semi-calibrated data. The
offsets themselves are stored in each data file thus allow-
ing to reverse this simplified calibration and apply a more
precise one. This is entirely done on-the-fly by the I/O
layer in a transparent way for the user who is only aware
of the raw values.

W M'\n"“w
Mwr,«.mw}’«)w sl

‘ J‘v"*\ww% / %”%"\M‘f’*\

Fig. 1. Effect of DRS-calibration on a single pixel’s
waveform samples. Top, red: raw data coming from the
DRS4. Bottom: DRS calibrated values. Left: large, 60
p-e. Cherenkov event. Right: small, 2 p.e. dark count
event. The raw data outputted by the FACT camera is
sampled by a 12-bits ADC and stored using 16-bits
integers. The actual DRS calibration transforms the
samples into floating-point values, while the values are
truncated to integers for compression purposes.

Drs . Huffman
Gaw EvenH Offsetter l—b| Preconditioner Encoder l_.

Fig. 2. Overview of the FACT compression I/O layer.
Each Cherenkov event undergoes three processings. First
the data is calibrated (DRS). It is then preconditioned
and eventually compressed using a Huffman encoder.

3.2. Preconditioner

While the DRS calibration step reduced the amount
of noise, the data still contains a significant amount of
pulses originating from so-called dark noise which require
a comparably high number of bits for storage. Since these
pulses look just like photons signal and thus have slow
slopes compared to the sampling frequency, storing their
derivative instead of their amplitude should reduce the re-
quired number of bits. If just the difference between two
consecutive samples would be recorded, the noise from two
samples would sum up yielding increased random noise on
the differences. The comparably slow change of the signal,
however, allows us to average two consecutive samples and
use them to calculate the difference to the following one.
In this way the additionally introduced noise component
is reduced by v/2. Averaging a higher number of samples
does not significantly lower the additional noise, but be-
comes sensitive to faster signals. Therefore, the average of
two has been found to be the best compromise.

The preconditioned samples p; are calculated from the
DRS calibrated raw data samples s; by

g Sim1 T Si2
pZ 7 2
with
Po = So and p; =81

In practice, this algorithm reduces the number of dif-
ferent values, while the occurrence of values close to zero
is increased (Figure [3| bottom). The width of the signal

is reduced from 65 to 35 and from 49 to 15 counts for raw
and DRS-calibrated data respectively.
The original waveform is restored by

_ Pi—1+pi—2
si=pit
2
with
S$1 =Dp1 and So = Po
Raw Values Distribution Raw Values Histrograms
3 8 7
Soo- 5 L n
i I
, E [
| , . o 3

Y

5001
-1000

-1500—
10

il m I ul lbc10® Lo i P | 1 |
0 50 100 150 200 250 300 350 400 450 2000 -1500 -1000 -500 0 500
‘Sample Number Value

Drs-Offsetted Values Distribution Drs-Offsetted Values Histrograms

Number of Occurence
a

il im I ul lbe10® (N HHI ! N Lol
0 50 100 150 200 250 300 350 400 450 400 200 0 200 400 600 800
‘Sample Number Value

Fig. 3. Plotting of the pixel values from a single event.
Each event has 1440 pixels and for each pixel 300 time
samples of 0.5ns are recorded. On top are the values
distribution and histograms for raw data, while below are
the same plots for DRS-calibrated data. In orange are
the input data while in blue are the output values of the
preconditioning. The mean and std. dev. are (-1881.95,
65.0274), (-0.25, 35.63), (5.53, 49.09) and (-0.01, 15.21)
for raw, preconditioned raw, DRS-calibrated and
preconditioned DRS-calibrated respectively. The second
peak in the histogram of the raw data comes from
artificially added time markers employed to synchronize
the trigger patches.

3.3. Huffman Encoding

The last step of our compression algorithm consists of
minimizing the number of bits needed to store the data.
This is achieved via entropy coding and more specifically
using Huffman coding [14]. The principle of this encod-
ing is to associate codes to symbols, which lengths are
inversely proportional to the symbols occurrence count. It

has been widely used over the past 50 years, with well
known applications such as JPEGE| and MPEﬂ

The length of the input symbols can vary depending on
specific quantization parameters, especially for lossy com-
pression. 8-bits words is the most commonly used symbol
length for lossless compression. We chose 16-bits words as
input to overcome the necessity to code the zeros in the
majority of the most significant bytes of the 16-bit data.

An alternative approach to overcome this shortcoming
is the Rice algorithm [I5], which separates the high and
low parts of the words before compressing them separately.

4. File format

As a file format, the FITS tile-compression conven-
tion has been chosen. The use of Tile-compressed FITS
[9] allowed us to reuse most of the analysis pipeline and
FTOOLS. For instance, all data files are verified by the
FTOOL fitsverify before being accepted to the long-term
archive. Our own FITS I/O layer had already been devel-
opped within the FACT project for performances reasons
and more particularily to be able to control the memory al-
locations. These classes were extended to accomodate for
the compression algorithms and Tile-compression conven-
tion. To implement the compressed format it was enough
to derive from the existing classes, thus reducing the re-
quired development work to a minimum.

FITS-files are organized in extensions. Each extension
starts with an ASCII header that defines the structure and
length of the data stored in the current extension. Headers
are directly followed by fixed-length data organized into
columns and eventually comes the variable-length data in
a section called the heap. The heap contains compressed
data that could not be stored in the fixed-length columns
of the main data table. In the compressed format, rows are
compressed in groups of n (called a tile) and each column
from a group of rows is compressed separately, as directed
by the Tile-compressed FITS convention.

A schematic view of the file format can be seen in fig-
ure [l In Tile-compressed FITS files, all compressed data
goes into the heap as it is naturally variable in length. In
our implementation we also allow for the storage of fixed-
length data in the heap. This allows to read continuous
sectors on the disk to retrieve a full set of rows, rather
than alternating reads between the columns and heap ar-
eas. In this way the streaming capability of the format
is kept. Moreover, storing all data to the heap simplifies
the structure of the I/O code, thus easing the long-term
maintenance.

A few minor adaptation were implemented to address
some shortcomings of the Tile-compressed FITS format

Shttp://www.itu.int /rec/ T-REC-T.81-199209-1/en
4http://mpeg.chiariglione.org/standards/mpeg-1/audio

FITS Header
Column 2

Tile 1
Tile 2
Tile 3
Tile 4

File Column 1 Column 3

Catalog: /
offset + ;/
S1zes ..

Catalog
reserved
space

HEAP
area:
actual
data

FITS
Padding

l Tile header D Block header
[I [I D Columns data (1,2 and 3 resp.)

Fig. 4. Schematic view of the data layout on disk. The
file format complies with the Tile-compressed FITS
convention. All columns, even uncompressed ones are
moved to the heap area for better performances. The
main data table thus becomes a catalog. The tile and
block headers allow to reconstruct the file’s catalog from
the heap only. This is used in emergency situations
where not enough space was reserved. It could also be
useful if each block of events (tiles) are stored in
relational databases (RDMS). This way complete FITS
files could be efficiently reconstructed on the fly based on
the request made to the RDMS.

when working with streams rather than data sets. These
change do not modify the capabilities of FITS but rather
are meant to make operations more robust and less re-
sources intensive. They are discussed in details in the fol-
lowing sections.

4.1. Custom FITS keywords

Two new header keywords were introduced: RAWSUM
and ZSHRINK.

RAWSUM. In the standard implementation of the Tile-
compressed FITS format, the checksum of the uncom-
pressed table (DATASUM) is saved during compression
by the fpack tool.

While in the FITS convention this checksum is cal-
culated from big-endian data, the data arriving from the
telescope is little-endian. To avoid the need of an addi-
tional byte swapping just to calculate the DATASUM, a
new keyword RAWSUM has been introduced storing the
checksum of the uncompressed, little-endian data. Appart
from the omission of the byte-swap, the computation of
both DATASUM and RAWSUM is identical. This new
keyword does not forbid to use the usual CHECKSUM
keywork to verify the integrity of the compressed data,
which we do.

ZSHRINK. In our Tile-compressed FITS streamer the main
data table is used to store pointers to the heap-area, usu-
ally one for each compressed row. Since this table is stored

before the heap-area, it implies that the number of rows
to be written to the file is known in advance. This is not
always possible because experiments often prefer to group
data per interval of time rather than per unit of raw data.

As a remedy, an estimate of the expected number of
rows/events is calculated when the file is opened, and a
corresponding number of bytes reserved. If the number of
events grows larger than the number of pointers which can
be written to the table, only every Nth pointer is written
to the table. The integer N is then stored in the keyword
ZSHRINK.

To still be able to read the compressed data entirely,
specific markers are put in the heap area that allow us to
not only read the compressed data without access to the
main data table, but also to reconstruct this table entirely
from the heap area only.

4.2. Compression blocks

Inside the heap, blocks of compressed data start with
their own variable-length header which is described in fig-
ure[d} An ordering field allows us to order the data either
by row or by column. In the case of FACT, ordering the
data per row yields a better compression ratio and less
data shuffling.

byte byte byte
[8 10

(ITTTTTTITITITT]

L |
¥

size

L
. v
ordering processings

num
procs

Fig. 5. Compressed block header. size (8 bytes) is the
size in bytes of the block, ordering (1 byte) is how the
data was copied from the columns. ASCII code for 'R’
means that the data was copied as is, while 'C’ means
the it was transposed as directed by the Tile-compressed
FITS convention. numprocs (1 byte) is the number of
compression algorithms that were applied and
processings (numprocs bytes) is the identifiers of the
applied algorithms. Currently the only valid values are
0 = raw, 1 = smoothing and 2 = Huf fmanl6.

Besides block headers, tile headers are interleaved with
the compressed data. If the main data table is complete,
i.e. contains pointers to all rows, these headers are redun-
dant. If more rows are written compared to the space re-
served initially (ZSHIRNK> 1), they allow to reconstruct
the missing main data table entries. They can also be used
to recover the catalog upon data corruption.

4.8. DRS-calibration

The DRS-calibration is not applied by the compres-
sion algorithm per se. The calibration offsets are stored
in a separate Tile-compressed table in the same FITS file
as the data itself. This introduces an overhead which is
quickly absorbed by the increased compression ratio. For
optimal efficiency, the calibration table is always placed
before the main data table. This allows the data access

byte byte byte byte

0 4 8 15
(TTTITITTI I]
|

L 1 1
¥ [¥
tile number size
marker of
rows.

Fig. 6. Tile header. tilemarker is an identifier marking
the start of a new tile. Its content is the ASCII codes of
TILE. numberofrows is the number of rows compressed
in the current tile. size is the total size of the tile in
bytes.

layer to quickly find the calibration table without having
to skip through the file. The data access layer finds the
calibration table by looking for a table called ZDrsCellOff-
sets, and thus this name should not be used for another
table.

4.4. Access Layer

The access layer was written in C+4 and consists of
classes that inherit from each other, as follow: factfits —
zfits — fits. Additionally, fits has the zlib as a link op-
tion which enables it to read gzipped FITS natively. zfits
can read everything fits can plus Tile-compressed FITS
and factsfits can read all of what zfits can plus DRS-
calibrated FITS. The source code of the classes can be
checked-out from the FACT SVIﬂ All reading classes are
single-threaded while their writing counterparts use mul-
tiple cores for fast compression.

The writing is done as follow: incoming rows are buffered

until the target number of rows per tiles is reached. Then
the buffer is given to a compression thread while a new
one is allocated to receive new events. Each compression
thread will shuffle and compress the data before passing
the compressed rows to a thread that perform the actual
write to disk.

Reading occurs as follow: compressed tiles are loaded
to memory, decompressed and the raw data is buffered
until it is requested by the users or until another tile is
read.

Our I/O layer allows to start reading a file before it
has been closed by the writing process. This proved to
be useful to start real-time analysis as soon as possible
and to provide statistics to the operator if they need to be
extracted from raw data files.

5. Results

The FACT compression algorithm was compared to
other de facto standards in the astrophysics community.
Since the DRS calibration is specific to the DRS 4 readout,
two separate input data sets were employed: raw events
and their DRS-calibrated version. The calibration step
was pre-calculated for all tests so that the comparison is
fair. The tested file formats were:

Shttps://www.fact-project.org/svn/trunk/FACT++

e EVENTIO is the format used to produce Monte-
Carlo simulations for the CTA projectﬂ This for-
mat tightly packages the input data using a internal
compression algorithm.

e FITS the reference file format where the data is writ-
ten in plain binary. Only the bytes order might be
modified to make the data big-endian.

o Tile-compressed FITS the FITS convention that sup-
ports binary tables compression natively.

In addition, HDF5 and ROOT files were considered
but not tested because the way they package the data over-
lapps with the above formats. HDF5 defines the file format
but not the compression algorithm to be used per-se, while
ROOQOT uses a derivative of gzip. FITS was used as a data
source format, while Tile-compressed FITS was split into
two flavors:

e Rice: the FTOOLS fpack and funpack were used to
(un)compress the data using the Rice compression
algorithm [I5]. This algorithm splits high and low
bytes of the input values before compressing them
separately.

e Fact: the compression algorithm and I/O layer de-
scribed in this paper were used to produce Tile-
compressed FITS.

Besides file formats, each produced file has been further
compressed using several classical algorithms, namely:

e [zma the Lempel-Ziv-Markov chain-Algorithm that
was under development until 2001.

e gzip the well known algorithm widely used by the
linux community. It employes the LZ77 and Huffman
coding

e bzip2 the more recent algorithm meant as an alterna-
tive to gzip. It uses the Burrows-Wheeler transform
and Huffman coding.

All programs that have compression level options were
set to their minimum. Preliminary tests conducted with
higher levels showed that the achieved ratios did not in-
crease significantly whereas the processing time did.

Tests were conducted on data from 2 nights: 2014/01/01
and 2014/01/10. The first night was dark, while the sec-
ond had moonlight for half of the night resulting in more
recorded background photons and thus a higher noise level.
All I/O operations were done to/from the shared memory
to alleviate caching effects and storage bottlenecks. Only
files small enough to fit in the available memory were pro-
cessecﬂ Since only the FACT I/O layer could handle the

Shttp://www.mpi-hd.mpg.de/hfm/ bernlohr/iact-atmo/
771 out of 261 runs could not fit in the available 64GBytes of
memory

DRS-calibration natively, the input data sets were pre-
processed before the other compression algorithms were
applied. The size of the DRS-calibration table was ig-
nored in the calculations. This table has a constant size of
approximately 1.4MB compressed or 0.02 percent of the
average raw data file, to be added to the output size of
the compressed files. The raw throughput of the memory
was approx. 1.5GB/s thus the performances given below
reflect the computation time rather than memory 10.

Ratio vs Throughput - raw input
®Izma

2.4 ®gzip
X X X bzip2
* A evtio
A A evtio+lzma
Y A evtio+gzip
A evtio+bzip2
*rice
* rice+lzma
* rice+gzip
rice+bzip2
X fact
X fact+lzma

0 20 40 60 80 100 120 140 *fact+ozip
fact+bzip2

Comp. Ratio
e NG
N = o oo N N
[]

[

MB/s

Fig. 7. Obtained compression ratio compared to
throughput for raw data set. The best performances are
obtained by the data points with the largest x and y
values.

Comp. Ratio vs Throughput - DRS-calibrated input

®zma
® gzip
bzip2
A evtio
A A evtio+lzma
A evtio+gzip
evtio+bzip2
*rice
® *k rice+lzma
%k rice+gzip
rice+bzip2
X fact
X fact+lzma
160 X fact+gzip
fact+bzip2

w
w o s
*

g
*

X

Comp. Ratio
= N
o N (52
» ©®
>

-
o

20 40 60 80 100 120 140
MB/s

Fig. 8. Obtained compression ratio compared to
throughput for DRS-calibrated data sets.

A summary of the compression performances can be
seen on figures [7] and The compression ratio for the
raw data went up to 2.25, while the I/O layer delivers the
best average ratio and an average throughput of 131MB/s.
For Drs-calibrated data, we achieved ratios up to 3.5 with
Rice. The FACT algorithm is a close contender, achiev-
ing an average ratio of 3.39 coupled with a throughput of
143MB/s.

Decompression speed for calibrated data can be seen
on table [l EventIO turned out to be the fastest format
when it comes to reading the data back, topping out at
200 MB/s. The FACT algorithm was second at 132 MB/s
and Rice arrived third at 115MB/s. Classical algorithms
performed much worse with only gzip coming close to the

FITS | EventlO | Rice | FACT

native | n/a 200.51 | 109.29 | 120.34

lzma | 30.75 34.16 31.86 32.13

gzip | 94.14 86.64 83.92 90.57

bzip2 | 26.80 28.51 34.05 34.77
Table 1

Mean decompression throughput in MB/s of input DRS-calibrated
data.

Rice decompression performances. Detailed performances,
including decompression of raw data, are given in the an-

nex [Al

6. Discussion

The tests have shown that the described compression
algorithm provides good performances when applied to
the data produced by the FACT telescope. Compared to
the previously used gzipped-FITS format, it allowed the
experiment to improve the compression ratio of its raw
data from 1.6 to 3.4 while the compression throughput
went from 33.6 MB/s up to 143.0MB/s. Only Rice was
able to outperform our algorithm under specific conditions,
namely for DRS-calibrated data when the lighting condi-
tions are not optimal. These degraded lighting conditions
occur between the nautical and astronomical twilight, and
when the moon is up. This suggests that the Rice al-
gorithm is very good at compressing actual signal while
our algorithm achieves larger compression ratios with raw
data.

Adding classical compression on top of the custom ones
did not significantly improve the results and even decreased
the compression ratio in some cases. This was expected as
the first compression stage leave mostly noise in the data
set.

The FACT algorithm is the fastet of the tested ap-
proaches, while Rice is second. The classical algorithms
were much slower and would be difficult to use for real-
time operations as they would require that the data is
compressed after data taking in a separate step or using
a much larger number of compute cores. The throughput
obtained by these algorithms is faster in some cases where
the data was first transcoded to a natively compressed for-
mat.

The best overall compression ratios were obtained by
combining a native algorithm - either Rice or Fact - and
gzip. However, the gain in compression ratio of about 1%
is not significant enough to accept a decrease in processing
speed of more than 50%.

Considering the good performances of the Rice algo-
rithm under poor lighting conditions for DRS-calibrated
data, an additional gain could be achieved. However, given
the marginal improvements compared to our algorithm,
that only a small fraction of the data is taken under these
conditions and the additional complexity to apply two sep-

arate compressions, the FACT algorithm remains a good
choice.

7. Conclusion and Future Work

In this paper a simple compression algorithm was pre-
sented which provides good performances when applied to
FACT data. This algorithm was implemented in C++ and
integrated into a streaming I/O layer that produces Tile-
compressed FITS file format, which makes it suitable for
the real time operations of IACTs.

The performances of our algorithm was compared with
existing approaches. The experience gained during this
work will be reused while devising the raw data format
for the Cherenkov Telescope Array to ensure that the best
compression ratios achievable in real-time is implemented.

The I/0 layer described in this paper has been used
since more than three years for the datataking of FACT.
The total amount of encoded data is currently more than
600TB uncompressed and all raw data can be read without
any problem.

8. Acknowledgments

This work was made possible thanks to SNF Syner-
gia grant, ETH Zurich grant ETH-10.08-2 as well as the
funding by the German BMBF (Verbundforschung Astro-
und Astroteilchenphysik). We are thankful for the very
valuable contributions from E. Lorenz, D. Renker and G.
Viertel during the early phase of the project. We thank the
Instituto de Astrofisica de Canarias allowing us to operate
the telescope at the Observatorio Roque de los Mucha-
chos in La Palma, and the Max-Planck-Institut fiir Physik
for providing us with the mount of the former HEGRA
CT3 telescope. We thank William Pence and Rob Sea-
man for the time they spent providing guidance for the
fpack software and their valuable discussion insights. We
also thank Konrad Bernlohr for his EventIO example for
writing FACT data.

References

[1] H. Anderhub et al., Design and operation of fact the first g-apd
cherenkov telescope, Journal of Instrumentation 8 (06) (2013)
P06008.

URL http://stacks.iop.org/1748-0221/8/i=06/a=P06008

[2] A. Biland et al., Calibration and performance of the photon sen-
sor response of fact the first g-apd cherenkov telescopel Journal
of Instrumentation 9 (10) (2014) P10012.

URL http://stacks.iop.org/1748-0221/9/i=10/a=P10012

[3] D.C. Wells et al., FITS - a Flexible Image Transport System,
Astronomy and Astrophysics Supplement 44 (1981) 363.

[4] J. Ziv, A. Lempel, A universal algorithm for sequential data
compression, IEEE TRANSACTIONS ON INFORMATION
THEORY 23 (3) (1977) 337-343.

[5] M. Burrows, D. J. Wheeler, A block sorting lossless data com-
pression algorithm, Tech. Rep. SRC-124, Digital Equipment
Corporation, Digital Systems Research Center, 130 Lytton Av-
enue, Palo Alto, California (May 1994).

[6] P. W. Katz, String searcher, and compressor using same, US
Patent num. 5051745 (09 1991).

URL http://worldwide.espacenet.com/publicationDetails/
biblio?CC=US&NR=5051745&KC=&FT=E&locale=en_EP

[7] The HDF Group, Hierarchical Data Format,
http://www.hdfgroup.org/HDF5/ (1997-2015).

[8] R. Brun, F. Rademakers, Root - an object oriented data analysis
framework, in: Proceedings AIHENP’96 Workshop, Lausanne,
Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86., 1996.

[9] R. L. White, P. Greenfield, W. Pence, D. Tody, R. Seaman,
Tiled Image Convention for Storing Compressed Images in FITS
Binary Tables, ArXiv e-printsarXiv:1201.1336.

[10] W. Pence, R. Seaman, R. L. White, A Tiled-Table Conven-
tion for Compressing FITS Binary Tables, ArXiv e-printsarXiv:
1201.1340.

[11] W. D. Pence, R. Seaman, R. L. White, Lossless astronomical
image compression and the effects of noise, pasp 121 (2009)
414-427. arXiv:0903.2140, doi:10.1086/599023.

[12] S. Ritt, Design and performance of the 6 ghz waveform digitizing
chip drs4, in: Nuclear Science Symposium Conference Record,
2008. NSS'08. IEEE, IEEE, 2008, pp. 1512-1515.

[13] T. Krahenbiihl et al., Calibrating the camera for the fitst g-apd
cherenkov telescope (fact), in: 32nd International Cosmic Ray
Conference, 2011.

[14] D. Huffman, |A method for the construction of Minimum-
Redundancy codes, Proceedings of the IRE 40 (9) (1952) 1098—
1101. |doi:10.1109/jrproc.1952.273898.

URL http://dx.doi.org/10.1109/jrproc.1952.273898

[15] R. F. Rice et al., Algorithms for high-speed universal noise-
less coding, in: 9th ATAA Computing in Aerospace Conference,
1993. doi:10.2514/6.1993-4541.

[16] J. K. Blackburn, FTOOLS: A FITS Data Processing and Analy-
sis Software Package, Astronomical Data Analysis Software and
Systems IV 77 (1995) 367.

URL http://heasarc.gsfc.nasa.gov/ftools

version B,

Appendices

A. Detailed results

The detailed results are presented below. First the
compression ratios and then the compression throughput.
One plot with the tested formats is presented per classical
compression ratio. In the case of the raw file format, plain
FITS was omitted as the corresponding compression ratio
is always one and calculating a throughput would make no
sense.

For both the compression ratios and throughput, the
data points are organized per run. Each run corresponds
to a single raw data file that was moved to shared memory
in plain FITS. All the code was compiled with gcc 4.4.7
on scientific linux 6.2 x64. The optimizer was set to -O2.
Tests were made with -O3, but the lack of performances
improvements made us stay with the -O2 option.

The first half of each plot correspond to the night of
2014/01/01 (dark) up to run 78 while the second half cor-
responds to the night of 2014/01/10 (moon). Jumps in the
compression ratios correspond to repointings of the tele-
scope, while jumps in the throughput are most likely due
to system interrupts of the operating system of the server
onto which the tests were run. Indeed, despite the fact
that we made sure that no other processing was running

http://stacks.iop.org/1748-0221/8/i=06/a=P06008
http://stacks.iop.org/1748-0221/8/i=06/a=P06008
http://stacks.iop.org/1748-0221/8/i=06/a=P06008
http://stacks.iop.org/1748-0221/9/i=10/a=P10012
http://stacks.iop.org/1748-0221/9/i=10/a=P10012
http://stacks.iop.org/1748-0221/9/i=10/a=P10012
http://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=5051745&KC=&FT=E&locale=en_EP
http://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=5051745&KC=&FT=E&locale=en_EP
http://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=5051745&KC=&FT=E&locale=en_EP
http://arxiv.org/abs/1201.1336
http://arxiv.org/abs/1201.1340
http://arxiv.org/abs/1201.1340
http://arxiv.org/abs/0903.2140
http://dx.doi.org/10.1086/599023
http://dx.doi.org/10.1109/jrproc.1952.273898
http://dx.doi.org/10.1109/jrproc.1952.273898
http://dx.doi.org/10.1109/jrproc.1952.273898
http://dx.doi.org/10.1109/jrproc.1952.273898
http://dx.doi.org/10.2514/6.1993-4541
http://heasarc.gsfc.nasa.gov/ftools
http://heasarc.gsfc.nasa.gov/ftools
http://heasarc.gsfc.nasa.gov/ftools

FITS | EventIO | Rice | FACT
native 1 1.75 2.11 2.25
lzma, 1.86 2.07 2.09 2.25
gzip 1.57 2.01 2.11 2.27
bzip2 2.10 2.16 2.10 2.25
Table 2

Mean compression ratio for raw input data.

FITS | EventIO | Rice | FACT
native 1 1.97 3.48 3.39
lzma, 2.53 2.27 3.49 3.44
gzip 2.11 3.14 3.51 3.45
bzip2 | 3.26 3.42 3.48 3.42
Table 3

Mean compression ratio for DRS-calibrated data.

on the servers for the tests, some system interrupts still
occurred. The total input size was 1330.56GB while the
average file size was 6.97GB.

Tables 2] and [3|show the average compression ratios for
the raw and DRS-calibrated input data sets respectively.
A summary of the compression speeds can be seen on table
[and[5] Eventually, the decompression speed can be seen
on tables 6] and [

A.1. Compression Ratios

Figures [0 and [I0] show the compression ratios obtains
for the raw data set. They correspond to the transcoding
to the native file format, lzma, gzip and bzip2 versions
respectively. Figures and [12] follow the same ordering,
only for the DRS-calibrated input data set.

A.2. Compression Speed

Figures and show the compression speed in MB/s
obtains for the raw data set. They correspond to the
transcoding to the native file format, lzma, gzip and bzip2
versions respectively.

Figures [I5] and [16] follow the same ordering, only for
the DRS-calibrated input data set.

FITS | EventlO | Rice FACT

native | n/a 95.68 128.84 | 131.05

lzma 6.68 8.80 10.75 11.52

gzip 33.62 28.11 39.27 41.47

bzip2 8.62 11.01 10.61 11.02
Table 4

Mean compression throughput in MB/s of input raw data.

FITS | EventIO | Rice | FACT
native | n/a 95.97 129.33 | 142.96
lzma 7.67 9.47 16.89 16.94
gzip | 47.11 | 41.21 | 50.05 | 52.52
bzip2 | 10.36 14.70 16.89 16.59
Table 5
Mean compression throughput in MB/s of input DRS-calibrated
data.
FITS | EventIO | Rice | FACT
native | n/a 193.63 | 114.87 | 131.90
Izma | 21.10 22.51 21.66 23.65
gzip | 79.55 82.58 85.75 95.53
bzip2 | 23.72 24.10 23.99 26.07
Table 6

Mean decompression throughput in MB/s of input raw data.

Comp. Ratio - Raw - native

Ratio

22

2.

N
TTT [T T T T[T T T T[T T T T[T T TT[TTT
I I I [I

o

20

40 60 80

Comp. Ratio - Raw - Izma

|
100 120

|
140

| B
160 180
Run Number

Ratio

22

2.

N

5 B
\\‘\\\\‘\\\\‘\

T

FITS
BracT
[- e
Bevrio

I
0 20

40

60 80

Ll |
100 120

|
140

I B
160 180
Run Number

Fig. 9. Compression ratios of raw data runs for native

and lzma output respectively.

Comp. Ratio - Raw - gzip Comp. Ratio - DRS Offset - native

2 23 2 Bract
5T e e T ’___—_A‘
4 F & ."(—— Hrice
<k “ s
E c Bevro
2’1; ..._r-w-J/"
2; . C ,.._-w-/’/.:
£ 3=
1.9;7 28—
18- 26
175 2A4;
1.6; 221
L = I e P R T T ————
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Run Number Run Number
Comp. Ratio - Raw - bzip2 Comp. Ratio - DRS Offset - Izma
£226— 2
.W. W :_-.
mz - WM i ¢
S -~]
F ey
222— Ry
22 p;;f.z
E 32— o PE. e
218 Le e
B sttt I 3
2-16: e mw" E
2141~ 2.8/
2.12? 26—
2.1 ? _\;;s\wwmrs“'.“...:&.m.- PRI Lot s =
2.08— E
T (RN E I RN AR AN RN PN I B 2207) L e L e L e L
20 40 60 8 120 140 160 180 0 120 140 160 180
Run Number Run Number
Fig. 10. Compression ratios of raw data runs for gzip Fig. 11. Compression ratios of DRS-calibrated data
and bzip2 output respectively. runs for native file format and lzma output respectively.

Comp. Ratio - DRS Offset - gzip

° 0
2 3.8 2k
57 2 [e e [,
E 130[— ‘e smtnny oo o S, . L TN “aveepne [MRICE
E L TN Y. Ko ALt wranind et AV
=] B *3':" b Mq.mpﬂ'f‘ . Bevro
120—*
3¢ L
28— -
E 10—
26— L
24— L
= 100[—
22— L)
= A S e s USRIV PP P
2/~ r .
E 90— .
8T Ly L L L L b L Lo e L Dol b b Lo b b Lo Lo u a1
0 20 40 60 80 100 120 140 160 180 120 140 160 180
Run Number Run Number
Comp. Ratio - DRS Offset - bzip2 Throughput - Raw - Izma
s F o
& 37 2 P e s T P T o L TR A N SN S
C rC . . e
= 1M—
36— E : PRPIEN et
C . . M .
35— = -
= 10—
34— C
33 o PR
& o L o N e el
32— C
= 8—
31— C
3; AN g .
2081 L b L e L L L PR I PN IR I RTEEN AU R UV IS PR AR
0 120 140 160 180 120 140 160 180
Run Number Run Number

Throughput - Raw - native

Fig. 13. Compression throughput in MB/s of raw data
runs for native and lzma output respectively.

Fig. 12. Compression ratios of DRS-calibrated data
runs for gzip and bzip2 output respectively.

10

. Throughput - DRS Offset - native
Throughput - Raw - gzip

e
s [DH50[— Ve o, o + s [BFACT
a aremgp s o e . iofns s =k : FoXN
= 22— N v . s AN oo . o~ . Brice
C . . Copt e fam e true temta’ W =
N N U S R g B Bevro
C A T ML OO FL N RIS TPRNOPR P20 PRy O o &
I SR O X e g g A L e TN AL = B e K R
38;" . - R AR DR, . 0 o 130: -"_,m-"m ; . o " -\.\‘”ﬂp,-...
| . . C ",
C 120[—
36— =
F 10—
34— C
F 100~
32— R e et N e e
a0 90:— .
2B A N NN N 0 R SN N O AN 80F- | | L | | | ‘ ‘
[%% . N ee e DI . N S T T T T N Y R
Eelovo b b loa b boa loaa Lo laia iy 2 120 140 160 _ 180
0 20 40 60 80 100 120 140 160 180 Run Number
Run Number
. Throughput - DRS Offset - Izma
Throughput - Raw - bzip2
0
@ =] r cal AP L, e
o S gl ememgmi Sl Cnd
§ ([aierpeempoen, e e e ey
E W . u*.‘...., wentiid ‘ Fod
E - < g
r M_‘-WFA, A 16 — : .-.My‘? ;.M
05— e~ L prm e E St
r Py
10— L
E 12—
95— L
F 10—
I L SO Oty Pt AN~
o — [- oo et
c 8l—
85— P T I e B R P RN O
Bl b b b b b b Lo Lo Loy 0 20 40 60 80 100 120 140 160 180
120 140 160 180 Run Number
Run Number

Fig. 15. Compression throughput in MB/s of
DRS-calibrated data runs for native and lzma output
respectively.

Fig. 14. Compression throughput in MB/s of raw data
runs for gzip and bzip2 output respectively.

11

Throughput - DRS Offset - gzip

Saeee

R

MB/s

IS
>

IS
=

IS
3
[T IO T[T T TTT T [TTT[TTT]

4

N

i AN SN N 5o o vy P~
4 h ottt SN NN

I=}

[R AU ARV EVUVETI ARV ERVRTN AR IR I
120 140 160 _ 180
Run Number

38

Throughput - DRS Offset - bzip2

MB/s

]

=
I s

v b b b b by e b b B
0 20 40 60 80 100 120 140 160 180
Run Number

Fig. 16. Compression throughput in MB/s of
DRS-calibrated data runs for gzip and bzip2 output
respectively.

	1 Introduction
	2 Motivations
	3 Compression
	3.1 Drs Calibration
	3.2 Preconditioner
	3.3 Huffman Encoding

	4 File format
	4.1 Custom FITS keywords
	4.2 Compression blocks
	4.3 DRS-calibration
	4.4 Access Layer

	5 Results
	6 Discussion
	7 Conclusion and Future Work
	8 Acknowledgments
	Appendices
	A Detailed results
	A.1 Compression Ratios
	A.2 Compression Speed

