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Abstract

This paper describes the implementation of polycomp, a open-sourced, publicly available program for compressing one-dimensional
data series in tabular format. The program is particularly suited for compressing smooth, noiseless streams of data like pointing
information, as one of the algorithms it implements applies a combination of least squares polynomial fitting and discrete Cheby-
shev transforms that is able to achieve a compression ratio Cr up to ≈ 40 in the examples discussed in this work. This performance
comes at the expense of a loss of information, whose upper bound is configured by the user. I show two areas in which the usage
of polycomp is interesting. In the first example, I compress the ephemeris table of an astronomical object (Ganymede), obtaining
Cr ≈ 20, with a compression error on the x, y, z coordinates smaller than 1 m. In the second example, I compress the publicly
available timelines recorded by the Low Frequency Instrument (LFI), an array of microwave radiometers onboard the ESA Planck
spacecraft. The compression reduces the needed storage from ∼ 6.5 TB to ≈ 0.75 TB (Cr ≈ 9), thus making them small enough to
be kept in a portable hard drive.

Keywords: coding theory, Information systems Data compression, methods: numerical
PACS:

1. Introduction

It is increasingly common for astronomers to deal with huge
datasets, either produced by means of simulations or measured
by instruments. This situation has caused a sharp rise in the
demand of disk storage for preserving measurements and sim-
ulations in digital format. A telling example is the amount of
storage required by three space instruments devoted to the char-
acterization of the CMB anisotropies. The COBE/DMR, which
took its measurements in the years 1989–1993, produced less
than 8 GB of time-ordered data1; the WMAP spacecraft pro-
duced roughly 200 GB of data2 in the years 2001–2010; lastly,
the recently released Planck timelines require ∼ 30 TB (Planck
Collaboration ES 2015) of disk space, of which 7 TB are needed
for the timelines of the Low Frequency Instrument (LFI), which
is one of the examples considered in this paper. In the future,
storage requirements for astronomical experiments are going to
be even more demanding (Norris 2010; Laureijs et al. 2011;
Stoehr et al. 2014; Jurić et al. 2015). Such huge quantities
of data call for efficient data compression algorithms, in order
to reduce the requirements in data storage and potentially to
speed-up computations by avoiding I/O-related bottlenecks.

In this paper I discuss the implementation of a C library,
libpolycomp3, as well as an open-source Python program,

Email address: maurizio.tomasi@unimi.it ()
1http://lambda.gsfc.nasa.gov/product/cobe/dmr_prod_

table.cfm.
2http://lambda.gsfc.nasa.gov/product/map/current/m_

products.cfm.
3http://ascl.net/code/v/1373.

polycomp4, which interfaces to the library through bindings
written in Cython5. The library implements a number of widely-
known compression schemes. Such compression algorithms are
applicable to some kinds of one-dimensional timelines that are
commonly found in astronomy and cosmology. In particular,
one of the algorithms is a new variant of two well-known tech-
niques, polynomial fitting (e.g., Ohtani et al. 2013) and selec-
tive filtering of discrete Fourier transforms. This algorithm is
especially well suited for smooth, slowly varying series of data
with negligible noise, like pointing information. It is a lossy
algorithm where the upper bound on the compression errors is
tunable by the user.

I discuss the application of polycomp to the compression
of two datasets: the ephemeris table for an astronomical object
(Ganymede), and the timelines of the Low Frequency Instru-
ment (LFI), an array of microwave radiometers for the mea-
surement of anisotropies of the Cosmic Microwave Background
on-board the Planck spacecraft. The latter example is extremely
interesting, as the raw data amount to roughly 6.5 TB and can
be compressed by polycomp down to less than 1 TB. Finally, I
estimate how much the polycomp compression impacts a few
examples of LFI data analysis, both in terms of compression
error and decompression speed.

1.1. Basic definitions

In this section, I revise a few standard definitions used in the
theory of compressors, for the sake of readers not accustomed

4https://github.com/ziotom78/polycomp.
5http://cython.org/.
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with the terminology. A compression algorithm takes as input
a sequence {di} of N numbers (or symbols), each nin

bits bits wide,
and produces a sequence of M numbers {ci}, each nout

bits bits wide,
such that nout

bits M < nin
bits N on average. There must also be an in-

verse transformation that is able to recover the N input elements
{di} from {ci}. The efficiency of the compression6 is quantified
by the compression ratio:

Cr ,
nin

bits N

nout
bits M

, (1)

which in the average case should be greater than 1 (the symbol
, denotes a definition). If no exact inverse transformation ex-
ists, but some quasi-inverse formula is able to recover N values
{d̃i} that approximate the input values {di}, the compression is
said to be lossy and the quality of the approximation is usually
characterized by εc:

εc , max
i=1...N

∣∣∣di − d̃i

∣∣∣ . (2)

The goal of a lossy compression scheme is to achieve the max-
imum Cr while satisfying some a priori requirements on εc.

We use also another definition of compression ratio, which
takes into account all the data, metadata, and headers that are
needed to decompress the output sequence of M values:

Cpcr ,
N in

bits

Nout
bits
, (3)

where N in
bits is the overall number of bits needed to encode the

input sequence {di}, and Nout
bits is the overall number of bits of

the output sequence, including any ancillary data structure. In
this work I will use either Eq. (1) or Eq. (3), depending on the
context. Equation (3) will always refer to bitstreams produced
by the polycomp program, hence the superscript pc.

2. Compressing smooth data series

The polycomp program implements a number of compres-
sion schemes to compress one-dimensional tables read from
FITS files. The list of compression algorithms currently im-
plemented by polycomp is the following:

1. Run-Length Encoding (RLE);
2. Quantization;
3. Polynomial compression;
4. Deflate/Lempel-Ziv compression (via the zlib library7);
5. Burrows-Wheeler compression (via the bzip2 library8).

The polycomp program saves compressed streams into FITS
files containing binary HDUs. The program can act both as a
compressor or a decompressor.

In the next sections I will discuss how each algorithm has
been implemented, and what are the kinds of data streams for
which it provides the best results.

6Obviously, it is not possible to produce a compression algorithm that sat-
isfies the condition Cr > 1 for any input {di}. What we require here is that it
exists a non-trivial class of datasets {di} for which this happens.

7http://www.zlib.net/.
8http://www.bzip.org/

Input: 5 5 5 5 9 9 9

Output: 4 5 3 9

Input: 14 17 20 23 27 30 33 36 39
3 3 3 4 3 3 3 3

Output: 14 3 3 1 4 4 3

Figure 1: Top: Example of RLE compression applied to an input sequence
of 7 values. The output consists of 4 values grouped in two pairs: the first
element in each pair (bold text over a gray background) is the repeat count,
the second element the value to be repeated. Bottom: The differenced RLE
algorithm implemented in polycomp stores the value of the first element in the
output (in this example, 14), and then it applies a plain RLE to the consecutive
differences between adjacent values in the input stream (shown in the drawing
as small numbers below the input values).

2.1. Run-Length Encoding
This widely-used algorithm (see e.g. Salomon 2006) achieves

good compression ratios for input data containing long sequences
of repeated values. It detects such sequences and writes pairs of
repeat counts and values to the output stream. No information
is lost in the process, but if there are not enough repetitions in
the input sequence, the compression ratio Cr defined in Eq. (1)
might be less than 1 (the lower bound is Cr = 1/2, if no rep-
etitions at all are present in the input data). This algorithm is
useful for compressing data flags in timelines, as they usually
make very long sequences of repeated values.

The polycomp program implements also a variant9 of RLE:
in this case, the algorithm is not applied to the input data {d j}

N
j=1,

but to the differences {∆ j = d j+1 − d j}
N−1
j=1 . The first value d1,

needed to decompress the sequence, is saved at the beginning
of the output stream. The typical situation where this kind of
compression is useful is for quantities that measure the passing
of time, if the sampling frequency is kept constant during the
acquisition.

See Fig. 1 for an example of the application of both variants
of the RLE algorithm.

2.2. Quantization
Quantization is a simple way to reduce the entropy of a se-

quence of numbers by reducing the precision of the numbers;
as described in Salomon (2006), this can be achieved by means
of a rounding operation, possibly associated with a scalar oper-
ation. The purpose of the latter is to tune the amount of infor-
mation that is lost in the process. This technique can be applied
in several contexts: for instance, when recording floating-point
data from digital instruments, it is often the case that such data
have been obtained by means of digital integrators. The num-
ber of binary digits used by such integrators is usually smaller

9The current implementation of polycomp only allows to apply the two
RLE algorithms described here on sequences of integer numbers.
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than the number used to store floating-point numbers on mod-
ern CPUs. Another well-known case where quantization plays
an important role is in the JPEG compression (Pennebaker and
Mitchell 1992), where quantization is used as a pre-processing
stage before the application of the Huffman or arithmetic com-
pression to the discrete cosine transform coefficients of the im-
age pixels.

The program polycomp can apply a quantization to a se-
quence of floating-point numbers. The amount of quantization
can be configured by the user by means of the parameter n,
which is the number of bits that must be used for each sample.
The input data {di} are transformed into a set of integer numbers
{d̃i} through the following formula:

d̃i =

[
(2n − 1)

di −mink dk

maxk dk −mink dk

]
, (4)

where [·] denotes a rounding operation. All the numbers {d̃i}

are in the interval [0, 2n−1] and can therefore be encoded using
n bits each. The binary encoding of each number is then packed
into a sequence of 8-bit bytes. An example is shown in Fig. 2.

Decompression is just a matter of inverting Eq. (4), where
the inversion is not exact because of the rounding operation.
An upper bound to the discrepancy εi caused by the rounding
operation can be estimated from Eq. (4) and from the fact that∣∣∣[x] − x

∣∣∣ ≤ 1/2:

εi ,
∣∣∣∣ddecompr

i − di

∣∣∣∣ ≤ maxk dk −mink dk

2(2n − 1)
, (5)

where ddecompr
i is the i-th sample decompressed from the com-

pressed output, and di is the i-th sample in the input stream. For
the example in Fig. 2, the upper bound on εi is 0.186.

2.3. Polynomial compression
The libpolycomp library implements a new compression

algorithm to compress smooth, noise-free 1-D data series, like

pointing information and datasets generated through analyti-
cal or semi-analytical models. It is an improvement over tra-
ditional compression algorithms based on polynomial approx-
imation (there are countless examples of this technique, e.g.,
Kizner 1967; Philips and De Jonghe 1992), and its most nat-
ural domains of application are therefore the same. It takes
advantage of two widely used families of compression meth-
ods: (1) approximation of the input data through polynomials
of low order; and (2) quantization/truncation of Fourier/wavelet
transforms; notable examples of this are the JPEG compression
scheme (Pennebaker and Mitchell 1992), and the MPEG-1 Au-
dio Layer specification10. These two families of compression
schemes have a number of properties in common:

1. They subdivide the data to be compressed into blocks,
and treat each block separately;

2. They build a model for the input data, which is able to
approximate them up to some level using considerably
less information;

3. The quality of the compression is tunable.

Both families have their own advantages and disadvantages:
polynomial fitting can be computationally demanding, espe-
cially if the degree of the polynomial is high, but it can inter-
polate slowly-varying, noise-free data very well. On the other
hand, Fourier/wavelet techniques are fast, but if the data to
be compressed are too regular, they can produce significantly
worse compression ratios than polynomial fitting.

The libpolycomp library implements an algorithm that com-
bines both approaches. After having split the input dataset in
subsets, called chunks, the program computes a least-square
polynomial fit p(x) of the data. In the case where p(x) does
not allow to reconstruct the input data with the desired accuracy,

10http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=22412.

Input: 3.06 5.31 2.25 7.92 4.86

Scaled input:
(0 . . . 25 − 1)

4 17 0 31 14

Bits (n = 5): 00100 10001 00000 11111 01110

After packing: 001001002 = 36
010000012 = 65
111101112 = 247
000000002 = 0

Figure 2: Example of quantization and bit-packing. The input sequence {di}

is scaled using Eq. (4). The binary representation of each number (using n = 5
bits) is packed into 8-bit numbers. Since the number of bits is 25 = 8 × 4 + 1,
the last bit is stored in a full 8-bit number, whose last 7 bits (underlined) are set
to zero. Decompressing the sequence (36, 65, 247, 0) would yield the numbers
(∼ 2.982,∼ 5.359, 2.25, 7.92,∼ 4.811).
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polycomp computes a Chebyshev transform of the fit residuals,
and it saves only those coefficients which allow to reconstruct
the input data with the desired precision. I call this algorithm
polynomial compression.

In the following paragraphs, I use the notation found in
Briggs and Henson (1995) for Chebyshev transforms:

Fk =
2

N − 1

N∑
n=1

′′gn cos
(
π(n − 1)(k − 1)

N − 1

)
, (6)

gk =

N∑
n=1

′′Fn cos
(
π(n − 1)(k − 1)

N − 1

)
, (7)

where
N∑

n=1

′′xn ,
x1

2
+

N−1∑
n=2

xn +
xN

2
. (8)

To apply this algorithm, polycomp requires the following
inputs:

1. a set of N points
{
d j

}N

j=1
;

2. a predefined degree for the polynomial p(x), indicated
with deg p(x);

3. an upper bound εc for the compression error, as defined
in Eq. (2);

4. A subdivision of the sequence of N samples {di} into sub-
sets Dk, called chunks, of consecutive elements. It is not
mandatory for the chunks to have the same number of
elements; however, for simplicity11 polycomp splits the
input dataset in a number of chunks with the same num-
ber of elements each, with the possible exception of the
last one.

The polynomial compression algorithm works as follows:

1. It splits the data set
{
d j

}N

j=1
in chunks, and apply the fol-

lowing passages to each of them. I indicate the number
of elements in the chunk with Nchunk.

2. It calculates the coefficients of the least-square fitting poly-
nomial p(x) which fits the points ( j, d j)

Nchunk
j=1 . This poly-

nomial is used to define the values
{
p j

}N

j=1
, where p j ,

p( j).
3. It calculates the residuals r j between p(x) and d j:

r j = d j − p j, j = 1 . . .Nchunk. (9)

If max j

∣∣∣r j

∣∣∣ ≤ εc, then the knowledge of the coefficients
of p(x) is enough to reconstruct all the samples in the
chunk with the desired accuracy. According to Eq. (1),
the compression ratio for this chunk is

Cr =
Nchunk

deg p(x) + 1
, (10)

if nin
bits = nout

bits.

11Such assumption might be generalized in future versions of the program.
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Figure 3: Example of an application of the polynomial compression algorithm.
Top: The N = 30 data {d j} to be compressed are shown as gray circles. The
parameters of the compression are: the maximum compression error εC = 10−6,
the degree deg p(x) = 4 of the interpolation, and the chunk size Nchunk = 15.
The points are approximated by p j (crosses), which is the value at j of the
polynomial p(x) (one per chunk) which best fits the input data. Middle: Plot of
r j = d j−p j (gray circles), the discrepancy between the polynomial interpolation
and the datum itself. The set of values {r j} in each chunk is approximated by a
filtered Chebyshev transform {r̃ j} (black squares). In the first chunk (left), only
9 of 15 Chebyshev coefficients were kept. In the second chunk (right), since
max

∣∣∣r j
∣∣∣ < εC , no Chebyshev transform was computed and r̃ j = 0∀ j. Bottom:

Compression error ε j = d j − p j − r̃ j. This is the difference between the gray
circles and the black squares in the middle panel.

4



4. If max j

∣∣∣r j

∣∣∣ > εc, then polycomp decomposes the set
of numbers {r j}

Nchunk
j=1 defined in Eq. (9) using the direct

Chebyshev transform in Eq (6). The set of transformed
numbers

{
R j

}N

j=1
is then filtered so that only the Nt ele-

ments with the greatest absolute value are kept, while the
others are set to zero and not saved in the compressed
stream. The number Nt is chosen as the smallest able to
ensure that the following two conditions hold:

1 ≤ Nt < Nchunk − deg p(x) − 1 − dNt/8e, (11)

max
j

∣∣∣d j −
(
p( j) + r̃ j

)∣∣∣ ≤ εc, (12)

where r̃ j is the result of the inverse Chebyshev transform
applied to the filtered list of Nt elements of {R j}, with
the filtered positions filled with zeroes. Condition (11)
ensures that Cr > 1, as it is shown below. In this case,
the Nt filtered coefficients of the Chebyshev transform
must be saved alongside the deg p(x) + 1 coefficients of
polynomial p(x), together with a bitmask that allows to
determine their indices. The compression ratio in this
case is

Cr =
Nchunk

deg p(x) + 1 + Nt + dNt/8e
, (13)

where the term dNt/8e quantifies the storage for the bit-
mask.

5. From Eq. (13), for those chunks where deg p(x) + 1 +

Nt > Nchunk, polycomp saves the set of values {d j} in
uncompressed form.

Figure 3 illustrates the application of this compression scheme
to some test data.

The decompression is straightforward:
1. Read the coefficients of the polynomial p(x) for the first

chunk and computes the set of points
{
p j

}Nchunk

j=1
;

2. If no Chebyshev coefficients are available, the decom-
pressed data are

{
p j

}Nchunk

j=1
;

3. If Nt Chebyshev coefficients
{
R j

}Nt

j=1
are available, pro-

duce a sequence of Nchunk values by filling empty posi-
tions with zeroes.

4. Compute
{
r j

}Nchunk

j=1
using the inverse Chebyshev transform

formula (Eq. 7). The decompressed data for this chunk
are

d̃ j = p j + r j. (14)
5. Iterate over the remaining chunks.

Decompression is faster than compression, as there is no need
to compute a linear square fit to find the polynomial p(x): the
most computationally intensive operations are the evaluation of
the polynomial p(x) at Nchunk points and (when necessary) the
computation of the inverse Chebyshev transform, which is done
using the FFTW 3 (Fastest Fourier Transform in the West) li-
brary (Frigo 1999).

The values deg p(x) and Nchunk are input parameters for the
compressor and need to be properly tuned, in order to produce
the desired compression ratio. Their optimization can be tricky,
as a number of factors must be considered in choosing them:

1. Generally, the larger deg p(x) and Nchunk, the better the
compression ratio.

2. Large numbers for deg p(x) can produce round-off errors.
Such errors are detected by polycomp, but they force the
program to degrade the compression ratio by saving more
and more Chebyshev coefficients in order to correct the
interpolation.

3. Large values of Nchunk increase significantly the time re-
quired for the polynomial fitting and the direct/inverse
Chebyshev transforms.

There are several ways to tackle the problem of tuning a lossy
compression algorithm. They depend on the nature of the data
and the kind of analyses that are expected to be performed on
the data themselves. In some cases, it is possible to derive an
analytical model that can predict the best values to be used for
the parameters. For instance, Shamir and Nemiroff (2005) pro-
pose a lossy compression algorithm for astronomical images
used for photometry, and it provides a set of equations to quan-
tify the impact of the loss of information to quantities com-
monly used in photometric analyses. If the development of a
theoretical model for the compression is too complex, the most
common approach is to estimate the error induced on the results
of the data analysis when compressed data are used instead of
the original uncompressed ones. For a few examples of the lat-
ter approach, see e.g., Vohl et al. (2015); Löptien et al. (2016).

Considering the broad target of this paper, it would be too
impractical to provide analytical models to forecast the impact
of compression errors to every conceivable scientific product
obtained using data compressed with polycomp. However, the
program provides two tools which can ease the choice of the
best compression parameters for polynomial compression:

1. A slow optimization mode, where polycomp tries a set
of pairs (deg p,Nchunk) provided by the user and picks the
one with the best compression ratio;

2. A fast optimization mode, where polycomp requires a
pair of values (deg p,Nchunk) as a starting point, and it
uses the algorithm proposed by Nelder and Mead (1965)
to find the configuration with the best Cr.

In both cases, the upper bound on the compression error εc

must be passed to the optimizer as an input. In Sect. 3, I will
present some examples of this optimization, and I will discuss
a few important caveats to be kept in mind when optimizing the
polynomial compression. A few more technical details about
libpolycomp are provided in Appendix A.

2.4. Quantifying the relative importance of the polynomial fit-
ting and of the Chebyshev transform

Depending on the kind of data to compress and on the com-
pression parameters deg p(x) and Nchunk, the role of Step 4 in
the polynomial compression algorithm (Sect. 2.3) might be of
greater or lesser importance to determine the overall compres-
sion ratio. We can consider two extreme cases: (1) the required
εc is so large that Step 4 is never applied; (2) the required εc is
so small that all chunks must be saved uncompressed (Step 5).
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Figure 4: Ephemeris data for Ganymede, from January 1st, 2002 to December,
31st 2010. The X and Y axis lie on the Ecliptic plane, and have the same size.
The Z axis is not in scale with the X and Y axis.

A practical way to quantify the importance of the Cheby-
shev transform in the polynomial compression is to compare
the compression ratio with the one achieved using a simpler al-
gorithm which skips Step 4 completely. In the latter algorithm,
if the residuals calculated in Step 3 are too large, the chunk is
always saved in uncompressed form, and no Chebyshev trans-
form is ever calculated. I call this algorithm simple polynomial
compression. The library libpolycomp implements the simple
compression algorithm as well. In Sect. 3, I use this feature to
assess the importance of the Chebyshev transform step in the
examples considered in this paper.

2.5. Other compression algorithms

The compression algorithms presented so far are special-
ized for very particular kinds of datasets. The polycomp pro-
gram can interface to two widely used, general-purpose com-
pression libraries in those cases where none of the algorithms
described above are suitable:

1. The zlib library, which implements a variant of the LZ77
algorithm called DEFLATE12;

2. The bzip2 library, which implements a combination of
the Burrows-Wheeler algorithm and Huffman coding.

3. Compression performance

In this section I will discuss two applications of the polyno-
mial compression algorithm described in Sect. 2, and I compare
its performances with other algorithms.

3.1. Ephemerides

I have used polycomp to compress ephemeris data for Ganymede,
one of Jupiter’s moons. Ephemeris tables are a natural input for
polynomial compression, as they are usually smooth in nature

12http://www.zlib.net/feldspar.html.

Nchunk deg p(x) + 1 Cpcr Cpc,simple
r

JD 50 000 2 10 518.40 10 518.40
x 360 23 11.53 4.86
y 360 22 11.63 4.64
z 400 22 13.79 13.79

Table 1: Compression parameters used for the four datasets in the ephemeris
table for Ganymede and the resulting compression ratio. All but the first (JD)
have been found by polycomp using the “slow optimization mode” described
in Sect. 2.3.

(provided that the sampling frequency is not too low). The tra-
jectory of Ganymede in the 3-D space as seen from an observer
located in Milan (longitude 9.1912◦, latitude 45.4662◦, altitude
147 m) is shown in Fig. 4. I consider the interval of time span-
ning the interval since January, 1st 2002 till December, 31st
2010. I obtained the ephemeris table using JPL’s HORIZONS

system13. The dataset used for this analysis contains the time
(a Julian Date) and the position (x, y, z), measured in AU. These
quantities are sampled every 10 min. I have saved such data
into a FITS file containing one binary HDU with four 64-bit
floating-point columns. The file contains 473 328 rows, and its
size is 14.45 MB. It is not easily compressed by standard tools
like gzip and bzip2: the compression ratio in these cases is
1.31 and 1.28, respectively, using the -9 command-line switch
to force both programs to achieve the best possible compres-
sion.

To compress the dataset using polycomp, I have chosen
polynomial compression for all the four columns. Since this
is a lossy compression, it is necessary to set the upper bound
on the compression error (Eq. 2). I used εc = 1.16 × 10−4

for the Julian time, corresponding to an error of the order of
10 s, and εc = 6.6845871 × 10−12 AU = 1 m for each of the
three coordinates x, y, and z. The bounds for x, y, and z are
probably stricter14 than the average precision of HORIZONS’
ephemerides: they have been chosen because of their interest-
ing properties in the characterization of the polynomial com-
pression algorithm.

Given the straightforward behaviour of the JD datastream, I
avoided the application of a full optimization procedure for the
compression parameters and used deg p(x) + 1 = 2, Nchunk =

50 000. As the data are neatly fitted by a straight line, the com-
pressor does not need to apply any Chebyshev transform, and
therefore the full algorithm and the simple compression show
the same performance. The expected value for Cr is

Cr =
Nchunk

deg p(x) + 1
= 25 000, (15)

while the measured value for Cpcr is about 10 500.
For x, y, and z, I used the optimization mode provided by

polycomp to find the parameters of the compressor that pro-
duce the best compression ratio Cpcr . I explored the region of

13http://ssd.jpl.nasa.gov/?ephemerides.
14The precision of HORIZONS estimates is time-dependent; according

to the documentation, “uncertainties in major planet ephemerides range
from 10 cm to 100+ km” (http://ssd.jpl.nasa.gov/?horizons_doc#
limitations).
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Figure 5: Result of the optimization of the parameters Nchunk (samples per chunk) and deg p(x) + 1) (polynomial coefficients) used by the polycomp polynomial
compressor for the ephemeris table of Ganymede. Row A: the value of Cr when the polynomial compression is applied to the set of x values (A1), the value of Cr
when the compression is applied to the same data, but without the Chebyshev transform step (A2), and the ratio between the values shown in panels A1 and A2
(A3). Considering the y values would have produced plots nearly identical to the ones shown here. Row B: The same plots as in row A, but using the z coordinate.
In this case, the polynomial compression shows no clear advantage over simple compression.

the parameter space generated by the following numbers:

deg p(x) + 1 ∈ {15, 16, 17, . . . , 25}, (16)
Nchunk ∈ {250, 255, 260, . . . , 400}. (17)

In Fig. 5, I show the result of the exploration of the compres-
sion parameter space for a selected number of cases. In the
three plots in Row A, I show the difference between the per-
formance of the polynomial compression algorithm versus the
simple algorithm when applied to the x dataset. The advantage
of the former over the latter is evident; the same behaviour is
observed with the data in the dataset y, which are not shown
here. Row B shows that in the case of the z dataset the Cheby-
shev step does not give significant advantages over simple com-
pression: as a matter of fact, the best compression ratio in the
two cases is the same, as shown in Table 1. This is a general
property of the polynomial compression algorithm: for suffi-
ciently relaxed constraints on εc, the Chebyshev transform does
not provide any advantage over a plain polynomial fitting com-
pression. In the case of the z data, this would have been the case
if εc had been set to 10 m instead of 1 m.

The size of the compressed file is 795.9 kB, thus Cpcr =

18.6. This is a substrantial improvement over the simple com-
pression algorithm, which produces a 1681.9 kB file, with Cr =

8.8. On the other hand, if εc = 10 m, then the size shrinks
down to 615.9 kB, with Cpcr = 24.0: in this case, the simple and

v

L2

Earth

Sun

Figure 6: Orbit of Planck around the Sun. The spacecraft orbits around the
second Lagrangean point (L2) of the Sun-Earth system, scanning the sky in
circles with a pointing direction nearly perpendicular to a spin axis aligned
with the Sun-Earth direction. The spacecraft performs one rotation per minute,
and every circle is scanned sixty times before the spin axis is tilted by roughly
2.5 arcmin. This scanning strategy produces regular, smooth variations in the
pointing direction of the beams.

polynomial compression schemes produce files of the same size
because of the reasons stated above.

3.2. Planck/LFI pointing information

In this section, I study the application of the compression
algorithm presented in Sect. 2 to the timelines of the LFI in-
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Datum Data format Compression algorithm
On-board time 64-bit signed integer Differenced RLE
θ (colatitude) 64-bit floating point Polynomial compression
φ (longitude) 64-bit floating point Polynomial compression
ψ (orientation) 64-bit floating point Polynomial compression
Temperature 64-bit floating point Quantization

Flags 16-bit integer RLE

Table 2: Format of the data used in the compression of the Planck/LFI timelines. The “input format” refers to the FITS file provided as input to polycomp, while
the “output format” and the “compression algorithm” specify the kind of the data and the compression scheme used in the file produced by polycomp. One row
of data in the input file requires 44 bytes, of which 24 are used for pointing information (θ, φ, and ψ). The “flags” column is the combination of the two 8-bit flag
columns found in the PLA.

strument onboard the Planck spacecraft (Planck Collaboration
2015). The LFI (Low Frequency Instrument) is an array of
cryogenically cooled HEMT radiometers which observe the sky
at three different frequencies: 30, 44, and 70 GHz . The time-
lines recorded by the instrument are publicly available through
the Planck Legacy Archive15 (PLA); each timeline contains the
on-board time, the orientation in the sky of the radiometer’s
beam, the temperature measured by the radiometer, and a set
of quality flags. A relevant fraction of the Planck timelines
(∼ 50 %) contains the information about the pointing direction
of the instruments: I refer to such data as pointing informa-
tion, or pointings. Pointing information can be encoded either
as a set of angles or as length-one vectors, and it can typically
take16 50 % of the overall space needed by the timelines. The
dependence of the LFI beam orientation on time depends on
the scanning strategy employed by Planck, which is sketched
in Fig. 6.

Pointing information is usually reconstructed using the in-
formation about the placement and orientation of the instrument
with respect to some reference frame (e.g., the barycentre of
the spacecraft), as well as detailed information about the place-
ment of the instrument itself with respect to the center of the
reference frame. In some cases, it is enough to combine the
line-of-sight vector with the attitude information in order to re-
trieve the pointing information at any given time18. However,
for instruments with moderate angular resolution and high sen-
sitivity like LFI, a number of systematic effects that need to be
taken into account (stellar aberration, variation in the placement
of the optically sensitive parts of the instrument due to ther-
mal dilation, etc.) can lead to non-trivial algorithms to recon-
struct the pointing information. (See Planck Collaboration ES
(2015), which details the pipeline used for reconstructing the
Planck pointing information.) In such cases, saving the com-

15http://www.cosmos.esa.int/web/planck/pla.
16Other information recorded in the timelines usually include the timing it-

self, the scientific datum, and various flags. In the case of the Planck/LFI time-
lines available on the Planck Legacy Archive17 (PLA), the timing and the sci-
entific datum take 8 bytes each, while flags require 4 bytes each. On the other
side, the pointing information is encoded using three angles θ, ϕ, and ψ, for
a total of 24 bytes. So, 24 bytes out of 44 are needed for the angles. Addi-
tional housekeeping timelines like bias currents and instrument temperatures
are saved at a much lower sampling rate, and they are not an issue.

18For instance, this is the approach followed by the WMAP team in publish-
ing the WMAP timelines, see http://lambda.gsfc.nasa.gov/product/

map/current/m_products.cfm.

C. freq. N νsamp [Hz] Radiometer
70 GHz 12 78.8 LFI18M
44 GHz 6 46.5 LFI24M
30 GHz 4 32.5 LFI27M

puted pointings alongside the scientific data is the best solution
for allowing the scientific community to easily use the time-
lines. This is the approach followed by the PLA.

I characterize here the application of libpolycomp’s algo-
rithm to the whole set of Planck/LFI timelines (4 years of data),
in terms of the compression ratio Cr (eq. 1). Details about the
data formats and the compression algorithms used in the anal-
ysis are reported in Table 2. The layout of the columns used in
the input FITS files differs from the layout used by the PLA, as
each PLA FITS file contains data acquired by all the radiome-
ters with the same central frequency, and therefore it saves only
one copy of the “On-board time” column. Since it is usually
more handy to analyze each radiometer separately, I split each
PLA file into N FITS files, each containing data for one of the
N radiometers working at the specified frequency (N is 12, 6,
and 4 at 70, 44, and 30 GHz respectively); this is the same for-
mat used internally by the LFI data processing pipeline. The
amount of disk space occupied by the 12 + 6 + 4 = 22 sets of
files is 6.5 TB.

I have applied the compression algorithms provided by polycomp
to the pointing and scientific information of three out of the 22
LFI radiometers, namely LFI18M (70 GHz), LFI24M (44 GHz),
and LFI27M (30 GHz). The three radiometers sample the sky
temperature with different frequencies: 78.8 Hz (LFI18M), 46.5 Hz
(LFI24M), and 32.5 Hz (LFI27M).

Choosing the optimal compression strategy for the pointing
information is not trivial, as there are 1452 files per radiome-
ter, each corresponding to one Operational Day (OD), and each
file has the pointing information encoded in three columns: θ
(Ecliptic colatitude), φ (Ecliptic latitude), and ψ (orientation
of the beam). Therefore, the compressor must be tuned sep-
arately for each column. Moreover, since Planck’s scanning
strategy varies with time, the best values for the two polyno-
mial compression parameters, deg p(x) + 1 and Nchunk, change
with time. For instance, Fig. 7 shows contour plots of the value
of Cr as a function of Nchunk and deg p(x) + 1 for a set of four-
teen randomly-chosen days, when polycomp is applied to the
set of colatitudes θ for radiometer LFI18M.
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Figure 7: Optimization of the compression parameters deg p(x) + 1 and Nchunk for the datastream of θ angles for LFI18M in fourteen operational days (ODs) of
data. Blue dots mark the configuration with the highest Cr .

To determine the best parameters for the compressor, I used
the optimization function in the pypolycomp Python library to
write a script that implemented a two-stage search strategy:

1. I sampled the parameter space using a wide but coarse
grid:

deg p(x) + 1 ∈ {2, 5, 8, . . . , 20},
Nchunk ∈ {50, 150, 250, . . . , 950}.

(18)

To quicken the process, during this process I used only
the first two hours of data for each day.

2. After the first run, I ran the optimizer again on a narrower,
finely-gridded area around the point with the best Cr that
has been found in the previous run, this time using the
full, one-day-long dataset.

Fig. 8 shows the compression ratio for all the combinations of
1452 operational days (ODs), three angles, and three radiome-
ters considered in this work. There are periodic drops of the
compression ratio, and these usually occur at the end of a com-
plete survey of the sky: they are related to quick changes in the
asset of the instrument.

To determine the effectiveness of the Chebyshev transform
in improving the compression ratio as compared to the simple
algorithm described in Sect. 2.4, I have re-run the optimization
for all the data using the simple polynomial compression algo-
rithm. The comparison between the Cr of each best solution
in the two cases (polynomial compression versus simple com-
pression) is shown in Fig. 9. The advantage of the polynomial
compression algorithm over the simple algorithm is evident ex-
pecially in the three θ datasets.

I have compressed only three out of 22 LFI radiometers. It
is possible to extend this result to forecast the expected com-
pression ratio on all the radiometers. The pointing information

of the other 19 radiometers is very similar to one of these, be-
cause the Planck focal plane moves rigidly. Therefore, the re-
sults obtained for these three radiometers can be generalized to
the whole set. Assuming that the overall compression ratio of
the three radiometers are representative of all the radiometers
with the same sampling frequency, it is easy to derive the fol-
lowing formulae

N in
samples =

∑
f =30,44,70

N( f )
rad ∆t ν( f ) nbits, (19)

Nout
samples =

∑
f =30,44,70

N( f )
rad ∆t ν( f )

C( f )
r

nbits, (20)

Ctotal
r =

N in
samples

Nout
samples

=

=

∑
f =30,44,70 N( f )

rad ν
( f )∑

f =30,44,70 N( f )
rad ν

( f )/C( f )
r

,

(21)

where N( f )
rad is the number of radiometers at frequency f , ν( f )

is the sampling frequency, nbits is the number of bits used to
encode each sample (its value is assumed to be the same for the
uncompressed and compressed sequences), ∆t is the acquisition
time, roughly equal to four years, and C( f )

r is the compression
ratio of the whole FITS file, assumed to be the same for all
the N( f )

rad radiometers. Substituting the values of C( f )
r found for

LFI18M, LFI24M, and LFI27M into Eq. (21) leads to the result

Cpcr = 9.04, (22)

as C(30)
r = 7.40, C(44)

r = 8.30, and C(70)
r = 9.59. Since the space

needed to keep LFI timelines in uncompressed FITS files is of
the order of 7 TB, this means that compressing such timelines
using libpolycomp would produce an archive slightly smaller
than 800 GB.
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4. Impact of the compression in the analysis of Planck/LFI
time series

In the previous section I analyzed the performance of the
compression schemes presented in Sect. 2, in terms of the com-
pression ratio cR (Eq. 1). However, two other important param-
eters which quantify the performance of the compression are:
(1) the difference between compressed and uncompressed sam-
ples, whose upper bound is εc, defined in Eq. 2, and (2) the time
required to compress and decompress the data. In this section
I discuss the quantification of such parameters in the compres-
sion of the LFI TOIs discussed in Sect. 3.2.

4.1. Compression error in the LFI TOI pointing angles

I discuss here a few statistical properties of the error in the
compression of the samples measuring the three pointing angles
θ (Ecliptic colatitude), φ (Ecliptic latitude), and ψ (orientation)
for the three LFI radiometers considered in Sect. 3.2.

My analysis considered the difference between the j-th sam-
ple d j and the compressed value d̃ j:

e j = d̃ j − d j. (23)

For each of the three radiometers I characterized the statistical
properties of each of the 1452 datasets (one per operational day)
in terms of the following quantities:

1. Maximum and minimum value;
2. Median;
3. First and third quantiles.

I computed the maximum and minimum value only as a way
to test the correctness of the implementation of the algorithm,
as the polynomial compression algorithm ensures that

∣∣∣e j

∣∣∣ ≤ εc

(12). The values of the median and the quantiles are shown in
figure 10. The average error (median) is consistent with zero in
every case, and the inter-quartile range is of the order of tens
of milliarcseconds, thus at least one order of magnitude smaller
than the upper bound εc = 1 arcsec set for the compression error
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Figure 8: Compression ratio Cr for the daily LFI datasets containing the three
pointing angles θ (colatitude), φ (longitude), and ψ (orientation of the beam).
Three radiometers are considered here: LFI18M (70 GHz, with a sampling fre-
quency νs = 78.8 Hz), LFI24M (44 GHz, νs = 46.5 Hz), and LFI27M (30 GHz,
νs = 32.5 Hz). The polynomial compression achieves the best compression ra-
tio for the radiometer with the highest sampling frequency, and the angle show-
ing the best compression performance is the one which varies more slowly, i.e.,
the colatitude θ. The eight drops in the values of the compression ratio happen
after every completion of a sky survey. Vertical dashed lines mark the position
of the fourteen operational days (ODs) discussed in Fig. 7.
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of the three LFI pointing angles. The statistical distribution of
the errors is not normal, since it is bounded by ±εc by definition;
it is sharply peaked around zero, and it shows a remarkable level
of simmetry: the difference between the mean error and the
median error, as well as the skewness of the error, is of the order
of a few tens of arcsecond at most for all the ODs considered in
the analysis.

4.2. Number of hits per pixel in sky maps

The purpose of measuring timelines using Planck/LFI is to
project each sample on the sky sphere and produce a map of
the full sky. Since this process requires the sky sphere to be
discretized into a set of pixels (the Planck collaboration uses
the Healpix pixelization scheme, see Górski et al. 2005), the
value of each pixel will be the combination of the value of one
or more samples. The number of samples used to determine
the value of a pixel is the hit count of the pixel. This quantity
has a number of applications (e.g., white noise characterization,
destriping), and it is thus interesting to determine if the com-
pression errors in the pointing information alter the hit count
significantly.

I have compared hit count maps produced using the origi-
nal, uncompressed pointings with the same map produced us-
ing compressed pointings. Results are shown in Figs. 12 and
13. Mismatches have zero mean and average, and the over-
all level of the mismatch is small. The maps use the Healpix
pixelization scheme (Górski et al. 2005), with a resolution of
3.4′ (Nside = 1024), the same resolution as the nominal Planck
maps.

I have profiled the execution of the script which creates the
hit maps, in order to measure the time required to run the fol-
lowing operations:

1. Loading data from FITS files via calls to cfitsio (Pence
2010);

2. Decompressing data using libpolycomp (when applica-
ble);

3. Projecting the pointings on the sky and creating the map,
using my own implementation of Healpix projection func-
tions (Górski et al. 2005).

I run this test on Numenor19, a 96-core cluster of Intel Xeon
processors hosted by the Physics department of the Univer-
sità degli Studi in Milan. Each run allocated 12 OpenMP pro-
cesses for libpolycomp. After having created the hit maps
from the pointings stored in polycomp files, I repeated the test
twice, reading pointing information that was stored in (1) un-
compressed FITS files, (2) gzip-compressed FITS files. Be-
cause of the way cfitsio reads data, I did not use Planck PLA
files: since FITS binary tables are stored in row-major order and
cfitsio disk reads are buffered in chunks of 2880 bytes, read-
ing only a few columns in a PLA file would require cfitsio to
load all the six columns in the table HDU from disk. Therefore,
I created a new set of FITS files containing only the THETA and
PHI columns, and read them in chunks of N rows, where N is
the return value of the fits get rowsize function: this re-
duces the I/O time for uncompressed FITS files by a factor ∼ 4
with respect to the case where θ and φ are loaded from PLA

19http://www.mi.infn.it/~maino/erebor.html.
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Figure 9: Improvement in the compression ratio for the LFI TOIs when the
full polynomial compression algorithm with the Chebyshev transform step is
applied, with respect to the case of the simple compression algorithm described
in Sect. 2.4. The nine violin plots show the distribution of the ratio Cr/C
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r

for the three datasets θ, φ, and ψ, grouped by the three LFI radiometers LFI18M
(70 GHz), LFI24M (44 GHz), and LFI27M (30 GHz). The vertical bars show
the extrema and the median value. The median values range between 1.20 (ψ
dataset, LFI27M) and 2.92 (θ dataset, LFI18M), showing that the Chebyshev
transform step can significantly improve the performance of the compression
algorithm.
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Figure 10: Compression errors caused by the polynomial compression algorithm when applied to the three pointing angles θ (colatitude), φ (longitude), and ψ
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Figure 11: Distribution of the compression error for the Ecliptic colati-
tude θ during each of the fourteen ODs considered in Fig. 7. The range
of the abscissa spans the range [−εc,+εc]. The density has been calculated
using the stats.gaussian kde function provided by SciPy 0.13.3 (http:
//www.scipy.org/). The difference between the mean and median value is
of the order of 10−5 arcsec, and the skewness is always less than (0.5 arcsec)3.
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Figure 12: Top: difference in the number of hits per pixel between a map pro-
duced using PLA pointing information for radiometer LFI18M (70 GHz) and a
map produced using the compressed PLA datastreams discussed in Sect. 3.2,
represented using Ecliptic coordinates. The value of each pixel has been di-
vided by the number of hits. The maximum and minimum pixel values are
about ±1.2 %; the color range has been shrunk in order to saturate the colors
and better highlight the features of the map. See also Fig. 13.

files via two calls to fits read col. No such trick is required
when the code loads polycomp files, as each column is stored
in its own HDU.

The results of the three tests are shown in Fig. 14. Using
polycomp files represents a clear advantage over uncompressed
FITS files, but the fastest case is when gzip-compressed files
are loaded. In this case, cfitsio decompresses the file in
memory and no longer accesses the disk. The disadvantage of
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files.

using gzipped FITS files is that the compression ratio is quite
poor: for all the three frequencies, Cr ≈ 1.2.

5. Conclusions

In this paper I have presented the result of three activities:

1. The description of an algorithm for the compression of
smooth data series which approximates data through the

sum of least-squares polynomials and Chebyshev poly-
nomials;

2. The implementation of a program, polycomp, which com-
presses data series using the algorithm in point 1 as well
as other well-known compression algorithms;

3. A characterization of polycomp’s ability to compress Planck/LFI
time ordered information, both in terms of the compres-
sion ratio (Eqs. 1 and 3) and of the compression error
(Eq. 2). Given some reasonable upper bound to the com-
pression error, the achieved compression ratio is greater
than 8. I have also estimated the impact of the compres-
sion error on a few quantities relevant for the analysis of
the Planck/LFI data.

The results presented in this paper might find interesting
application in the development of techniques for the storage of
data acquired by future space missions. An example is the pro-
posed LiteBird mission (Matsumura et al. 2014), which will be
devoted to the measurement of CMB polarization anisotropies
in the 50-320 GHz range: the instrument will be made by 100
times many sensors as Planck/LFI and is therefore likely have
significant demand in terms of data storage.
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Appendix A. Implementation of polycomp

I have implemented the algorithms described in this paper
in a BSD-licensed C library, libpolycomp20. I have also im-
plemented a set of Python 3 bindings to the library, available

20https://github.com/ziotom78/libpolycomp.

in a separate repository (https://github.com/ziotom78/
polycomp). The Python library includes a stand-alone pro-
gram, polycomp, which can compress/decompress ASCII and
binary tables saved in FITS files.

The libpolycomp library has been implemented using the
1989 definition of the C standard, and it should therefore be
easily portable to different compilers. The author tested it using
the following compilers:

• GNU gcc21 4.9 and 5.1;

• clang22 3.4 and 3.5;

• Intel C Compiler23 16.0.

The library uses OpenMP (OpenMP Architecture Review Board
2011) to take advantage of multiple-core systems. It has been
fully documented, and the user’s manual24 is available online.
The library API has been designed in order to be easily callable
from other languages.

The Python wrappers have been built using Cython25, and
the polycomp program is able to save the compressed timestreams
in files. The format of these files is based on the FITS file
format (Pence et al. 2010), and it is fully documented in the
polycomp user’s manual26.

21https://gcc.gnu.org/.
22http://clang.llvm.org/.
23https://software.intel.com/en-us/c-compilers.
24http://ziotom78.github.io/libpolycomp/.
25http://cython.org/.
26http://polycomp.readthedocs.org/en/latest/.
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