
Faster GPU-based convolutional gridding via thread coarsening

Bruce Merrya

aSKA South Africa, 3rd Floor, The Park, Park Road, 7405 South Africa

Abstract

Convolutional gridding is a processor-intensive step in interferometric imaging. While it is possible to use graphics
processing units (GPUs) to accelerate this operation, existing methods use only a fraction of the available flops. We
apply thread coarsening to improve the efficiency of an existing algorithm, and observe performance gains of up to 3.2×
for single-polarization gridding and 1.9× for quad-polarization gridding on a GeForce GTX 980, and smaller but still
significant gains on a Radeon R9 290X.

Keywords: techniques: interferometric, methods: numerical, computing methodologies: graphics processors

1. Introduction

Interferometric imaging is a key tool in radio astron-
omy, but as modern instruments provide more antennas,
longer baselines, and more channels, it is becoming in-
creasingly computationally costly. A major component of
an imaging pipeline is convolutional gridding, as well as
the corresponding degridding for predicting visibilities.

Given the computational cost of gridding, it is nat-
ural to apply accelerator hardware, of which the cheap-
est and most ubiquitous is the Graphics Processing Unit
(GPU). However, the irregular data access patterns make
this a non-trivial task. One of the first really practical al-
gorithms for GPU-accelerated gridding is due to Romein
(2012). Despite being state of the art, it typically spends
only about 25% of a GPU’s compute power on the ac-
tual convolution operations. There are bottlenecks in the
memory system, but also computational overheads associ-
ated with address calculations. Our goal is to reduce these
overheads to make more flops available for the convolution
calculations.

Our contribution is a modification to the algorithm
in which each thread of execution processes multiple el-
ements of the grid. This is a standard transformation
called thread coarsening, but which we have adapted to
this specific problem. This allows some overheads to be
amortized across multiple grid elements, thus increasing
performance.

2. Background

2.1. Graphics Processing Units

While originally designed for computer graphics, GPUs
have become a common and accessible approach to accel-
erating general-purpose computations. Here we provide

Email address: bmerry@ska.ac.za (Bruce Merry)

only a brief introduction to GPU architecture; a com-
plete discussion is beyond the scope of this paper. Two
common APIs used to program GPUs are CUDA (a pro-
prietary standard from NVIDIA), and OpenCL (a cross-
vendor standard that is also applicable to CPUs and FP-
GAs). We will use the OpenCL terminology as it is more
generic, although our implementation runs on both CUDA
and OpenCL. For readers more familiar with CUDA, sub-
stitute thread for work-item, thread-block for work-group,
grid for kernel-instance, shared memory for local memory,
and streaming multiprocessor for compute unit.

OpenCL works on a single-program multiple-data model.
A single program, called a kernel, is executed many times
in parallel. Each execution is a work-item. Work-items
are arranged into work-groups. The work-items of a work-
group are guaranteed to execute concurrently, and can
synchronize and communicate with each other. The set
of all work-items launched at one time is called a kernel-
instance. GPUs comprise multiple compute units which
operate largely independently, each with their own sched-
ulers, L1 caches, register file and execution units — sim-
ilar to CPU cores. Each work-group is assigned to one
compute unit, but a compute unit can run multiple work-
groups concurrently.

GPUs also have multiple memory systems. The slow-
est, largest memory is global memory, which is generally
off-chip DRAM. There are usually also several levels of
cache for this global memory. Local memory is fast on-
chip memory local to a compute unit, which can be used
for work-items in a work-group to communicate with each
other, and is also used as a software-managed cache. The
fastest memory is registers, which are local to a work-item.
There are other special-purpose memory types, but they
are not relevant here.

Preprint submitted to Astronomy and Computing May 31, 2016

ar
X

iv
:1

60
5.

07
02

3v
2 

 [
as

tr
o-

ph
.I

M
] 

 3
0 

M
ay

 2
01

6



2.2. Convolutional Gridding

Consider the full-Sky radio interferometry measurement
equation (RIME) (Smirnov, 2011, eq 17):

Kpq = e−2πi(upql+vpqm+wpq(n−1))

Vpq = Gp

(∫∫
lm

1

n
KpqEpBEH

q dl dm

)
GHq .

(1)

Here, l,m, n are direction cosines parameterizing the sky,
(upq, vpq, wpq) is the baseline vector between antennas p
and q, B is the brightness matrix at (l,m, n), Ep is a Jones
matrix for direction-dependent effects, Gp is a Jones ma-
trix for direction-independent effects, and Vpq is the pre-
dicted visibility.

With the exception of the wpq(n − 1) term in the ex-
ponent, this is a Fourier transform relationship between
visibilities and the sky. Evaluating or inverting the RIME
directly is prohibitively expensive, so it is typically done
using fast Fourier transforms (FFTs) (Cooley and Tukey,
1965). However, visibilities are not sampled on a regular
grid, so an extra gridding step must be taken to generate
such a grid before using the FFT to produce an image.

Simply snapping each visibility sample to the nearest
point on the grid would cause severe artefacts, particu-
larly aliasing. Instead, each visibility sample is treated
as a Dirac delta, convolved with some function, and then
sampled onto the grid. Convolution in visibility space is
equivalent to multiplication in image space, so using a
function with bounded support in image space provides
antialiasing (Greisen, 1979). The ewpq(n−1) and Ep terms
can also be handled by convolution in visibility space —
these are known as W-projection (Cornwell et al., 2008)
and A-projection (Bhatnagar et al., 2006) respectively.

The gridding convolution function (GCF) cannot al-
ways be computed analytically, and even when it can, it is
usually expensive to do so. Thus, tables of GCFs are nor-
mally precomputed numerically. To reduce aliasing, the
GCF needs to be sampled at a higher resolution than the
grid itself. A typical value is 8× oversampling (Romein,
2012), but this will depend on how far from the field of
view one expects to find contaminating signals.

Efficient gridding on a GPU is challenging because the
problem has irregular structure, with the memory accesses
depending on the uvw coordinates. There is plenty of par-
allelism, but multiple visibilities will contribute to each
grid point and so there are data hazards. A näıve imple-
mentation will also be totally memory-bound: multiply-
ing two single-precision complex numbers and accumulat-
ing the result into memory requires 8 flops and 16 bytes
of memory traffic, while typical desktop GPUs can have
compute-to-bandwidth ratios of 15–20 flops per byte.

Romein (2012) introduced the first reasonably efficient
GPU-accelerated gridding algorithm. It takes advantage
of the spatial coherence of the data to reduce memory
bandwidth. For a single baseline and frequency, the UV-
plane positions move slowly over time as the Earth rotates.
Similarly, moving to an adjacent frequency bin involves a

Figure 1: Overview of Romein’s gridding algorithm. The dashed box
shows a bounding box containing the GCF footprint. One work-item
handles grid points marked with a dot; another handles those marked
with a cross, and so on. The gray box indicates a tile: once all the
grid points in a tile have been handled, the same work-items are
recycled to update the next tile.

small shift in the UV plane. Thus, if one iterates over the
visibilities for a single baseline, the GCF footprints will
almost entirely overlap. This makes it possible to maintain
sums in registers which are only occasionally flushed to
global memory.

Figure 1 shows how the algorithm works. The grid is
divided into bins, which are at least as large as the GCF —
in the original algorithm, they are the same size. A work-
item is responsible for all the positions in the grid that have
the same relative placement within a bin, e.g., all the grid
positions marked with a dot are the responsibility of one
work-item. A bin-sized bounding box is placed around the
GCF footprint for one visibility, which will contain exactly
one grid-point per work-item. Each work-item maintains
an in-register accumulator for that grid point. When the
bounding box moves, some work-items will switch to a
different grid point: when this happens, those work-items
flush their accumulator to global memory using an atomic
addition. If the bounding box moves by one grid point,
then only O(N) atomic updates are made for an N × N
GCF, thus greatly reducing the memory traffic.

Coarse-grained parallelism is achieved by assigning each
baseline to a separate work-group. Because these work-
groups operate independently, they may potentially up-
date the same grid points at the same time; this is why
grid updates are done using atomic instructions.

A complication arises if the bins are too large to hold an
entire bin in registers at once. In this case, each bin is split
into tiles (Figure 1 shows one tile in gray), and a work-
group handles only one tile’s-worth of work-items. Romein
iterates serially over tiles within the GPU code: after a
work-group has iterated over all visibilities in its baseline,
it iterates over them again, but taking responsibility for
the next tile. Our implementation is parallel rather than
serial, using a separate work-group per tile. In either case,
the number of atomic updates to the grid is unaffected by
tile size, but visibilities and their coordinates are loaded
from memory once for each tile in a bin.

2



Muscat (2014) noticed that it is not necessary to grid
each visibility individually. In some cases, particularly
for short baselines, two adjacent visibilities have the same
position on the higher-resolution grid used to sample the
GCF. This means that they will be multiplied by the same
GCF samples, and thus they can be added together to
form a single visibility. This yields identical results (up to
floating-point precision) but reduces the number of visi-
bilities to grid. He refers to this merging process as com-
pression. We use compression in our implementation, and
in our results we consider only the rate for gridding these
compressed visibilities, rather than the original visibilities.

3. Thread Coarsening

Thread coarsening is the process of merging multiple
work-items (also known as threads) into one. This is simi-
lar to loop unrolling, but applied across parallel work-items
rather than across serial loop iterations. This improves
instruction-level parallelism (Volkov and Demmel, 2008),
reduces the number of memory-access instructions (Yang
et al., 2012) and eliminates redundant calculations when
the same value is computed in every work-item (Magni
et al., 2013).

Thread coarsening also has several negative effects. It
reduces the total amount of parallelism, which can harm
performance if there is insufficient remaining parallelism
to saturate the GPU. It increases the number of registers
used per work-item, which in turn reduces the number of
work-items that can execute in parallel (occupancy). All
else being equal, reducing occupancy will reduce latency-
hiding, but with thread-coarsening it is compensated by
the increase in instruction-level parallelism (Volkov, 2010).
Finally, it can modify memory access patterns such that an
access by a sub-group is no longer to contiguous memory
(so-called coalesced access), thus requiring more transac-
tions with the memory system.

Thread-coarsening can be automated by a compiler,
but for gridding this will not achieve the full benefits. The
address calculations in Romein’s algorithm are different for
each work-item, so thread-coarsening would not reduce the
number of instructions required. However, adjacent work-
items mostly access adjacent memory locations — the ex-
ception being when they are at the edge of the bounding
box, causing wrap-around. We can eliminate this case by
having the bounding box move in larger steps, so that it is
always aligned to a coarser grid. This allows most of the
work in address calculation to be amortized across multi-
ple grid points.

Figure 2 shows how this is implemented. Each work-
item now handles a block of grid points (2×2 in the figure),
and the bounding box is aligned to the edges of blocks.
Of course, the footprint of the GCF is unaffected, so the
bounding box must now be slightly larger than the GCF
to ensure that a suitably aligned bounding box can always
be found to contain the GCF. Grid-point updates still oc-
cur for the grid points in the padding between the GCF

Figure 2: Mapping of work-items and work-groups to grid points.
One work-group contributes to all the shaded cells. One work-item
contributes to all the cells marked with a dot. Here blocks are 2× 2,
tiles are 4 × 4 and bins are 8 × 8. The dashed box shows a GCF
footprint, and the solid box shows the bounding rectangle.

footprint and the bounding box, so the storage for the
GCF must be padded with zeros. These updates are also
wasted computations, but provided the blocks are signif-
icantly smaller than the GCF, this will add only a small
amount of overhead.

With this change, expensive address calculations that
were previously done per grid point are now only done
once per block. In particular, it is only necessary to check
whether the whole block has moved out of the bounding
box, rather than each grid point. This reduces the to-
tal number of instructions needed for addressing and thus
frees up more cycles for actual gridding calculations.

4. Implementation Details

Muscat (2014) implements compression on the fly dur-
ing gridding. For deconvolution with major cycles (Schwab,
1984), the compression only needs to be done once for all
cycles, so we have implemented it as a preprocess. For
each compressed visibility, the gridding kernel receives the
integer grid coordinates, the sub-grid coordinates for in-
dexing the GCF, the w plane index, and the pre-weighted
visibility values. Rather than all work-items directly load-
ing these values from global memory, they are staged via
local memory in batches. When loading a batch, each
work-item loads one visibility.

We found that the NVIDIA CUDA compiler was caus-
ing the kernels to use far more registers than we expected.
Examining the assembly code, we found that it was us-
ing extra scratch registers for flushing accumulators. The
CUDA C code would first atomically add the accumula-
tor to global memory, then set it to zero. The assem-
bly code instead copied the accumulator to a temporary,
zeroed the accumulator, then atomically added the tem-
porary to global memory. This was presumably done to
improve latency-hiding (allowing the accumulator to be
re-used before the atomic operation completed). However,
this increases the number of 32-bit registers by two times

3



the number of polarizations times the coarsening factor. In
this case, the extra register pressure reduced occupancy so
much that performance dropped overall. As a workaround,
we added the statement asm("") as a compiler-level mem-
ory barrier.

Romein (2012) found that the majority of memory traf-
fic was due to cache misses in reading the convolution GCF
values. To avoid this problem, we have used a separa-
ble approximation to the GCF (Merry, 2016). We have
also (like Romein) assumed that the GCF is polarization-
independent. Both these assumptions mean that our re-
sults cannot be directly applied to A-projection; we nev-
ertheless expect our technique to provide similar acceler-
ations for A-projection, provided the memory system can
keep up.

Coarsening also works nicely with a separable GCF.
For an m × n block, we load m + n values from memory
in each work-item, and compute the m × n products in
registers. Larger blocks thus reduce the number of memory
transactions required.

It is difficult to determine the best coarsening factors
and work-group size theoretically, because there are trade-
offs. For example, a larger work-group implies fewer tiles
per bin, and thus less memory traffic to load visibilities;
but only an integer number of work-groups can be active
on a compute unit at a time, so larger work-groups may
cause resources to be under-utilised. We have dealt with
this by using autotuning: a small artificial data-set is syn-
thesized and benchmarked with a range of coarsening fac-
tors and work-group sizes, and the best combination is
remembered. We perform auto-tuning separately for each
number of polarizations.

Another tuning factor is the number of visibilities to
process in each work-group. Romein (2012) uses one work-
group per baseline; but with compression, that will lead
to unbalanced workloads. We order visibilities by base-
line, but assign a fixed number of visibilities to each work-
group. Larger numbers make more use of spatial coherence
between adjacent visibilities, but reduce parallelism. Our
current implementation uses 1024 per work-group.

5. Results

We found that the performance of our gridding im-
plementation is highly dependent on the coordinates and
ordering of the data. To obtain a dataset that is repre-
sentative of future radio telescopes, we simulates a single-
channel, two-hour observation on MeerKAT (SKA South
Africa, 2015) with a 2 s integration time, and compressed
the visibilities. These compressed visibilities are available
online 1 for anyone who wishes to do a direct compari-
son. All gridding calculations are done in single-precision
floating point.

1https://github.com/ska-sa/thread-coarsening-grid-data

−2 0 2 4 6

u (km)

−6

−4

−2

0

2

4

6

8

v
(k

m
)

UV tracks

Figure 3: The uv coordinates in our simulation. To improve legibility,
only every 100th visibility is shown. The alternating bands of black
and gray correspond to the slices used for W-stacking (they overlap
because the array is not perfectly coplanar).

Pure W-projection requires large GCFs to correct the
W effects, making it very slow. For MeerKAT, we expect
it to be used in conjunction with techniques such as W-
stacking (Offringa et al., 2014). We have thus split the
data into a number of slices by w value, as shown in Fig-
ure 3. We invoke a separate kernel-instance for each slice
in the stack. There are 7 slices with a total of 2 337 867
compressed visibilities (from 7 257 600 uncompressed), and
1229 W planes per slice. Note that in real use, the number
of slices would be adapted to the size of the GCF (or vice
versa), but we have kept the number of slices fixed while
varying the GCF size so that we can study the effect of
GCF size in isolation.

It should be emphasized that these choices are largely
conservative. The use of such a short observation with a
single channel, which is further split into W slices, sub-
stantially reduces parallelism. The results reported here
are thus likely to be achievable in other configurations.

We explored a variety of configurations: coarsening fac-
tor of 1, 2, 4 or 8 on each axis (up to a combined factor of
16), work-group size of 4, 8 or 16 on each axis, bin sizes of
32, 64 or 128; and either 1 or 4 polarizations. The GCF size
was computed as bin size + 1 − max(coarsenu, coarsenv),
which is the largest square size possible.

We report results on two GPUs: an NVIDIA GTX 980
(Maxwell architecture) using CUDA, and an AMD Radeon

4

https://github.com/ska-sa/thread-coarsening-grid-data


1 2 4 8 16

Coarsening factor

0

50

100

150

200

250

300

350

400

G
ig

a-
gr

id
po

in
ta

dd
iti

on
s

pe
rs

ec
on

d

17
8

1×
1,

8×
16

23
7

2×
1,

8×
8

27
3

2×
2,

8×
16

25
2

4×
2,

4×
16

18
1

4×
4,

4×
8

19
2

1×
1,

16
×1

6

26
8

2×
1,

8×
8

32
2

2×
2,

8×
8

32
9

2×
4,

8×
8

24
7

4×
4,

8×
8

19
2

1×
1,

16
×1

6

27
7

2×
1,

4×
16

33
8

2×
2,

8×
16

36
5

2×
4,

8×
8

27
5

4×
4,

4×
16

Gridding rate on GeForce GTX 980

Bin size

32
64
128

Figure 4: Gridding rates for four polarizations (GTX 980). The
numbers inside the bars are the coarsening factors (in U and V), and
the number of work-items per work-group (in U and V) in the best
case.

R9 290X (GCN architecture) using OpenCL. These have
theoretical single-precision performance of 5.288 Tflop/s
and 5.632 Tflop/s, and memory bandwidth of 224 GB/s
and 352 GB/s respectively. The implementation was de-
veloped and tuned on the Maxwell architecture, so we give
the most attention to results on the GTX 980, and results
are for this GPU except where otherwise noted. The R9
290X is included to show that the optimizations are not
specific to one GPU architecture or API.

Figure 4 shows gridding rates for four polarizations.
For each total coarsening factor, we show only the result
for the best combination of U and V coarsening factors
and work-group size. We consider a grid-point addition to
be an addition for a single polarization, which requires 8
flops. The efficiency without coarsening is 27–29%, which
is similar to (but slightly higher than) the 24% reported
by Romein (2012), and much higher than the results of
Muscat (2014).

In the best case (bin size 128, coarsening factor 8) we
achieve 365 GGPA/s, at 55% efficiency. This is a 90% im-
provement over no coarsening at the same bin size. For
a bin size of 32, the improvement due to coarsening is
only 53%. Improvements will be less at smaller bin sizes
because too much coarsening will quickly increase the pro-
portion of flops wasted by padding and reduce the avail-
able parallelism. This can be seen in the performance drop
from 4× to 8× coarsening.

Figure 5 shows gridding rates for a single polarization.
Here, the ratio of address calculations to gridding calcu-
lations is four times larger, and thread coarsening makes
a larger impact. For 128-pixel bins, the performance im-
proves by a factor of 3.2. We also tested with larger coars-
ening factors, but they performed worse than those shown.

Figure 6 shows the utilization of the single-precision

1 2 4 8 16

Coarsening factor

0

50

100

150

200

G
ig

a-
gr

id
po

in
ta

dd
iti

on
s

pe
rs

ec
on

d

62
1×

1,
8×

8

88
1×

2,
16
×1

6

11
6

2×
2,

8×
16

12
5

2×
4,

8×
4

12
7

4×
4,

8×
4

67
1×

1,
4×

16

10
3

1×
2,

8×
16

14
8

2×
2,

8×
8

17
4

4×
2,

8×
8

18
6

4×
4,

4×
8

67
1×

1,
4×

16

10
7

1×
2,

16
×8

15
5

2×
2,

8×
8

19
4

4×
2,

8×
8

21
3

4×
4,

8×
4

Gridding rate on GeForce GTX 980

Bin size

32
64
128

Figure 5: Gridding rates for a single polarization (GTX 980).

Table 1: Memory bandwidths for the best case (four polarizations,
128-pixel bins, 8× coarsening), on GTX 980.

Memory Type Read (GB/s) Write (GB/s)

Shared 292.4 9.1
Unified cache 1,255.4 0.0
L2 cache 117.2 40.1
Device 14.5 6.4

units in the GPU, which handle both floating-point and
integer instructions. This shows that although utilization
is not much higher for four polarizations than for one, the
proportion of instructions used for convolution is much
higher. The lower utilization for smaller bin sizes is largely
due to a lack of parallelism in the more sparsely popu-
lated W slices — in the worst case, there are not enough
work-groups to give every compute unit work to do. If we
consider only the first slice, then utilization levels are all
between 75% and 85%, and the NVIDIA profiler considers
this to be compute-bound.

The profiler also reports bandwidths and utilization
for the various memory systems. Table 1 shows the band-
widths for the best case. The decline in bandwidth from
the unified cache (L1) to L2 to device (global) memory
shows that the caches are effective.

We now report results for the Radeon R9 290X. Since
OpenCL doesn’t support atomic additions, we had to emu-
late them using slower compare-and-swap operations. Since
these operations are not affected by our optimizations, we
expect thread coarsening to have less impact.

Figures 7 and 8 show the speedups obtained with thread
coarsening on this GPU. One noticeable difference from
the GTX 980 figures is that the optimal coarsening fac-
tor is lower. This suggests that register pressure is an
issue, but we have not investigated whether this is due
to compiler quirks such as the one we worked around for

5



32 64 128

Bin Size

0

20

40

60

80

100

%

1
po

l

4
po

l

1
po

l

4
po

l

1
po

l

4
po

l

Convolution
GCF

Padding
Integer

Figure 6: Utilization of the single-precision units. Convolution: in-
structions that multiply GCF samples with visibilities and accumu-
late the result. GCF : instructions to reconstruct GCF samples from
the separable parts. Padding: flops that are wasted due to padding
of the GCF.

1 2 4 8 16

Coarsening factor

0

50

100

150

200

250

300

G
ig

a-
gr

id
po

in
ta

dd
iti

on
s

pe
rs

ec
on

d

16
1

1×
1,

16
×1

6

17
4

2×
1,

8×
8

58

34

9

20
1

1×
1,

16
×1

6

23
5

2×
1,

8×
8

81
2×

2,
4×

16

53

11

22
0

1×
1,

16
×1

6

27
1

2×
1,

8×
8

89
2×

2,
4×

16

61

13

Gridding rate on Radeon R9 290X

Bin size

32
64
128

Figure 7: Gridding rates for four polarizations (R9 290X).

1 2 4 8 16

Coarsening factor

0

50

100

150

200

G
ig

a-
gr

id
po

in
ta

dd
iti

on
s

pe
rs

ec
on

d

69
1×

1,
8×

16

10
5

2×
1,

8×
8

11
2

2×
2,

8×
8

40

29

75
1×

1,
8×

16

12
9

1×
2,

8×
8

15
6

2×
2,

8×
8

69
4×

2,
8×

8

58
4×

4,
8×

8

77
1×

1,
16
×1

6

13
8

1×
2,

8×
16

17
6

2×
2,

8×
8

83
4×

2,
8×

8

75
4×

4,
4×

16

Gridding rate on Radeon R9 290X

Bin size

32
64
128

Figure 8: Gridding rates for a single polarization (R9 290X).

the NVIDIA compiler. Between the emulated atomic ad-
ditions and this inability to utilize higher coarsening fac-
tors, it is not surprising that coarsening is less effective
than on the GTX 980. Nevertheless, it is beneficial, with
up to 23% improvement for four polarizations and 128%
improvement for one polarization.

6. Conclusions and Future Work

Thread coarsening clearly provides a significant per-
formance improvement, and we recommend that gridders
based on Romein’s algorithm should use thread coarsening
to improve performance, unless they use only very small
GCFs (for example, because W effects are corrected by
other means than W projection).

We have shown significant gains in all the tested con-
figurations, but the largest gains are for large GCFs. The
results for small GCFs are hurt by a lack of parallelism in
the sparse W slices, which could be improved by adapt-
ing tuning parameters (both the coarsening factor and the
number of visibilities per work-group) to the number of
visibilities.

For large GCFs, performance is limited by the single-
precision units, so further significant optimizations can
only come from reducing the number of flops. For each vis-
ibility V , polarization p and position i, j in the GCF foot-
print, we need to compute the product GijVp = (Gu

iG
v
j )Vp.

We currently compute this as written, but Merry (2016)
notes that fewer flops are required to compute this as
Gu
i (Gv

jVp) because the factor in parentheses is indepen-
dent of i. For a bin size B and number of polarizations P ,
this reduces the number of required multiplications from
B2 +B2P to BP +B2P . This is not an entirely free opti-
mization, because the common factor needs to be broad-
cast to all work-items that need it, but we expect that
performance should still improve.

6



Autotuning is clearly important to find the optimum
coarsening factor. Our results show that tuning needs to
consider both the number of polarizations and the bin
size. On the other hand, one need only consider coars-
ening shapes that are as square as possible i.e., in 1 : 1 or
2 : 1 ratio. This is expected, because squarer shapes re-
duce both the amount of zero padding and the number of
memory accesses to load the separable GCF components.

Our implementation uses power-of-two sizes for bins,
because this simplifies some of the integer arithmetic in
coordinate calculations. However, this is not a fundamen-
tal limitation, and it would be possible to use non-power-
of-two sizes at all levels of the hierarchy. This may yield
further small performance improvements by providing a
finer-grained set of options.

A natural next step is to apply thread coarsening to de-
gridding in a similar fashion. Our preliminary results show
that performance improvements are even better than for
gridding, but we have not yet fully optimized our degridder
and this may affect the results. Nevertheless, we expect
thread coarsening to be important in degridding.

We have not considered A-projection in our perfor-
mance measurements. A-projection requires significantly
more instructions and bandwidth for loading the GCFs,
because they are dependent on time, frequency, polariza-
tion and possibly baseline, and are not separable. We thus
expect thread-coarsening to have a smaller effect, because
bandwidth and latency considerations will play a larger
part.

References

Bhatnagar, S., Golap, K., Cornwell, T., 2006. Correction of errors
due to antenna power patterns during imaging. EVLA memo 100.

Cooley, J.W., Tukey, J.W., 1965. An algorithm for the machine
calculation of complex fourier series. Mathematics of Computation
19, 297–301. URL: http://www.jstor.org/stable/2003354.

Cornwell, T., Golap, K., Bhatnagar, S., 2008. The noncoplanar
baselines effect in radio interferometry: The W-projection algo-
rithm. IEEE J. of Selected Topics in Signal Processing 2, 647–657.
doi:10.1109/JSTSP.2008.2005290.

Greisen, E.G., 1979. The effects of various convolving functions on
aliasing and relative signal-to-noise ratios. URL: http://library.
nrao.edu/public/memos/vla/sci/VLAS_131.pdf. VLA Scientific
Memorandum #131.

Magni, A., Dubach, C., O’Boyle, M.F.P., 2013. A large-scale cross-
architecture evaluation of thread-coarsening, in: Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis, ACM, New York, NY, USA.
pp. 11:1–11:11. URL: http://doi.acm.org/10.1145/2503210.

2503268, doi:10.1145/2503210.2503268.
Merry, B., 2016. Approximating W projection as a separable kernel.

MNRAS 456, 1761–1766. URL: http://mnras.oxfordjournals.
org/content/456/2/1761.abstract, doi:10.1093/mnras/stv2761,
arXiv:http://mnras.oxfordjournals.org/content/456/2/1761.full.pdf+html.

Muscat, D., 2014. High-Performance Image Synthesis for Radio In-
terferometry. Master’s thesis. University of Malta.

Offringa, A.R., McKinley, B., Hurley-Walker, N., Briggs, F.H.,
Wayth, R.B., Kaplan, D.L., Bell, M.E., Feng, L., Neben, A.R.,
Hughes, J.D., Rhee, J., Murphy, T., Bhat, N.D.R., Bernardi,
G., Bowman, J.D., Cappallo, R.J., Corey, B.E., Deshpande,
A.A., Emrich, D., Ewall-Wice, A., Gaensler, B.M., Goeke, R.,
Greenhill, L.J., Hazelton, B.J., Hindson, L., Johnston-Hollitt,

M., Jacobs, D.C., Kasper, J.C., Kratzenberg, E., Lenc, E.,
Lonsdale, C.J., Lynch, M.J., McWhirter, S.R., Mitchell, D.A.,
Morales, M.F., Morgan, E., Kudryavtseva, N., Oberoi, D.,
Ord, S.M., Pindor, B., Procopio, P., Prabu, T., Riding, J.,
Roshi, D.A., Shankar, N.U., Srivani, K.S., Subrahmanyan, R.,
Tingay, S.J., Waterson, M., Webster, R.L., Whitney, A.R.,
Williams, A., Williams, C.L., 2014. WSCLEAN: an implemen-
tation of a fast, generic wide-field imager for radio astronomy.
MNRAS 444, 606–619. URL: http://mnras.oxfordjournals.

org/content/444/1/606.abstract, doi:10.1093/mnras/stu1368,
arXiv:http://mnras.oxfordjournals.org/content/444/1/606.full.pdf+html.

Romein, J.W., 2012. An efficient work-distribution strategy for
gridding radio-telescope data on GPUs, in: Proc. 26th ACM
Int. Conf. on Supercomputing, ACM, New York, NY, USA. pp.
321–330. URL: http://doi.acm.org/10.1145/2304576.2304620,
doi:10.1145/2304576.2304620.

Schwab, F.R., 1984. Relaxing the isoplanatism assumption in self-
calibration; applications to low-frequency radio interferometry.
Astron. J. 89, 1076–1081. doi:10.1086/113605.

SKA South Africa, 2015. MeerKAT array releases and specifications.
URL: http://public.ska.ac.za/meerkat/schedule.

Smirnov, O., 2011. Revisiting the radio interferometer measurement
equation. I. a full-sky Jones formalism. A&A 527, A106. doi:10.
1051/0004-6361/201016082, arXiv:1101.1764.

Volkov, V., 2010. Better performance at lower occupancy, in: Pro-
ceedings of the GPU Technology Conference.

Volkov, V., Demmel, J., 2008. Benchmarking GPUs to tune dense
linear algebra, in: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2008, pp. 1–11.
doi:10.1109/SC.2008.5214359.

Yang, Y., Xiang, P., Kong, J., Mantor, M., Zhou, H., 2012.
A unified optimizing compiler framework for different GPGPU
architectures. ACM Trans. Archit. Code Optim. 9, 9:1–9:33.
URL: http://doi.acm.org/10.1145/2207222.2207225, doi:10.
1145/2207222.2207225.

7

http://www.jstor.org/stable/2003354
http://dx.doi.org/10.1109/JSTSP.2008.2005290
http://library.nrao.edu/public/memos/vla/sci/VLAS_131.pdf
http://library.nrao.edu/public/memos/vla/sci/VLAS_131.pdf
http://doi.acm.org/10.1145/2503210.2503268
http://doi.acm.org/10.1145/2503210.2503268
http://dx.doi.org/10.1145/2503210.2503268
http://mnras.oxfordjournals.org/content/456/2/1761.abstract
http://mnras.oxfordjournals.org/content/456/2/1761.abstract
http://dx.doi.org/10.1093/mnras/stv2761
http://arxiv.org/abs/http://mnras.oxfordjournals.org/content/456/2/1761.full.pdf+html
http://mnras.oxfordjournals.org/content/444/1/606.abstract
http://mnras.oxfordjournals.org/content/444/1/606.abstract
http://dx.doi.org/10.1093/mnras/stu1368
http://arxiv.org/abs/http://mnras.oxfordjournals.org/content/444/1/606.full.pdf+html
http://doi.acm.org/10.1145/2304576.2304620
http://dx.doi.org/10.1145/2304576.2304620
http://dx.doi.org/10.1086/113605
http://public.ska.ac.za/meerkat/schedule
http://dx.doi.org/10.1051/0004-6361/201016082
http://dx.doi.org/10.1051/0004-6361/201016082
http://arxiv.org/abs/1101.1764
http://dx.doi.org/10.1109/SC.2008.5214359
http://doi.acm.org/10.1145/2207222.2207225
http://dx.doi.org/10.1145/2207222.2207225
http://dx.doi.org/10.1145/2207222.2207225

	1 Introduction
	2 Background
	2.1 Graphics Processing Units
	2.2 Convolutional Gridding

	3 Thread Coarsening
	4 Implementation Details
	5 Results
	6 Conclusions and Future Work

