
DALiuGE: A Graph Execution Framework for Harnessing

the Astronomical Data Deluge

Chen Wua,∗, Rodrigo Tobara, Kevin Vinsena, Andreas Wiceneca, Dave Pallota,
Baoqiang Laob, Ruonan Wangc, Tao Anb, Mark Boultona, Ian Coopera, Richard Dodsona,

Markus Dolenskya, Ying Meid,e, Feng Wangd,e

a International Centre for Radio Astronomy Research (ICRAR),
The University of Western Australia,

M468, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
b Shanghai Astronomical Observatory,

Shanghai, China
c Oak Ridge National Laboratory,

TN 37831, United States
d Kunming University of Science and Technology,

Kunming, Yunnan, China
e Yunnan Observatories, Chinese Academy of Sciences,

Kunming, Yunnan, China

Abstract

The Data Activated Liu1 Graph Engine — DALiuGE2 — is an execution framework for
processing large astronomical datasets at a scale required by the Square Kilometre Array
Phase 1 (SKA1). It includes an interface for expressing complex data reduction pipelines
consisting of both data sets and algorithmic components and an implementation run-time to
execute such pipelines on distributed resources. By mapping the logical view of a pipeline to
its physical realisation, DALiuGE separates the concerns of multiple stakeholders, allowing
them to collectively optimise large-scale data processing solutions in a coherent manner. The
execution in DALiuGE is data-activated, where each individual data item autonomously
triggers the processing on itself. Such decentralisation also makes the execution framework
very scalable and flexible, supporting pipeline sizes ranging from less than ten tasks running
on a laptop to tens of millions of concurrent tasks on the second fastest supercomputer in the
world. DALiuGE has been used in production for reducing interferometry data sets from the
Karl E. Jansky Very Large Array and the Mingantu Ultrawide Spectral Radioheliograph;
and is being developed as the execution framework prototype for the Science Data Processor
(SDP) consortium of the Square Kilometre Array (SKA) telescope. This paper presents a
technical overview of DALiuGE and discusses case studies from the CHILES and MUSER
projects that use DALiuGE to execute production pipelines. In a companion paper, we
provide in-depth analysis of DALiuGE’s scalability to very large numbers of tasks on two
supercomputing facilities.

1Liu is the phonetic form of the Chinese character 流, meaning “flow”.
2Pronounced [da "Ę£l̆iW ­åi] or approximately Da-'Lieu-Gee

1

ar
X

iv
:1

70
2.

07
61

7v
1

 [
cs

.D
C

]
 2

4
Fe

b
20

17

Keywords: Dataflow, Graph Execution Engine, Data Driven, Square Kilometre Array,
Many-Task Computing

1. Introduction

The Square Kilometre Array (SKA) [1, 2] will be the largest radio telescope in the world.
It is to be built from 2018, making it the latest large-scale global scientific endeavour. The
first phase of the project — SKA1 [3] — will consist of hundreds of dishes and hundreds of
thousands of antennas, enabling the monitoring and surveying of the sky in unprecedented
detail and speed, with a second phase expanding these capabilities to at least an order
of magnitude. Because of its immense size, just one SKA1 science project will produce
correlated data at a rate of 466 GiBytes/s [4] for the low frequency component (SKA1-
Low) and 446 GiBytes/s [5] for the mid frequency component (SKA1-Mid). This correlated
interferometry data will be fed into the Science Data Processor (SDP) [6, 7], a Many-
Task Computing (MTC) [8, 9] centre, responsible for processing and reducing the data;
and producing and preserving science-ready products continuously. The SKA1 will have
constrained power allocations [10] to process observations as they are performed in real
time. This poses considerable challenges to manage, process and store such large datasets.

Traditional High Performance Computing (HPC) facilities are optimised for process-
ing compute-intensive scientific jobs [8, 9]. Therefore they are not well suited to cope with
data-intensive workloads, which involve continuous data capturing, processing, analysis, and
curation. High Throughput Computing (HTC) on the other hand is concerned with longer
term provisioning of large amounts of computing, with the primary metric being operations
per month. As a superset of both HPC and HTC [9], MTC combines the stability and de-
pendent tasks of HTC with the very high number of individual independent tasks of HPC.
In MTC individual tasks may be small or large, uniprocessor or multiprocessor, compute-
intensive or data-intensive; and that is what we need for a typical radio astronomy workflow
as well. In addition, these activities are often interleaved with one another inside a sophis-
ticated workflow, requiring highly responsive and data-location aware resources provisioned
on demand. Our experience of operating the data system [11] for the SKA-low precursor
telescope (the Murchison Widefield Array [12]) suggests that the overheads associated with
data migration, access, distribution, and conversion between different formats are increas-
ingly dominating the overall pipeline execution costs. Moreover, the complexity of radio
astronomy processing originates not only from the basic algorithmic components (e.g. FFT,

∗Corresponding Author
Email addresses: chen.wu@icrar.org (Chen Wu), rtobar@icrar.org (Rodrigo Tobar),

kevin.vinsen@icrar.org (Kevin Vinsen), andreas.wicenec@icrar.org (Andreas Wicenec),
dave.pallot@icrar.org (Dave Pallot), lbq@shao.ac.cn (Baoqiang Lao), wangr1@ornl.gov
(Ruonan Wang), antao@shao.ac.cn (Tao An), mark.boulton@icrar.org (Mark Boulton),
ian.cooper@icrar.org (Ian Cooper), richard.dodson@icrar.org (Richard Dodson),
markus.dolensky@icrar.org (Markus Dolensky), meiying@cnlab.net (Ying Mei),
cnwangfeng@gmail.com (Feng Wang)

Preprint submitted to Astronomy and Computing February 10, 2017

Gridding, Deconvolution, etc.) but also the complex combinations of ways these components
access their input, output, metadata and intermediate data. This makes it very difficult to
apply a “one-size-fits-all” strategy (e.g. data re-organisation, I/O overlapping, intelligent
caching, etc.) to achieve a global optimum across multiple pipeline stages on distributed
HPC resources. Since the current state-of-the-art astronomy data processing systems are
designed to handle data approximately two to three orders of magnitude smaller than the
SKA1 [4, 5], a new data execution framework is much needed.

Currently the most popular way of processing astronomy data is to define workflow com-
ponents statically in scripts. These scripts are then either executed sequentially on a local
machine or wrapped into job scripts submitted to job scheduling systems such as PBS or
SLURM in an HPC environment. Such application-driven workflow models have several
drawbacks. Firstly, most astronomical projects are international, involving multiple insti-
tutes across the globe. As a result, astronomers often need to tailor or even re-develop
workflow scripts in order to make them work — compiling, deploying, running, monitoring,
etc. — on computers or clusters with different system setup and hardware architecture. This
happens whenever there is an upgrade on the workflow, hardware, telescope configuration,
leading to considerable cost. Secondly, the execution process lacks real-time monitoring and
control. For example, in many cases users cannot easily determine the status (e.g. success,
failure, etc.) of the pipeline execution until the entire workflow is completed or a consid-
erable amount of computing and storage resources have been consumed. For SKA-scale
data processing (with tens of millions of concurrent tasks) this is not only infeasible, but
it is extremely expensive to delay fault detection and subsequent recovery actions (e.g. re-
execution). Finally, even if failures or exceptions are noticed at an earlier stage users still
have to restart the entire job for re-execution. This is because a workflow driven by “pro-
cessing” rather than “data” cannot adjust task execution dynamically based on whatever
intermediate datasets (e.g. from previous runs) and resources happen to be available. More
“intelligent” workflow management often requires substantial ad-hoc human interactions,
which become impractical for SKA-scale data processing workflows.

To tackle the above challenges, we have developed the Data Activated Liu (Flow) Graph
Execution Engine — DALiuGE (DA流GE) — for the SDP Consortium of the SKA1 design.
DALiuGE aims to provide a distributed data management platform and a scalable pipeline
execution environment to support continuous, time and power bounded, data-intensive pro-
cessing for producing SKA science-ready products. The distinct advantages of DALiuGE
over existing processing frameworks are:

1. It explicitly decouples the logical view of a problem from its runtime realisation. This
not only separates the concerns of different stakeholders such as: telescope operators,
pipeline developers, and astronomers; more importantly, it allows them to collectively
optimise data processing at multiple layers in a homogeneous manner, whilst letting
the framework optimise the generation of execution plans using resources and profiling
information.

2. It is based on, but extends, the dataflow programming paradigm. Unlike traditional
dataflow models that characterise data as tokens moving across directed edges between

3

nodes, we instead model data as nodes of the graph, elevating them to manageable
entities which are implemented as active objects in memory and can be monitored
and persisted if necessary. Continuous streams of data (a central idea of the dataflow
paradigm) are handled by the framework by including streaming-oriented applications
in the design. In our graph model these generalised nodes are called Drops and come
in two concrete forms, Application Drops (tasks) and Data Drops (data).

3. The Drop concept allows data as well as applications to trigger and receive events,
which are the tokens travelling through the graph edges. Events activate the cascaded
execution of parallel processing tasks. This fulfils the idea of “data-activated” execu-
tion, where every Data Drop determines whether and when to trigger the following
processing tasks. This completely decentralises the execution orchestration, making
the framework scalable to a large number (at least tens of millions) of nodes.

4. It integrates a data lifecycle management component within the execution engine,
keeping track of Drops and migrating or deleting them automatically when necessary.

The rest of this paper is organised as follows: Section 2 provides a brief overview of the
related work in the area of large-scale data processing. Section 3 introduces key concepts
in DALiuGE and their implementation details. A more detailed discussion on the concept
of Drop is given in Section 4. Sections 5 and 6 describe real-world use cases of DALiuGE
in the CHILES and the MUSER projects respectively, and finally Section 7 concludes the
paper based on the current state of DALiuGE and discusses future work.

In a companion paper [13], we evaluate the scalability of DALiuGE — analysing its
efficiency against the growth from both the graph size and the resource provision.

2. Related work

In this section, we provide a succinct overview of existing work on distributed, large scale
data processing frameworks and methods. Given the massive and rapid development in this
area, it is infeasible to enumerate all related technologies. Instead, we focus on three main
areas, from which we have drawn inspiration to develop DALiuGE. In particular, we identify
similarities and compare differences between these techniques and DALiuGE.

2.1. HPC programming models

Most HPC applications today use both shared-memory (e.g. OpenMP) and distributed
memory (e.g. MPI) programming models to achieve a desirable level of parallelism in the field
of high performance computing. Both programming models require developers to exploit
potential parallelism, control process/thread synchronisation, and manage various overheads
associated with parallelism such as race conditions. However, such extra programming and
optimisation effort will be a substantial burden for researchers, difficult for other scientists
to maintain and reuse within the community, and are restricted to run on a particular hard-
ware architecture or supercomputer facility. In fact, it has been noted [14] that the uptake
of HPC depends on how easy the end-user application software is to use without having to
gain expertise in parallel programming. Furthermore, by explicitly engaging in MPI mes-
sage exchange and collective calls, most MPI applications inevitably separate computation

4

and communication, giving away many potential opportunities for parallelism. Although
techniques such as the one-sided MPI communication [15] and strategies [16] to overlap
communication and computation alleviate this issue to some degree, they still require dedi-
cated effort and expertise in order to derive embarrassingly parallel solutions.

To ease the development of parallel scientific applications, the Swift/T parallel scripting
language [17] allows developers to write C-like functions and expressions using high-level
data structures (such as associative arrays). The Swift/T scripts are then compiled into
MPI programs before the Turbine dataflow engine [18] schedules and executes them while
ensuring dynamic task load balancing among hardware resources. Although Swift/T reduces
the complexity of developing compute-intensive applications, it relies on a global file system
shared by each worker node to perform file I/O operations. Szalay and Blakeley [19], Dodson
et al. [20], and Zhao et al. [21] all discuss how a global file system with its ever increasing
large network storage systems and a central metadata server is simply not economically
viable and scalable to support data-intensive workloads. In contrast, DALiuGE gives the
flexibility to developers to perform I/O in whichever way they deem optimal and productive
without relying on a particular storage system architecture.

To tackle the “productivity wall” challenge, the ClusterSs programming model [22] allows
developers to parallelise the execution of a sequential application across a large cluster with-
out explicitly concerning themselves with distributed data management and flow control.
By utilising the APGAS run-time (X10 [23]) as its underlying communication middleware,
ClusterSs replaces local Java methods defined in the sequential program with dynamically-
spawned tasks run by threads on remote nodes, thereby transparently transforming a shared
memory-like program into a distributed memory application on-the-fly. DALiuGE also per-
forms similar transformations known as “graph translation”. However, unlike ClusterSs,
such a transformation takes place well before the graph execution starts. As a result, the
execution is completely decentralised, no central “main node” is needed in DALiuGE to
spawn tasks at run-time, thus significantly reducing framework overheads.

In the past decade, scientific workflow systems and HPC schedulers such as Pegasus [24],
Condor [25], and Apache OODT [26] have achieved significant progress for mapping, schedul-
ing, and executing workflows on highly distributed Grid and Cloud resources. Despite their
success in handling data-intensive workloads, their primary processing model is task-centric.
For example, in the absence of global file systems, the Pegasus Mapper explicitly stages data
transfers to satisfy dependencies between tasks running on different nodes. DALiuGE, on
the other hand, let a Data Drop possess the full knowledge (events, status, operations, etc.)
of its payload and trigger processing on itself in a decentralised, autonomous fashion.

2.2. Data parallel frameworks

Industrial data-intensive applications often use data parallel frameworks such as MapRe-
duce [27], Dryad [28] or Spark [29] to handle parallel chunks of data independently. Such
data parallelism virtually allows processing capabilities to scale indefinitely. While these
data parallel frameworks provide horizontally scalable solutions, two issues arise when di-
rectly using them out of the box for modelling, executing, and managing (radio) astronomical
data processing.

5

Firstly, data parallelism works by partitioning a large/huge data set (or data stream)
into smaller splits (or streams), each of which is then processed in parallel. Most data paral-
lel frameworks are responsible for partitioning, merging, and distributing data splits across
distributed hardware resources for optimal performance, load balancing and data paral-
lelism. For example, in the Hadoop MapReduce implementation [30], each file ingested into
the Hadoop Filesystem (HDFS) is partitioned by the framework into multiple 64 Megabyte
chunks by default. In Spark, an in-memory data frame is partitioned into multiple sub-
arrays, each of which is then distributed onto a Worker/Executor for processing. However,
partitioning astronomical datasets often involves far more than simply slicing datasets along
some dimensions. For example, in our previous work on CHILES data reduction [20], split-
ting visibility data sets in the frequency domain involves a substantial amount of calculation
including FFTs and adjusting Doppler shifts. Whether this kind of complexity is required
for the SKA is mainly dependent on the science use case and the array configuration in use.
Moreover, different data sets have different partition tolerance and sensitivity. Tailoring
a generic, off-the-shelf data parallel framework to account for such science-related nuances
would force the intrusion of domain knowledge into the framework itself and that is not
desirable.

Secondly, time-critical, deadline-sensitive workloads (like those of the SDP) require guar-
anteed Quality of Services (QoS, such as execution latency) that are not well supported by
existing data parallel frameworks [31]. Although there has been considerable effort in opti-
mising dataflows to meet QoS requirements, the parameter space explored by these efforts
is quite different from the context in which radio astronomical data sets are processed. For
example, most optimisation strategies during the MapReduce shuffling stage assume that
the Reducer function supports partial aggregations [32] (for example, the Combiner task in
the word-count example computes a partial count for each local key). However, many radio
astronomical operations (such as clean, flagging, and calibrate) are not commutative
and associative, and will produce undesirable artefacts if they are executed as such. On
the other hand, optimisation techniques that estimate or predict data and task properties
[33, 34] could be very effective for commercial workloads. But their relevance and usefulness
in astronomical data pipelines is very limited since the properties (shape, dimension, reso-
lution, etc.) of radio astronomical data sets are precisely defined before and after any data
operations in a given pipeline.

To address these two issues the DALiuGE data partitioning and aggregation are modelled
as “Scatter” and “Gather” constructs, respectively by the pipeline developer, who explicitly
specifies dedicated tasks and defines the relevant partitioning and aggregation parameters
based on specific science cases. DALiuGE then uses these parameters to generate optimal
dataflows that minimise goals like data movement, execution latency, resource footprint,
etc. The separation between the logical graph and the physical dataflow, and the optimal
translation between the two allow DALiuGE to achieve “science-compliant” data parallelism
while meeting performance QoS constraints.

6

2.3. Dataflow and Graph

The dataflow computation model was initially proposed [35, 36, 37] to express programs
as Directed Acyclic Graphs (DAG), where the vertices are the stateless computational tasks
that compose the program, and edges connect the output of one task with the input of
another. Travelling through the edges are data tokens, which are continuously processed by
the nodes as they arrive. Unlike OpenMP or MPI, this paradigm does not explicitly place
any control or constraints on the order or timing of operations beyond what is inherent
in the data dependencies among compute tasks, and therefore exploits the full inherent
parallelism of a program. Putting the concept of dataflow into practice still requires control
flow operations and data storage in order to make it practical and useful (e.g. the MIT
dataflow architecture [38]).

More recently, graph-based models have been used for building scalable data processing
pipelines. For example, Luigi [39] was originally developed at Spotify to run thousands of
data processing tasks every day, all of which are organised in complex dependency graphs.
As an open source project, Luigi has been used by companies to run “multi-stage” data
pipelines in production [40]. The Luigi Python APIs allow developers to focus solely on
defining individual tasks, while the Luigi scheduler is responsible for building the “global”
task dependency graph and assigning tasks to workers for execution. Compared to DAL-
iuGE, which also composes event dependency graphs from individual Drops, Luigi lacks
the aforementioned benefits of separation between a logical graph and its physical dataflow
realisation. Moreover, the Luigi central scheduler is a scalability bottleneck when executing
thousands of tasks in a graph [41]. In contrast, DALiuGE can concurrently manage and
execute tens of millions of tasks thanks to its completely decentralised execution model.

TensorFlow [42], which is being developed by the Google Brain team, aims to tackle
the processing challenge associated with deep learning — for example, training machine
learning models (e.g. deep neural networks with hundreds of billions of parameters) on large
scale clusters or perform model inference on mobile platforms. At its core, TensorFlow (1)
represents both computations and states (that the computation operates on) as dataflow-
like graphs and; (2) maps graphs onto various hardware platforms such as: laptops, GPU
clusters, Android/iOS devices, etc.

Although both TensorFlow and DALiuGE treat computation as graphs, and stress the
need for “mapping” of dataflow graphs to hardware resources, they differ in two significant
ways. First, TensorFlow does not strictly separate logical graphs from physical graphs.
For example, when building a Tensorflow graph, a developer can wrap logical computation
expressions with concrete physical resource information (e.g. an IP address with a device
identifier), thereby enforcing where the computation should take place during run-time.
However, we believe a completely resource-oblivious logical graph has more advantage for
optimising long-running, large-scale pipelines, and such separation of concerns is vital to
astronomical projects with multiple stakeholders.

Second, a TensorFlow graph allows mutable graph nodes — Variables — to hold per-
sistent data that can be continuously updated. However in DALiuGE, the payload of data
Drops is strictly “write once, read many” as in the traditional dataflow model. This led
to very different approaches to realising iterative algorithms essential for both astronomi-

7

cal data reduction (e.g. image reconstruction [43, 44]) and machine learning optimisation
(e.g. gradient descent [45]). A TensorFlow graph does not contain loops internally but is
repeatedly “run” by an external Session object to perform loop iterations during run-time.
Only Variables in the graph are persistent — their states and data span multiple executions
of the same graph. In comparison, a DALiuGE graph contains pre-generated loop struc-
tures with new Data Drops created in each iteration. Although a TensorFlow session gives
users more flexibility at run-time (e.g. to control loop conditions), DALiuGE is dedicated
to guaranteed, optimal resource provisioning, which is important to support real-time data
reduction pipelines in large astronomical observatories like the SKA.

3. Key concepts and implementation

Setting up a pipeline in DALiuGE typically goes through the following six stages (see
Figure 1), all of which are related to the concept of graphs.

1. Logical Graph Component Development,
2. Logical Graph Template Composition,
3. Logical Graph Selection,
4. Physical Graph Template Translation,
5. Physical Graph Deployment, and
6. Physical Graph Execution

This clear enumeration of stages is crucial, as it explicitly separates the different concerns
involved in the design and execution of a pipeline, spreading them across both time and
domain, allowing different users and stakeholders of the system to concentrate on their
domain-specific expertise. Although these stages are defined within the context of the SKA
SDP, they are generally applicable to the development, deployment, and execution of many
astronomical processing pipelines.

Stage 1. Pipeline Components are astronomical computational tasks wrapped into Ap-
plicationDrops. Currently such tasks can be implemented as Docker images [46], binary exe-
cutables, shell scripts or python modules. This flexible wrapping allows DALiuGE to re-use
a lot of existing code, without any modification. Each pipeline component is parametrised
by Resource Usage information measured by the Resource Analyser. Pipeline components
have to be developed and optimised for the actual target platform. While the computational
tasks are stateless, the Application Drops are stateful, since they go through the Drop lifecy-
cle (Figure 11) — to be initialised, deployed, expired and removed, depending on the current
state of the overall process.

Stage 2. A staff astronomer composes a Logical Graph Template representing a high-
level data processing capability (e.g., “Image visibility data”) using resource-oblivious dataflow
constructs and Pipeline Components that have been tested and released. A Logical Graph
Template leaves some room for the principle investigators (PIs) requesting an observation to
adjust the processing to meet their science goals. It will be possible, for example, to specify
the number of output channels for spectral line and continuum data products. A Logical
Graph Template in general represents a quite complex data and component orchestration

8

Figure 1: The DALiuGE framework and the different stages of a pipeline’s lifecycle in the context of the
SKA SDP

specification and will require careful testing and verification before it is offered as a capa-
bility to the PIs. The set of released Logical Graph Template will reside in a fully version
and configuration controlled repository and essentially define the various operation modes

9

of the SKA Science Data Processor.
Stage 3. During the creation of the detailed observation the PI will select one of those

released Logical Graph Templates and provide the values for the user specifiable parameters.
Together with the observation description this will allow the system to transition the Logical
Graph Template to a Logical Graph, which is specific for the proposed observation.

Stage 4. DALiuGE translates a Logical Graph into a Physical Graph Template, an
unrolled and logically partitioned version of the Logical Graph not bound to specific physical
compute resources. The translation from a Logical Graph to Physical Graph Template is
automated and uses Resource Capability information obtained from the Resource Analyser
in order to achieve certain cost objectives. Note that a single node in the logical graph may
correspond to many nodes in a Physical Graph Template.

Stage 5. The Deployment stage takes place when an observation or a batch processing
job needs to be run. DALiuGE first retrieves the corresponding Physical Graph Template
from the graph repository. By correlating the information on Resource Availability from the
Resource Analyser, which analyses real-time resource usage such as compute node, storage,
etc, DALiuGE associates each node in the Physical Graph Template with an available re-
source unit, effectively generating a Physical Graph. Minutes before an observation starts,
DALiuGE deploys the Physical Graph onto the Drop Managers, a set of daemon processes
responsible for the run-time aspect of DALiuGE. This creates Drops, the objects responsi-
ble of wrapping and managing both the data and the applications contained in the Physical
Graph, and of driving the execution of the Physical Graph. A detailed discussion on the
concept of Drops will be presented in Section 4.

Stage 6. Once the observation finally starts, the Execution stage takes place, and the
graph execution cascades down automatically through the graph edges. When all tasks are
completed, some data is persistently preserved as science-ready products. DALiuGE Drop
managers can be equipped with plugins to any third-party Resource Analysers to continu-
ously profile workload behaviours for each task. Such resource usage information can be fed
back to the development of pipeline components.

It is important to note that for a given pipeline the first two stages are executed only
once (unless the pipeline logic actually changes, which would produce a new Logical Graph
Template) independently of how many observations use the same pipeline definition. The
following sub-sections discuss each of these stages in details.

3.1. Develop

Figure 2 depicts how pipeline components are developed in a way that separates con-
cerns of four key stakeholders/roles. First, domain specialists focus on designing algorithms
to solve a particular domain-specific problem. Algorithm developers implement these al-
gorithms, which are later transformed into ApplicationDrops by the Pipeline component
developers. DALiuGE has built-in support for wrapping common task types such as: bash
commands, system executables and Docker containers. Pipeline component developers are
also responsible for representing and wrapping data sets into Data Drops, either by using
an built-in Drop type, extending one, or writing their own.

10

Figure 2: During development time, how Drops are associated with algorithms, pipeline components, data
and the DALiuGE graph execution framework which enables separation of concerns.

3.2. Compose

A Logical Graph Template represents logical operations in a processing pipeline without
concerning the underlying hardware resources and observation details. The building blocks
of a Logical Graph Template are called Constructs. Constructs are the elements exposed to
the Logical Graph Template developer through the Logical Graph Template editor. The two
basic constructs are Data and Component. They are templates, from which Data Drops
and Application Drops are instantiated respectively. Note that one Data or Component
construct in a Logical Graph Template could result in the generation of many Data or
Application Drop instances in a Physical Graph Template. Each construct has several
associated properties, whose values will be populated in the next stage (Section 3.3). In
particular, the Component and Data constructs expose the Execution time and Data volume
properties respectively, indicating how long a task should take to run, and how much data
is contained in a Data construct. Values of these properties can be directly obtained from
parametric models or estimated from the resource usage information given by the Resource
Analyser.

Data constructs can be linked to Component constructs as inputs or outputs. This
linking rule is vital for designing dataflow-like programs where tasks and data are both
nodes of the graph. In addition to the basic constructs, a number of control flow constructs
enable the creation of more complex Logical Graph Templates. They form the skeleton of
the logical graph, and determine the ultimate structure of the Physical Graph Template to
be generated (see Figure 5). DALiuGE currently supports the following flow constructs:

• Scatter represents data parallelism. Data fed into a Scatter construct is broken down into
a number of partitions, and the constructs inside a Scatter construct consume a single data
partition within the enclosing Scatter. The num of copies property of Scatter controls

11

Figure 3: The Logical Graph Template describing the imaging pipeline [47] for the LOFAR telescope [48].
It contains two Scatter constructs where the initial data is split by time and frequency domain, a GroupBy
construct grouping the data by frequency, a Gather construct and a Loop construct for the imaging process.

how many partitions should be generated. This is used by DALiuGE when generating
parallel branches of execution.

• Gather represents a data barrier. Constructs inside a Gather construct consume a se-
quence of data partitions as a whole. Gather has a num of inputs property stating how
many partitions each Gather instance can handle. This in turn is used by DALiuGE to
determine the number of Gather instances to be generated in the physical graph. Gather
can be used in conjunction with GroupBy (as shown in Figure 3), in which case, data held
in a sequence of groups are processed together by components enclosed inside Gather.

• GroupBy performs data reordering (a.k.a. the corner turning problem [49] in radio
astronomy). The semantic is analogous to the Group By SQL statement used in relational
databases. It is comparable to the “static” MapReduce shuffling, where the keys collected
by all Reducers are known a priori. Figure 4 shows an example of the GroupBy construct.
In this example, a list of 2D points were originally sorted based on the axes order of (x,
y). After performing GroupBy, they are re-sorted based on the axes order of (y, x).
DALiuGE requires GroupBy be used in conjunction with nested Scatter constructs as
shown in Figure 3 such that data Drops (e.g. “Calibrated MS file”) initially sorted in the

12

Figure 4: An example of the GroupBy construct, which re-sorts a list of 2D points from axes (x, y) to axes
(y, x)

order of the outer partition — Scatter by Timeslice — are re-sorted in the order of
the inner partition — Scatter by Channel.

• Loop indicates iterations. Constructs inside a Loop will be repeatedly produced for a
fixed number of times. DALiuGE currently does not support dynamic branch conditions
for Loop. Instead, each Loop construct has a property named num of iterations. An
example of the Loop construct is shown in Figure 3.

To let users compose Logical Graph Templates we have developed a Javascript-based
Logical Graph Editor, which allows astronomers to use a Web browser to design Logical
Graph Templates and manage a Logical Graph Template repository. In an operational
observatory environment these astronomers would be trained staff astronomers, familiar
with the specifics of the available constructs. The repository is currently implemented as
a managed file system directory. Each Logical Graph Template is represented as a JSON-
formatted textual file, and can be accessed and modified remotely through the Logical Graph
Editor via its RESTful interface.

3.3. Select & Parametrise

In order to tighten the text in the following paragraphs and captions we are introducing
the following abbreviations:

PI principle investigator
OBS observation
LGT Logical Graph Template
LGR Logical Graph
PGT Physical Graph Template
PGR Physical Graph
DM Drop Manager

Several months before an observation starts, the science project PI is responsible for gen-
erating the Logical Graph for OBS by first selecting an appropriate LGT from the LGT

13

Figure 5: An example of Physical Graph Template unrolled from the Logical Graph Template in Figure 3

Repository and second providing concrete parameter values to all properties in LGT based
on the observation schedules. The only difference between LGT and LGR are those param-
eter values filled in by the project PI.

3.4. Translate

While a Logical Graph provides a compact way to express complex processing logic, it
contains high level control flow specifications that are not directly usable by the underlying
graph execution engine, and cannot be mapped to resources directly. To achieve that a
Logical Graph is translated into Physical Graph Template (PGT). The translation process
consists of three steps: validation, construct unrolling and logical partitioning. The first
step validates the Logical Graph and its constructs, ensuring that it is in a state in which
it can be translated. For example, DALiuGE currently does not allow cycles in the Logical
Graph. This procedure is analogous to the syntax checking done by compilers, making sure
the structure of the program being processed is correct. The second step unrolls the logical
graph by first creating all necessary Drop specifications (which also might include Drops
that do not appear in the original logical graph as constructs by themselves), and second
establishing directed edges amongst these Drop specifications. This set of drop specifications
and the edges linking them together is the PGT. As shown in Figure 5, the PGT example
illustrates how logical graph constructs in Figure 3 are unrolled to produce a larger number
of Drops based on the constructs semantics.

Finally, the third step divides the PGT into a set of logical partitions and generates
an execution sequence of the Drops within each partition such that certain performance
requirements (e.g. total completion time, total data movement, etc.) are met under given
constraints (e.g. resource footprint, collocation criteria, device locality, etc.). DALiuGE cur-
rently assumes hardware resources are homogeneous. Under this assumption, we have imple-

14

mented two sets of graph partitioning algorithms — min time and min res. The min time
algorithms produce an optimal number of partitions such that first the total completion time
of the pipeline (which depends on both execution time and the cost of data movement on
the graph critical path) is minimised, and second at any point in time, the number of drops
running in parallel within a single partition is no greater than a Degree of Parallelism (DoP)
threshold. The min res algorithms minimise the number of produced partitions subject to
satisfying completion deadline and the DoP threshold constraints. Since a partition has a
constrained DoP, the number of partitions corresponds to resource footprint. Inspired by
the hardware/software co-design method [50] used in embedded systems design, we used
look-ahead search strategy as well as several stochastic local search heuristics such as simu-
lated annealing [51] and particle swarm optimisation [52] in order to locate a global optimum
during graph partitioning.

3.5. Deploy

To execute a PGT DALiuGE first retrieves it from the graph repository, then assigns
each Drop specification in the PGT to an available resource unit. In doing so the Physical
Graph Template is converted to a Physical Graph (PG), which is now bound to actually
available hardware at the time of execution. Finally DALiuGE communicates the PG to the
Drop Managers (DM) for instantiation and execution.

Resource mapping

This step maps each logical partition of the PG onto a given set of currently available
resources in certain optimal ways (load balancing, minimum cost of data movement, etc.).
Here we have adopted a two-phase scheduling approach [53] to separate the previous graph
partitioning step, which is somewhat oblivious of underlying resources, from the resource
mapping step, which assigns each Drop onto a physical compute node in the cluster. Such
placement requires real-time information on resource availability from the Resource Anal-
yser as shown in Figure 1. Similar to the last step, we currently assume resource pools
consisting of nodes with identical capabilities of computing, storage, and inter-connect. We
use the METIS software library [54], which internally uses a multilevel k-way partitioning
algorithm [55], to merge the p PGT partitions into m virtual clusters if p > m, where m is
the number of currently available machines with the goal of balancing the overall workload
(both compute time and memory usage) evenly. The physical mapping from the m merged
clusters to m compute nodes becomes a straightforward round-robin assignment if the re-
sources are all homogeneous. Once a mapping is established from a cluster c to a compute
node n, all Drops in the cluster c will be assigned a network address of compute node n.

Drop Managers

Drop Managers are the set of daemon process that manage and execute PGs. DMs offer
a unified interface to external users to interact with the run-time system, allowing users to
submit and deploy physical graphs and to query and monitor graph execution status. Drop
Managers are organised hierarchically for scalability considerations. The hierarchy levels
currently implemented include three levels, but the current design is flexible and allows

15

Figure 6: Physical graph deployment across the Drop Manager hierarchy

adding more intermediate levels if necessary in the future. A Node Drop Manager exists
for each compute node in the system and sit at the bottom of the DM hierarchy. They are
ultimately responsible for creating and deleting Drops. Because compute nodes are grouped
into Data Islands, a Data Island Drop Manager exists at the Data Island level, managing
a list of Node Drop Managers. Finally, in order to expose a single point of contact a Master
Drop Manager manages all Data Island Managers.

Drop Managers introduce the concept of a Session to represent a given PG execution.
Sessions are completely isolated from one another. This enables multiple PGs to be deployed
and to executed in parallel within a given Drop Manager as long as the resource availability
suggested by the Resource Analyser is sufficient enough to produce valid resource mappings
during the translation step. Sessions have a simple lifecycle: they are first created, then a
complete or a partial PG is attached to them, after which the graph can be deployed. This
leaves the session in a running state until the graph has finished its execution, at which
point the session is finished and can be deleted.

Physical Graph Deployment

Once a Drop Manager receives a PG it prepares the graph deployment on their managed
resources as prescribed in the PG. The deployment process recursively traverses the DM
hierarchy as shown in Figure 6. For Node Drop Managers (the lowest level in the DM
hierarchy) this involves checking the validity of the PG and the creation of the Session and
all its Drops. For a Data Island Drop Manager d this process involves separating the PG
based on the node placement information. This way Drop specifications belonging to the
same compute node n form a PG sub-graph with no edges pointing to Drop specifications

16

Figure 7: A Physical Graph execution in case of failure. The Application Drop A2 is configured with
t = 50% and therefore can still continue its execution if the Data Drop D2 is successfully completed

in other nodes. d then submits the sub-graph to the Drop Manager running on n, which is
a member of d. The edges from the original PG crossing node boundaries are recorded by
the Data Island Drop Manager and communicated later to the relevant Node Managers for
creating the necessary connections between them. The Master Drop Manager splits the PG
based on island placement information following the same recipe.

3.6. Execute

During the execution phase the root Drops of the Physical Graph (i.e., those without
inputs or producers) are triggered to start their execution. In the case of root Data Drops,
their data is considered to be present and therefore they are marked as completed. Once a
data Drop is marked as complete it will fire an event to all its consumers. Consumers will
then decide if they can start their execution depending on their nature and configuration.
Batch-style Application Drops in particular wait until all their inputs are completed to start
their execution. On the other hand, data Drops receive an event every time their producers
finish their execution. Once all the producers of a Drop have finished, the Drop marks itself
as complete, notifying its consumers, and so on. This way drops have the ability to drive
their own execution instead of relying on a central orchestrating entity.

Failures on Drops are propagated in a similar fashion automatically via events. Data
Drops move to the ERROR state if any of its producers move to ERROR. An Application
Drop moves to ERROR if an error-tolerant threshold, t, inputs have moved to ERROR.
Setting t to a value greater than zero allows certain branches of execution to fail without
preventing the main execution branch from making progress if enough inputs are present
after reaching an error-tolerant gathering point.

Figure 7 shows a physical graph execution with simulated failures. To produce this execu-
tion we have intentionally let some Application Drops fail (either raising random exceptions
or blocking the event flow) at the upstream of the graph execution. Consequently many
downstream Drops have been marked in Red as failure through event propagation. Since
the error-tolerant threshold t was set to 50% in this example, the light-yellow Application

17

Drop A2 is still waiting for one of its inputs D2 to get ready although the other input
Data Drop D1 has already entered the ERROR state. The root cause of such waiting is
the artificially blocked event flow from the Application Drop A1. As a result many down-
stream Drops are also in the WAITING state. Eventually A2 will also enter ERROR due
to timeout, rendering the entire rest of the main branch in the failure mode.

3.7. Implementation details

DALiuGE is currently implemented in Python and publicly available on GitHub3. Sup-
ported Python versions are 2.7, 3.3, 3.4 and 3.5. Continuous integration (i.e., building and
testing) is available via Travis-CI4. Installation of the framework is based on setuptools

and therefore follows the standard installation procedure for python packages (via pip or
similar tools), automatically retrieving and installing all requirements. DALiuGE has built-
in support for common storage platforms (filesystem, in-memory, S3) and applications (scp,
bash commands, Docker, TCP socket listening, etc.).

Drop events flowing through different nodes travel via ZeroMQ PUB/SUB sockets using
pyzmq [56]. These sockets are set up by the Node Managers using the edges information of
the Physical Graph communicated by the higher levels of the Drop Management hierarchy.
Other forms of Remote Procedure Calls used by Drops to interact with each other are
implemented via ZeroRPC [57], which is built on top of pyzmq, but other libraries like
Pyro4 and RPyC are also supported and available via environment variable settings. Drop
Managers expose a simple HTTP REST interface for monitoring and control.

We currently use JSON as the serialization format for the different graphs. JSON-
encoded graphs are compressed and uncompressed on-the-fly when transmitted. We parse
the JSON content iteratively to keep memory low for big graphs using a modified version
of the ijson library. The modifications achieved a ∼10x performance increase, making it
comparable to the built-in json Python module.

3.8. Framework overhead

This section briefly discusses the framework overhead introduced by DALiuGE. We
present the detailed analysis on DALiuGE scalability and framework overhead in our com-
panion paper [13]. .

Figure 8 shows that the framework execution overhead when increasing the number
of Drops up to 12.6 million while keeping the number of nodes to 400. We make two
observations from Figure 8. First, although the execution overhead per Drop is relatively
small (below 10 microseconds) for both cases, in all four graphs, the overhead for 5 islands is
less than 5 microseconds, almost half of that in the single island case. This is expected since
the run-time management overhead is now distributed to multiple island managers. Second,
initially each one of the 400 nodes still has idling resources to accommodate more Drops
for graph A with 2.1 million Drops. Graph B with over 4.2 million Drops has a slightly
smaller overhead than Graph A. But as we double the number of Drops to over 8 million,

3https://github.com/SKA-ScienceDataProcessor/dfms
4https://travis-ci.org/SKA-ScienceDataProcessor/dfms

18

Figure 8: framework overhead on 1 and 5 islands on 400 compute nodes. Y-axis is the overhead measured
in microsecond per Drop

the overhead stays flat (for 5 islands) or goes up (for single island) with less idling resources
available per node. In addition to the execution overhead per Drop there are also setup
and deployment overheads, both of which are essentially constant for a given environment
and graph and they are also not affecting the overall execution time directly, since they
occur on different time scales. In particular the setup overhead will occur just once during
the initialisation of the environment, when the various DALiuGE daemons are started on
the compute nodes. After that DALiuGE can execute many graphs. In an operational
environment the initialisation is expected to happen only quite rarely and the overhead is
thus negligible for a single graph.

4. Drop

In a nutshell, Drops [58] are software objects wrapping a generic payload. Figure 9 shows
the simplified UML diagram of the Drop system in DALiuGE. All the various Drop types,
described in the next subsection are derived from the abstract Drop class. The abstract
ContainerDrop class implements a hierarchical grouping of Drops into a single entity, and
currently has two concrete sub-classes — ApplicationDrop and DataProductDrop. The
ApplicationDrop container allows to group together everything required to make an actual
application stand-alone into a single Drop. This is equivalent to the way applications are
bundled in Mac OSX [59] or inside a Docker container [46]. The DataProductDrop con-
tainer allows to bundle Drops together, which belong to a specific SKA data product. In
general such a DataProductDrop will consist of thousands of individual Drops, including

19

Figure 9: The Drop object diagram in UML notation. This diagram shows the abstract Drop object as well
as some of the existing concrete objects.

Data Drops and potentially ApplicationDrops, depending on the definition of what the ac-
tual data product entails. For the system this design allows to manage and handle data
products as single entities.

The Drop object wrapper associates methods and provenance, as well as life-cycle and
access control data with the payload, thus making data virtually active. In particular it
means that a Data Drop can react and raise events, which then drive the actual execution
of the Physical Graph in DALiuGE. While a Drop’s payload is stateless (write once and
read multiple times), Drops themselves are stateful, which not only allows us to manage
Drops through persistent check-pointing, versioning and recovery after restart, but also
enables data sharing amongst multiple processing pipelines in situations like re-processing
or commensal observations. Each Drop exposes its payload location via a URL, has an
unique identifier, and is instantiated, monitored and destroyed by a Drop Manager, which
subscribes to the events fired by the Drops as they transition through their different states.

Figure 10 shows how Application Drops and Data Drops are connected to each other
with the former being either consumers or producers of the latter (or inputs and outputs
from the opposite point of view, respectively). DALiuGE distinguishes between normal
inputs/consumers and their streaming counterparts. A normal consumer application works
in a batch-like fashion, running only after all its inputs are marked as completed, which in
turn occurs only when their producer applications have finished. Streaming consumers work

20

Figure 10: Data drops and application drops are conceptually related and connected to form an event
flow/graph. Note that there is a n..m relationship between Data Drops and Application Drops, allowing for
scattering, gathering and re-ordering applications.

instead by continuously consuming their input data, which is continuously produced in turn
by a producer application.

4.1. Drop Channels

During their execution, Drops need two different channels of communication. The first
is to fire events to interested parties, which is a crucial mechanism for the graph execution
as explained in §3.6. The second is to be able to interact with other Drops and query
information about their properties, such as their dataURL, uid or other properties. In both
cases, Drops residing in the same node (and therefore in the same process as the Node
Manager) use direct object invocation to achieve communication. If two Drops reside in two
different nodes we use a publish/subscribe mechanism to fire events between nodes, and a
Remote Procedure Call interface to allow Drops to communicate with each other. Note that
these channels are merely communication channels, they do not carry the data payload.
The DALiuGE design very cleanly separates communication from bulk data operations,
which allows us to change the underlying mechanisms independently, but it also allows to
bind those two very different traffic types to dedicated networks, if the underlying platform
provides that distinction like for instance the former Fornax supercomputer at the University
of Western Australia [60].

4.2. Drop I/O

Currently two options are available for Application Drops to perform I/O operations on
Data Drop payloads:

1. DALiuGE Data Drops expose their data payload via a simple I/O abstraction layer.
This is designed based on the basic open, read, write and close POSIX calls, which
follow a byte stream data model. A Pipeline component developer can use these built-
in POSIX calls (“Framework-enabled I/O” dotted arrows in Figure 2). Moreover,
the abstraction can be extended by refining a set of reusable classes, which allow
I/O framework developers to realise more sophisticated I/O methods or optimisations
(e.g. RDMA-based data transfer). In either case, the data is passing through the
Drop instance, and the I/O framework will take care of remote I/O access across
node boundaries. Neither the pipeline component developers and even less the logical
graph developers will be exposed to those details. In particular this enables a fully

21

transparent replacement of both storage methods and as well as storage formats in
order to achieve a better throughput.

2. The pipeline component developer can instruct the algorithm implementation to di-
rectly perform I/O without going through DALiuGE (“Component-directed” solid
arrows in Figure 2). In this case, the Application Drop obtains the dataURL (e.g.
POSIX file paths, RDMA buffer pointers, etc.) of the Data Drop, and passes it onto
the algorithm implementation as a parameter. It is the responsibility of the pipeline
component developer to ensure that I/O is occurring in the correct location.

4.3. Drop Lifecycle

Drops follow a basic lifecycle consisting of several states as shown in Figure 11. A
Drop (Data or Application) starts in the INITIALIZED state, indicating its payload is not
fully present. For Data Drop, this means its enclosing data content is not available. For
example, the file owned by a FileDrop has not yet been created on the designated file
system. For Application Drop, this simply means it is not executable yet. For example,
it takes time to serialise and deserialise a “remote” function5 across compute nodes within
a network. From INITIALIZED a Drop becomes COMPLETED once its payload is fully
written, optionally passing through WRITING if the payload is being written through the
DALiuGE I/O framework. Once in the COMPLETED state the payload can be read /
executed as many times as needed. Eventually Drops transition to an EXPIRED state
based on a lifetime defined at creation time, after which they deny any further reads. After
expiration the data is deleted and the Drop moves to the final DELETED state. If any I/O
error occurs the Drop moves to the ERROR state.

Figure 11: A Drop’s lifecycle consists of several states applicable to both Data Drops and Application Drops.

5. Case Study I — CHILES on AWS

The Cosmos HI Large Extragalactic Survey (CHILES) [61] is running at the Karl G.
Jansky Very Large Array (VLA), a 27 antenna array. The new, upgraded front-end (wide-
band L-band receivers) and back-end (the WIDAR correlator) [62] provide instantaneous

5Equivalent to copying a JAR file wrapping Hadoop/Spark tasks to remote JVMs/Executors

22

coverage for spectral line observing between ∼940 and ∼1430-MHz on the sky (15 spectral
windows of 32MHz, each giving a total of 480MHz in each session). The array configuration
for CHILES is VLA-B, which has 11 km baselines and a typical beam size of ∼5x7 arcsec at
1.4 GHz, assuming natural weighting. The observations are dithered in frequency to smooth
out the edges of the spectral windows. The antennas (being 25m in diameter) see about 0.5
degrees (∼2000 arcsec) across the sky at the pointing centre. The project forms images with
2048 pixels of 1 arcsecond in size during this development phase. This data is in 15.625kHz
channels, contains 351 baselines, a little less than 31,000 channels per polarisation product
to be processed, and a full field of view of 2048x2048 pixels in the image plane.

In our previous work on CHILES data reduction [20], we had to hard code scripts for
three different computing environments. Therefore, we decided to use DALiuGE to drive
the execution of the “new” pipeline, which included 5 pipeline components:

1. Splitting the measurement set for an individual day into measurement sets containing
4Mhz chunks. The current implementation has 42 days worth of data and this will
grow with the release of the next semester’s data.

2. Subtracting the local sky model and moving the corrected fluxes into the “Corrected”
column of the measurement set on each of the 4 MHz chunks across all days.

3. Cleaning by taking all the days measurement sets for a 4MHz band and apply clean
to them all to produce a single cleaned file for that 4MHz band.

4. Converting each 4MHz measurement set to JPEG2000.
5. Concatenating the final cleaned 4Mhz files into a single measurement set.

5.1. Setup

Setting up AWS for this exercise consisted of three simple steps. Step 1 chooses the cor-
rect AWS EC2 instance to match the CPU, memory, disk and I/O bandwidth requirements
of the task. Step 2 runs a Python script to start the required number of DALiuGE Drop
Manager servers, ensures that disks are initialised, and the correct software is installed; and
starts a data island manager to orchestrate the deployment of the physical graph to the
various Drop Managers. Step 3 runs a Python script that calculates what is required to be
done and submits the physical graph to the data island manager.

As mentioned in §3.7 the installation of DALiuGE on AWS was very straightforward. To
speed up the start up times of the EC2 instances we created an Amazon Machine Image
(AMI) with a recent version of DALiuGE pre-installed and a python virtual environment
pre-created ready to be used. At instance-creation time we pulled the latest version of
DALiuGE from GitHub and installed it into the pre-created virtual environment to make
sure we were working with the latest version.

The installation of the processing components was done primarily using Docker. The
CHILES data is processed via a number of CasaPy [63] tasks and SkuareView [64]. We
wrapped the CasaPy and SkuareView code inside Docker images and uploaded them to
DockerHub. By doing this we did not need to compile or install any additional software
other than the Docker daemon within our EC2 instances. DALiuGE has built-in Docker
support, and therefore very little effort was needed to integrate the processing components
into the pipeline graph.

23

When an Application Drop is triggered to “run” it first executes a Python script using
boto3 [65] to set up a cluster of EC2 instances. As the EC2 instances start they launch
the corresponding Drop Managers. In the mean time the corresponding Physical Graph is
calculated, and once the Drop Managers are up and ready the Physical Graph is deployed
onto DALiuGE and executed. The Physical Graph includes a special Application Drop that
automatically shuts down each of the EC2 instances, making sure we do not get charged
for servers that are effectively doing nothing. For cost reduction, we request Amazon EC2
Spot Instances (a bid-driven process that makes instances available at discount prices of
40-80% when compared to the on-demand price) rather than directly launch on-demand
ones. The Python script always looks for the cheapest spot price in the regions specified for
the instance type required depending on the load characteristics of the pipeline.

The configuration of each EC2 instance is controlled at creation time by submitting a
YAML file to configure the packages to be loaded, and the AWS and Docker files to be
created; and a Bash file to configure the disks, pull the latest version of docker containers
from DockerHub, pull the latest code for DALiuGE and the CHILES pipeline from Github,
and start the DALiuGE Drop Manager. We used three AWS storage options during different
stages of the pipeline — Elastic Block Store (EBS), Ephemeral Storage, and Simple Storage
Service (S3).

5.2. Results and Costs

The initial measurement sets for semester 1 of the CHILES project amounts to approx-
imately 15TB of data6. Splitting the original measurement sets into 4MHz chunks creates
120 sub directories each contain 42 measurement sets which requires 9.1TB. The model sub-
traction requires 9.1TB. The clean step creates 120 4GB files for a total of 480GB of data.
The final concatenation produces a single file of 480GB.

The splitting process requires either an i2.2xlarge or an i2.4xlarge EC2 instance de-
pending on the size of the measurement set on a particular day. If the measurement set
is greater than 500GB we required the greater power (and more expensive) i2.4xlarge in-
stance. The model subtraction requires an i2.2xlarge EC2 instance. It takes approxi-
mately 18 hours to perform the 5,040 model subtractions if given 20 nodes. The spot price
for an i2.2xlarge is usually of the order of US$0.20 per hour which gives an indicative cost of
US$72. The clean process requires an i2.4xlarge EC2 instance because of the increased load
on the CPU and memory. it takes approximately 20 hours to perform the 120 cleans if given
20 nodes. The spot price for an i2.4xlarge is usually of the order of US$0.35 per hour which
gives an indicative cost of US$140. The conversion to the JPEG2000 images is performed
using a single i2.2xlarge instance and only takes a few hours. The final concatenation has
only been performed once as the resultant image is too large to be downloaded quickly and
for systems to process. It took over 48 hours using a i2.4xlarge instance.

6Data transfer from non-AWS sources into AWS EC2 instances is free of charge

24

Figure 12: The Logical Graph of the MUSER pipeline

6. Case Study II — MUSER

The Mingantu Ultrawide Spectral Radioheliograph (MUSER) [66] is a solar dedicated
synthetic-aperture radio interferometer that is capable of observing radio bursts and produc-
ing high-quality radio images at frequencies from 400MHz to 15 GHz with high temporal,
spatial, and spectral resolution. It consists of 100 radio antennas spirally distributed in
Ming’antu, Inner Mongolia, China. The RF signal of MUSER in 0.4–15 GHz is divided into
40 antennas of 4.5 m at 0.4–2 GHz (subarray MUSER-I), and 60 antennas of 2 m at 2–15
GHz (subarray MUSER-II) bands.

To design and develop the data processing pipeline of the MUSER, a novel distributed-
computing infrastructure, OpenCluster [67], was previously implemented in Python. To
evaluate the usability and performance of DALiuGE, we have “migrated” all pipeline com-
ponents under the OpenCluster to Drops. We created 12 pipeline components such as raw
data acquisition, frame data distribution, dirty image processing, CLEAN, and so on as
shown in Figure 12.

Based on the original design of the digital correlator, the output data are encapsulated
into a data frame that has 16 frequency channels. We effectively distributed the frame
data into different processes by using the DALiuGE Scatter construct. Eight servers with
a total of 64 CPU cores were deployed to run the pipeline using the DALiuGE framework.
Although all communications are based on the 10G Ethernet network, we carefully con-
sidered the design of Data Drops to ensure the pipeline will not be bounded by the I/O

25

sub-system, which is largely determined by Data Drops. In particular, we used DALiuGE
built-in InMemoryDataDROPs to store visibility data and ephemeris data because data of these
types needs high I/O bandwidth to support continuous data processing. The FileDROP was
used in less I/O intensive situations such as the data archive.

In our preliminary experiment and test, we obtained satisfactory science results and
the data processing performance is comparable to the OpenCluster-based pipeline. More
importantly, we found the new pipeline based on DALiuGE can be easily developed by re-
using existing, mature pipeline software modules. This capability of “enabling composition
of existing processing units” is one of the main factors to drive the SDP architecture [10].

7. Conclusion and Future Work

In this paper, we provided the technical overview of DALiuGE, an execution framework
developed to meet the challenges imposed by the astronomical data deluge in general [68,
69, 70], and by the SDP element of the SKA in particular. At its core, DALiuGE is a flexible
yet scalable graph execution engine that can be used in a wide variety of platforms including
both supercomputers and cloud environments.

DALiuGE represents large-scale, distributed processing pipelines using graphical models.
Such a graph representation allows us to deterministically exploit as many parallelism op-
portunities as possible, which leads to a completely decentralised, scalable execution engine.
Moreover, graph modelling enables us to tap into techniques and algorithms well devel-
oped in Graph theory and Combinatorics. This helped us to solve constrained optimisation
problems such as calculating optimal execution plans from logical pipeline definitions given
resource capabilities and availability. The benefits of Separation of Concerns is harvested
through the use of graph models in DALiuGE.

Our performance evaluation showed that DALiuGE introduces very little overhead to
the pipeline execution latency, scaling up graph deployment smoothly from a single node to
thousands7 of compute nodes without encountering any major bottlenecks. Its implementa-
tion maturity was further demonstrated by two real-world case studies, in which DALiuGE
has been used for driving the data reduction pipeline in production. DALiuGE is still a
work in progress. For future work, we will focus mainly on four areas.

Logical Graph Template development

The current prototype of the Logical Graph Template editor is missing a number of
crucial features and shows general usability issues. Since this editor is the main visible
part of the DALiuGE system it needs quite a bit more attention in the future. There are
several advanced open and closed source options, which we need to evaluate in much more
detail. One is the currently used JavaScript library GoJS. This library has quite a number
of additional features, which we have not fully exploited, yet. Other options include the
Google Blockly library [71], the excellent stand-alone application Quartz Composer from
Apple [72] and the IoT open source Javascript editor Node-RED [73].

7The largest DALiuGE deployment thus far consisted of 1300 Magnus compute nodes

26

Graph handling

Graph partitioning is an on-going research area for DALiuGE, and we plan to remove
the uniform resource assumption and integrate probabilistic mapping algorithms [74] to
deal with heterogeneous resources, particularly the difference in network communication
cost between pairs of compute nodes. Currently the initial physical graph submitted to
the Drop manager is fully loaded into memory before any further processing such as split-
ting, redistributing, etc. To completely remove the potential bottleneck imposed by the
memory capacity for deployment of large graphs with hundreds of millions of Drops, we are
investigating incremental graph unrolling, loading, splitting, redistribution and the use of a
declarative representation to express Physical Graphs for such incremental graph processing.

Failure handling

We envisage that an on-going work area for large-scale, distributed systems like DAL-
iuGE, is failure handling. In particular we are interested in handling node-level failures
by dynamically migrating Drops from failed nodes to healthy ones (if deemed necessary
and feasible by the LMC and the Resource Analyser) in order to resume their execution
there. To achieve this, and to retain their state information, we are experimenting with a
master-to-master replication library called CEDA [75] developed by ThinkBottomUp. It uses
distributed Operational Transform algorithms [76] to achieve eventual state consistency be-
tween replicated Drops, which allows DALiuGE to re-construct them elsewhere in response
to failures.

Advanced I/O handling

Currently DALiuGE provides a simple POSIX-compliant I/O abstraction layer with
built-in support for a few storage media. We are investigating the integration with alter-
native I/O frameworks to handle intensive I/O activities and large volumes of data com-
munication between Drops in an intelligent and locality-aware fashion. shore [77] is such
a framework that allows user applications to access various storage hierarchies and back-
ends through a unified application interface. In particular, DALiuGE can utilise shore’s
database to physically locate the data payload associated with a given data Drop, facilitating
inter-node data streaming and transport in cases where in-situ processing is not applicable.

8. Acknowledgement

The authors thank two anonymous reviewers for their valuable comment in improving
this paper. The authors thank Ger van Diepen from ASTRON for suggestions on developing
the logical graph template for the LOFAR imaging pipeline.

The International Centre for Radio Astronomy Research (ICRAR) is a joint venture be-
tween Curtin University and The University of Western Australia with support and funding
from the State Government of Western Australia. This work was supported by resources
provided by the Pawsey Supercomputing Centre with funding from the Australian Govern-
ment and the Government of Western Australia. The CHILES data reduction work was

27

supported by grants from Amazon Web Services and the AstroCompute project. The au-
thors acknowledge the help from the National Supercomputer Center in Guangzhou. This
work was supported by the National Natural Science Foundation of China (NSFC) No.
61221491,U1231205,U1631129 and the Open Fund from HPCL No.201401-01.

9. References

[1] The Square Kilometre Array - Exploring the Universe with the world’s largest radio telescope, URL
https://www.skatelescope.org/, 2016.

[2] R. Braun, T. Bourke, J. Green, E. Keane, J. Wagg, Advancing Astrophysics with the Square Kilometre
Array, Advancing Astrophysics with the Square Kilometre Array (AASKA14) 1 (2015) 174.

[3] G. H. Tan, T. J. Cornwell, P. E. Dewdney, M. Waterson, The square kilometre array baseline design
V2.0, in: 2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC), 1–1, doi:\let\@tempa\
bibinfo@X@doi10.1109/URSI-AT-RASC.2015.7303195, 2015.

[4] S. Ratcliffe, F. Graser, B. Carlson, O. B, SKA1 LOW SDP - CSP Interface Control Document, SKA
Project Document number 100-000000-002 1 (1).

[5] S. Ratcliffe, F. Graser, B. Carlson, O. B, SKA1 MID SDP - CSP Interface Control Document, SKA
Project Document number 300-000000-002 1 (1).

[6] Science Data Processor, URL https://www.skatelescope.org/sdp/, 2017.
[7] P. C. Broekema, R. V. van Nieuwpoort, H. E. Bal, The Square Kilometre Array Science Data Processor.

Preliminary Compute Platform Design, Journal of Instrumentation 10 (07) (2015) C07004.
[8] I. Raicu, I. T. Foster, Y. Zhao, Many-task computing for grids and supercomputers, in: 2008 Workshop

on Many-Task Computing on Grids and Supercomputers, ISSN 2151-1683, 1–11, doi:\let\@tempa\
bibinfo@X@doi10.1109/MTAGS.2008.4777912, 2008.

[9] I. Raicu, Many-task computing: bridging the gap between high-throughput computing and high-
performance computing, Ph.D. thesis, The University of Chicago, 2009.

[10] P. Dewdney, W. Turner, R. Braun, J. Santander-Vela, M. Waterson, G.-H. Tan, SKA1
System BaselineV2 Description, Document number SKA-TEL-SKO-0000308 1 (1), URL
https://www.skatelescope.org/wp-content/uploads/2014/03/SKA-TEL-SKO-0000308_SKA1_

System_Baseline_v2_DescriptionRev01-part-1-signed.pdf.
[11] C. Wu, A. Wicenec, D. Pallot, A. Checcucci, Optimising NGAS for the MWA Archive, Experimental

Astronomy 36 (3) (2013) 679–694.
[12] S. Tingay, R. Goeke, J. D. Bowman, D. Emrich, S. Ord, D. A. Mitchell, M. F. Morales, T. Booler,

B. Crosse, R. Wayth, et al., The Murchison widefield array: The square kilometre array precursor at
low radio frequencies, Publications of the Astronomical Society of Australia 30 (2013) e007.

[13] C. Wu, R. Tobar, K. Vinsen, A. Wicenec, D. Pallot, B. Lao, R. Wang, A. Tao, M. Boulton, I. Cooper,
R. Dodson, M. Dolensky, Y. Mei, F. Wang, Performance evaluation of the Data Activated Liu Graph
Engine - DALiuGE, In preparation .

[14] Make the cloud easier to use, URL http://www.scientific-computing.com/news/news_story.php?

news_id=2559, 2014.
[15] J. Dinan, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, R. Thakur, An implementation and evalua-

tion of the MPI 3.0 one-sided communication interface, Concurrency and Computation: Practice and
Experience .

[16] A. Denis, F. Trahay, MPI Overlap: Benchmark and Analysis, in: 2016 45th International Conference
on Parallel Processing (ICPP), 258–267, doi:\let\@tempa\bibinfo@X@doi10.1109/ICPP.2016.37, 2016.

[17] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, I. T. Foster, Swift/t: Large-scale
application composition via distributed-memory dataflow processing, in: Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on, IEEE, 95–102, 2013.

[18] J. M. Wozniak, T. G. Armstrong, K. Maheshwari, E. L. Lusk, D. S. Katz, M. Wilde, I. T. Foster, Tur-
bine: A distributed-memory dataflow engine for high performance many-task applications, Fundamenta
Informaticae 128 (3) (2013) 337–366.

28

[19] A. S. Szalay, J. A. Blakeley, Gray’s laws: Database-centric Computing in Science, in: T. Hey, S. Tansley,
K. M. Tolle, et al. (Eds.), The fourth paradigm: data-intensive scientific discovery, Microsoft research
Redmond, WA, 5–12, 2009.

[20] R. Dodson, K. Vinsen, C. Wu, A. Popping, M. Meyer, A. Wicenec, P. Quinn, J. van Gorkom,
E. Momjian, Imaging SKA-Scale data in three different computing environments, Astronomy and Com-
puting 14 (2016) 8–22.

[21] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns, R. Ross, I. Raicu, FusionFS :
Toward Supporting Data-Intensive Scientific Applications on Extreme-Scale High-Performance Com-
puting Systems, in: IEEE International Conference on Big Data, ISBN 9781479956661, 61–70, 2014.

[22] E. Tejedor, M. Farreras, D. Grove, R. M. Badia, G. Almasi, J. Labarta, A high-productivity task-based
programming model for clusters, Concurrency and Computation: Practice and Experience 24 (18)
(2012) 2421–2448.

[23] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. Von Praun, V. Sarkar,
X10: an object-oriented approach to non-uniform cluster computing, in: Acm Sigplan Notices, vol. 40,
ACM, 519–538, 2005.

[24] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani, W. Chen, R. F.
da Silva, M. Livny, et al., Pegasus, a workflow management system for science automation, Future
Generation Computer Systems 46 (2015) 17–35.

[25] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the Condor experience,
Concurrency and computation: practice and experience 17 (2-4) (2005) 323–356.

[26] C. A. Mattmann, D. J. Crichton, N. Medvidovic, S. Hughes, A software architecture-based framework
for highly distributed and data intensive scientific applications, in: Proceedings of the 28th international
conference on Software engineering, ACM, 721–730, 2006.

[27] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Communications of
the ACM 51 (1) (2008) 107–113.

[28] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-parallel programs from
sequential building blocks, in: ACM SIGOPS Operating Systems Review, vol. 41, ACM, 59–72, 2007.

[29] Apache Spark - Lightning-fast cluster computing., URL http://spark.apache.org/, 2016.
[30] T. White, Hadoop: The definitive guide, ” O’Reilly Media, Inc.”, 2012.
[31] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, R. Fonseca, Jockey: guaranteed job latency in data

parallel clusters, in: Proceedings of the 7th ACM european conference on Computer Systems, ACM,
99–112, 2012.

[32] Y. Yu, P. K. Gunda, M. Isard, Distributed aggregation for data-parallel computing: interfaces and im-
plementations, in: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,
ACM, 247–260, 2009.

[33] J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin, J. Y. Li, W. Lin, J. Zhou, L. Zhou, Optimizing
data shuffling in data-parallel computation by understanding user-defined functions, in: Presented as
part of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12),
295–308, 2012.

[34] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, J. Zhou, Reoptimizing data parallel computing,
in: Presented as part of the 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12), 281–294, 2012.

[35] J. E. Rodrigues, J. E. Rodriguez Bezos, A Graph Model for Parallel Computations, Tech. Rep., Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 1969.

[36] J. B. Dennis, First version of a data flow procedure language, in: B. Robinet (Ed.), Programming
Symposium: Proceedings, Colloque sur la Programmation Paris, April 9–11, 1974, Springer Berlin
Heidelberg, Berlin, Heidelberg, ISBN 978-3-540-37819-8, 362–376, doi:\let\@tempa\bibinfo@X@doi10.
1007/3-540-06859-7 145, URL http://dx.doi.org/10.1007/3-540-06859-7_145, 1974.

[37] J. B. Dennis, D. P. Misunas, A preliminary architecture for a basic data-flow processor, in: In Proceed-
ings of the 2nd Annual Symposium On Computer Architecture, 126–132, 1975.

[38] R. S. Nikhil, et al., Executing a program on the MIT tagged-token dataflow architecture, Computers,

29

IEEE Transactions on 39 (3) (1990) 300–318.
[39] spotify/luigi: Luigi is a Python module that helps you build complex pipelines of batch jobs. It handles

dependency resolution, workflow management, visualization etc. It also comes with Hadoop support
built in., URL https://github.com/spotify/luigi, 2016.

[40] Building Data Pipelines using Luigi, with Erik Bernhardsson of Spotify [Meetup
Video, Slides, Transcript], URL http://blog.mortardata.com/post/107531302816/

building-data-pipelines-using-luigi-with-erik, 2015.
[41] Luigi Execution Model, URL http://luigi.readthedocs.io/en/latest/execution_model.html,

2016.
[42] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, et al., Tensorflow: Large-scale machine learning on heterogeneous distributed systems, arXiv
preprint arXiv:1603.04467 .

[43] J. Högbom, Aperture synthesis with a non-regular distribution of interferometer baselines, Astronomy
and Astrophysics Supplement Series 15 (1974) 417.

[44] B. Clark, An efficient implementation of the algorithm ’CLEAN’, Astronomy and Astrophysics 89
(1980) 377.

[45] L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Proceedings of COMP-
STAT’2010, Springer, 177–186, 2010.

[46] Docker, Docker - Build, Ship Run, URL https://www.docker.com/, 2016.
[47] G. Heald, J. McKean, R. Pizzo, G. van Diepen, J. E. van Zwieten, R. J. van Weeren, D. Rafferty,

S. van der Tol, L. Birzan, A. Shulevski, et al., Progress with the LOFAR imaging pipeline, arXiv
preprint arXiv:1008.4693 .

[48] M. Van Haarlem, M. Wise, A. Gunst, G. Heald, J. McKean, J. Hessels, A. De Bruyn, R. Nijboer,
J. Swinbank, R. Fallows, et al., LOFAR: The low-frequency array, Astronomy & Astrophysics 556
(2013) A2.

[49] A. Lutomirski, M. Tegmark, N. J. Sanchez, L. C. Stein, W. L. Urry, M. Zaldarriaga, Solving the corner-
turning problem for large interferometers, Monthly Notices of the Royal Astronomical Society 410 (3)
(2011) 2075–2080.

[50] G. De Michell, R. K. Gupta, Hardware/software co-design, Proceedings of the IEEE 85 (3) (1997)
349–365, ISSN 0018-9219, doi:\let\@tempa\bibinfo@X@doi10.1109/5.558708.

[51] E. Aarts, J. Korst, W. Michiels, Simulated annealing, in: Search methodologies, Springer, 265–285,
2014.

[52] A. R. Jordehi, J. Jasni, Particle swarm optimisation for discrete optimisation problems: a review,
Artificial Intelligence Review 43 (2) (2015) 243–258.

[53] J.-C. Liou, M. A. Palis, A comparison of general approaches to multiprocessor scheduling, in: Parallel
Processing Symposium, 1997. Proceedings., 11th International, IEEE, 152–156, 1997.

[54] G. Karypis, METIS* A software package for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matrices (Version 5.1.0), University of Minnesota, De-
partment of Computer Science and Engineering, Army HPC Research Center, Minneapolis, MN URL
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf.

[55] G. Karypis, V. Kumar, Multilevelk-way partitioning scheme for irregular graphs, Journal of Parallel
and Distributed computing 48 (1) (1998) 96–129.

[56] Distributed Messaging - ∅MQ, URL http://zeromq.org/, 2016.
[57] zerorpc - An easy to use, intuitive, and cross-language RPC, URL http://www.zerorpc.io/, 2016.
[58] A. Wicenec, D. Pallot, R. Tobar, C. Wu, Drop Computing: Data Driven Pipeline Processing for the

SKA, in: N. P. F. Lorente, K. Shortridge (Eds.), ADASS XXV (In Press), vol. TBD of ASP Conf. Ser.,
ASP, San Francisco, TBD, 2016.

[59] Apple, About Bundles, URL https://developer.apple.com/library/content/documentation/

CoreFoundation/Conceptual/CFBundles/AboutBundles/AboutBundles.html, 2015.
[60] Computerworld, iVEC acquires Fornax supercomputer, URL http://www.computerworld.com.au/

article/402308/ivec_acquires_fornax_supercomputer/, 2011.

30

[61] X. Fernandez, J. H. van Gorkom, E. Momjian, Chiles Team, The COSMOS HI Large Extragalac-
tic Survey (CHILES): Probing HI Across Cosmic Time, in: American Astronomical Society Meeting
Abstracts, vol. 225 of American Astronomical Society Meeting Abstracts, 427.03, 2015.

[62] E. Momjian, R. Perley, The Impact of the New Thermal Gap Receiver Assembly on the Sensitivity of the
EVLA at L-Band (1–2 GHz), URL http://library.nrao.edu/public/memos/evla/EVLAM_165.pdf,
2012.

[63] J. McMullin, B. Waters, D. Schiebel, W. Young, K. Golap, CASA architecture and applications, in:
Astronomical Data Analysis Software and Systems XVI, vol. 376, 127, 2007.

[64] V. Kitaeff, A. Cannon, A. Wicenec, D. Taubman, Astronomical imagery: Considerations for a con-
temporary approach with JPEG2000, Astronomy and Computing 12 (2015) 229 – 239, ISSN 2213-
1337, doi:\let\@tempa\bibinfo@X@doihttp://dx.doi.org/10.1016/j.ascom.2014.06.002, URL http://

www.sciencedirect.com/science/article/pii/S2213133714000274.
[65] AWS, Boto 3 Documentation, URL http://boto3.readthedocs.io/en/latest/, 2016.
[66] F. Wang, Y. Mei, W. Wang, F. Ji, Kaifan, Distributed Data-Processing Pipeline for Mingantu Ultrawide

Spectral Radioheliograph, Publications of the Astronomical Society of the Pacific 127 (950) (2015) 383–
396.

[67] OpenCluster – Python Distributed Computing API, URL https://github.com/astroitlab/

opencluster, 2016.
[68] E. D. Feigelson, G. J. Babu, Big data in astronomy, Significance 9 (4) (2012) 22–25.
[69] B. Berriman, E. Deelman, G. Juve, M. Rynge, J.-S. Vöckler, High-performance compute infrastructure

in astronomy: 2020 is only months away, in: Astronomical Data Analysis Software and Systems XXI.
ASP Conference Series. No.461., Astronomical Society of the Pacific, 91–94, 2012.

[70] M. J. Graham, S. G. Djorgovski, A. Mahabal, C. Donalek, A. Drake, G. Longo, Data challenges of time
domain astronomy, Distributed and Parallel Databases 30 (5-6) (2012) 371–384.

[71] Google, A library for building visual programming editors., URL https://developers.google.com/

blockly/, 2017.
[72] Apple, Introduction to Quartz Composer User Guide, URL https://developer.apple.com/library/

content/documentation/GraphicsImaging/Conceptual/QuartzComposerUserGuide/qc_intro/qc_

intro.html, 2017.
[73] J. Foundation, A visual tool for wiring the Internet of Things, URL https://nodered.org, 2017.
[74] S. H. Bokhari, Assignment problems in parallel and distributed computing, vol. 32, Springer Science &

Business Media, 2012.
[75] Introducing CEDA, URL http://www.thinkbottomup.com.au/site/CEDA, 2016.
[76] C. A. Ellis, S. J. Gibbs, Concurrency Control in Groupware Systems, in: Proceedings of the 1989

ACM SIGMOD International Conference on Management of Data, SIGMOD ’89, ACM, New York,
NY, USA, ISBN 0-89791-317-5, 399–407, doi:\let\@tempa\bibinfo@X@doi10.1145/67544.66963, URL
http://doi.acm.org/10.1145/67544.66963, 1989.

[77] R. Wang, A Data Optimized I/O Middleware for Accessing Heterogeneous Storage Hierarchies in High
Performance Computing and Cloud Environments, Ph.D. thesis, The University of Western Australia,
2016.

31

