
Calibration of LOFAR data on the cloud

Jose Sabatera,b, Susana Sánchez Expósitob, Philip Besta, Julián Garridob, Lourdes Verdes-Montenegrob, Daniele Lezzic

aInstitute for Astronomy (IfA), University of Edinburgh, Royal Observatory, Blackford Hill, EH9 3HJ Edinburgh, U.K.
bInstituto de Astrofı́sica de Andalucı́a, CSIC, Apdo. 3004, 18080, Granada, Spain

cBarcelona Supercomputing Center (BSC), Carrer de Jordi Girona, 29-31, 08034 Barcelona, Spain

Abstract

New scientific instruments are starting to generate an unprecedented amount of data. The Low Frequency Array (LOFAR), one of
the Square Kilometre Array (SKA) pathfinders, is already producing data on a petabyte scale. The calibration of these data presents
a huge challenge for final users: a) extensive storage and computing resources are required; b) the installation and maintenance of
the software required for the processing is not trivial; and c) the requirements of calibration pipelines, which are experimental and
under development, are quickly evolving. After encountering some limitations in classical infrastructures like dedicated clusters,
we investigated the viability of cloud infrastructures as a solution.

We found that the installation and operation of LOFAR data calibration pipelines is not only possible, but can also be efficient
in cloud infrastructures. The main advantages were: (1) the ease of software installation and maintenance, and the availability of
standard APIs and tools, widely used in the industry; this reduces the requirement for significant manual intervention, which can
have a highly negative impact in some infrastructures; (2) the flexibility to adapt the infrastructure to the needs of the problem,
especially as those demands change over time; (3) the on-demand consumption of (shared) resources. We found that a critical
factor (also in other infrastructures) is the availability of scratch storage areas of an appropriate size. We found no significant
impediments associated with the speed of data transfer, the use of virtualization, the use of external block storage, or the memory
available (provided a minimum threshold is reached).

Finally, we considered the cost-effectiveness of a commercial cloud like Amazon Web Services. While a cloud solution is
more expensive than the operation of a large, fully-utilised cluster completely dedicated to LOFAR data reduction, we found that
its costs are competitive if the number of datasets to be analysed is not high, or if the costs of maintaining a system capable of
calibrating LOFAR data become high. Coupled with the advantages discussed above, this suggests that a cloud infrastructure may
be favourable for many users.

1. Introduction

In the 21st century, scientific research is being shaped by
the exponential increase of the amount of data generated by new
scientific instruments. Capture, curation, analysis, and sharing
of these huge data volumes is a challenge that has triggered
a new scientific paradigm: data-intensive science (‘The Fourth
Paradigm’; Tony Hey and Tolle, 2009). The astronomy commu-
nity is preparing for the forthcoming Square Kilometre Array
(SKA; Ekers, 2012), an instrument that once built, will be the
largest scientific infrastructure on Earth and will achieve data
rates on an exabyte scale. Currently some SKA pathfinders like
the Low Frequency Array (LOFAR; van Haarlem et al., 2013)
are already producing data on a petabyte scale. These scientific
data together with those from the so-called ‘Internet of Things’,
define the Big Data challenge.

To face this challenge, both powerful computing and high-
capacity storage resources are required, as well as procedures
capable of extracting relevant information from the data and

sharing it while ensuring reproducibility. Algorithms like Map-
Reduce (e.g. Lämmel, 2008) have been key to process the un-
structured data distributed on the Internet. However, they are
not suitable for some scientific use cases, so scientists need to
build procedures that are able to both process complex data
and efficiently exploit the computing resources. A prime ex-
ample of this is computational genomics, where algorithms like
BLAST (Altschul et al., 1990) have taken advantage of super-
computing resources to empower genome sequence searches.
The scientific community also investigates new computing in-
frastructures. The Large Hadron Collider (LHC) project de-
signed a Grid tiered model, the Worldwide LHC Computing
Grid (WLCG), that led to the creation of an European Grid In-
frastructure open to other scientific communities. On the other
hand, cloud computing is arising as a more flexible model than
Grid computing or supercomputing, offering a virtual environ-
ment that is able to adapt to different use cases.

The LOFAR telescope is characterised by a new design that
utilises software solutions to implement functionalities, like data
correlation or source targeting, that have traditionally been per-
formed by hardware cards or mechanical devices. The pipelines
for reducing LOFAR data are high-computational-demand soft-
ware, and indeed LOFAR capabilities are limited by the avail-

Email addresses: jsm@roe.ac.uk (Jose Sabater), sse@iaa.es (Susana 
Sánchez Expósito), pnb@roe.ac.uk (Philip Best), jgarrido@iaa.es
(Julián Garrido), lourdes@iaa.es (Lourdes Verdes-Montenegro), 
daniele.lezzi@bsc.es (Daniele Lezzi)

May 29, 2017
© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/



able computing power instead of by the available observing
time as in other existing telescopes. Therefore, in order to speed
up the data processing, it is necessary to research both algo-
rithms and computing resources.

We stress that the study that we present here was motivated
by our real needs as final users (the users that receive the data
from the observatory and attempt to exploit it scientifically) to
calibrate LOFAR data (see also Dodson et al. (2016) for their
similarly-motivated investigation into options for reducing and
analysing spectral line data from the Very Large Array radio
telescope). After the LOFAR data were successfully observed
and delivered to us, it was clear that typical calibration strate-
gies would not suffice for several reasons: a) the size of the
data, with at least a couple of TB per observation, was large
enough to require dedicated storage; b) the installation and up-
date of the required specialized software was not trivial; c) the
calibration process was experimental and the development of
the new calibration strategies required frequent changes to the
pipeline; and, d) the computational requirements of the pipeline
were high enough to demand some type of parallelization. The
solution widely adopted in the LOFAR community for the anal-
ysis of these data is the use of dedicated local clusters. After
exploring the use of these, and also GRID infrastructures, we
investigated whether a cloud infrastructure would be a suitable
candidate technology for these analyses (Berriman et al., 2012).
We tested different cloud infrastructures, and found that a cloud
infrastructure that fulfils a given set of requirements may offer
a solution for the calibration of new radio-interferometry data.

This paper presents the results of the tests that we performed
on different computing resources, in order to evaluate which of
them best fulfils the requirements from a new strategy for cali-
brating LOFAR data. In Section 2 we describe the LOFAR tele-
scope and the challenge of calibrating its data. In Section 3 we
outline the infrastructures tested, and we present the results of
the preliminary tests performed in dedicated clusters and Grid
infrastructures in Section 4. The description of the tests per-
formed for the cloud infrastructures, and the results obtained,
are presented in Section 5, including a comparison of costs rel-
ative to dedicated clusters. We review the suitability of the
infrastructures tested in Section 6 and, finally, we present the
summary, conclusions and future work in Section 7.

2. The Low Frequency Array, LOFAR

The Low Frequency Array or LOFAR (van Haarlem et al.,
2013, http://www.lofar.org/) is a new generation radio interfer-
ometer that covers low frequencies from 10 to 240 MHz. It
is an interferometric array of 50 ‘stations’ of relatively simple,
low-cost dipole antennas, in which each antenna station has no
moving parts, but instead operates as a phased array driven in
software by powerful station-level computing. The core of the
array is located in the north of the Netherlands and there are sev-
eral remote stations across Europe. Due to its new design and
technologies, it is considered to be one of the pathfinders of the
Square Kilometre Array (Ekers, 2012). The output data from
each LOFAR station is streamed (at up to 3 Gb/sec per station)

to a Central Processing facility based in Groningen, which han-
dles real-time data operations such as the correlation of the data
streams. The data output from the correlator is then streamed
to an offline Central Processing facility, on which application-
dependent offline processes are run on the data. For standard
survey imaging these may involve flagging of corrupted data
(e.g. due to radio-frequency interference) followed by some av-
eraging of the data in time and frequency to reduce data vol-
ume. There is local storage on the central processor to retain
datasets for a short period of time whilst this processing occurs.
The data are then transported to the Long Term Archive (LTA),
where they are made available to users. The LTA is based on a
Grid infrastructure (Holties et al., 2012).

Many of the SKA pathfinders are conducting large sky sur-
veys (Norris et al., 2013) and LOFAR has already presented
the first results from a shallow Northern-sky survey, the Multi-
frequency Snapshot Sky Survey (MSSS; Heald et al., 2015),
a first step towards the production of deeper imaging surveys.
These deeper surveys are being performed by the LOFAR Sur-
veys Key Science Projects, which aims to explore the low fre-
quency radio sky with an unprecedented depth (Röttgering et al.,
2011). A component of this is the LOFAR Two-metre Sky Sur-
vey (Shimwell et al., 2016b) which is a wide area survey of the
northern sky, reaching a typical r.m.s. within each 8-hr observa-
tion of ∼ 100 µJy/beam at 150 MHz, substantially deeper than
any previous large-area radio survey (van Weeren et al., 2016a;
Williams et al., 2016; Shimwell et al., 2016a; Hardcastle et al.,
2016). Another component of the survey is to observe some se-
lected fields, in which the highest-quality multi-frequency data
exist, in two deeper tiers of observations. The work presented
here was motivated by the need of calibration and analysis of
one of the deepest fields: the ELAIS-N1 field (Right Ascension
16:08:44 and Declination +56:26:30). With about 200 hours of
observations so far and more than 60 TB of pre-processed data
in the LTA, the calibration and analysis of these data presents a
formidable challenge.

2.1. Description of the data
In this paper, we focus on the generation of deep wide-

field radio images of the sky at low frequencies, ignoring all
of LOFAR’s other observation modes and techniques (e.g. Bre-
itling et al., 2015). For our tests, we use an ELAIS-N1 field
dataset, observed using LOFAR’s High-Band Antennas (HBA;
these cover the 110 to 240 MHz frequency range). This obser-
vation is broadly typical of any LOFAR Surveys dataset: our
results are thus generic for the calibration and imaging of all
LOFAR HBA interferometric data.

Typical LOFAR imaging observation runs consist of: a) a
5-10 minute observation of a primary flux calibrator; b) several
hours (5 to 8 hours, depending on the position of the target field
and the data) on the main target, and either some flanking fields
or a secondary target, using the multi-beam capacities of LO-
FAR; c) a final 5-10 minute run on a primary flux calibrator.
The resulting LOFAR UV data is stored in CASA Measure-
ments Set format (Kemball and Wieringa, 2000; van Diepen,
2015). The field-of-view of the LOFAR HBA is of order 6 de-
grees (full width at half maximum; dependent on the observing

2



frequency), with a beam resolution of ∼ 5 arcseconds. The
frequency coverage for the ELAIS-N1 data ranges from 115
MHz to 175 MHz in 371 separate sub-bands. Each sub-band
was originally composed of 64 spectral channels, and the initial
scan-time was set to 1 second. During pre-processing, four of
the edge-most channels were removed (due to poorer sensitiv-
ity) and the remaining data were averaged down to 15 channels
per sub-band and a scan time of 2 seconds, reducing the size
of the dataset by a factor of 8. The typical size of a full pre-
processed observation is of the order of 3 to 4 TB.

The size of the datasets involved makes necessary a sepa-
ration of the data based on different parameters. The calibra-
tion process usually takes advantage of correlations between
the data to reduce the degrees of freedom of the problem and
thus the bias of the fitting process (while not over-fitting; see
van Weeren et al., 2016b). Hence, the parameters that are less
correlated are selected to split the data:

Time: The UV data are usually correlated in adjacent time
slots but there is little correlation in data taken far apart
in time. This is particularly the case when data are split
in different observing runs from different days. In this
case, the final data model (description of the sources of
the field) obtained in one observation can be used as an
input model for another observation. Although the LO-
FAR data used in our tests is split in long chunks of 5 to 8
hours of data, the use of shorter time chunks is currently
being tested.

Sky field: Different fields on the sky observed simultaneously
(using multi-beam capabilities) contain different sources,
unless they overlap. Usually their calibration solutions
are substantially different (especially at low frequencies)
and, in this sense, there is little advantage in processing
the fields simultaneously. Therefore, the data are gener-
ally split into different sky fields that are processed sepa-
rately.

Frequency: There are correlations between data at different
frequencies that are affected by the drift of the reference
clock signal of the observing stations (e.g. van Weeren
et al., 2016b) and the effect of the plasma in the iono-
sphere. However, the structure of the data makes it easy
to separate them in frequency ranges or sub-bands. The
user can then decide how many of these sub-bands are
required for a calibration in order to maximize the per-
formance of the fitting process while keeping the size of
the data manageable.

Fig. 1 shows a schema of the partition of data using the sky
field, time and frequency parameters.

2.2. Challenges posed by the data calibration

LOFAR is currently completely operational and generating
high quality data, whose correlation and pre-processing is per-
formed routinely by the observatory. However, the calibration
of the data by the final user still presents many challenges.

2.2.1. Specialized software
The calibration of the data requires dedicated LOFAR soft-

ware. CASA (McMullin et al., 2007) can be used for some
general tasks but some specialized tasks are only implemented
by the LOFAR software compilation. These are mainly tasks
that require the complex beam model of LOFAR, or that are
optimized for the use on LOFAR data. The installation of the
LOFAR software was especially difficult in old systems. It is
relevant to take into account that the local computing resources
available to the final user may be limited to these old systems.
Although the complexity of the installation process has vastly
improved due to the efforts of the LOFAR developers and pack-
agers, the final user is required to maintain the software up-to-
date, in order to avoid critical bugs that are corrected in new re-
leases. With several releases each year (e.g. 12 major releases
in 2015 and 2016 plus several individual bug fixes), it may not
be an easy task to keep the system up to date for a final user.

2.2.2. High requirements on computing and storage resources
A large amount of both storage and computing resources

are needed for the calibration of these data. The final data set
for a single observation run can amount up to several TB and a
simple calibration run could take several CPU-years. However,
the pipeline design allows the processing of different chunks of
data (see Sect. 2.1) as independent jobs, which individually do
not require a high amount of memory or processors. This sug-
gests that a High Throughput Computing (HTC) system would
fit better than a High Performance Computing (HPC) one. It is
therefore advantageous to use powerful distributed computing
infrastructures (DCIs) that may or may not be readily available
to the final user.

2.2.3. Varying hardware requirements
One of the scientific challenges that LOFAR needs to over-

come, and that will be even more demanding for SKA1 Aper-
ture Arrays, relates to the necessity for ‘direction-dependent
calibration’, which greatly increases the required computation.
This arises both from the varying beam that the LOFAR sta-
tions produce, and the effects of the ionosphere, which are es-
pecially strong at low frequencies (Intema et al., 2009). In this
latter regard, LOFAR poses one of the most difficult cases, with
both a wide field of view and very long baselines, meaning that
not only do different stations observe through a different patch
of ionosphere, but within the imaged field-of-view of each sta-
tion the ionospheric conditions are different towards different
sources. The experimental pipeline developed by van Weeren
et al. (2016b) aims to correct for these direction-dependent iono-
spheric effects. The pipeline has hardware requirements that
have changed as it is developed. For example, new releases
of the pipeline tend to require less memory and allow tasks to
be run in parallel. On the other hand, the increased efficiency
has permitted the processing of a higher volume of aggregated
data in a single computing node, and the overall requirements
are again increased. An alternative method of applying direc-
tion dependent calibration is also under investigation (Tasse et
al. in prep.), and this has yet another different set of hardware

3



SKY time

fr
e
q
u
e
n
cy

fr
e
q
u
e
n
cy

data chunk

Figure 1: Partition of data in data chunks for parallel processing. They can be separated in different sky fields, time blocks and frequency blocks.

needs. The key general point here is that during the develop-
ment process of new analysis techniques, although the global
efficiency increases, the hardware requirements can often vary
significantly. Flexibility is therefore a major advantage for the
final user.

3. Computational infrastructures investigated

In this section we describe three different kinds of infras-
tructures in which we have performed our tests.

3.1. Dedicated cluster
The most widely adopted solution for the calibration and

analysis of LOFAR data is the use of a dedicated cluster. We
installed the LOFAR software and tested the pipeline described
in Sect. 4 locally on the cluster at the Instituto de Astrofı́sica
de Andalucı́a - Consejo Superior de Investicaciones Cientı́ficas
(IAA-CSIC) and in the Stacpolly cluster at the Institute for As-
tronomy of the University of Edinburgh. We also tested the
pipeline in the LOFAR-UK Computing Facility in the Univer-
sity of Hertfordshire. They are typical institutional supported
clusters that use a PBS queue system to manage the jobs. The
IAA-CSIC cluster and the LOFAR-UK Computing Facility use
a shared file-system that is mounted in all the computer nodes
while Stacpolly stores the data in a dedicated node.

3.2. Grid infrastructure
A Grid infrastructure was also considered for our tests. A

computing Grid gathers the storage and computing resources
provided by different sites or nodes, that can be seen as clus-
ters connected through a Wide Area Network (WAN) running
a common middleware that allows them to work as a single in-
frastructure. The access and the usage of the Grid resources
are managed by means of Virtual Organisations (VOs). Users
are grouped in VOs, and Grid nodes, depending on their insti-
tutional policy, support one or more VOs. Grid infrastructures

provide a distributed parallel execution environment which is
ideal to process this kind of data.

3.3. Cloud infrastructure

Finally, we considered a cloud solution which can offer the
flexibility required by the target problem.

A cloud infrastructure provides shared computing, network-
ing, data storage, or other services, on-demand in a flexible way.
Most infrastructures offer the processing resources as comput-
ing instances (mainly virtual machines based on a configurable
template or “image”) that can be quickly provisioned or re-
leased. They can also offer object storage, in which the data
are viewed as objects in a hierarchy, or block storage, in which
data are treated as blocks of bytes like in classical disks and
file-systems.

The tests were performed on three different cloud systems:
a) an academic private multi-site cloud system, the European
Grid Infrastructure (EGI) Federated Cloud, that brings together
computing and storage resources from different national and in-
tergovernmental European providers; b) an academic private
one-site cloud managed by the Rutherford Appleton Labora-
tory (RAL), provided by the Science & Technology Facilities
Council (STFC) in the United Kingdom; and, c) a commercial
multi-purpose public multi-site cloud, the Amazon Web Ser-
vices (AWS) infrastructure.

The EGI Federated Cloud is a private cloud infrastructure
open to any research community. It has been developed in
the framework of EGI.eu and currently federates about 20 sites
whose computing and storage resources are owned by differ-
ent academic European institutions. In this infrastructure, com-
puting and storage resources are provided through the standard
Open Cloud Computing Interface (OCCI) and Cloud Data Man-
agement Interface (CDMI; ISO/IEC 17826:2016) and users ac-
cess them with their X.509 certificates as member of a spe-
cific Virtual Organisation (VO). Once the user gets their proxy

4

http://occi-wg.org/


certificate, they can use it to gain access to the resources ei-
ther through a Ruby or Java OCCI client or through high level
tools built upon OCCI connectors that allow the user to manage
the virtual resources. One example is COMPSs (Lordan et al.,
2014), a programming model that, apart from being able to act
as a cloud broker, optimizes the use of the computing resources
through the exploitation of the inherent parallelism of the sci-
entific applications.

Both the EGI Federated Cloud and the LOFAR LTA share
a common Authentication and Authorization (A&A) method
based on a Public Key Infrastructure that uses the X.509 stan-
dard. This framework is defined by the European Policy Man-
agement Authority for Grid Authentication in e-Science Cer-
tification Authorities federation (EUGridPMA), and the Inter-
operable Global Trust Federation (IGTF). After obtaining their
personal certificate, the users need to install the voms-client tool
and to properly configure it. Users get a valid certificate proxy
through this tool and can issue OCCI commands to the EGI
Federated Cloud or request the transfer of data from the LO-
FAR LTA.

The Rutherford Appleton Laboratory Cloud offers another
private cloud infrastructure open to the British scientific com-
munity. It is based on OpenNebula and provides mainly com-
puting resources. The access to the infrastructure is provided
by a custom dashboard and their installation of the OpenNeb-
ula Cloud operations centre called Sunstone. It is also possible
to leverage the OpenNebula Application Programming Inter-
face (API) endpoint using XML-RPC. Recently, a Ceph object
store has been commissioned and integrated. Ceph offers an
AWS-compatible API which simplifies the interaction with the
system.

The third cloud system investigated was Amazon Web Ser-
vices which is a suite of cloud-computing services provided
by Amazon Inc. The resources are distributed in several re-
gions (13 at the time of writing) around the world. We used
the biggest one that is located in North Virginia (or “us-east-
1”) to maximize the number of resources available. Among
the services provided, we used Amazon Elastic Compute Cloud
(EC2), Amazon Simple Storage Service (S3) and Amazon Route
53. EC2 is the Infrastructure as a Service part, providing the
computing and block storage resources (Elastic Block Storage
or EBS). S3 is the object storage service and Route 53 provides
managed Domain Name System services. We interacted with
the services using the web-based AWS console and the AWS
API through the Python Boto library or their command line in-
terface software.

The SKA Organization published in 2015 a joint call for
proposals with Amazon (Astrocompute) to investigate and de-
velop radio-astronomy tools and processes in the AWS infras-
tructure. Most of the AWS tests shown here were carried within
the context of one Astrocompute project proposed by the au-
thors and consumed the credits (equivalent to money that can
be spent on AWS resources) provided for the project. The us-
age of resources provided by AWS is billed monthly and the
amount depends on the type of resource and its usage.

4. Preliminary tests in dedicated clusters and the Grid

For most of the tests presented in this paper we used a sim-
plified pipeline in which the data from just one sub-band are
calibrated, corrected and imaged. These are the basic steps
of a typical self-calibration loop and contain the fundamen-
tal steps used in calibration pipelines of radio-interferometric
data. The calibration and correction are run using the LOFAR
Black Board Selfcal (BBS) system (Pandey et al., 2009) and the
imaging is done with the AWimager (Tasse et al., 2013). BBS
runs in one core at the time of making the tests. The data are
loaded in memory in chunks whose size is manually selected
using an input parameter. AWimager has multi-core and auto-
matic memory managing capabilities. Although the advanced
pipelines presented in van Weeren et al. (2016b) are also being
adapted to the cloud by the authors, the tests using the sim-
plified pipeline cover the basic performance issues that can be
found in the advanced ones.

In order to check the general capability of the infrastructure
to run the pipeline in parallel, we ran the pipeline on several
instances in parallel as a test. The calibration of a full dataset
would require us to run in parallel chunks of data obtained from
the combination of several sub-bands. However, the test on
those instances was enough to check how the infrastructure re-
sponded to the parallel run of the pipeline, while retaining the
option to manually check possible errors and reduce the time
of the individual tests. All of the infrastructures involved re-
sponded as expected to the parallelization and the calibration
time using several instances took practically the same time as
the calibration of a single band in one instance (as long as there
were enough resources available).

In this section we describe our tests in two different kind
of HTC systems: clusters and Grids. The results of the test
performed in the cloud infrastructures will be present in detail
in the next section.

4.1. Dedicated cluster

One of the main issues that drove us to consider other solu-
tions was the difficulty to install and keep updated the required
software on the clusters. The installation on the IAA-CSIC
cluster was done first and took several weeks. The long time
required for the installation was mainly caused by the relatively
old version of the operating system in comparison with the li-
braries required by the LOFAR software. Almost all of the de-
pendencies had to be manually compiled, installed and config-
ured as a local user. The installation on Stacpolly took less time
due to the experience acquired in the other cluster, the relatively
new operating system, and the release by third parties of scripts
that helped with the installation of the dependencies. However,
the software became quickly outdated and some new depen-
dencies appeared. It had to be manually recompiled which was
time consuming.

Although the cluster solution works at present, it may not
scale well in the future when the load of computing and stor-
age requirements increase. Furthermore, at the time of writing,
the requirements of the newest advanced pipelines are higher
than the capacity of the nodes of the the IAA and the Stacpolly

5

https://www.eugridpma.org/
https://www.igtf.net/
http://opennebula.org/
http://ceph.com/
https://github.com/boto/boto
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli


clusters; this highlights a potential difficulty of the inflexibil-
ity of dedicated clusters during the development phase of new
analytic techniques.

4.2. Grid infrastructure

The problems with the installation and update of the soft-
ware were similar to those shown for the clusters with an addi-
tional difficulty arising from the use of different operating sys-
tems in each site. Additionally, the installation and deployment
of the user application may require the intervention of the sys-
tem administrators of each provider of the Grid infrastructure
where the pipeline would run. This may be impractical whilst
the calibration pipeline is under active development and fre-
quently changing. However, this kind of solution could be con-
sidered in the future to implement a stable calibration pipeline.
This scenario would be more favourable if the deployment of
the software is eased by, for example, the use of containers (see
Docker; Boettiger, 2015).

Once the pipelines are stable, it will be possible to run them
using the computational resources provided by the same Grid
site in which the data are stored. This would reduce signifi-
cantly the overhead due to the transfer of data. This approach is
currently being explored by the LOFAR Surveys Key Science
Project team on the SURFsara site.

5. Calibration of radio-astronomy data in the cloud

We performed several tests to assess the suitability and per-
formance of the cloud platforms used to solve our problem. We
checked the following points:

Installation and update of the software: We tested how easy
it was to install and manage the required software in the
infrastructure. We also considered how easy it was to
keep the software up to date and the level of human inter-
vention and support required.

Suitability of the platform: We investigated the suitability of
the platform to run the pipeline and to be adapted to it.
We first checked if the platform was capable of providing
the resources required by the pipeline. We also checked
the ability to adapt it easily to new requirements of the
pipeline.

Data transfer: We transferred a high volume of data from the
LOFAR LTA to some of the infrastructures. We deter-
mined the speed of the transfer and the level of human
intervention required.

Processing performance: We studied whether it was possible
to run the pipeline efficiently in parallel in the cloud dis-
tributed environment. We tested several parameters like
the running time, memory consumed, load of the proces-
sors, etc.

Cost: Finally, we investigated the cost of the commercial cloud
that we used, AWS, and compared it to the cost of other
infrastructures.

5.1. Software installation and update
The installation and update of the software in the infras-

tructure was one of the most time consuming processes. As
mentioned in the previous section, we had previously tried the
manual compilation and installation of the LOFAR dependen-
cies by trial and error in a relatively old Red Hat operating sys-
tem used by one of the clusters. This experience was crucial to
consider a cloud infrastructure as a good alternative. A cloud
infrastructure allows to select one base operating system that
is convenient for the installation of the LOFAR software. The
software is installed once in an image that is used as the base
for all the computing instances.

For the installation of the LOFAR software in the EGI in-
frastructure we used the same approach that we followed for the
cluster in Edinburgh. We run an automatic installation script
provided by Astro Wise. The script downloaded fixed versions
of the dependencies from the Astro Wise server that are known
to work. It required some manual tweaking and the manual
installation of some additional dependencies to adapt it to our
needs. Although the approach is powerful, as it is independent
of the Linux flavour and provides compiled software that is op-
timized for the target operating system, there are some caveats:
a) the version of the dependencies is fixed; b) there is no auto-
matic way to upgrade the system of dependencies; c) the lack
of a custom required dependency that is not implemented in the
system is usually detected at run-time; and, d) it could take a
considerable time to compile all the dependencies. Addition-
ally, the maintenance of a generic script like this can be cum-
bersome and, apparently, it is no longer maintained.

Overall, we followed the recommended method to install
user applications on the EGI Federated Cloud. We created, by
means of an OCCI client, a VM using a Virtual Appliance pub-
lished in the EGI Federated Cloud Applications Database for-
merly known as the Application Database Cloud Market (Ap-
pDB; https://appdb.egi.eu/). Later, the software was installed
accessing the VM through SSH public/private key pair. Once
the user application (the LOFAR and CASA software in our
case) was installed, we created a VM image from a snapshot
of the VM (this process could only be done by site administra-
tors at time of performing these tests). After that, we uploaded
the image to the AppDB. Finally, we requested the inclusion of
the image in the VO image list so it could be deployed on the
Federated Cloud sites supporting the VO.

For the RAL and AWS cloud infrastructures we used instal-
lation and provisioning recipes created in Ansible. Ansible is
an automation tool used for application deployment, configura-
tion management and orchestration. It can be interfaced using
“recipes” written in YAML which make them easy to read and
write by human beings. The recipes are divided by function-
ality to allow a granular installation of software and an easy
upgrade1. Ansible permits us to use the same recipes in differ-
ent systems like the RAL federated cloud based on OpenNebula
and the AWS infrastructure. 2

1The recipes are released as playbook roles in
https://github.com/nudomarinero/Astrocompute-ELAIS-N1

2We did not use Ansible in EGI because the installation process that we

6

https://www.docker.com/
https://userinfo.surfsara.nl/
http://www.astro-wise.org/
https://appdb.egi.eu/
https://github.com/ansible/ansible
http://yaml.org/
https://github.com/nudomarinero/Astrocompute-ELAIS-N1
https://github.com/nudomarinero/Astrocompute-ELAIS-N1


We used the Long Term Releases of Ubuntu (12.04 and
14.04) as our base operating system. At first we created our
own Ubuntu Personal Package Archives (PPA) with some cus-
tom changes on the radio astronomy packages created by Gijs
Moolenar. Later, the relevant changes were implemented in
the main “radio-astro” PPA. This PPA was used as the base for
the LOFAR software dependencies. However, the main LO-
FAR package is still compiled separately to allow a quicker re-
sponse to bug patches and software upgrades. Please note that
the radio-astro PPA is being superseded by the new Kern Suite.

The previously mentioned effort to package the dependen-
cies of LOFAR (mainly casacore, casarest and pyrap or python-
casacore) in an Ubuntu PPA allows the integration of the soft-
ware in the standard packaging system with all its advantages
(automatic processing of dependencies, easy installation and re-
moval of files, etc.) – though also with some of its disadvan-
tages, like the possible lack of compiler optimization.

Regarding the creation of the base image or template for
the instances, for the RAL cloud the software was installed in
an instance running a base Ubuntu system. A snapshot of the
instance was created and later published as a base image. This
step required some support from the RAL. For AWS we used
Packer3 to create an Amazon Machine Image (AMI) automati-
cally. In this case no human intervention was required at all.

Table 1 shows a summary of the installation of software and
the creation of the base image in different infrastructures.

It should be noted that the level of human intervention re-
quired can have an impact on the usability of the infrastructure.
If the step requiring human intervention has to be repeated of-
ten then the time consumed by this can easily add up to a con-
siderable amount, which makes it impractical. In our case the
software has to be updated often and the level of human in-
tervention had a considerable impact on the time required to
implement our tests.

5.2. Suitability of the infrastructures
The calibration pipeline is under development and its re-

quirements change. At the time of writing this paper, it needs
several tens of GB of memory and a local scratch data area of at
least 1 TB that is used to hold the intermediate data. It benefits
from multiprocessing in most of the steps. We needed infras-
tructures that can adapt to those requirements.

A wide range of machine sizes helps in the development of
a pipeline that optimises the usage of resources. A machine
with a large number of CPU cores can speed up the execution
of tasks that are adapted to multiprocessing but its resources
can remain largely idle if a single core application needs to be
run. From a user point of view it is sometimes very difficult or
even impossible to modify or adapt the underlying software to
optimize the usage of resources. In this context it makes sense
to utilise a cloud infrastructure in which the sizes of the ma-
chines can be adapted to the optimization level of the software

followed on EGI required manual tweaking and we did it only once. However,
we can not think of a technical reason to not to be able to use Ansible in EGI.

3“Packer is a tool for creating machine and container images for multiple
platforms from a single source configuration”; https://www.packer.io/

available. The capacities of relevant instance types in AWS, in
the EGI Federated Cloud used for the tests (in our case we used
CESNET), and in the RAL cloud, are summarized in Table 2. It
is important to note that the CPUs of the AWS instances are ac-
tually virtual CPUs that made use of the Intel Hyper-threading
technology (Marr et al., 2002), that means that their perfor-
mance is roughly half of the performance of a physical CPU.
This correction factor will be taken into account for the com-
parisons.

The amount of memory required for the pipeline, particu-
larly for the imaging process, could sum to dozens of GB. In
the two clusters, one of the technical constraints was the lim-
ited and fixed amount of memory available on each node. In
some cases, the computing nodes did not have enough memory
to perform the imaging step at an adequate resolution. Most
of the cloud infrastructures provided a wider range of choices
for the node sizes including instances with large memory. We
needed the possibility to launch VMs with this high amount of
memory.

One particularity of AWS is the availability of non-reserved
instances with variable prices that follow the market demand,
called spot instances. Usually their prices are several times
lower (they range from ≈ 10 times lower to being even 10 times
more expensive) than those of standard reserved instances and
are ideal to run processes that do not require real time respon-
siveness like in our case. A maximum bidding price is set when
an instance is requested and the instance runs until the market
price rises over this limit. In this event the instance is auto-
matically shut down. When using spot instances the pipeline
must be adapted to allow it to be resumed in the event of an
instance shut-down. In our case we used spot instances when-
ever it was possible. It is important to note that the probabil-
ity of a shut-down of the spot instance anti-correlates with the
maximum bidding price; a relatively high price will allow the
instance to run uninterrupted for a longer time. Hence, longer
processing times usually require higher bidding prices to avoid
interruptions. We will discuss the final price per instance that
we empirically calculated in Section 5.5.

There were several options for the storage, each with ad-
vantages and disadvantages:

Shared file-system: One option used in one of the clusters was
the use of a shared file-system (GlusterFS). Several ded-
icated nodes provided access to the storage area which
was visible from all the computing nodes. The I/O rate
could be limited by the local network connection which
could be an issue depending on the problem. However,
the simplicity of use of these systems could compensate
the possible loss of performance during I/O operations.
This option is currently available in AWS (Amazon Elas-
tic File System) but was not used for our tests.

NFS mount: Another simple option was the use of an NFS
(Network File System; Sandberg, 1986) mount. This con-
figuration was used in one of the EGI Federated Cloud
sites. Although it worked eventually, this solution pre-
sented several disadvantages: a) the set up of the system

7

https://github.com/gijzelaerr
https://github.com/gijzelaerr
https://github.com/radio-astro/packaging
https://launchpad.net/~radio-astro/+archive/ubuntu/main
http://kernsuite.info/
https://github.com/casacore/casacore/
https://github.com/casacore/casarest/
https://github.com/casacore/python-casacore
https://github.com/casacore/python-casacore
https://github.com/mitchellh/packer
https://www.packer.io/
https://www.cesnet.cz/
https://www.gluster.org/


Table 1: Software bundling and base image preparation in each infrastructure.
Infrastructure installation of software creation of base image
cluster Granada manual installation -
cluster Edinburgh installation script -
EGI Federated cloud installation script human intervention
RAL cloud PPA+custom LOFAR package Semi-automated with Ansible and human intervention
AWS cloud PPA+custom LOFAR package Automated with Packer and Ansible

Table 2: Type of instances used for the tests in each cloud infrastructure.
instance type cores memory type of storage

(N) (GB)
AWS

m4.large 2∗ 8 EBS (450 MB/s)
m4.xlarge 4∗ 16 EBS (750 MB/s)
m4.2xlarge 8∗ 32 EBS (1000 MB/s)
m4.4xlarge 16∗ 64 EBS (2000 MB/s)
m4.10xlarge 36∗ 160 EBS (4000 MB/s)
c4.xlarge 4∗ 7.5 EBS (750 MB/s)
c4.2xlarge 8∗ 15 EBS (1000 MB/s)
c4.4xlarge 16∗ 30 EBS (2000 MB/s)
c4.8xlarge 36∗ 60 EBS (4000 MB/s)
m3.large 2∗ 7.5 EBS and 1 × 32 GB int.
m3.xlarge 4∗ 15 EBS and 2 × 40 GB int.
m3.2xlarge 8∗ 30 EBS and 2 × 80 GB int.
c3.xlarge 4∗ 7.5 EBS and 2 × 40 GB int.
c3.2xlarge 8∗ 15 EBS and 2 × 80 GB int.
c3.4xlarge 16∗ 30 EBS and 2 × 160 GB int.
c3.8xlarge 36∗ 60 EBS and 2 × 320 GB int.
r3.large 2∗ 15.25 EBS and 1 × 32 GB int.
r3.xlarge 4∗ 30.5 EBS and 1 × 80 GB int.

EGI Federated Cloud (CESNET)
mem medium 2 8 NFS
extra large 8 8 NFS
mem extra large 8 32 NFS
mammoth 16 32 NFS

RAL Cloud
Lofar-Ubuntu-14-8c-32gb-2TB 8 32 Internal 2TB

∗ Virtual hyperthreaded cores.

8

https://www.cesnet.cz/


required support from the site administrators; b) its con-
figuration and set up was not accessible by the API; and,
c) it was a custom solution that could not be extended to
other sites and required the development of site-specific
steps on the testing pipeline.

Object storage: Object storage is used to store large data files
and it is ideal to store the input data, intermediate data ob-
jects between the main calibration blocks in large pipelines,
and final output data. Although this is very useful to store
large volumes of data for extended periods, the files can
not be handled as regular files in a file-system by the soft-
ware.

Block storage: Block storage can be attached as data volumes
to the VM instances. They can be used as scratch ar-
eas that are resilient to instance shut-downs. They can
be used to locally store the intermediate data as they are
viewed as normal disk by the operating system. Block
storage is usually offered by cloud platforms as one of
their services but this is not always the case. Although
this type of storage is very convenient, the I/O rate could
be limited depending on the configuration (see Sect. 5.4)
and it is usually more expensive than object storage. Hence,
a mixed storage system is usually used with block stor-
age.

Internal storage: Internal storage is provided in some clouds
with some types of instances and is equivalent to a typi-
cal scratch data area. This type of storage is ideal to lo-
cally store the intermediate data, and offers the best per-
formance in terms of I/O speed. However, such storage is
usually ephemeral and, in general, the data is wiped once
the instance is shut down. This can be a problem if the
instance can be shut down before the full completion of
the calibration pipeline, as in the case of spot instances in
AWS.

One of the main problems that we did not foresee until test-
ing the pipeline on different infrastructures was the effect of
limited availability of scratch data areas (internal or block stor-
age). The data required for a calibration run must be present in
the instance in an standard file-system. Even after splitting the
data in fields, observation runs and frequency bands, the size
of these datasets ranges from several hundreds of GB to a few
TB. Additionally, some space for the final data products and for
intermediate-step data is also required. Hence, a VM instance
requires an standard file-system of the order of TBs attached.
The lack of internal or block storage, or some limits on the size
of the block storage devices at the time of performing the tests,
prevented us from finishing the implementation of the full cali-
bration pipeline in all platforms except AWS.

One of the points that had a big impact on the usability of
a platform was its maturity. More mature platforms usually
present more options and a solid ecosystem of tools to lever-
age them. For example, the usage of the libraries and APIs of
Open Stack or AWS was very easy. Although these points are
not purely technical, they had an impact on the time that we

spent setting up the tests and solving the problems that we en-
countered.

5.3. Data transfer

We checked the data transfer to two cloud infrastructures
that offered object storage. We used S3 in AWS and the new
Ceph cluster at the RAL.

The transfer of the data from the LOFAR LTA requires the
use of common A&A X.509 credentials as explained in Sect. 3.3.
The software used for the transfer was the “SRM” suite and is
based on the Storage Resource Manager protocol. One dataset
(a single observation run ranging from 5 to 10 hours) was trans-
ferred at a time and the process was the following:

1. A proxy certificate for the Grid credentials with the longest
valid time (one week) was created.

2. A dataset, composed of several data files (usually from
244 to 371 files), was staged in the LOFAR LTA servers
using a XML-RPC petition. During this process the data
was moved from tapes to a temporary disk storage area
(the staging area) that can be directly accessed for a pe-
riod of time.

3. The data was downloaded in parallel from one VM in-
stance in the target infrastructure. As soon as a data file
was downloaded it was uploaded to the object storage
service provided by the infrastructure. For this process
we wrote some simple Python scripts.

The AWS S3 and Ceph cluster each provide a compatible
API. The API can be accessed using the Python library Boto
in the same way for both infrastructures. The only difference
was a small set of configuration parameters. This compatibility
made it very easy to write common software for the upload of
data that could be used in both infrastructures.

We transferred 18 full datasets from the LOFAR LTA to the
AWS S3 facilities in North Virginia (us-east-1 region). The vol-
ume of each individual dataset is about 3 to 4 TB with a total
size of ≈ 64 TB. An instance of type m4.10xlarge was launched
and provisioned using Ansible. This type of instance offered the
highest available bandwidth and a large number of processors
to allow a parallel download. We attached an EBS volume as a
temporary data area that was used to store the partial data files
in the process between the start of the download and the end of
the upload to the object storage service. After testing a number
of parallel downloads between 18 and 36 (36 was the number
of processors of the instance), we selected 24 parallel down-
loads as the optimal number that maximized the transfer speed
whilst maintaining the stability of the instance. We think that
the stability problems with high concurrencies originated from
the saturation of the network connection which is also used to
communicate to the EBS filesystem.

The transfer started mid-September 2015 and finished mid-
December 2015 as shown in Fig. 2. There are several gaps in
the transfer process and removing them the total transfer time
could be reduced from ≈ 3 months to ≈ 1.5 months. However,
most of these gaps were very difficult to avoid and probably
present a realistic scenario to be found in semi-supervised data

9

https://www.dcache.org/downloads/1.9/srm/
https://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html
https://github.com/nudomarinero/AWS_elais-n1_public_data


0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
o
w

n
lo

a
d
 s

p
e
e
d

(M
B

/s
)

0

5

10

15

20

25

30

35

U
p
lo

a
d
 s

p
e
e
d

(M
B

/s
)

2015-09-26

2015-10-10

2015-10-24

2015-11-07

2015-11-21

2015-12-05

2015-12-19

Date

0

10

20

30

40

50

60

U
p
lo

a
d
e
d
 s

iz
e

(T
B

)

Figure 2: Data transfer to AWS S3. The upper panel shows the speed of transfer
for each of the data files from the LOFAR LTA to the AWS EC2 instance in the
us-east-1 region. The mid panel shows the speed of transfer of the data files
from the AWS EC2 instance to AWS S3. The lower panel shows the cumulative
size of the data uploaded to S3.

transfer processes carried out by final users like in this case.
The transfer speed for each file was measured by dividing its
transfer time by its size. The transfer speed from the LOFAR
LTA to the AWS infrastructure peaks at about 1.2 MB/s for each
data file. The mean upload speed to S3 (that uses the internal
AWS network) ranges from less than 15 to more than 35 MB/s
for each data file. This variance is probably affected by the
number of parallel uploads and we estimate that the total upload
speed at a given point is very similar.

The gaps in the data transfer had different origins. Apart
from the testing nature of this experiment that made us to spend
some time in tests that are not shown in Fig. 2, we had some
issues with the staging of data and the manual renewal of the
proxy certificate. The time required for the staging of data in
the LOFAR LTA varied widely from time to time, probably due
to the load on the service. On one occasion the data disappeared
from the staging area. This was probably caused by the limited
storage space of the staging area, an issue that is currently be-
ing solved by the LOFAR LTA. Hence, all the staging process
had to be supervised to spot and solve possible problems. Addi-
tionally, the download from the LTA required the creation and
usage of a proxy certificate. This process could only be done
interactively and the maximum duration of the proxy certificate
was one week. Therefore, the process required constant super-
vision.

We also uploaded one of the datasets to the Ceph cluster at

the RAL. The process was similar to the upload to AWS. We
used an internal VM instance that was provisioned with An-
sible and an attached scratch data volume in the RAL cloud.
Although we could not save the exact profiling data for this
test, the transfer speed from the LOFAR LTA to the RAL in-
frastructure was several times (about 3 or 4 times) higher than
the transfer to the AWS infrastructure. We assumed that this
was mainly caused by a higher bandwidth of the connection
between the two European sites.

Finally, we would like to mention a possible alternative method
to transfer data: the physical transfer of storage units (disks,
tapes, etc) between data centres. After we started our tests,
AWS started offering a new service of data transfer called Snow-
ball. A unit of 50 TB of solid disk storage with high bandwidth
local network connectivity could be sent by courier to transfer
the data between the data centre and AWS S3. At the time of
writing this paper, the physical transfer of data could outper-
form the transfer via the regular Internet network.

5.4. Processing performance
We focused our performance tests on the EGI Federated

Cloud Infrastructure and on the AWS infrastructure.
We ran the simplified test pipeline using one single ELAIS-

N1 sub-band centred at 115.037537 MHz with one frequency
channel, 61 antennas (1891 baselines) and 2879 time slots in an
8 hours observing run (10 s scan time). The size of the data was
≈ 1 GB. The pipeline was run in several instance types in AWS
and the EGI Federated cloud (see Table 2). We measured the
time spent in each phase of the calibration pipeline.

In Fig. 3 we show the time taken in the “solve”, “correct”
and “image” steps of the pipeline. The number of CPU cores
is normalized to physical cores and the time is also normalized.
That means that the number of cores and times are divided by 2
for AWS data to allow a better comparison of the trends with the
number of cores. We plot the data for the AWS and EGI Fed-
erated clouds and, as a comparison, the Stacpolly and LOFAR-
UK clusters. In Fig. 4 there are several panels showing the CPU
and memory usage and the data I/O for different calibration test
runs. In this figure it is possible to see the CPU and memory
consumption of each step as well as the cumulative I/O.

In the “solve” step (upper panel in Fig. 3) the data is cal-
ibrated to an input model using BBS. The program uses only
one core and it is not parallelized. This can be seen as the flat
relation with the number of cores and the similar times in the
two cloud infrastructures. The running times for the Stacpolly
and Hertfordshire clusters are higher, at least in part due to the
use of less powerful processors. This step could be treated as an
embarrassingly parallel problem and several bands can be run
in parallel in a single node or instance to maximize the perfor-
mance. However, if the number of “solve” processes running
in parallel in a single computing node is lower than the number
of cores (for example, if there are less bands to process than
cores) some of then will be idle with a corresponding waste of
resources. In this case, the use of cloud instances with sizes
adapted to the number of bands to process is one advantage of
cloud infrastructures. The “solve” step can be seen in the initial
part of the panels in Fig. 4 with one or two flat peaks of memory

10



0 2 4 6 8 10 12 14 16
N physical CPUs

0

1000

2000

3000

4000

5000

6000

7000

N
o
rm

a
liz

e
d
 t

im
e
 (

s)

Solve

Herts
Stacpolly

AWS means
EGI means

AWS
EGI

0 2 4 6 8 10 12 14 16
N physical CPUs

0

20

40

60

80

100

N
o
rm

a
liz

e
d
 t

im
e
 (

s)

Correct

Herts
Stacpolly

AWS means
EGI means

AWS
EGI

0 2 4 6 8 10 12 14 16
N physical CPUs

0

500

1000

1500

2000

2500

3000

3500

4000

N
o
rm

a
liz

e
d
 t

im
e
 (

s)

Image

Herts
Stacpolly

AWS means
EGI means

AWS
EGI

Figure 3: The time taken by the Solve, Correct and Image steps for our tests
in different infrastructures. The CPU core numbers are normalized to physical
CPUs (divided by a factor 2 in AWS). We show the individual tests in AWS
(blue) and the EGI Federated Cloud (orange) cloud infrastructures as a cloud
of points on either side of the main line that corresponds to the number of
CPUs and the means in the centre. The size of the points is proportional to
the memory of the instance used. As a comparison, we show the tests in the
cluster Stacpolly in Edinburgh (red) and the LOFAR-UK Computing Facility
in Hertfordshire (green). They are shown with a slight offset in x position for
clarity.

usage. In those cases the CPU core usage is approximately 100
per cent and the speed of the step is mainly determined by the
CPU clock speed.

The “correct” step (middle panel in Fig. 3) involves apply-
ing the solutions computed in the “solve” step to the data and
writing the corrected data back to the disk. It is computation-
ally very simple and involves some data I/O. The times are very
short in comparison with the “solve” step and the dispersion
of the times is higher. In Fig. 4 the step is barely visible be-
tween the “correct” and “image” step given its short duration.
The running times are very similar in the clusters and AWS and
slightly higher in the EGI Federated Cloud, probably due to
some overheads related to the use of an NFS file-system.

Finally, in the “image” step (lower panel in Fig. 3) the data
is imaged using AWImager. Part of the imaging process is run
in parallel making use of all the available processors. There
is an improvement in the running time as the number of cores
is increased. However, after a certain point there is no further
significant improvement. Although the most computationally
demanding part of the computing is parallelized, there is a part
that runs in only one core. The time spent in this part cannot
be improved using more cores and the time decreases asymp-
totically to the time spent on this part when we increase the
number of cores (Amdahl, 2007). This step can be seen in the
last part of the panels shown in Fig. 4. The parallel part uses all
the CPU resources but the time spent in this part decreases as
the number of cores increases while the single core part remains
broadly constant.

With the “image” step it is also possible to see the com-
bined effect of hyperthreading and the lack of complete paral-
lelization in a process. In Fig. 5 we show the real time spent in
the step and the number of physical cores used. For the same
number of physical cores we always get better performance in
the EGI Federated Cloud infrastructure that does not use hyper-
threading. The overheads found in AWS with respect to EGI
are 29 ± 8 per cent with 2 physical cores; 66 ± 13 per cent with
8 physical cores; and, 75 ± 9 per cent with 16 physical cores.
When hyperthreading is used, doubling the number of cores
has little effect on the speed of the parallelized part (double the
processors at half the speed) but the single core part runs at a
lower speed (about half the speed). This can be seen in Fig. 4,
where the parallelized part (seen as peaks in the CPU usage in
the last part of the profile) tends to be shorter with a higher
number of cores while the single core part (the flat part with
values close to 100 per cent between the peaks) remains similar
in length. We observe that hyperthreading is only equivalent if
several processes can be run in parallel until they use all the pro-
cessor resources, or if the software runs fully in parallel. The
difference in CPU usage paterns between the “solve”, “correct”
and “image” steps could be matched in a cloud infrastructure
by a correct selection of the instance type. Additionally, if the
cloud provides persistent block storage (like EBS in AWS), the
single-core steps can be run in single-core instances and the
parallelized steps in many-core instances working on the same
data areas as required by the pipeline. This flexibility is one of
the advantages of a cloud infrastructure.

For our tests, the effect of the memory available on the in-

11



0

50

100

150

200

C
P
U

 u
sa

g
e
 (

%
)

AWS - m4.large

0 4000 8000 12000 16000
Time

0
2I/

O
(G

B
) 0

100
200
300
400
500
600
700
800

C
P
U

 u
sa

g
e
 (

%
)

EGI - Extra_large

0 2000 4000 6000 8000
Time

0.0
0.8

I/
O

(G
B

)

0
50

100
150
200
250
300
350
400

C
P
U

 u
sa

g
e
 (

%
)

AWS - c4.xlarge

0 4000 8000 12000 16000
Time

0
2I/

O
(G

B
) 0

50

100

150

200

C
P
U

 u
sa

g
e
 (

%
)

EGI - mem_medium

0 2000 4000 6000 8000
Time

0.0
0.8

I/
O

(G
B

)

0
50

100
150
200
250
300
350
400

C
P
U

 u
sa

g
e
 (

%
)

AWS - c3.xlarge

0 4000 8000 12000 16000
Time

0
2I/

O
(G

B
) 0

200
400
600
800

1000
1200
1400
1600

C
P
U

 u
sa

g
e
 (

%
)

EGI - mammoth

0 2000 4000 6000 8000
Time

0.0
0.8

I/
O

(G
B

)

0
500

1000
1500
2000
2500
3000
3500

C
P
U

 u
sa

g
e
 (

%
)

AWS - c4.8xlarge

0 4000 8000 12000 16000
Time

0
2I/

O
(G

B
) 0 2000 4000 6000 8000

Time

0
200
400
600
800

1000
1200
1400
1600

C
P
U

 u
sa

g
e
 (

%
)

cluster - Herts

CPU Memory I/O

0
10
20
30
40
50
60
70

M
e
m

o
ry

 (
%

)

0
10
20
30
40
50
60
70

M
e
m

o
ry

 (
%

)

0
10
20
30
40
50
60
70

M
e
m

o
ry

 (
%

)

0
1
2
3
4
5
6
7
8
9

M
e
m

o
ry

 (
%

)

0
10
20
30
40
50
60
70

M
e
m

o
ry

 (
%

)

0
10
20
30
40
50
60
70

M
e
m

o
ry

 (
%

)

0

5

10

15

20

25

30

M
e
m

o
ry

 (
%

)

0
1
2
3
4
5
6
7

M
e
m

o
ry

 (
%

)

Figure 4: CPU and memory usage (blue solid and green dashed lines in the upper part of each panel) and input/output usage (red dash-dot line in lower part of each
panel) for different instance types in the AWS and EGI Federated cloud infrastructures. The CPU and memory usage of the LOFAR-UK cluster in Hertfordshire is
shown in the lower-right panel as a comparison. The AWS profiles include the initial data download step at the beginning (visible as a quick jump in the I/O usage).
The “solve” and “correct” steps are at the beginning and consume approximately one core because they do not use multiprocessing. The “solve” step can be seen
as the one or two flat peaks in memory usage and the “correct” is barely visible given it short duration. At the end, the “image” step is clearly visible with burst of
parallel CPU usage and continuous I/O of data.

12



0 2 4 6 8 10 12 14 16
N physical CPUs

0

1000

2000

3000

4000

5000

6000

7000

8000

R
e
a
l 
ti

m
e
 (

s)

Image step (AWImager)

Herts

Stacpolly

AWS means

EGI means

AWS

EGI

Figure 5: Time spent in the “image” step with respect to the number of physical
cores of the instance or node. The symbols are as described in Fig. 3

Download Solve Correct Image Total
Step

0.0

0.5

1.0

1.5

2.0

2.5

R
a
ti

o
 o

f 
ti

m
e
 u

si
n
g
 E

B
S
 t

o
 i
n
te

rn
a
l 
st

o
ra

g
e

EBS storage overhead in AWS

Figure 6: Relative time differences between EBS and internal storage volumes
in the AWS infrastructure. The box and whiskers plots show the distribution of
the fraction of time spent using an EBS volume with respect to using internal
storage for each step.

stance or node was not significant once a minimum threshold
was reached. All the tests that run in instances with less than
8 GB of memory failed (bad alloc errors), but after this thresh-
old was reached the performance was very similar, as shown in
Fig. 3. The size of the scattered dots indicates the memory of
the instance and, once the number of processors is fixed, only
has a marginal effect on the time spent in the step. The mem-
ory threshold depends strongly on the size of the dataset. Tests
with datasets that were 5 times bigger required a minimum of
32 GB of memory. The memory requirements depend strongly
on the particular software used, the pipeline run, the number of
processes running in parallel and the size of the dataset.

We also measured in AWS the performance of different steps
(“download”, “solve”, “correct” and “image”) in instances with
different types of storage. By comparing the same instances us-
ing either internal storage or EBS storage we could determine if
there is a significant overhead related to the use of EBS (Dodson
et al., 2016). The results are shown in Fig. 6. The “download”
step is where the data were transferred from the object store
to the internal storage and was only measured in AWS. Given
the high bandwidth available, the time of the “download” step
is mainly dominated by the I/O performance. In this case we
found a median overhead of ≈ 36 per cent over using internal
storage. In the other steps there was no overhead within the er-
ror. We could not find a significant overhead in the overall test
pipeline that depends on the use of EBS (the total overhead is
0.5 ± 2.4%).

One last point to consider in terms of performance is the
effect of interruptions in the processing. With AWS spot in-
stances the chance of a shut down of the instances increases
with longer running times. Our simple tests were short but ad-
vanced pipelines take longer to run. In those cases we found it
fundamental to be able to resume the running of the pipelines.
Hence, it could be useful to design the pipeline software with
well defined intermediate states from where it can resume the
computing.

5.5. Costs

We made an estimation of the costs of processing real LO-
FAR data in the AWS infrastructure versus using a dedicated
cluster. There are many factors that can affect the accuracy of
our estimate. One of the main factors is the optimization of the
pipeline and infrastructure usage in AWS which is under de-
velopment. For example, we are currently experimenting with
improvements that can reduce the costs by more than 40 per
cent, but we provide the current numbers as a general guide-
line. We do not consider in this comparison the price of long
term object storage in the infrastructure (e.g. S3) and focus on
the computing prices.

In a commercial cloud infrastructure the computing resources
are consumed as they are used and they are usually charged at
a unit rate per unit of time. In a dedicated cluster the initial
price of the machine should be considered in addition to the
running cost (electricity, support, etc). If the running cost of
the dedicated cluster is lower than the cloud price, the time in
which investing in a dedicated cluster pays off is given by the

13



equation:

t pcloud = ccluster + t pcluster, (1)

where t is the time, pcloud is the cost of the cloud per unit of
time, ccluster is the initial investment on the cluster, and pcluster

is the running cost of the cluster per unit of time.
For our estimation we used a real calibration run of a com-

bination of 40 sub-bands of one of the ELAIS-N1 datasets. The
calibration followed the pipeline described in van Weeren et al.
(2016b) and was run using the software called factor. It took
380 hours to complete (just over two weeks). The final prices
on AWS were $ 177.75 for the computing with an m4.4xlarge
instance and $ 157.77 for the EBS storage, adding up to a total
of $ 335.52, or $ 0.883 per hour. The use of spot instances re-
duced the price from $ 0.958 per hour to a mean of $ 0.468 per
hour, that is 49 per cent of the nominal price of the instance.
There was one interruption during the calibration process pro-
duced by the shut-down of the instance due to a spike in market
prices. The m4.4xlarge instance that we used in AWS has 16
vCPUs (8 physical cores of an Intel Xeon E5-2684 v4 at 2.3
GHz or E5-2676 v3 at 2.4 GHz), 64 GB of RAM memory and
a 3 TB EBS solid state disk volume. We got a quote for a server
with similar characteristics of ≈ $ 9500 (November 2016; ex-
change rate 1.25 USD to GBP). We considered in this case a
running cost of $ 4000 per year ($ 1000 electricity charges and
$ 3000 for the human support). Using eq. 1 we derived a time
of 2.5 years for the costs of the two systems to be equivalent.

We can estimate the number of datasets that can be pro-
cessed during this time. In our case, the time expended was 380
hours for the 40 sub-bands, although the on-going efforts to op-
timise the software and selection of instances is continuing to
improve this. The calibration of the 18 ELAIS-N1 full datasets
would require to run 162 times this quantity of data. Hence,
the computed 2.5 years correspond to just over a third of the
162 × 40 sub-band runs.

The parameters used in our estimation can vary widely from
case to case. For example, the cost of the support will be much
lower if the computing resource is integrated into an existing
cluster or if the electricity is already paid for the final user by
third parties. We present in Table 3 different possible scenar-
ios and their estimated break-even times and number of full
datasets that can be calibrated in this time obtained from eq. 1.

We consider 4 different hardware infrastructures: a) an 8-
core node with 64 GB or memory and 3 TB of solid state disks
for the scratch area with a network connection of 10 Gbit/s; b)
the same option but with spinning disks; c) 16 cores with 128
GB of memory and 6 TB of solid state disks; and, d) 64 cores
with 1 TB of memory and 12 TB of spinning disks. We also
consider a range of operational scenarios which depend mainly
on the context and support. The “data centre” scenario means
that the user has access to a local data centre with specialised
support in which to place the computing resource. This sce-
nario provides a lower limit to the cost of the cluster with the
electricity provided and a support cost of $ 400 per year (based
on a cost $ 50 per year per core; E. Tittley private communica-
tion). In the “no electricity” scenario the support is estimated
at $ 3000 per year but the electricity is already provided by the

centre. The “base” scenario is that considered above, where the
user also has to pay the electricity consumed by the comput-
ing. In the “alone” scenario we raise the price of the support to
$ 10000 per year to account for the considerable amount of the
time that the user or a third party must expend in maintaining
the computing node or infrastructure. Finally, the “dedicated”
scenario considers that one person ($ 50000 per year) is fully
dedicated to maintain the computing infrastructure. Although
this scenario is not realistic, it marks an upper limit to the cost
of the cluster.

As we can see in Table 3 a bigger (dedicated) computing
resource could outperform the AWS cloud in terms of costs.
However, the size of the problem to solve must be relatively big
(a considerable number of datasets need to be calibrated) and
the money for such a resource must be available. For smaller
and cheaper computing resources, the AWS cloud could offer a
cheaper solution when the cost of the support is relatively high
or the number of datasets to calibrate is not very high.

There are, however, several further differences to consider
between the cluster and the cloud approach. A cloud infrastruc-
ture like AWS allows the parallel processing of several datasets,
which may be interesting with tight deadlines. The obsoles-
cence of the hardware was not taken into account in the previous
calculations. The cost of AWS tends to go down steadily with
time while the performance of the hardware is improved simul-
taneously. Furthermore, these calculations assume the cluster
is used at 100 per cent efficiency: for intermittent use there will
be wasted downtime, whilst on a commercial cloud you pay
nothing for this.

6. Review of infrastructure suitability

In this section we combine our experiences and test results
from our investigations of different infrastructures, to present
some general considerations that are relevant for the calibration
and analysis of LOFAR (or other comparable) data in any com-
puting platform. We then review the issues specifically relevant
to clouds.

6.1. General considerations for all infrastructures

One of the main problems that can be found in any infras-
tructure occurs if there is a lack of support or documentation, or
complexities in their usage. These factors have a great impact
in the time consumed developing the calibration pipelines, to
the extent of rendering some computing platforms practically
unusable, particularly for a final user with limited time. The
processes that were complex or unclear were especially time
consuming requiring a lot of trial and error. This problem can
be accentuated in bespoke solutions where the support of a wide
community of users is not available. Good support, good and
up to date documentation and the simplification of usage4, had
a very positive impact on the developing time.

4“Simplicity is a great virtue but it requires hard work to achieve it and
education to appreciate it. And to make matters worse: complexity sells better.”
(Dijkstra, 1984)

14

https://github.com/lofar-astron/factor


Table 3: Break-even times and the corresponding number of processed datasets estimated for different hardware infrastructures and operational scenarios.
Hardware infrastructure1,2,3

Normal (a) Cheap (b) 2× (c) 8× (d)
ccluster = 9500 ccluster = 7000 ccluster = 17000 ccluster = 27000
pcloud = 0.883 pcloud = 0.883 pcloud = 1.800 pcloud = 7.000

Operational scenario4,5 tband = 380 tband = 600 tband = 170 tband = 60
pcluster t n t n t n t n

Data centre 0.046 1.3 3.3 1.0 1.6 1.1 6.3 0.4 7.2
No electricity 0.342 2.0 5.1 1.5 2.4 1.3 7.7 0.5 7.6
Base 0.457 2.5 6.6 2.5 4.1 1.4 8.2 0.5 7.7
Alone 1.256 – – – – 3.6 20.4 0.5 8.7
Dedicated 5.822 – – – – – – 2.6 42.4

1 A detailed description of the hardware infrastructure can be found in the main text.

2 The units of ccluster are $; for pcloud are $ per hour; and, for tband are hours. A full dataset is composed of 9 bands.

3 The columns are: (1) t, time in years to break-even the costs of AWS and the cluster; (2) n, number of full datasets that can
be calibrated in this time. A “–” indicates that the costs of AWS are always lower for reasonable lifetimes (ie. t > 5 yrs).

4 A detailed description of the operational scenarios can be found in the main text.

5 The units of pcluster are $ per hour.

The requirement of manual intervention for some tasks had
a strong impact on the time spent. The difficulty of synchroniz-
ing agendas, the overload of support staff, the temporal unavail-
ability of key contacts, can all have an added negative impact
when human intervention is required. This effect can add up
quickly if many of the steps involved require this intervention
or if it is required by simple tasks. This problem is minimized
with the automation of the infrastructures. The time spent in
this regard in fully automated infrastructures, like AWS, was
minimal.

Regarding infrastructures, some of the main concerns in
terms of performance are related to: the efficiency and con-
figuration of the processing power; the memory available; the
speed of the data transfer; and, the efficiency of the data I/O.

In terms of processing speed, we found some effects that de-
pended on the processor (processor speed, generation, etc.) but
that were of second order. Multiprocessing was used in (parts
of) tasks that were parallelized with the corresponding reduc-
tion of the processing time. The computational overhead due
to virtualization in clouds was minimal (if the number of vir-
tual CPU cores corresponded to the number of physical cores;
we discuss the use of multiple virtual cores per physical core
later). In general we found the cloud infrastructures tested to
perform similarly or better than the clusters in terms of CPU
speed. Many other factors had a much greater impact than this.

The memory was not a factor that limited processing perfor-
mance, in general. The pipelines required a minimum amount
of memory to run without failing. Once the instance or com-
puting node provided this minimum amount, the availability of
additional memory had little impact on the processing time of
our test pipelines. The memory problems can be mitigated with
new memory optimized software and a correct sizing of the re-
sources.

The speed of the data transfer was initially thought to be a
limiting factor but we did not find it to be a bottleneck on the
overall process. The transfer times were lower than the process-
ing times and orders of magnitude lower than the time spent
developing the solutions in this early stage. During the data
transfer step, the main overheads came from the requirement to
manually supervise the transfer process (staging of data, cre-
ation and renewal of the proxy certificates, error checking, etc.)
but not from the actual transfer of data.

The efficiency of the data I/O can have a potential impact
on the speed of the calibration depending on the efficiency of
the underlying system. This is particularly the case for our tests
and some of the pipelines under development that are I/O bound
instead of CPU bound. We did not find a large data I/O over-
head coming from the use of non-local storage in the clouds.
Specially, the use of EBS volumes in AWS had only a limited
impact, less than ≈ 36 per cent in the download of data step
and practically null in the overall calibration tests. However,
we found the lack of proper size scratch storage areas to be a
limiting factor in many of the infrastructures that we tested.

The availability and size of scratch storage areas turned out
to be of great importance for the implementation of the pipelines.
In many cases, we found that the pipelines required more scratch
storage than the infrastructures were able to provide and this
blocked the implementation. The Elastic Block Storage service
of AWS proved to be very useful in this sense.

6.2. Advantages and disadvantages of cloud infrastructures
The cloud infrastructures excelled in the simplicity for the

software installation and maintenance. Once the base operating
system was ready, the installation of software and creation of
instances with an exact copy of the software was straightfor-
ward.

15



The availability of standard APIs and tools facilitated greatly
the integration of the pipeline. Those APIs and tools (e.g. An-
sible, Boto, or Ipython (Pérez and Granger, 2007)) are widely
used in the industry by communities out of the scientific cir-
cles which allows a transverse transfer of knowledge. The APIs
of AWS or Open Stack were well documented and supported
which permitted a quick integration of the software developed.

The flexibility of the cloud infrastructures allowed to adapt
the hardware to the requirements of the pipelines, which is fun-
damental in the early stage of testing. Apart from that, this flex-
ibility allows to optimize the consumption of resources once
the calibration pipeline is well defined. All the cloud infras-
tructures permitted the parallel execution of the pipelines with
a number of parallel instances that was only limited by the size
of the cloud infrastructure or the resources allocated to the user.
In the case of AWS the limits were very high allowing the paral-
lel development of complex pipelines and the experimentation
with different infrastructure parameters (instance size, volume
sizes and types, etc.).

We found an issue that can be present in any infrastruc-
ture that uses virtualization but particularly on the cloud. The
combination of Hyperthreading (where the number of proces-
sors is duplicated but the apparent clock speed is halved) with
software that is not fully parallelized had a negative impact
on the processing speed in the pipelines tested. The apparent
lower speed per processor combined with the fact that parts
of some processes did not, or could not, use multi-processing,
caused an overhead in the overall run time (see Amdahl, 2007).
Whilst hyperthreading may present advantages for other users,
we found in our tests in AWS that the overhead in time was as
high as 75 per cent in some steps of the pipeline. The perfor-
mance would be lower overall but the real extent of the impact
should be assessed with additional tests.

The model offered by the clouds, where the resources are
consumed on-demand, could be of advantage in shared infras-
tructures where resources are allocated and consumed by a wide
range of scientific projects and fields that may have different
technical requirements. For a final user it offers the advantage
of just paying for the usage of resources without the commit-
ment required by dedicated infrastructures.

The costs associated to a commercial cloud like AWS can
be equivalent or lower than those of a dedicated cluster in some
common cases. It is a cost effective way of processing data if
the user needs to calibrate low to medium volumes of data, or if
they need otherwise to use a shared system in which the admin
costs of maintaining up-to-date LOFAR software become high.

7. Summary and conclusions

New scientific instruments are starting to generate an un-
precedented amount of data. The capture, curation and anal-
ysis of these huge data volumes require the use of innovative
strategies. The forthcoming Square Kilometre Array (SKA)
will achieve data rates on a exabyte scale. LOFAR, one of the
SKA pathfinders, is already producing data in a petabyte scale
whose calibration present a formidable challenge. The several
TB of data for each observation, a software whose installation

and maintenance was not trivial, and a calibration pipeline that
was quickly evolving and required intensive storage and com-
puting resources, motivated us to investigate the use of different
computing resources. After considering dedicated clusters and
Grid infrastructures for the calibration of our LOFAR imaging
data from the point of view of a final user, we focused mainly
on cloud infrastructures. A cloud infrastructure can provide the
flexibility and high throughput for the calibration of the big vol-
umes of radio-astronomy data that we are handling.

Our initial tests on dedicated clusters were mainly limited
by the complexity of the software installation and maintenance
in these systems. An additional problem was the increase of
computational resources required by the pipelines which ren-
dered some of the clusters unable to run them. We also explored
the use of Grid infrastructures but the need of manual inter-
vention combined with the quick development of the pipelines
at this early stage made them unsuitable for our needs. How-
ever, they are an infrastructure that should be evaluated once the
pipelines are in a stable state. After that, we performed our tests
in different cloud infrastructures: the EGI Federated Cloud, the
RAL Cloud, and the commercial cloud Amazon Web Services.

In general we found that good support, documentation, and
simplicity of usage were of great importance for the implemen-
tation of the pipelines: the requirement of manual intervention
had a strong negative impact on the time spent in some infras-
tructures. On the technical side, processing speed was compa-
rable in the different infrastructures for similar resources. The
quantity of memory had little impact on the processing speed
once a minimum amount of required memory was available.
The speed of data transfer was not one of the main limiting fac-
tors as the transfer time was lower than the computing time.
Finally, we could not find a strong data I/O overhead coming
from the use of non-local storage in the clouds.

However, we identified a couple of unforeseen issues that
had a negative impact on the implementation of pipelines. The
combination of hyperthreading and tasks of the pipelines that
are not, or cannot be, fully parallelized produced an empirical
overhead in the running time of the pipelines. Additionally, the
lack of scratch storage areas of an appropriate size could block
the implementation of the pipelines in some systems.

Cloud infrastructures presented several highlights, most no-
tably: a) the straightforward and simple installation and main-
tenance of the software; b) the availability of standard APIs
and tools widely used in the industry; c) the flexibility to adapt
the infrastructure to the needs of the problem; and, d) the on-
demand consumption of shared resources.

We found that the run of data calibration pipelines is not just
possible but efficient in cloud infrastructures. From the point of
view of the final user it simplified many important steps and
solved issues that blocked the implementation or running of the
pipelines in other infrastructures. In terms of costs, a commer-
cial cloud infrastructure like AWS is currently worthwhile in
several common use cases, where the user lacks access to pow-
erful storage and computing resources or specialised support, or
where the calibration of small to medium sets of data is needed.

In the future we will present the detailed results and techni-
cal details of the calibration of the LOFAR ELAIS-N1 data on

16



AWS. We are currently optimising and integrating in AWS the
full calibration pipeline presented in van Weeren et al. (2016b)5.
We also plan to perform tests in other clouds and continue with
the study of the integration in the EGI and RAL clouds. We
will test the use of COMPs and, once the pipeline is stable, the
integration of the full pipeline in a Grid infrastructure will be
considered.

Acknowledgements

We acknowledge the useful comments of the anonymous
referee. We would like to acknowledge the work of all the
developers and packagers of the LOFAR software that consti-
tute the core of the processing pipelines (including factor, pre-
factor, LSMTool, LoSoTo, and the Kern Suite), as well as the
useful discussions with the participants in the LOFAR blank
fields and direction dependent calibration teleconferences over
the years. JS and PNB are grateful for financial support from
STFC via grant ST/M001229/1. This work has been also sup-
ported by the projects ‘AMIGA5: gas in and around galaxies.
Scientific and technological preparation for the SKA’ (AYA2014-
52013-C2-1-R) and ‘AMIGA6: gas in and around galaxies.
Preparation for SKA science and contribution to the design of
the SKA data flow’ (AYA2015-65973-C3-1-R) both of which
were co-funded by MICINN and FEDER funds and the Junta
de Andalucı́a (Spain) grants P08-FQM-4205 and TIC-114. We
would like to explicitly acknowledge Dr Jose Ruedas – chief of
the computer centre and responsible of the computing and com-
munications infrastructures at IAA-CSIC – and Rafael Parra –
system administrator of the IAA computing cluster – for their
technical assistance. We acknowledge the joint SKA and AWS
Astrocompute proposal call that was used to fund all the tests
in the AWS infrastructure with the projects “Calibration of LO-
FAR ELAIS-N1 data in the Amazon cloud” and “Amazon Cloud
Processing of LOFAR Tier-1 surveys: Opening up a new win-
dow on the Universe”. This work made use of the Univer-
sity of Hertfordshire’s high-performance computing facility and
the LOFAR-UK computing facility, supported by STFC [grant
number ST/P000096/1]. This work benefited from services and
resources provided by the fedcloud.egi.eu Virtual Organization,
supported by the national resource providers of the EGI Feder-
ation. We acknowledge the resources and support provided by
the STFC RAL Cloud infrastructure. LOFAR, the Low Fre-
quency Array designed and constructed by ASTRON, has fa-
cilities in several countries, that are owned by various parties
(each with their own funding sources), and that are collectively
operated by the International LOFAR Telescope (ILT) founda-
tion under a joint scientific policy.

References

5The current efforts can be found in http://www.lofarcloud.uk

17

https://github.com/lofar-astron/factor
https://github.com/lofar-astron/prefactor
https://github.com/lofar-astron/prefactor
https://github.com/darafferty/LSMTool
https://github.com/revoltek/losoto
http://kernsuite.info/
http://stri-cluster.herts.ac.uk/
http://www.lofarcloud.uk

	Introduction
	The Low Frequency Array, LOFAR
	Description of the data
	Challenges posed by the data calibration
	Specialized software
	High requirements on computing and storage resources
	Varying hardware requirements


	Computational infrastructures investigated
	Dedicated cluster
	Grid infrastructure
	Cloud infrastructure

	Preliminary tests in dedicated clusters and the Grid
	Dedicated cluster
	Grid infrastructure

	Calibration of radio-astronomy data in the cloud
	Software installation and update
	Suitability of the infrastructures
	Data transfer
	Processing performance
	Costs

	Review of infrastructure suitability
	General considerations for all infrastructures
	Advantages and disadvantages of cloud infrastructures

	Summary and conclusions

