Accepted Manuscript

F2il

Astronomy and
Computing

The Monte Carlo photoionization and moving-mesh radiation
hydrodynamics code CMACIONIZE

B. Vandenbroucke, K. Wood

PII: S2213-1337(17)30114-2
DOI: https://doi.org/10.1016/j.ascom.2018.02.005
Reference: ASCOM 214

To appear in:  Astronomy and Computing

Received date: 29 September 2017
Accepted date: 25 February 2018

Please cite this article as: Vandenbroucke B., Wood K., The Monte Carlo photoionization and
moving-mesh radiation hydrodynamics code CMACIONIZE. Astronomy and Computing (2018),
https://doi.org/10.1016/j.ascom.2018.02.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.ascom.2018.02.005

The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code
CMAcIoONIZE

B. Vandenbroucke®*, K. Wood?®

@SUPA, School of Physics € Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, United Kingdom

Abstract

We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE,
which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other
sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of
hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at
any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to
get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical
simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent
of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but

also as a moving-mesh code.

Keywords:

numerical, hydrodynamics, radiative transfer, ISM: evolution

1. Introduction

Photoionization of hydrogen and helium in the inter-
stellar medium (ISM) by luminous UV sources has an
important effect on the evolution and properties of the
ISM. Absorption of ionizing radiation through ionization
is an important source of energy that feeds the expansion
of bubbles surrounding young O and B stars, and hence
shapes the structure of the ISM on small scales (Harries
et al., 2017). In cases where the dynamical effect of ioniz-
ing radiation is less pronounced, the presence of ionizing
radiation will still alter the overall ionization balance, not
only of hydrogen and helium, but also of other elements.
This, together with an increase in temperature in ionized
regions, will have a visible impact on their emission spec-
trum, making them stand out as HII regions. Detailed
observations of HII emission spectra contain a wealth of
information about the local ISM and the incident radiation
field, and modeling them is important in understanding
observational signatures of star formation (Klassen et al.,
2012; Mackey et al., 2016), and diffuse emission from galac-
tic discs (Barnes et al., 2014; Vandenbroucke et al., 2018).

On larger scales, photoionization also has important
dynamical effects. The combined UV emission of quasars
and young stars in the early Universe generates a UV back-
ground radiation field that is responsible for the reioniza-
tion of the Universe by redshift 6 (Becker et al., 2001; Al-
varez et al., 2009). This UV background field affects the

*Corresponding author
Email addresses: bv7@st-andrews.ac.uk (B. Vandenbroucke),
kw250st-andrews.ac.uk (K. Wood)

Preprint submitted to Astronomy & Computing

formation of galaxies by altering the abundances of ISM
coolants (De Rijcke et al., 2013), and is responsible for
suppressing galaxy formation in low mass haloes (Benitez-
Llambay et al., 2015; Vandenbroucke et al., 2016). Futher-
more, radiative feedback might be an important mecha-
nism to regulate star formation in galactic discs (Peters
et al., 2017).

Modeling photoionization and in particular HII regions
requires solving a very complex system of ionization bal-
ance equations for the various elements present in these
regions, which is only possible if strong assumptions are
made. The widely used code CLOUDY ascl:9910.001 (Fer-
land et al., 2017) for example assumes a simple 1D geom-
etry, but keeps track of a large number of elements and
ionization stages. When a real 3D geometry is necessary,
it is no longer feasible to keep track of so many elements,
and a selection has to be made, depending on the problem
at hand.

When the effect of ionizing radiation on the dynam-
ics of the ISM is studied, further assumptions need to be
made about how to deal with the coupling between radia-
tion transfer and hydrodynamics, to get a radiation hydro-
dynamics (RHD) scheme. Some methods treat the radia-
tion field as a fluid governed by diffusion equations (Kolb
et al., 2013; Rosdahl et al., 2013). These methods have the
advantage that they do not require extensive algorithmic
changes and are relatively efficient. However, they have
undesired side effects, like e.g. the absence of shadows
in optically thin regions, and the fact that extra assump-
tions need to be made about the propagation speed of the
radiation field to prevent the integration time step from

January 9, 2018



getting very small. Alternative methods use an approxi-
mate ray tracing scheme (Pawlik and Schaye, 2008; Bisbas
et al., 2009; Baczynski et al., 2015) which is more complex
to implement and preserves some directional information.
However, these schemes require careful fine tuning to make
sure the radiation field accurately covers the density struc-
ture, especially if the density structure is asymmetric or
clumpy.

A more accurate, albeit less efficient way to treat the
radiation field is provided by using Monte Carlo based
RHD codes like TORUS ascl:1404.006 (Harries, 2000) and
MOCASSIN ascl:1110.010 (Ercolano et al., 2005). These
codes have the advantage that they are also much more
flexible and easier to extend with extra physics, e.g. ex-
tra chemistry (Bisbas et al., 2015a). Furthermore, Monte
Carlo techniques are also widely used to model dust scat-
tering and absorption (Steinacker et al., 2013), making it
straightforward to include dust scattering in Monte Carlo
based RHD modeling.

In this work, we present our own Monte Carlo RHD
code called CMACIONIZE, that couples a basic finite vol-
ume hydrodynamics scheme with a Monte Carlo photoion-
ization code. Our code can use a variety of different grid
types to discretize the ISM, and can run with both a fixed
grid and a fully adaptive moving mesh. Apart from run-
ning as a RHD code, CMACIONIZE can also be run as a
pure Monte Carlo photoionization code, and can be used
to post-process density fields from other simulations.

Our code is written in modular C++ and is meant to
be both user-friendly and efficient by combining a well-
structured and documented design with an implementa-
tion that makes use of new features of modern C++11.
The code has a limited number of dependencies and can
be run in parallel using a hybrid OpenMP and MPI par-
allelization strategy. Some parts of the code are wrapped
into a Python library using Boost Python!. The photoion-
ization part of the code can also be used as an external C
or Fortran library, facilitating coupling our code to other
simulation codes.

This paper is structured as follows: in section 2 we
discuss the physics that has been implemented in CMA-
cloNiZE, and give a short overview of the Monte Carlo
photoionization technique and the finite volume hydrody-
namics scheme. In section 3 we describe the design con-
siderations that were used during the development of the
code, and detail their implementation. We conclude in
section 4 with the results of a number of benchmark tests
that are part of the public code repository and that show
its accuracy and performance.

2. Physics

The emission line spectrum of a star forming nebula is
determined by its thermal equilibrium, which is a steady-

Thttp://www.boost.org/doc/libs/release/libs/python/doc/
html/index.html

state equilibrium between heating through photoionization
by UV sources, and cooling by various atomic processes in
the nebula. Osterbrock and Ferland (2006) identify four
important sources of cooling:

1. Energy loss by recombination of hydrogen and he-
lium, i.e. the reverse of the photoionization process,

2. energy loss by bremsstrahlung emitted by free elec-
trons,

3. energy loss by collisionally excited line radiation from
some abundant metals, and

4. energy loss by collisionally excited line radiation from
hydrogen.

In order to compute photoionization and recombination
rates, we need to know the ionization structure of the gas
in the nebula, and the temperature of the nebula. Since
the temperature itself is the solution of the thermal equi-
librium, this can only be solved for iteratively.

The thermal and ionization equilibrium is also impor-
tant for the dynamics of the nebula: ionized regions have
more free particles and hence a higher specific energy than
neutral regions, so that photoionization effectively acts as
a heating term in the hydrodynamics of the gas. In order
to properly model this effect, combined radiation hydro-
dynamics (RHD) simulations are necessary.

CMACIONIZE can be run in two different modes: either
as a pure Monte-Carlo photoionization code that ray traces
the radiation of an ionizing UV radiation field through a
density field and self-consistently solves for the ionization
and temperature structure, or as a radiation hydrodynam-
ics code that uses the output of the photoionization code
as a heating source in a hydrodynamical simulation. The
former is essentially a completely rewritten version of the
photoionization code of Wood et al. (2004), while the latter
combines this code with a standard finite volume method
which is a simplified version of the algorithm implemented
in SHADOWFAX ascl:1605.003 (Vandenbroucke and De Ri-
jcke, 2016). We will summarize the most important phys-
ical ingredients of both methods below.

Note that in the current version of the code, we do not
include a treatment of non-ionizing radiation, nor do we
take into account dust scattering and the dynamical ef-
fect of radiation pressure on dust. The treatment of these
processes uses algorithms that are very similar to the ones
used for photoionisation, and it is straightforward to ex-
tend the code with these processes in the future.

2.1. Photoionization

As our initial research focusses on diffuse ionized gas
in star forming nebulae, we only model photoionization of
hydrogen and helium self-consistently, for UV radiation in
the energy range [13.6,54.4] eV, corresponding to the ion-
ization threshold for hydrogen and the second ionization
threshold for helium. As in Wood et al. (2004), we do
not trace double ionized helium, and we only care about
photons that are energetic enough to ionize hydrogen.



To model the various cooling mechanisms correctly, we
also need to know the ionization structure of a number of
coolants, i.e. CT, C*t+ N° Nt , N*+ 00 O+, Ot+, Net,
Net*, ST, St+ and ST (see 2.3). These are treated ap-
proximately, where we make the assumption that the num-
ber of free electrons released by photoionization of these
elements is neglible compared to the total number of free
electrons, which allows us to use a simplified ionization
balance equation.

This approximation only holds in regions that are suf-
ficiently ionized, as the total number of free electrons is
mainly determined by the ionization of hydrogen and he-
lium for realistic elemental abundances.

Note that Wood et al. (2004) did not include cooling
due to ST+, and does not mention the use of carbon cool-
ing rates (although they were used). However, we found
that not including these coolants leads to excessively high
temperatures in the Lexington benchmark tests (see 4.2).

2.1.1. Monte Carlo technique

The local photoionization rate depends on various fac-
tors, the most important of which are the position, direc-
tion and energy of the incoming ionizing radiation, and
the local ionization state. Due to the strong non-linearity
of the photoionization process, it is impossible to exactly
solve for the ionization balance except for a very limited
number of cases, so that approximate techniques are re-
quired.

As a first step, we discretize the density field of inter-
est on a geometrical grid structure consisting of a (large)
number of small cells. Each cell contains a compact subset
of the total physical region of interest and is bounded by
a discrete number of planar faces, which separate it from
neighbouring cells. Our grid can be a regular Cartesian
grid consisting of cubical cells, but can also be a hierar-
chical adaptive mesh refinement (AMR) grid (Saftly et al.,
2014), or an unstructured grid (Camps et al., 2013).

The radiation field is also split up into a (very large)
number of photon packets with a certain weight, which are
sampled using a Monte Carlo technique. Each packet rep-
resents a fraction of the total radiation field, and is emitted
by randomly sampling its properties (origin, travel direc-
tion and energy/wavelength) from underlying distribution
functions. The photon packet is then ray-traced through
the density grid by computing geometric path lengths un-
til a randomly sampled optical depth is reached, or the
photon packet leaves the simulation box. For each dis-
crete cell that lies in the path of the photon packet, we
keep track of the total path length covered by the pho-
ton packet within that cell, to get an approximation to
the photoionization integral I; xo_, x+ for photoionization
from ion X© to level Xt in that cell (Wood et al., 2004;

Osterbrock and Ferland, 2006):

> A J; (V'
B / %axum(vvdu’

X0 x+

Q Z
th; s Wijli,jO X0 X+ (V])’

Ii,XO—>XJr

where J;(v) is the mean intensity of radiation in the cell as
a function of frequency, vxo_, x+ is the threshold ioniza-
tion frequency for ionization of ion X°, o xo_, x+(v) is the
ionization cross section as a function of photon frequency,
@ is the total luminosity of all UV sources, V; the volume
of the cell, w; is the weight of the individual photon pack-
ets j that pass through the cell (with Wy = >, w; the
total weight of all packets), each of which covers a path
length I; ; through the cell, and h = 6.626 x 1073 J s is
Planck’s constant.

Note that the original code of Wood et al. (2004) as-
sumed equal weights for all photon packets. We general-
ized this to improve the sampling of low luminosity exter-
nal radiation fields.

To account for the diffuse radiation field caused by re-
combination of ionized hydrogen and helium, we perform
an extra sampling step when a photon packet has reached
the desired optical depth and is still within the simulation
box. We first randomly decide if the photon is absorbed
by hydrogen or helium, with the probability for absorption
by hydrogen given by (Wood et al., 2004)

N HOOHO »H+ (vj)
)
N HOOHO H+ (Vj) + 1 HeO OHe0 —sHe+ (Vj)

P, ;(H) =

where n; go and n; yeo are the number densities of neutral
hydrogen and neutral helium in the cell respectively.

Depending on the element that absorbed the photon,
there are various reemission channels, some of which give
rise to ionizing UV radiation:

e hydrogen Lyman continuum radiation,
e helium Lyman continuum radiation,

e 19.8 ¢V radiation from the resonant 235 — 115 tran-
sition in neutral helium,

e ionizing radiation for one of the two photons in the
helium two photon continuum,

e helium Lyman « radiation.

Each reemission channel has a specific probability associ-
ated with it, which will depend on the local temperature
in the grid cell (Wood et al., 2004). We use these probabil-
ities to randomly pick a channel. For each channel there
is an associated probability of actually producing an ion-
izing photon, and an associated spectrum for the resulting
reemitted radiation. We randomly decide if the photon is
reemitted in the ionizing part of the spectrum. If it is,
we sample a new random direction and optical depth for



the photon and repeat the ray-tracing step. If it is not,
the photon is assumed to be reemitted as non-ionizing line
continuum which escapes from the system, and it is ter-
minated.

As in Wood et al. (2004), we assume a medium that is
optically thick to Lyman alpha radiation, so that we do not
explicitly ray-trace helium Lyman « photons, but assume
that they are absorbed on the spot. We need to explicitly
take this into account as an extra term when solving the
ionization balance within the cell:

ni,HDIi,HOAH‘*' + b (HOTS)ni,eni,He+ QHe0 21 P

= Ny,eNj g+ ¥H+_HO (T3),

where geo o1 p is the recombination rate of the 21 P level of
neutral helium, ag+_,po(7T') is the recombination rate from
ionized to neutral hydrogen as a function of temperature,
and T; is the temperature in the cell.

N, is the electron density in the cell, which is approx-
imately given by

Nje = N g+ + 1 Het

if we neglect the free electrons released by ionized metals.

P;(Hors) is the probability of on the spot absorption of
helium Lyman « radiation, which is approximately given
by (Wood et al., 2004)

—1

0.77 f;
Pi(HOTS) — 1 + 7f,He0 ’
T; fi,HO
104 K

with f; go and f; yeo the neutral fractions of hydrogen and
helium in the cell, defined as

ni,XO

fi,xo = ————.
N xo0 +n; x+

For helium the ionization balance is simply given by
nz‘,HeUIz',}le(qu+ = Nj,e"j Het ®Het —HeO (T3).

Equations (2.1.1) and (2.1.1) are solved simultaneously
for a given input temperature T;. Once the ionization
state of hydrogen and helium is known, we can compute
the density of free electrons using equation (2.1.1). With
these densities, we can solve for the ionization state of the
metals, for which the ionization balance is generally given
by

n; xo0 Itot.,i,X"ﬂX* (T3) = N X+ Qo i, X +— X0 (T3),

with Tiot i xo—x+(13) and ooy s x+—x0(T5) the total ion-
ization and recombination rate in the cell.
The ionization rate is generally given by

Lot i xosx+(Ti) = I; xo_, x+
+ ;g lom, xoox+ (Th)

+ 1 gt Lo te, x0— x+ (T3),

where Io g xo_,x+(T) and I¢ ye xo_x+ (1) are the ion-
ization rates for ion X° through a charge transfer reaction
with ionized hydrogen or helium respectively, as a function
of temperature.

Likewise, the total recombination rate is given by

Qgot,i, x +—x0 (Ti) = nieax+x (1)
+ n; moae w, x+—x (i)
+ n; mo e we, x+—x (Ti),

with oo p x+-x(T) and ac pe, x+—x(T') charge transfer
recombination rates.

We will generally not include charge transfer ioniza-
tion rates for reactions involving ionized helium, and only
include charge transfer ionization rates for hydrogen and
charge transfer recombination rates for some of the metals.

2.1.2. Data

Spectra. We support a number of input spectra for the
ionizing radiation, ranging from single frequency spectra
that are used for benchmark tests, over black body spec-
tra, to realistic stellar atmosphere spectra from the models
of Hoffmann et al. (2003). For complex spectra, we pre-
compute the cumulative number distribution function of
ionizing photons for a discrete number of frequencies, and
then use linear interpolation on this table to sample ran-
dom frequencies at runtime.

We also support external radiation fields, like a redshift-
dependent cosmic UV background field which can be used
to model the ISM of high redshift galaxies. For this, we
use the spectra of Faucher-Giguere et al. (2009), as down-
loaded from their website.

Tonization cross sections. We use fits to the photoioniza-
tion cross sections of hydrogen, helium, and the various
coolants from Verner et al. (1996). These fits smooth out
over resonances, but have the advantage that they are rel-
atively cheap to compute at runtime.

Recombination rates. We use radiative recombination rate
fits of Verner and Ferland (1996). For the coolants, these
are supplemented with dielectronic recombination rate fits
of Nussbaumer and Storey (1983), Nussbaumer and Storey
(1987), Mazzotta et al. (1998), and Abdel-Naby et al.
(2012).

Charge transfer rates. We use the charge transfer ioniza-
tion and recombination rates for hydrogen from Kingdon
and Ferland (1996), and the helium charge transfer recom-
bination rates of Arnaud and Rothenflug (1985).

Alternative data. For some of the benchmark tests de-
scribed in section 4 we need simplified values for the pho-
toionization cross sections and radiative recombination rates.
To this end, we made sure that the rates can be easily
changed in our implementation, as part of the modular
design of our code (see 3.2.3).



2.2. Heating and cooling

When a photon packet is absorbed by hydrogen or he-
lium, an amount of energy equal to the excess w.r.t. the
ionization energy of that element is converted into heating
of the local gas. The total integrated heating H; xo_, x+
for a grid cell is given by (Wood et al., 2004)

o0
H; xo_,x+ = /
v

X0 x+

A J;(V
%UX‘)%XWV/)

h(V —vxo_x+)dV.

and is hence very similar to the ionization rate estimator,
and can be treated in the same way during our Monte
Carlo photon propagation scheme. As for the ionizing lu-
minosity, the optical depth for a cell depends on the tem-
perature and ionization state of the gas in that cell, so
that a self-consistent solution can only be obtained with
an iterative scheme.

For cooling by recombination of hydrogen and helium,
we use the recombination cooling rates of Black (1981).
The cooling rate due to bremsstrahlung from free electrons
is given by Osterbrock and Ferland (2006), where we use
the fits to the mean Gaunt factor given by Katz et al.
(1996).

2.3. Line cooling

Despite the low abundances of metals such as C, N, O,
Ne, and S in star forming nebulae, line emission from these
elements contributes signicantly to the radiative cooling,
as their low-lying energy levels can be easily excited through

collisions with free electrons (Osterbrock and Ferland, 2006).

To model this process, we need to keep track of the ioniza-
tion state of these coolants, and model their line emission.
The details of this treatment are explained below.

2.3.1. Mechanism and data
In general, the level population zx ; = % of the ith
energy level of an ion X with density nx is the solution of

(Osterbrock and Ferland, 2006)

Y wxneaxji+ Y wxjAx i

J>i i>i
= g fL'X,ineQX,ijJrg rx,iAxqj, (3)
j<i j<i

where gx ;; is the collisional excitation or deexcitation rate

from level j to level 7, Ax ;; is the radiative deexcitation

rate from level 7 to level j, and n. is the electron density.
The collisional deexcitation rate gx j; is given by

h? Tx(i,])
\/E(mee)% WX.j

dx,ji =

with &£ = 1.38 x 10723 J K~! Boltzmann’s constant, m. =
9.109 x 1073 kg the mass of an electron, Y x(i,5) the

velocity-averaged collision strength, and wx ; the statisti-
cal weight of the jth level of ion X. It is linked to the
collisional excitation rate gx ;; through the relation

),

joq . exp —XX,ij

(.(JXJ' X, kT ’

with Xxx,i; the energy difference between level ¢ and level
j-

4Xx,ij =

Velocity-averaged collision strengths, radiative recom-
bination rates, energy differences, and statistical weights
can be measured experimentally or modelled quantum me-
chanically. We use data from a large number of sources,
as detailed in Table 1.

The specific ions we use can be classified into two cat-
egories: ions with two low lying energy levels (NT1 and
Net), and ions with five low lying levels (CT, CTT, N,
N*t, 0, O, O+, Net*, ST and S*+). For the former,
we solve the system of two equations ((3) for i = 2, and
Tx1+ Tx,2 = 1) analytically, while for the latter we need
to solve the full set of five coupled linear equations.

2.83.2. New data fits

The velocity-averaged collision strengths used above
vary with temperature. To account for this fact, we fit-
ted a general curve of the form

TX(iaja T) = Tajj—i_l (bij + % + dij 10g(T)+
eij T (1+ (fij — 1)T9))

to all data, where T is the temperature (in K) and a;j, b;;,
cij, dij, €ij, fi; and g;; are fitting parameters. The general
form of this curve was inspired by (Burgess and Tully,
1992). It is worth noticing that there are no reliable data
for some of the fine structure levels of OF above 10,000 K,
so that we needed to extrapolate the low temperature data.
The same is true for NT+ above 40,000 K. For C** and
Net the data points are sparse, so the fits are less reliable.
For ST and ST the values of e, f and g were kept zero,
as this provided a better fit than when they were allowed
to vary.

The values of the fitting parameters are listed in Tables
A.9 - A.13, the corresponding fits and relative differences
between fit and data are shown in Figures A.15 - A.27.

2.4. Hydrodynamics

Hydrodynamical integration is performed using a finite
volume method (Toro, 2009) on a generally unstructured,
(co-)moving mesh (Springel, 2010). The Euler equations
of hydrodynamics in conservative form

— +V.F(U) =0, (4)

with



Table 1: Data values used for the line cooling computations of the
various coolants. The symbols in the table are explained below the
table.

ion A'B C D
Cct FF04 FF04 T08
ctt FF04 FF04 B85
N FF04 FF04 T00
Nt G97 G97 L94
N++ B92 G9s B92
o) G97 G97 B88, 703
ot FF04 FF04 K09
o+t G97 G97 L94
Net S94 K86 Go1
Net+ Go7 Go7 B94
St T10 T10 T10
S+ M82 M82 H12
gt++ M90 P95 S99

A energy levels

B statistical weights

C radiative recombination rates

D velocity-averaged collision strengths

B85 Berrington et al. (1985)
BS88 Berrington (1988)

B92 Blum and Pradhan (1992)
B94 Butler and Zeippen (1994)
FF04  Froese Fischer and Tachiev (2004)
GI7 Galavis et al. (1997)

G98 Galavis et al. (1998)

G01 Griffin et al. (2001)

H12 Hudson et al. (2012)

K86 Kaufman and Sugar (1986)
K09 Kisielius et al. (2009)

L94 Lennon and Burke (1994)
M82 Mendoza and Zeippen (1982)
M90 Martin et al. (1990)

P95 Pradhan (1995)

594 Saraph and Tully (1994)
S99 Saraph and Storey (1999)
T00 Tayal (2000)

T08 Tayal (2008)

T10 Tayal and Zatsarinny (2010)
703 Zatsarinny and Tayal (2003)

pu
pUT + PT

F{U) =
p (u—i— z |17|2) + Py

; ()

and an adiabatic equation of state P = (y — 1) pu, where p
is the mass density, ¥ the flow velocity, P the pressure, and
u the thermal energy per unit mass, are discretized on an
unstructured Voronoi mesh. Integration of the primitive
variables over the volume V; of each cell leads to a set
of conserved variables (mass m;, momentum p;, and total
energy E;) for each cell. Integrating the conservation law
(4) over the volume of the cell allows us to reduce the time
integration of these conserved quantities as a flux exchange
between the cell and its neighbouring cells:

d@; = o
T *ZFz‘inj» (6)
J

where ffij represents the oriented surface area of the geo-

—

metrical face between cell ¢ and cell j, F;; is an appropriate
estimate of the fluxes (5) at a representative location on
the face, and @); is the vector of conserved variables for
that cell.

To obtain appropriate fluxes, we use the values on both
sides of the face as input for an exact Riemann solver,
which gives the exact physical solution for the two state
problem defined by the variables at both sides up to a
desired precision. By sampling this analytic solution we
obtain new values for the primitive variables that can be
used to compute fluxes to be used in (6).

Note that our current implementation is only first or-
der in space and time. It is however very straightforward
to extend this to higher order by the introduction of ap-
propriate spatial gradients, see e.g. Vandenbroucke and
De Rijcke (2016); this will be implemented in future ver-
sions of the code. Our current implementation also does
not yet include external forces or self-gravity.

2.4.1. Moving mesh scheme

For the specific case of an unstructured Voronoi grid,
we can make the method Lagrangian by allowing the gen-
erators of the Voronoi grid to move in between time steps
of the integration scheme. To account for this movement,
we add correction terms to the flux expressions (5), as de-
tailed in (Springel, 2010; Hopkins, 2015; Vandenbroucke
and De Rijcke, 2016). Note that the hydrodynamical inte-
gration is completely independent of the movement of the
generators. If the generators do not move, the method is
Eulerian. If on the other hand the generator movement
is set to the local fluid velocity in the corresponding cell,
the method is fully Lagrangian. In the latter case, we
can solve the Riemann problem across the cell faces in the
rest frame of the faces, which leads to better accuracy in
the presence of large bulk velocities, and allows us to use
a larger integration time step than would be used in an
equivalent Eulerian scheme, as the time step only depends
on the relative velocity of the fluid w.r.t. the grid.



2.4.2. Radiation hydrodynamics

To couple the radiation to the hydrodynamics, an oper-
ator splitting method is used, whereby the photoionization
heating term is added after each step of the hydrodynam-
ics scheme, assuming photoionization equilibrium. The
current values of the density in each cell are converted
into number densities that are then used as input for the
photoionization code. The photoionization code computes
a self-consistent ionization structure for each cell, which
is then used to decide what the temperature of the cell
should be. The number of iterations and number of pho-
ton packets used in this step is a simulation parameter.
The resulting temperature is compared with the actual
hydrodynamical temperature of the cell, and the energy
difference is added to the cell as an energy source term.

In our current implementation, we do not subtract en-
ergy for cells that were ionized and become neutral again,
since this involves a careful treatment of the time step to
prevent negative energies. We use an almost isothermal
equation of state with an adiabatic index v = 1.0001, and
assume a two-temperature medium, whereby the temper-
ature in the neutral phase is assumed to be T,, = 100 K,
while the temperature in the ionized medium is assumed
to be T; = 10,000 K. For a cell with hydrogen neutral
fraction xy, the assumed average temperature is then

T =xyT, + (1 —.Z‘H)TZ

This approach is sufficient to reproduce a basic benchmark
expansion test (see 4.3). We could of course also get the
photoionization heating directly from the photoionization
step; this more general approach will be subject of future
work.

Note that it is possible to couple CMACIONIZE as an
external library to other hydrodynamics codes using a very
similar approach, see 3.3.

3. Code

The most important difference between CMACIONIZE
and the original photoionization code of Wood et al. (2004)
is a complete redesign of the structure of the code (accom-
panied by a migration from Fortran to C++11), including
a full in-line documentation of the code using Doxygen?
(the documentation for the latest stable version of the code
can be found on a dedicated webpage3). Below we outline
the main design considerations and detail how they are
implemented in the code.

3.1. Design considerations

3.1.1. User friendliness
The photoionization part of CMACIONIZE is primarily
focused on post-processing output from other simulation

%http://www.doxygen.org
Shttp://www-star.st-and.ac.uk/~bv7/CMacIonize_
documentation/

codes as part of a simulation analysis work flow. This
means that the code will be used by researchers that are
not necessarily very familiar with the details of the code,
but that still want to produce reproducible science prod-
ucts. To accommodate this, we aim to minimize the learn-
ing curve for using CMACIONIZE. In cases where writing
additional code is inevitable (like for example when read-
ing a new type of input file), we want to limit the effort
necessary to accomplish this: the new code should be lim-
ited to a single function or C++ class, and the user should
be able to write this code without worrying about the de-
tails of the photoionization algorithm.

3.1.2. Reproducibility

A properly designed computer algorithm should be de-
terministic, so that running the same simulation twice with
the same input and the same version of a code should pro-
duce exactly the same result, independent of the hardware
architecture. Parallelization and system specific optimiza-
tions might cause tiny changes in round off that could
cause minuscule changes in result between different runs
(especially in Monte Carlo algorithms), but even then a
simulation code should be very close to a unique mapping
from input data to an output solution. Reproducibility is
hence an inherent feature of computer simulations.

However, keeping track of input parameters and code
versions can be tedious, especially when simulations are
combined with the design of improved algorithms and code
changes are made. For this reason, we aim to provide
a robust system to log parameters and code versions, so
that all published CMACIONIZE results should be perfectly
reproducible.

3.1.3. Modularity

Complex algorithms combine a large number of com-
ponents that each have their specific complexities. How-
ever, most of these components are predominantly inde-
pendent of each other, and only interact with the other
components through narrowly defined interfaces. Isolat-
ing complex components into separate entities or modules
increases the readability of a code, and makes the code
more robust if combined with an appropriate unit testing
strategy. We will therefore aim to produce a modular code,
whereby separate components are identified and isolated
into separate code entities.

3.1.4. Scalability

Modern computing architecture is highly parallel, with
the computing power of a typical high performance com-
puter spread out over a large number of separate comput-
ing units or nodes that are interconnected through a high
speed network, and with each of these nodes in turn con-
sisting of up to 128 separate CPU cores that share a single
memory space. In order to efficiently use these machines,
it is crucial that an algorithm is designed with a parallel
mindset. We cannot think of the algorithm as a serial list
of instructions that are executed one by one, but instead



need to think of the tasks that need to be performed by
the algorithm, the data that is needed to perform these
tasks (and that might be shared with other tasks), and
the dependencies that govern which tasks can be executed
in parallel and which tasks are mutually exclusive due to
conflicts.

In the current version of CMACIONIZE, we aim to pro-

vide a reasonable scaling by distributing computations across

multiple cores on a single node, and across multiple nodes.
Our current parallelization strategy does not address the
need to distribute data across multiple nodes in order to ef-
ficiently use the available memory. This will be addressed
in future versions of the code.

3.2. Design implementation

3.2.1. User interface
For standard users that do not plan to add additional
code, the interaction with CMACIONIZE is limited to

e calling the command line program CMaclonize, and

e writing a parameter file that contains the parameters
for the simulation.

The command line program has a very limited set of op-
tions that control the number of shared memory parallel
threads used to run, and the mode in which to run (pho-
toionization only or RHD). The only other parameter to
the program is the name of the parameter file. An example
command line call to CMACIONIZE could like this:

./CMacIonize --params parameterfile.param \
--threads 8

This will run CMACIONIZE in the standard photoioniza-
tion mode using 8 shared memory parallel threads, and us-
ing the parameters provided in the file parameterfile.param.
The parameter file contains all information needed to
set up and run the simulation, and maps to the underlying
modular structure of the code (all parameters are linked
to a specific C++ class). It is a simple text file in YAML
format?, and a very basic example could look like this:

SimulationBox:
anchor: [-5. pc, -5. pc, -5. pcl
sides: [10. pc, 10. pc, 10. pcl
periodicity: [false, false, false]

DensityGrid:
type: Cartesian
number of cells: [64, 64, 64]
DensityFunction:
type: Homogeneous
density: 100. cm™-3
temperature: 8000. K

“http://yaml. org/

PhotonSourceDistribution:
type: SingleStar
position: [0. pc, 0. pc, 0. pc]
luminosity: 4.26e49 s™-1

PhotonSourceSpectrum:
type: Monochromatic
frequency: 13.6 eV

IonizationSimulation:
number of photons: 1le6
number of iterations: 20

This parameter file sets up a Stromgren test in a box of
10 pc x 10 pc x 10 pc containing gas with a density of
100 cm ™3 at a temperature of 8,000 K, with a star at the
centre with a total luminosity of 4.26 x 10% s~! and a
monochromatic spectrum with a frequency equivalent to a
photon of 13.6 eV. The simulation uses a Cartesian grid of
64 x 64 x 64 cells, and uses 20 iterations with 10° photon
packets for each iteration (see 4.1 for details of this test).

The example above illustrates how easy it is to read
and understand a parameter file. It also illustrates another
key feature of the code: the use of units. Internally, we
consistently use SI units throughout the code to avoid any
confusion about units. However, we also require the user to
specify units for all physical quantities that are used as an
input, so that the user does not need to worry about unit
conversions at all. We support a variety of different units,
including complex unit conversions (e.g. photon energy in
eV to photon frequency in Hz), and adding new units is
very straightforward.

Apart from supporting units, the parameter file also
supports various number formats and 3D vectors.

When the program is started, the parameter file is
parsed and translated into a corresponding simulation struc-
ture. Before the actual simulation starts, the actually used
parameters are written to a reference file. Most parame-
ters have default values and need not be specified in the
parameter file; when written to the reference file, the de-
fault values will be displayed, and the file will clearly state
that the default value was used. If a parameter is not used,
the reference file will mention this as well. For parameters
that have units, the reference file will contain the value in
SI units, as well as the original value.

If no parameter file is given, default values will be used
for all parameters (that correspond to a low resolution
version of the Stromgren benchmark test, see 4.1). In this
case it is possible to use the reference file as a first guess for
sensible parameter values, and iterate on it to construct an
actual useful parameter file. All available parameters are
also extensively documented in the Doxygen documenta-
tion of the corresponding classes.



3.2.2. Reproducibility
In order to guarantee reproducibility, we use a strategy
that consists of three pillars:

1. version control as a way to uniquely identify a spe-
cific code version,

2. parameter logging in output files as a way to keep
track of used parameters, and

3. unit testing to guarantee the same results across code
versions.

Version control. The code is stored in a public online Git
repository® to make it easier to keep track of the code his-
tory, and to facilitate collaboration on the code. Git keeps
track of the changes that are made to the code in between
so called commits, i.e. logged checkpoints of the code sta-
tus. Each commit has an associated key that uniquely
identifies it, and it is always possible to return to a spe-
cific version of the code using the appropriate commit key.

Moreover, Git also provides a command line tool called
git describe that can be used to check the current version
of the local copy of the repository that a user is using,
and that checks if the repository is dirty, i.e. contains
uncommitted code changes.

We have incorporated git describe into our code con-
figuration chain, so that the compiled code knows (a) what
the unique commit key of the current version is, and (b)
if the current code version is exactly equal to that code
version, or contains uncommitted changes. If the code
contains uncommitted changes, it will refuse to run any
simulation, so that the user is forced to commit changes
and make sure the code is identifiable before running sci-
entific simulations.

Logging. The output of any simulation consists of snap-
shots, i.e. dumps of specific quantities at some time dur-
ing the simulation. CMACIONIZE supports various types
of snapshot files, the default being the same HDF5 format
that is also used by GADGET2 ascl:0003.001, SWIFT®,
and SHADOWFAX.

In order to exactly reproduce a snapshot file, we need
to know

e what version of the code was used to generate it, and
e which parameters were used to run the code.

The former can be easily realised by storing the unique
commit key for the current code version in the snapshot
files. To guarantee the latter, we also store all parameters
in the snapshot files, as they were used. This corresponds
to the values that are part of the reference parameter file
(see 3.2.1). By also storing the parameters for which de-
fault values were used, we guarantee reproducibility across
different code versions, if at some point the default value

Shttps://github.com/bwvdnbro/CMacIonize
Shttps://gitlab.cosma.dur.ac.uk/swift/swiftsim

for a parameter were to change. The public version of the
code contains a Python script that can extract the param-
eter file that was used from a snapshot file in the default
HDF5 format.

For simulations that use input from external files, as
e.g. simulations that post-process the density field from
another simulation, we also need these external files in or-
der to reproduce the results. Since these files can be quite
large, storing them as part of the snapshot files is not an
option. In this case, we rely on the user using a conve-
nient method of keeping track of those files to guarantee
reproducibility.

Apart from the code version and the parameter values
we also log configuration flags and system specific informa-
tion. This is not strictly necessary in order to reproduce
simulation results, but might nonetheless be helpful e.g.
during debugging.

Unit testing. One of the key issues when developing a sim-
ulation code is making sure that the results are scientifi-
cally accurate, and that they stay accurate throughout the
further development of the code. Unit testing is a very
powerful tool to achieve this, especially when combined
with a good modular design (see 3.2.3).

A unit test is a small independent program that calls a
small part of the code with known input values and checks
its output against a known solution. If the output matches
the expected result, the test passes and we know that part
of the code behaves as expected.

When properly designed, a unit test covers all possible
paths through the code that is being tested, e.g. if the code
contains conditions that check for strange input values, the
test will call the code with strange input values and check
that these are handled correctly.

Unit tests were an integral part of the early develop-
ment process of CMACIONIZE, as all new code was tested
against reference values of the old code of Wood et al.
(2004). During the addition of new features that were not
part of the old code, we still tried to start from the unit
test as much as possible, which meant first thinking about
what the expected behaviour of a code component (func-
tion or class) should be, before actually implementing it.
The overhead this implies is quickly recovered by the ease
with which we can locate bugs in new code.

The current version of the code contains almost 70 sep-
arate unit tests, which are managed as part of our code
configuration and run using CTest, the CMake” unit test-
ing framework. Depending on the hardware and system
configuration, the tests take less than a minute to a few
minutes to complete, and can be run as part of the stan-
dard compilation process.

When new code is added to the stable version on the
Git repository, the new code is automatically compiled
with a number of different compilers on different systems

"https://cmake.org/



using the continuous integration environment Travis CI®,
and the unit tests are run. Code is only allowed to be
merged into the stable repository if it passes all the tests.
This way we ensure that new code never breaks or alters
old functionality, unless this is done on purpose (in which
case the corresponding unit test needs to be modified).

3.2.8. Object oriented design

To implement modularity in our code design, we use
C++ objects as the building blocks of the code. An object
has a limited number of responsibilities, and is as unaware
as possible of the rest of the code (unless the interaction of
various objects is the responsibility of the class). Most ob-
jects are covered by a corresponding unit test (see 3.2.2),
although the unit tests for some classes are grouped to-
gether if this makes more sense.

We use a number of different design patterns (Gamma
et al., 1995). Basic simulation components like the density
grid and the source distribution use inheritance combined
with a factory class to provide different interchangeable
implementations (e.g. the density grid can be a regular
Cartesian grid, an AMR mesh, or an unstructured Voronoi
grid). The density grid itself makes extensive use of iter-
ators to provide grid type unaware access to cells, while
most grid computations are performed using wisitors that
perform a single task for each cell of the grid.

The object oriented design is tightly interwoven with
the parameter file used as the user interface (see 3.2.1),
with objects mapping to specific blocks in the parameter
file (and the type keyword always referring to a factory
class that provides multiple implementations of a general
interface). Most objects have a so-called parameter file
constructor, which can create an object instance based on
the parameter values given in the parameter file, with pa-
rameters mapping directly to object properties.

3.2.4. Task based design

To provide inherent parallelism in our code, we think of
the actions that need to be performed by the algorithm in
terms of small tasks, that perform a limited set of actions
on a small part of the computational domain. By limiting
the amount of work done by a single task, we can improve
the load balancing between different parallel threads sig-
nificantly, while limiting the fraction of the computational
domain that is affected minimizes conflicts.

The photon traversal algorithm e.g. can be done inde-
pendently for small batches of photons. Each part of the
path of a photon is only a single cell, so that we only need
to worry about two threads accessing the same cell at the
same time to prevent conflicts. Similarly, the ionization
balance computation for different cells can be done com-
pletely independently, and so can the temperature balance
computation or even the cell initialization.

Shttps://travis-ci.org

10

In practice, our task based design is implemented us-
ing a number of interacting classes called Worker, Job,
and JobMarket. Job and JobMarket make use of compile
time polymorphism and are template interfaces, meaning
that these classes do not actually exist, but are abstract in-
terfaces that define common functionality for classes that
can be used as C++ template arguments for other classes.
This offers the same flexibility as run time polymorphism,
but without the computational overhead. A Worker is our
abstract representation of a thread, while a Job is the ab-
stract representation of a task that needs to be performed.
The JobMarket is responsible for spawning Job instances.
The Worker instances in turn are spawned by a WorkDis-
tributor, which is the only class that needs to know about
the underlying parallel environment that is used. Our cur-
rent implementation only supports OpenMP, but it would
be straightforward to replace this by e.g. a POSIX threads
or Intel Threading Building Blocks implementation.

The general workflow for a shared memory parallel run
is illustrated in Figure 1. When a parallel part of the ex-
ecution is started, a corresponding JobMarket implemen-
tation is created and passed on as a template argument to
the WorkDistributor. The WorkDistributor then gener-
ates a number of Worker instances that are run in paral-
lel, and that call the get_job() function of the JobMarket
instance to get actual Job instances that need to be exe-
cuted. The worker then calls the execute() method of the
Job instance to perform the task at hand. When the task
is finished, the Worker goes back to the JobMarket to get
the next Job, until no more tasks are available.

This paradigm nicely divides the responsibilities of the
parallelization process: the Job provides the actual task
at hand, the JobMarket regulates how tasks are divided
and hence controls the load balancing, while the WorkDis-
tributor is responsible for handling the underlying parallel
environment. Figure 2 and Figure 3 show how this works
for a photoionization simulation.

We need a locking mechanism to protect common vari-
ables in the shared memory domain, like e.g. cells in the
photon traversal algorithm or counter values within the
JobMarket. To this end, we provide our own Lock class
that is unaware of the underlying parallel environment.
We also experimented with using atomic data operations,
but found this to be slower than a locking mechanism in
most cases, predominantly because of the lack of hardware
support for floating point atomic operations, and because
the large number of variables updated per cell access in the
photon traversal algorithm reduces the impact of using an
expensive locking mechanism.

3.3. Library exposure

To improve the usability of CMACIONIZE, we also pro-
vide a library interface to the code, which can be used in
both C, C++ and Fortran2003. This library interface is in
all ways equivalent to the standard CMACIONIZE program
(the same IonizationSimulation class is used to run an
actual photoionization simulation), but uses special input



WorkDistributor do_in_parallel()

execute()

get_j Ob()

Figure 1: Schematic representation of a typical shared memory parallel run. A WorkDistributor spawns a number of parallel Worker objects
that get tasks from a template JobMarket object that acts as a taskpool. The different threads keep drawing tasks from the pool until all
tasks have been executed.

IonizationPhotonShootJobMarket get_job()

4L~

{number_of_photons_left > OJT{signal end of job queue

T
1
no '
1

job_fraction X number_of_photons_left

next_number_of_photons = }

number_of_photons_left =
number_of_photons_left — next_number_of_photons

B¢ IonizationPhotonShootJob

create new job with
next_number_of photons photon packets

Figure 2: JobMarket implementation that controls the load balancing of a parallel photoionization run. We create a new Job instance that
will propagate a fraction of the total number of photons left to propagate. This ensures that tasks gradually get smaller, which in turn
guarantees a minimal load imbalance, as the maximal load imbalance is the time it takes to execute a single task. Note that this function is
not thread safe and hence requires a locking mechanism to ensure safe access.

11



IonizationPhotonShootJob

3
Lfor each photon package}—» photon = get_random_photon()

Lset tau to random optical depth}i

DensityGrid

propagate(photon, tau)

inside(photon)

no

{terminate photon package}—

yes
Vo5 resubmit(photon) DiffuseReemissionHandler
no

Figure 3: Job implementation that propagates a number of photons through the grid. Note that the call to DensityGrid::propagate requires
a locking mechanism for thread safe cell access (the rest of the function is thread safe).

and output classes to directly obtain the density field from
another code and return the resulting ionization structure
to that code without the need to output anything to disk.

Our current library implementation has already suc-
cessfully been used to couple the code to the SPH code
PHANTOM ascl:1709.002.

The library needs to be initialized using a parameter
file that is identical to the one used for the actual CMA-
CIONIZE program, and provides a single function that takes
an array of positions, smoothing lengths and masses as
an input, and outputs an array of neutral hydrogen frac-
tions. Under the hood, it converts the positions, smooth-
ing lengths and masses into a density field that is mapped
onto a density grid, and then uses sources from the pa-
rameter file to illuminate this density field and compute
self-consistent neutral fractions. These neutral fractions
are then mapped back to the original SPH positions using
the provided smoothing lengths.

It should be fairly straightforward to use the same ap-
proach to couple the code to other types of hydrodynami-
cal codes, like AMR codes.

Some parts of the code are also wrapped into a Python
library. This library is not meant to run full photoioniza-
tion simulations like the C/C++/Fortran counterpart, but
instead can be used to facilitate the analysis of simulation
snapshots, by e.g. providing access to the line cooling data
used by the code.

12

3.4. Unstructured grid generation

An important feature of CMACIONIZE is the option to
use an unstructured Voronoi grid as the main grid struc-
ture for both the radiation transfer and the hydrodynam-
ics. Due to the poor scaling properties of the incremental
construction algorithm used in Vandenbroucke and De Ri-
jcke (2016), we decided to implement two new algorithms.
The first algorithm (which for historical reasons is called
the “old” Voronoi algorithm) is our own rewritten version
of the no longer actively supported voro++ library”. This
algorithm works in most cases. However, we found that in
some very specific degenerate cases, the voro++ algorithm
can produce the wrong Voronoi grid without crashing (as
can be confirmed graphically, or by computing the total
volume of all cells). This is due to the way the algorithm
handles degeneracies.

Since these degenerate cases do in fact happen when
starting a moving-mesh hydrodynamical simulation from
a regular initial grid, we also implemented a new, more
scalable version of the incremental construction algorithm
used in SHADOWFAX (called the “new” algorithm). The
current version of this grid construction algorithm is about
a factor 3 slower than the voro++ algorithm, but is com-
pletely robust to any degeneracies due to the usage of
arbitrary precision arithmetics. We plan to release this
algorithm as a standalone library that can be used as a
replacement for voro++ (Vandenbroucke et al., in prep.).

9http://math.1bl.gov/voro++/



In this work, we will use the old Voronoi algorithm
whenever an unstructured grid is used. This does not af-
fect the results we show in any way, as the Voronoi grid
for a set of points is a unique geometrical structure, and
is independent of the way it is computed.

4. Benchmarks

In order to verify that our code produces physically
accurate results in an efficient way, we run a number of
benchmark tests. Tests are grouped together into four
categories:

1. tests that verify the ionization algorithm,

2. tests that verify the combined ionization and tem-
perature computation algorithm,

3. tests that verify the radiation hydrodynamics algo-
rithms, and

4. tests that check the parallel efficiency of the code.

For the fourth category, we just reuse tests from the
three other categories. The initial conditions and analy-
sis scripts for all benchmark tests are part of the public
version of the code.

4.1. Strémgren sphere

To test the ionization algorithm, we run a simple test,
inspired by the work of Strémgren (1939), in which a sin-
gle ionizing source is at the centre of a box containing a
homogeneous density field consisting of only hydrogen. If
we assume that the source completely ionizes all hydro-
gen within a radius R, (the Stromgren radius), while the
hydrogen outside this region stays neutral, then the ioniza-
tion balance equation for the ionized region is (Osterbrock
and Ferland, 2006):

47
Q= ?REH%GH+»HU (1),

where we made the assumption that nyg = nyg+ within
the ionized region. If we also assume a fixed temperature
Ty, then we get an analytic expression for the constant
Stromgren radius:

Ry = ( 30 ) . (7)

dmngon+ no(To)

ol

If the ionized region itself emits ionizing radiation (through

the diffuse field), the ionization balance equation changes
to

Q1+ Pou(T) + Prn(T)* + ...)
4

= ?RE”%{QH+HH° (1),

where P, 1(T) is the reemission probability for ionizing
radiation.

Using 1 4+ z 4+ 2% 4+ ... = 1=, (7) now becomes:

R; B ((1 - P?H(TO)) 47”7’%{O‘H‘::)%H0(T0)>é - (®)

We will hence run two different versions of the test,
that test different parts of the algorithm:

1. a version that does not include the diffuse reemission
field and should reproduce (7), and

2. a version that includes diffuse radiation and should
produce a larger ionization region, as given by (8).

For both tests, we will use a cubic box of 10 x 10 x
10 pc containing gas with a hydrogen number density of
ng = 100 cm™3. At the centre of the box, we put a
single source with a luminosity of Q = 4.26 x 10%9 s71!
with a monochromatic spectrum that emits photons at
the ionization threshold energy for hydrogen, v = 13.6 eV.
We assume a constant photoionization cross section for
neutral hydrogen of opo_,y+ = 6.3 x 10718 cm~2, and
a constant radiative recombination rate ap+_ 10 (Tp) =
4% 10713 ¢cm3 s~!. The abundances, photoionization cross
sections and recombination rates for all other elements and
ions are set to zero.

We use a Cartesian density grid of 64 x 64 x 64 cells, and
use 10 photon packets for 20 iterations to get a converged
result.

4.1.1. No diffuse field

This test corresponds to the benchmark test strom-
gren, and the setup is as described above. The resulting
hydrogen neutral fraction as a function of radius is shown
in the top panel of Figure 4. The code accurately repro-
duces the expected Stromgren radius given by (7).

Figure 5 shows the evolution of the hydrogen neutral
fraction profile with the number of iterations used. Ini-
tially, the neutral fraction is set to a very low value every-
where in the box, so that the ionizing radiation can illumi-
nate a large region efficiently. After the first iterations of
the ionization state computation, the neutral fraction in
the outer regions quickly goes up until a converged result
is reached. The result is already well converged after 6
iterations.

4.1.2. Diffuse field

This test corresponds to the benchmark test strom-
gren_diffuse, and includes diffuse reemission with a ree-
mission probability P.u(Tp) = 0.364 (corresponding to
To = 8000 K). The resulting hydrogen neutral fraction
profile is shown in the bottom panel of Figure 4. As ex-
pected, the ionized region is larger in this case. Our code
still accurately reproduces the expected Stromgren radius
given by (8).



1.0 4 Stromgren radius H

I CMaclonize

0.0 1

100 4
1072 4
® 1014

10—6 4

H

7 (pc)

1.0 i-.--.--..--.--.--.

0.0 1 I

100

1072 4

TH

10744

Figure 4: Hydrogen neutral fraction as a function of radius for the
two versions of the Stromgren benchmark test. Top panels: ver-
sion without diffuse radiation, bottom panels: version with diffuse
radiation. The light purple dots show the simulation results for the
individual cells; the dark purple error bars show the same results in
50 radial bins, with the size of the error bars showing the scatter
within the bin. The orange dashed line is the corresponding analytic
Stromgren radius. For clarity, the results are shown on both a linear
and a logarithmic scale.

14

1.0 == Stromgren radius X II“ TTTW 18
& 0.5 1 )
0.0 4 I -.:IIII ——oree 12§
5
: . . , I :
5
100 4 THITE o 9 *,-‘E
N . ... £
d. . g
v Lo 6
. :!a:..... cessscecsscas
; o ...u:::..:l..........
104 1 | |
7 I 3
I
: . . | | 0
0 > T . :
7 (pc)

Figure 5: Hydrogen neutral fraction as a function of radius for the
benchmark test without diffuse field, for different iteration numbers.
For clarity, we only show the binned results, with the size of the error
bar representing the scatter within the bin. The black dashed line
is the analytic Stromgren radius. On the bottom panel we show the
same results on a logarithmic scale without the error bars.

Table 2: Abundances for helium and the different coolants in the
Lexington benchmark tests.

element abundance
He/H 0.1

C/H 2.2x 1074
N/H 4x107°
O/H 3.3x1074
Ne/H 5x 107°
S/H 9x 1076

4.2. Lezington benchmarks

To test the combined temperature and ionization cal-
culation for the full system including metals, we run two of
the benchmark tests that were the result of a 1995 work-
shop in Lexington and that are known as the Lexington
benchmarks (Ferland, 1995). The initial conditions for
these tests can be found in Péquignot et al. (2001), and
correspond to the HIT40 and HIT20 model in that work.

The tests consist of a uniform density box with a hy-
drogen number density ng = 100 cm ™3, in which a central
spherical region with radius R;, = 3 X 1016 m is evacu-
ated. In the centre of the evacuated region we place a sin-
gle stellar source with a luminosity Q = 10%° s=! for the
low temperature benchmark, and @ = 4.26 x 1047 s~! for
the high temperature benchmark, with a black body spec-
trum. The temperature Tgp of the black body spectrum
is also different for the two tests, with Tgg = 20,000 K for
the low temperature benchmark, and Tgg = 40,000 K for
the high temperature version. The abundances (relative
to hydrogen) of helium and the various coolants are set to
the values listed in Table 2.



To compare the test results, a number of quantities are
computed:

e The total HB luminosity, which is computed from
a power law fit to the data of Storey and Hummer
(1995), using the electron density and temperature
derived from the photoionization simulation.

The height of the Balmer Jump A(BC 3645), de-
fined as the jump in the Balmer continuum flux in a
synthetic spectrum between the flux at 3643 A and
3681 A. To obtain synthetic spectra, we use the
continuum emission coefficients for hydrogen and he-
lium from Brown and Mathews (1970). Note that
Péquignot et al. (2001) and other authors wrongly
quote this value in units of A, while the actual value
isin A

The inner temperature Tipner at the boundary of the
evacuated region.

e The average density weighted temperature (Ferland,
1995)
[ neng+TdV
T[ne =
(Tlnens+]) [ neng+dV
e The outer radius of the ionization region, defined
as the average radius of cells with hydrogen neutral
fractions in the range fyo € [0.1,0.2].
e The ratio of the density weighted ionized fractions

of hydrogen and helium, defined as

(fret) _ fnefHe+dV
(fu+) [ neng+dV

Apart from those, we also compute the line strengths
of a number of emission lines, relative to the total HS
luminosity. These lines are a subset of the emission lines
that are used for the metal line cooling (see 2.3), and their
strength is computed in the same way (summed over all
cells).

For both tests, we set up a box of size 6 x 6 x 6 pc,
using a Cartesian density grid of 64 x 64 x 64 cells. We use
10® photons and 20 iterations to get a converged result for
all coolants.

To set up the initial condition with a vacuum region in
the centre, we use a special implementation of the Density-
Function used to set up the density field, called BlockSyn-
taxDensityFunction. This implementation uses a very
simple geometrical block description of the initial condi-
tion, which is the same as used by the initial condition
generator of SHADOWFAX (Vandenbroucke and De Rijcke,
2016).

4.2.1. Low temperature benchmark

This corresponds to the lexingtonHII20 benchmark test,
and uses a black body spectrum with T = 20,000 K.
The resulting ionic fraction profiles for hydrogen, helium

15

9000 -

8500 -
8000
7500 A

00 te .

:!I!I

Temperature (K)

6500 - it T T ——— L 1 L
6000

5500

5000 T T T T
1.0 1.5 2.0 2.5 3.0

11000

10000 A

9000 -

Temperature (K)

8000 -

7000 A

6000 T T T T T T T T

Figure 7: Temperature as a function of radius for the Lexington
benchmarks. Top rows: low temperature benchmark, bottom rows:
high temperature benchmark. The error bars show the simulation
results, while the full line represents the equivalent CLOUDY result.



10724

Neutral fraction

10—3 .

1
1

H/H
He" /He

1074 T T T

100 4
="

lon fraction

N*t/N
PoONTN
N+ /N

1.5 2.0

7 (pc)

2.5

0
10 I HO/H

{  He/He

103 4

Neutral fraction

104 4

104+ ¢ NN
I NN
NN

—
fe=l
|
-
1

lon fraction

—
(=}
|
N}
L

H
o 4
S w
[~

Figure 6: Ionic fraction of hydrogen, helium, and various coolants as a function of radius, as indicated on the figures.
temperature benchmark, bottom rows: high temperature benchmark. The error bars show the simulation results, while the full lines are the

equivalent CLOUDY results.

lon fraction

lon fraction

lon fraction

lon fraction

1074 4

1075 4

i oo
I of/o

1076

100

Net /Ne
Ne™/Ne

2.0
7 (pc)

2.5

100 4

-

i
-
1

1072 4

100 4

10! 4

102 4

1073

16

lon fraction

lon fraction

lon fraction

lon fraction

10—3 p
1074 4
10-5 4 I st/s stt/s
I S++/S S++++/S
106 T T T -
1.0 1.5 2.0 2.5 3.0
7 (pc)

10° 4

1071 4

1072 4

1073 T T T T
1009 .
g 3%
—
102 o,
1044
10—6 -
I S+/S S+++/S
I S++/S S++++/S
108 T T T L
1 2 3 4 5
7 (pc)

Top rows: low



and several coolants are shown in the top panel of Fig-
ure 6, together with reference values from the 1D code
CrouDny. They follow the same trends as observed in e.g.
Wood et al. (2004), and overall agreement is pretty good.
The resulting temperature profile is shown in the top panel
of Figure 7. Our result follows the same overall trend as
the reference curve, but we systematically overestimate the
temperature in the ionized region. We do reproduce the
correct peak temperature at the ionization radius. This
difference can be attributed to the different cooling rates
we use compared to CLOUDY.

Table 3 lists the line strengths and comparison quanti-
ties used by Péquignot et al. (2001), and compares them
with the median values given in that paper. All values
have the expected order of magnitude, although some val-
ues deviate significantly. This can be attributed to a com-
bination of our overall higher temperature, and different
line emission rates.

4.2.2. High temperature benchmark

This corresponds to the lexingtonHII40 benchmark test,
and uses a black body spectrum with Tgg = 40,000 K.
The resulting ionic fraction profiles for hydrogen, helium
and several coolants are shown in the bottom panel of Fig-
ure 6, and they again follow the same trends as observed
in Wood et al. (2004). The resulting temperature profile
is shown in the bottom panel of Figure 7. We again notice
an overall higher temperature in most of the ionized region
(although we actually underestimate the central tempera-
ture), which again is due to the different data values used
by our code.

Table 4 lists the line strengths and comparison quanti-
ties. Note that we cannot compute the [C TT] 1335 A line
strength given in Péquignot et al. (2001), as this corre-
sponds to a transition outside the five lowest lying levels
of C*. Neither can we compute the [O IV] 25.9 pm line
strength, since O™ has an ionization potential that is
(just) higher than the 54.4 eV upper limit of our energy
interval, and we hence cannot track OTT*. The values
generally agree with the Péquignot et al. (2001) values,
although there are again significant differences, especially
for the sulphur lines.

4.8. STARBENCH benchmark

To test the coupling between the radiation transfer al-
gorithm and our hydrodynamical integration scheme, we
use the benchmark D-type expansion of an HII region
which is part of the STARBENCH project (Bisbas et al.,
2015b). The setup is similar to the Stromgren test intro-
duced above, but instead of assuming a static solution, we
allow the gas to react to the increased pressure due to the
higher temperature of the ionised region, and study the
expansion of the resulting ionized region over time.

We put a central source with a luminosity of 104 s—1
and a monochromatic spectrum that emits at 13.6 eV in a
box of 2.512 x 2.512 x 2.512 pc containing only hydrogen

17

with a density of 3113 cm™3. The hydrogen photoion-

ization cross section is set to 6.3 x 107'® cm?, while the
hydrogen recombination rate is set to 2.7 x 10713 cm? s~1.
We assume there is no diffuse radiation field.

We assume a very simple isothermal equation of state
(in practice this is realized by setting the adiabatic index
to v = 1.0001), and assume that the ionized region has
a constant temperature T; = 10,000 K, while the neutral
region has a constant temperature 7;, = 100 K.

The system is evolved in time until ¢ = 0.141 Myr, and
we keep track of the evolution of the ionization front.

There is no strict analytic solution for this problem,
but there are two reference solutions for the evolution of
the ionization front as a function of time. The first is the
so called Spitzer solution (Spitzer, 1978)

4
) 7
b

where ¢, ; is the (constant) sound speed in the ionized
region, and Ry is the Stromgren radius, as defined in (7).
The second solution is due to Hosokawa and Inutsuka

(2006):

and evolves at a somewhat faster rate. It is worth pointing
out that we do not require our simulation to reproduce any
one of these solutions, but we do require it to be close to
them.

As a measure of the ionization front radius, we will use
the average radius of cells with neutral fractions in the
range [0.8,0.9]. Due to the sharp transition from ionized
to neutral (as can be seen from Figure 9), using different
boundaries for this interval does not change the ionization
radius much, as long as we make sure we exclude noisy
cells with xg < 0.1 or g > 0.9.

We will run two versions of this test: a version that uses
a static Cartesian grid of 64 x 64 x 64 cells (the Eulerian so-
lution), and a version that uses a co-moving Voronoi mesh
with 10,000 grid generator positions sampled from a uni-
form distribution and regularized using Lloyd’s algorithm
for 10 iterations (the Lagrangian solution). For both, we
apply the photoionisation algorithm after every hydrody-
namics step, using 10 iterations. The Eulerian version uses
10% photon packets, while the Lagrangian version (with a
lower effective grid resolution) uses 10°. These values were
found to give a good trade-off between accuracy and com-
putational efficiency.

7 Csﬂ't

1R, 9)

Rsy(t) = R, (1 +

7

\/chﬂ't
4\ 3 R,

Rui(t) = Rs (1 + - (10)

4.3.1. Eulerian solution

This version corresponds to benchmark test starbench.
It evolves the system forward in time using 2,048 fixed size
time steps. The evolution of the ionization front is shown
in Figure 8, and very closely follows the Spitzer solution
(9). The left panels in Figure 9 show the density and
neutral fraction as a function of radius for ¢ = 0.0987 Myr.



Table 3: Line strengths and comparison quantities for the low temperature Lexington benchmark test. P2001 denotes the median value as
given in Péquignot et al. (2001).

Quantity CMACcIONIZE value P2001 value
H/3 luminosity 4.81 x 105 erg s~ 1 4.89 x 107% erg s~ 1
A(BC 3645) 544 x 1073 A~ 5.56 x 103 A~
Tinner 7052 K 6789 K
(T[neng+]) 6843 K 6663 K
Rout 8.83 x 10 m 8.89 x 106 m
(fre+)/{fur) 0.047 0.049

Line CMACIONIZE line strength  P2001 line strength
[C 1I] 2325 A multiplet 0.066 0.047

[N I1] 122 pm 0.068 0.071

[N I1] 6584 A and 6548 A 0.845 0.803

[N I1] 5755 A 0.0029 0.0029

[N II1] 57.3 um 0.0030 0.0031

[0 1] 6300 A and 6363 A 0.0052 0.0060

[O T1] 7320 A and 7330 A 0.0103 0.0087

[0 11) 3726 A and 3729 A 1.33 1.10

[O TI] 51.8 pum 0.0013 0.0012

[O TII] 88.3 um 0.0016 0.0014

[O TI1) 5007 A and 4959 A 0.0018 0.0015

[Ne IT] 12.8 ym 0.297 0.271
[SII] 6716 A and 6731 A 0.459 0.492

[S T1) 4068 A and 4076 A 0.014 0.017

[S TI1] 18.7 pm 0.333 0.420

S TI1] 33.6 um 0.558 0.750

[S T11] 9532 A and 9069 A 0.479 0.525

18



Table 4: Line strengths and comparison quantities for the high temperature Lexington benchmark test. P2001 denotes the median value as
given in Péquignot et al. (2001).

Quantity CMACIONIZE value P2001 value
HpA3 luminosity 2.01 x 107 erg s~ 1 2.05 x 10°7 erg s~ !
A(BC 3645) 499 x 103 A~ 497 x 1073 A~
Tinner 7410 K 7663 K
(T[neng+]) 8127 K 8030 K
Rout 1.44 x 10Y" m 1.46 x 101" m
(fae+t)/{fu+) 0.784 0.770
Line CMACIONIZE line strength  P2001 line strength
[He 1] 5876 A 0.116 0.116

[C 0] 2325 A multiplet 0.184 0.140

[C TIT] 1907 A and 1909 A 0.073 0.071

[N I1] 122 pm 0.029 0.033

[N I1] 6584 A and 6548 A 0.712 0.725

[N I1] 5755 A 0.0056 0.0052

[N II] 57.3 pum 0.304 0.297

[0 1] 6300 A and 6363 A 0.0091 0.0087

[O T1] 7320 A and 7330 A 0.031 0.030

[O 11) 3726 A and 3729 A 2.19 2.12

[O II1] 51.8 ym 1.21 1.06

[O TI1] 88.3 ym 1.43 1.23

[O 1IT] 5007 A and 4959 A 2.46 2.20

[O TI1] 4363 A 0.0043 0.0040
[Ne IT] 12.8 ym 0.180 0.194

[Ne II1] 15.5 um 0.326 0.350

[Ne TIT] 3869 A and 3968 A 0.088 0.086
[STI] 6716 A and 6731 A 0.129 0.153

[S T1] 4068 A and 4076 A 0.0060 0.0090

[S I11] 18.7 pm 0.480 0.580

[S I11] 33.6 ym 0.772 0.936

[S I11) 9532 A and 9069 A 0.989 1.23

[S TV] 10.5 pm 0.589 0.330

19



x10~20

Eulerian

Lagrangian

2.0 1

1.5 A

p (g cm=3)

1.0 1

0.5 1

N

0.0 =

t

Rsp(t)
RH1<t)

CMACIONIZE

o

== Rsp()
RHI(t)

! CMaclonize

1.2

1.0 A

0.8

0.6 1

TH

0.4 1

0.2 1

o oy ——

0.0 1

—0.2 4=

[al

0.0

0.5

10
7 (pc)

1.5

2.0

0.0

10
r (pc)

1.5

2.0

Figure 9: Density (top) and neutral fraction (bottom) as a function of radius for the STARBENCH benchmark test at ¢ = 0.0987 Myr. Left:
Eulerian result, right: Lagrangian result. The orange dashed lines are the reference radii, the purple error bars are the simulation results.

20



1.4 4
~
1.2 A
1.0 A
™
£
= 081
=
— Rsp(t)
0.6 1 R (?)
® STARBENCH 1D
Ve STARBENCH 3D
0.4 1 / ®  CMacIonize Eulerian
/” CMAcIONIZE Lagrangian
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
t (Myr)

Figure 8: Position of the ionization front as a function of time for the
STARBENCH benchmark. The full orange lines show the reference
evolution curves, the purple dots are the simulation results. The
orange circles show the average 1D and 3D results from Bisbas et al.
(2015b).

4.8.2. Lagrangian solution

This version corresponds to benchmark test starbench_-
voronoi. It evolves the system forward in time using only
256 fixed size time steps (since the average cell size is larger
in this case). The evolution of the ionization front is again
shown in Figure 8. This time, the ionization front first fol-
lows the Hosokawa-Inutsuka solution (10), and then slows
down to the Spitzer solution (9). The density and neutral
fraction profiles are shown in the right panels of Figure 9.

4.4. Parallel efficiency

As mentioned in 3.2.4, we have made most of our algo-
rithm inherently parallel by designing it in terms of small
tasks. In this subsection, we will illustrate how this affects
the parallel scaling of the code. Since different modes of
the code use different parts of the algorithm, we will rerun
all of the benchmarks tests introduced above with different
numbers of shared memory threads and distributed mem-
ory processes.

For all runs, we use a single node of our local high
performance computing cluster Kennedy. This node has a
2.10 GHz Intel Xeon E5-2683 v4 processor with 16 phys-
ical cores, hyper-threaded to run 32 threads in parallel.
Note that because of the hyper-threading, we do not ex-
pect perfect scaling if more than 16 cores are used, since
then different threads will be competing for resources.

We will quantify the scaling through the speed up S(n)
of the algorithm as a function of the number of computing
units n. It is given by

21

where t(n) is the total runtime of the algorithm when using
n computing units. For a hypothetical code that scales
perfectly, the speed up is simply given by Sp(n) = n.

In practice, there are a number of important factors
that can affect the parallel scaling, and cause S(n) to lie
below S, (n):

e The existence of serial parts of the code that are
only executed by one computing unit while the other
computing units are idle, or that are executed by all
computing units (and hence duplicate work). These
are located in parts of the algorithm that are not par-
allel. If ¢5(n) and t,(n) are respectively the runtime
of the serial and the parallel part of the code when
using n computing units, then the theoretical maxi-
mum speed up is always lower than S,(n) (assuming

ty(n) = 21):
)n

The overhead caused by running the algorithm in
parallel. This overhead can be caused by extra code
that needs to be executed as part of the paralleliza-
tion strategy, or by delays caused by different com-
puting units fighting over hardware access. Over-
head will cause t, ,(n) > #, ie. tpo(n) = t”nﬂ +
to(n) (with ¢,(1) 0). If the overhead is paral-
lel, it is shared among the various computing units
(to(n) = t"TC) We can determine the constant from
the 2 computing units measurement, and the speed
up including overhead is
) n

(

If on the other hand the overhead is serial, it is con-
stant per computing unit ({,(n) = t,.), and the
speed up is given by

ts(1) +tp(1)
nto(1) + (1)

. =

ts(1) + tp(1)
nts(1) + 2t, o(2)

Spﬁs+op (n)

Sp,s+os (n) =

(

The occurrence of load imbalances between different
computing units that cause some computing units to
sit idle while they are waiting for other computing
units to finish a task. While load imbalances affect
the scaling in the same way as serial parts of the
code, we cannot directly measure them, and treat
them in the same way as the overhead.

(1) 1) )
nts(1) + ntp,o(2) + (1 - %) tp(1) -

For this version of CMACIONIZE, we made the deci-
sion to only parallelize those parts of the algorithm that
would lead to the most significant speed up, i.e. the pho-
ton traversal algorithm and the cell based computations.
This means that there is still a significant fraction of serial



code left in the algorithm, which we will address in future
versions of the code. This will limit the expected scaling
behaviour of the code, especially in simulations with small
grid sizes and small photon packet numbers.

Since the serial version of the code uses the same task
based strategy as the shared memory parallel version, the
latter has no code based overhead (unless the code is con-
figured without OpenMP, in which case the OpenMP calls
will be absent). The only overhead will be caused by hard-
ware concurrency issues: since different threads might at-
tempt to write to the same grid cell during the photon
traversal step, we need to lock each cell upon access. If
another thread already obtained access to the cell, the
thread trying to acquire the lock will sit idle until that cell
becomes available, causing a small overhead.

The distributed memory parallel version of the code
has a much larger code based overhead, as it requires com-
munication between the different parallel processes which
is completely absent from the serial version. The overhead
is particularly large in our code, as we made the decision to
store variables per cell rather than per variable type, which
means we need to repack variables into separate communi-
cation buffers before we can send them to another process.
We plan to address this issue as part of a future distributed
memory parallel version that includes a domain decompo-
sition to distribute the grid across multiple processes. We
hence do not expect very good distributed memory scaling
for our current version.

The task based shared memory parallelization strategy
we use automatically takes care of the load balancing on
a single node, as different threads get tasks from a shared
task pool. The time a single thread will need to wait can-
not be longer than the longest time it takes to finish a
single task, so we can control the former by adapting the
size of the latter. When a JobMarket (see 3.2.4) starts
spawning tasks of a specific type, it usually starts with
reasonably large task sizes, and then gradually makes the
tasks smaller, until some lower limit is reached. This is il-
lustrated in Figure 12. Using large initial task sizes limits
the overhead caused by calls to the JobMarket, while the
lower size limit sets the maximum load imbalance between
different threads.

We do not perform any specific load balancing between
distributed memory parallel processes, and simply try to
assign equal photon numbers and cell numbers to each
process when executing a step in parallel. A better load
balancing scheme will be part of the future domain decom-
posed distributed memory algorithm.

Below, we will give the scaling results for the various
benchmark tests. We will focus on shared memory paral-
lelization for all tests, and only show distributed memory
parallelization scaling for the Stromgren benchmark, as we
still plan to change our distributed memory parallelization
strategy in future versions of the code.

4.4.1. Photoionization only

22

Table 5: Timing information for the shared memory scaling run of
the Stromgren benchmark test (without diffuse field) on a system
with 32 available cores.

)6 L0 6 ) ()
1 158.457 1.764 0.000
2 107.071 1.674 26.961
3 70.670 1.577 16.675
4 56.178 1.644 15.241
5 44.539 1.726 11.437
6 37.249 1.683 9.370
7 33.128 1.623 8.980
8 29.450 2.032 8.100
9 26.531 1.628 7.357
10 25.540 1.743 8.107
11 22.625 1.817 6.616
12 20.642 1.676 5.821
13 19.453 1.679 5.636
14  18.350 1.732 5.394
15  17.511 1.718 5.301
16  16.526 1.674 4.969
17 15.924 1.768 4.943
18 15.074 1.740 4.605
19  14.758 1.783 4.747
20 14.081 1.758 4.483
21  13.663 1.696 4.438
22 13.197 1.606 4.311
23 12.743 1.555 4.167
24 12.644 1.684 4.351
25 12.328 1.639 4.297
26 12.274 1.662 4.484
27  12.241 1.691 4.674
28 12.066 1.701 4.706
29 12.042 1.702 4.875
30 12.336 1.814 5.349
31 12.319 1.697 5.501
32 12.592 2.006 5.932




— Sp(n)
30 4 n(
Sp.s(n)
Sp,s+op(m)
259 === Spstos(n)
e CMACIONIZE speed up
20 1
E)/ 15 -
ge0®®0% %00,
10 1
e
i
.;‘
0 : ! T T T T
0 5 10 15 20 25 30

Figure 10: Speed up as a function of number of shared memory
parallel threads for the Stréomgren benchmark test (without diffuse
field). The full purple line shows the theoretical perfect speed up,
the dashed purple line is the perfect speed up taking into account
the serial part of the code, as measured from the 1 thread run. The
purple dots are the actual code results. In orange we show the speed
up curves for parallel and serial overhead as estimated from the 2
thread run.

Shared memory scaling. Table 5 and Figure 10 show the
shared memory scaling measurements for the default ver-
sion of the Stromgren benchmark test (without diffuse
field). It is immediately obvious that there is a large over-
head in the parallel runs. Comparing the speed up with
the two speed up curves including overhead, we conclude
that this overhead is parallel, and hence shared among the
threads.

The most likely cause of the constant overhead is the
locking mechanism, since the number of times a lock is
used depends on the number of visited cells and is hence
constant for a given simulation. In the serial run, no locks
need to be set, and there is almost no overhead when lock-
ing and unlocking a cell. As soon as more than 1 thread is
used, locking is necessary and the constant overhead will
be added to the simulation time.

If we compare the scaling to Sp syop(n), the paral-
lel overhead scaling curve, we see good scaling up to 20
threads. After that, scaling decreases significantly. This
is expected, as the 32 threads have to compete for the 16
available physical cores.

Distributed memory scaling. Table 6 and Figure 11 show
the distributed memory scaling measurements for the de-
fault version of the Strémgren benchmark test (without
diffuse field). Again there is a large overhead, but this
time it is a serial overhead that is almost constant per
process. This overhead is due to the repacking and com-
munication, and due to load imbalances. Although there
is a speed up and hence some gain from using multiple
processes, the parallel scaling is poor.

23

Table 6: Timing information for the distributed memory scaling run
of the Stromgren benchmark test (without diffuse field) on a system

with 32 available cores.

)6 L0 6 ) ()
1 160.613 1.708 0.000
2 108.900 2.192 27.740
3 86.124 1.744 31.448
4 73.623 1.657 32.189
5 66.784 1.732 33.295
6 62.263 1.841 34.071
7 60.972 2.580 36.563
8 56.100 2.048 34.529
9 55.613 2.133 36.249
10 54.367 2.665 36.769
11 56.128 2.949 39.974
12 52.518 3.297 37.568
13 54.639 1.970 40.708
14  53.979 4.033 40.921
15  51.954 3.197 39.653
16  50.357 2.745 38.718
17  50.973 2.532 39.918
18  49.690 2.353 39.154
19  49.313 2.177 39.242
20  49.338 2.310 39.685
21 48.730 3.318 39.455
22 48.250 3.046 39.319
23  46.816 2.259 38.199
24 47.624 2.747 39.295
25 47.438 2.419 39.374
26 47.331 3.552 39.511
27  46.753 2.846 39.160
28  45.965 2.721 38.582
29  45.232 2.563 38.045
30 46.483 2.605 39.478
31 44.717 2.662 37.883
32  44.706 3.822 38.032




lonization computation job

Photon traversal job

oo NI EEEEEEEEERRRRRE

ove 2N N N A A A O

v N I A O

ore D NN O Y D O O O O
0 10 20 30 40

thread 3
thread 2
thread 1

thread 0

thread 3
thread 2
thread 1
thread 0
4.05 4.10 4.15 4.20 4.25 4.30
time (s)

Figure 12: Time line of a shared memory parallel run, showing the various tasks being executed by different threads. Top: total time line,
middle: zoom on the first photoionization iteration, showing the large serial part at the start of the simulation and in between subsequent
iterations, bottom: zoom on the end of the first iteration, showing the small load imbalance between the various threads at the end of the
different task categories.

24



— Sp(n)
30 4 »(
Sp,s(n)
Sp,s+op(1)
259 -=- Sp,stos(1)
e CMACIONIZE speed up
20 1
E)/ 15 -
10 1
o
",_'.,,—rr::'-o-o—o_:ooooooooooooooooo.oo
L 4
0 ; : , . . .
0 5 10 15 20 25 30

n

Figure 11: Speed up as a function of number of distributed memory
parallel processes for the Stromgren benchmark test (without diffuse
field). The full purple line shows the theoretical perfect speed up,
the dashed purple line is the perfect speed up taking into account
the serial part of the code, as measured from the 1 process run. The
purple dots are the actual code results. In orange we show the speed
up curves for parallel and serial overhead as estimated from the 2
processes run.

Time line. Figure 12 shows a time line of the Stromgren
benchmark test, run on 4 shared memory threads on the
same node. The different coloured bars represent differ-
ent tasks being executed, while the whitespace represents
serial parts of the code, or parts where the threads are ef-
fectively waiting until all threads finished a specific type of
jobs. Overall, the task based parallelism works well to re-
duce load imbalances between different threads. However,
there are still some serial parts of the code that limit the
scalability. This graph also does not show the time threads
spend waiting to acquire locked resources, which can affect
the summed total runtime of the photon traversal task.

4.4.2. Cooling and heating

Table 7 and Figure 13 show the shared memory scaling
measurements for the default high temperature Lexington
benchmark test. As in the Strémgren run, there is a con-
siderable overhead due to the locking mechanism, but since
we do a lot more work, this overhead is less noticeable.
Overall, the code scales well up to 20 threads.

4.4.8. Radiation hydrodynamics

Table 8 and Figure 14 show the shared memory scaling
measurements for a short (10 time step) version of the
default STARBENCH benchmark test. In this case, there
is a significant serial fraction, and a considerable amount
of overhead as well. The overhead is parallel at first, but
switches to serial for high thread number. This is likely
due to hardware issues, as the hydrodynamical integration
scheme is more computation bound, and hence does not

25

Table 7: Timing information for the shared memory scaling run of
the high temperature Lextington benchmark test on a system with
32 available cores.

)6 L0 6 ) ()
1 383.991 2.050 0.000
2 206.586 1.694 13.566
3 137.661 1.552 8.297
4 105.118 1.635 7.583
5 83.918 1.710 5.480
6 70.396 1.666 4.689
7 60.710 1.674 4.097
8 53.373 1.716 3.580
9 47.803 1.756 3.315
10 43.367 1.830 3.123
11 39.631 1.819 2.859
12 36.558 1.775 2.680
13 33.864 1.753 2.434
14  31.836 1.678 2.505
15  29.818 1.722 2.305
16 28.278 1.772 2.357
17 26.602 1.813 2.085
18 25.422 1.976 2.153
19 24.243 1.863 2.091
20  23.183 1.900 2.036
21 22.158 1.745 1.920
22 21.354 1.766 1.943
23 20.804 1.693 2.148
24 20.312 1.645 2.348
25  19.954 1.737 2.626
26 19.630 1.726 2.890
27 19.125 1.598 2.929
28 18.883 1.711 3.192
29 18.620 1.752 3.400
30 18.380 1.778 3.599
31  18.363 2.031 3.992
32  18.503 1.792 4.517




Sp(n
ol ()
Sp,s(n)
Sp,stop(n)
259 -~ SPW‘FU&(")
e CMACIONIZE speed up
o0 o
20 A Ve o0
=
Y 154
w{ L T
5 -
..
v
0 T T T T T T
0 5 10 15 20 25 30

Figure 13: Speed up as a function of number of shared memory
parallel threads for the high temperature Lexington benchmark. The
full purple line shows the theoretical perfect speed up, the dashed
purple line is the perfect speed up taking into account the serial part
of the code, as measured from the 1 thread run. The purple dots are
the actual code results. In orange we show the speed up curves for
parallel and serial overhead as estimated from the 2 thread run.

Sp(n
- ()
Sp.s(n)
Spstop()
259 === Sp.stos (n)
®  CMACIONIZE speed up
20 1
@ 154
10 1
5 T A - eqeeee0eee0e o0 o000
"
0 T T T T T T
0 5 10 15 20 25 30

Figure 14: Speed up as a function of number of shared memory
parallel threads for the STARBENCH benchmark. The full purple
line shows the theoretical perfect speed up, the dashed purple line is
the perfect speed up taking into account the serial part of the code,
as measured from the 1 thread run. The purple dots are the actual
code results. In orange we show the speed up curves for parallel and
serial overhead as estimated from the 2 thread run.

26

Table 8: Timing information for the shared memory scaling run of
the STARBENCH benchmark test on a system with 32 available
cores.

n_tn) (s) ts(n) (s) to(n) (s)
1 266.779 7.688 0.000

2 180.832 6.798 43.598
3 127.426 7.062 33.374
4 103.211 6.752 30.750
5  86.684 6.761 27.178
6  77.835 6.742 26.965
7 70.042 7.042 25.341
8  63.489 6.756 23.415
9 61477 7.031 25.001
10 61.021 6.711 27.424
11 59.448 6.948 28.206
12 58.676 6.677 29.397
13 58.356 7.043 30.738
14 58.028 6.808 31.833
15 58.679 6.795 33.719
16 57.233 6.716 33.352
17 57.437 6.774 34.508
18 57.136 7.279 35.054
19 59.106 6.672 37.782
20 57.044 6.697 36.402
21 56.868 6.768 36.843
22 57.060 6.920 37.595
23 58.660 7.086 39.707
24 59.691 6.924 41.207
25 56.175 6.936 38.124
26 58.387 6.700 40.734
27 57.452 6.989 40.168
28  58.521 6.748 41.580
29 59.500 6.834 42.878
30 59.405 7.067 43.080
31 58.506 7.201 42.460
32 59.636 7.227 43.851




benefit from core hyper threading. Overall, there is still a
lot of room for improvement of the scalability.

5. Conclusion

We presented the public Monte Carlo photoionization
and moving-mesh RHD code CMACIONIZE, highlighted
the implemented physics, and the most important design
considerations during code development. We illustrated
the usage and performance of the code with a number
of relevant benchmark tests, and showed that it produces
accurate and reproducable scientific results.

This work accompanies the first official release of the
code (CMACIONIZE 1.0), and describes the code as it is
for this version. A number of important improvements to
the code are already on the way:

e implementation of a second order hydrodynamics solver,

e implementation of a distributed memory domain de-
composition, using a scheme similar to Harries (2015),
which would enable us to overcome current memory
limitations that make it impossible to run large grids,

optimization and full implementation of an alterna-
tive Voronoi grid construction algorithm (Vanden-
broucke et al., in prep.), and

implementation of more extensive atomic data using
the STOUT database (Lykins et al., 2015).

These will be part of future code releases.

Acknowledgements

We want to thank the anonymous referee for a positive
and constructive report that helped clarify some key points
in the paper. We acknowledge support from STFC grant
ST/M001296/1. We would like to thank Maya Petkova
for trying out the code and coupling it to PHANTOM,
Daniel Hanaway for suffering through the complications of
trying to get the code to work under Windows, and Diego
Gongalves and Nina Sartorio for useful discussions about
the coupling between radiation and hydrodynamics. Many
thanks as well to Pedro Gonnet and Matthieu Schaller for
their constructive input about task based parallelism; the
latter also for advocating the use of a linear scale in scaling
plots.

References

Abdel-Naby, S. A., Nikoli¢, D., Gorczyca, T. W., Korista, K. T.,
Badnell, N. R., Jan. 2012. Dielectronic recombination data for
dynamic finite-density plasmas. XIV. The aluminum isoelectronic
sequence. Astron. Astrophys. 537, A40.

Alvarez, M. A., Busha, M., Abel, T., Wechsler, R. H., Oct. 2009.
Connecting Reionization to the Local Universe. Astrophys. J. L.
703, L167-L171.

27

Arnaud, M., Rothenflug, R., Jun. 1985. An updated evaluation of
recombination and ionization rates. Astron. Astrophys., Suppl.
Ser. 60, 425-457.

Baczynski, C., Glover, S. C. O., Klessen, R. S., Nov. 2015. FERVENT:
chemistry-coupled, ionizing and non-ionizing radiative feedback
in hydrodynamical simulations. Mon. Not. R. Astron. Soc. 454,
380-411.

Barnes, J. E., Wood, K., Hill, A. S., Haffner, L. M., Jun. 2014.
Photoionization and heating of a supernova-driven turbulent in-
terstellar medium. Mon. Not. R. Astron. Soc. 440, 3027-3035.

Becker, R. H., Fan, X., White, R. L., Strauss, M. A., Narayanan,
V. K., Lupton, R. H.;, Gunn, J. E., Annis, J., Bahcall, N. A.,
Brinkmann, J., Connolly, A. J., Csabai, I., Czarapata, P. C., Doi,
M., Heckman, T. M., Hennessy, G. S., Ivezi¢, Z., Knapp, G. R.,
Lamb, D. Q., McKay, T. A., Munn, J. A., Nash, T., Nichol, R.,
Pier, J. R., Richards, G. T., Schneider, D. P., Stoughton, C.,
Szalay, A. S., Thakar, A. R., York, D. G., Dec. 2001. Evidence
for Reionization at z76: Detection of a Gunn-Peterson Trough in
a z=6.28 Quasar. Astron. J. 122, 2850-2857.

Benitez-Llambay, A., Navarro, J. F., Abadi, M. G., Gottléber, S.,
Yepes, G., Hoffman, Y., Steinmetz, M., Jul. 2015. The imprint
of reionization on the star formation histories of dwarf galaxies.
Mon. Not. R. Astron. Soc. 450, 4207-4220.

Berrington, K. A., 1988. Low-energy electron excitation of the
3P(e) fine-structure levels in atomic oxygen. Journal of Physics
B Atomic Molecular Physics 21, 1083—1089.

Berrington, K. A., Burke, P. G., Dufton, P. L., Kingston, A. E.,
1985. Electron-Impact-Excitation Collision Strengths for Be-like
Tons. II. Intermediate-Energy Region and Collision Rates. Atomic
Data and Nuclear Data Tables 33, 195.

Bisbas, T. G., Haworth, T. J., Barlow, M. J., Viti, S., Harries,
T. J., Bell, T., Yates, J. A., Dec. 2015a. TORUS-3DPDR: a self-
consistent code treating three-dimensional photoionization and
photodissociation regions. Mon. Not. R. Astron. Soc. 454, 2828-
2843.

Bisbas, T. G., Haworth, T. J., Williams, R. J. R., Mackey, J., Trem-
blin, P., Raga, A. C., Arthur, S. J., Baczynski, C., Dale, J. E.,
Frostholm, T., Geen, S., Haugbglle, T., Hubber, D., Iliev, I. T.,
Kuiper, R., Rosdahl, J., Sullivan, D.; Walch, S., Wiinsch, R., Oct.
2015b. STARBENCH: the D-type expansion of an H II region.
Mon. Not. R. Astron. Soc. 453, 1324-1343.

Bisbas, T. G., Wiinsch, R., Whitworth, A. P., Hubber, D. A.; Apr.
2009. Smoothed particle hydrodynamics simulations of expand-
ing H II regions. I. Numerical method and applications. Astron.
Astrophys. 497, 649-659.

Black, J. H., Nov. 1981. The physical state of primordial intergalactic
clouds. Mon. Not. R. Astron. Soc. 197, 553-563.

Blum, R. D., Pradhan, A. K., May 1992. Rate coefficients for the
excitation of infrared and ultraviolet lines in C II, N III, and O
IV. Astrophys. J., Suppl. Ser. 80, 425-452.

Brown, R. L., Mathews, W. G., Jun. 1970. Theoretical Continuous
Spectra of Gaseous Nebulae. Astrophys. J. 160, 939.

Burgess, A., Tully, J. A., Feb. 1992. On the Analysis of Collision
Strengths and Rate Coefficients. Astron. Astrophys. 254, 436.
Butler, K., Zeippen, C. J., Nov. 1994. Atomic data from the
IRON Project. V. Effective collision strengths for transitions in
the ground configuration of oxygen-like ions. Astron. Astrophys.,

Suppl. Ser. 108.

Camps, P., Baes, M., Saftly, W., Dec. 2013. Using 3D Voronoi grids
in radiative transfer simulations. Astron. Astrophys. 560, A35.
De Rijcke, S., Schroyen, J., Vandenbroucke, B., Jachowicz, N.,
Decroos, J., Cloet-Osselaer, A., Koleva, M., Aug. 2013. New
composition-dependent cooling and heating curves for galaxy evo-

lution simulations. Mon. Not. R. Astron. Soc. 433, 3005-3016.

Ercolano, B., Barlow, M. J., Storey, P. J., Sep. 2005. The dusty MO-
CASSIN: fully self-consistent 3D photoionization and dust radia-
tive transfer models. Mon. Not. R. Astron. Soc. 362, 1038-1046.

Faucher-Giguere, C.-A., Lidz, A., Zaldarriaga, M., Hernquist, L.,
Oct. 2009. A New Calculation of the Ionizing Background Spec-
trum and the Effects of He II Reionization. Astrophys. J. 703,
1416-1443.



Ferland, G., 1995. The Lexington Benchmarks for Numerical Simula-
tions of Nebulae. In: Williams, R., Livio, M. (Eds.), The Analysis
of Emission Lines: A Meeting in Honor of the 70th Birthdays of
D. E. Osterbrock & M. J. Seaton. p. 83.

Ferland, G. J., Chatzikos, M., Guzman, F., Lykins, M. L., van Hoof,
P. A. M., Williams, R. J. R., Abel, N. P., Badnell, N. R., Keenan,
F. P., Porter, R. L., Stancil, P. C., Oct. 2017. The 2017 Release
Cloudy. Rev. Mex. Astron. Astroph. 53, 385-438.

Froese Fischer, C., Tachiev, G., May 2004. Breit-Pauli energy lev-
els, lifetimes, and transition probabilities for the beryllium-like to
neon-like sequences. Atomic Data and Nuclear Data Tables 87,
1-184.

Galavis, M. E., Mendoza, C., Zeippen, C. J., May 1997. Atomic
data from the IRON Project. XXII. Radiative rates for forbidden
transitions within the ground configuration of ions in the carbon
and oxygen isoelectronic sequences. Astron. Astrophys., Suppl.
Ser. 123.

Galavis, M. E., Mendoza, C., Zeippen, C. J., Sep. 1998. Atomic
data from the IRON Project. XXIX. Radiative rates for transi-
tions within the N = 2 complex in ions of the boron isoelectronic
sequence. Astron. Astrophys., Suppl. Ser. 131, 499-522.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Pat-
terns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Griffin, D. C., Mitnik, D. M., Badnell, N. R., Nov. 2001. Electron-
impact excitation of Net. Journal of Physics B Atomic Molecular
Physics 34, 4401-4415.

Harries, T. J., Jul. 2000. Synthetic line profiles of rotationally dis-
torted hot-star winds. Mon. Not. R. Astron. Soc. 315, 722-734.
Harries, T. J., Apr. 2015. Radiation-hydrodynamical simulations of
massive star formation using Monte Carlo radiative transfer - 1.
Algorithms and numerical methods. Mon. Not. R. Astron. Soc.

448, 3156-3166.

Harries, T. J., Douglas, T. A., Ali, A., Nov. 2017. Radiation-
hydrodynamical simulations of massive star formation using
Monte Carlo radiative transfer - II. The formation of a 25 solar-
mass star. Mon. Not. R. Astron. Soc. 471, 4111-4120.

Hoffmann, T. L., Pauldrach, A. W. A_, Puls, J., 2003. Wind models
and synthetic UV spectra for O-type stars. In: van der Hucht, K.,
Herrero, A., Esteban, C. (Eds.), A Massive Star Odyssey: From
Main Sequence to Supernova. Vol. 212 of IAU Symposium. p. 206.

Hopkins, P. F.,; Jun. 2015. A new class of accurate, mesh-free hy-
drodynamic simulation methods. Mon. Not. R. Astron. Soc. 450,
53-110.

Hosokawa, T., Inutsuka, S.-i., Jul. 2006. Dynamical Expansion of
Ionization and Dissociation Front around a Massive Star. II. On
the Generality of Triggered Star Formation. Astrophys. J. 646,
240-257.

Hudson, C. E., Ramsbottom, C. A., Scott, M. P., May 2012. Collision
Strengths and Effective Collision Strengths for Transitions within
the Ground-state Configuration of S ITI. Astrophys. J. 750, 65.

Katz, N., Weinberg, D. H., Hernquist, L., Jul. 1996. Cosmological
Simulations with TreeSPH. Astrophys. J., Suppl. Ser. 105, 19.

Kaufman, V., Sugar, J., Jan. 1986. Forbidden Lines in ns2np”
Ground Configurations and nsnp Excited Configurations of Beryl-
lium through Molybdenum Atoms and Ions. Journal of Physical
and Chemical Reference Data 15, 321-426.

Kingdon, J. B., Ferland, G. J.,; Sep. 1996. Rate Coefficients for
Charge Transfer between Hydrogen and the First 30 Elements.
Astrophys. J., Suppl. Ser. 106, 205.

Kisielius, R., Storey, P. J., Ferland, G. J., Keenan, F. P., Aug. 2009.
Electron-impact excitation of OII fine-structure levels. Mon. Not.
R. Astron. Soc. 397, 903-912.

Klassen, M., Peters, T., Pudritz, R. E., Oct. 2012. H II Region Vari-
ability and Pre-main-sequence Evolution. Astrophys. J. 758, 137.

Kolb, S. M., Stute, M., Kley, W., Mignone, A., Nov. 2013. Ra-
diation hydrodynamics integrated in the PLUTO code. Astron.
Astrophys. 559, A80.

Lennon, D. J., Burke, V. M., Feb. 1994. Atomic data from the IRON
project. II. Effective collision strength S for infrared transitions in
carbon-like ions. Astron. Astrophys., Suppl. Ser. 103.

28

Lykins, M. L., Ferland, G. J., Kisielius, R., Chatzikos, M., Porter,
R. L., van Hoof, P. A. M., Williams, R. J. R., Keenan, F. P.,
Stancil, P. C., Jul. 2015. Stout: Cloudy’s Atomic and Molecular
Database. Astrophys. J. 807, 118.

Mackey, J., Haworth, T. J., Gvaramadze, V. V., Mohamed, S.,
Langer, N., Harries, T. J., Feb. 2016. Detecting stellar-wind bub-
bles through infrared arcs in H II regions. Astron. Astroph. 586,
Al14.

Martin, W. C., Zalubas, R., Musgrove, A., Jul. 1990. Energy Levels
of Sulfur, S I Through S XVI. Journal of Physical and Chemical
Reference Data 19, 821-880.

Mazzotta, P., Mazzitelli, G., Colafrancesco, S., Vittorio, N., Dec.
1998. Ionization balance for optically thin plasmas: Rate coeffi-
cients for all atoms and ions of the elements H to NI. Astron.
Astrophys., Suppl. Ser. 133, 403-409.

Mendoza, C., Zeippen, C. J., Jun. 1982. Transition probabilities for
forbidden lines in the 3p/2/ configuration. - II. Mon. Not. R. As-
tron. Soc. 199, 1025-1032.

Nussbaumer, H., Storey, P. J., Sep. 1983. Dielectronic recombination
at low temperatures. Astron. Astrophys. 126, 75-79.

Nussbaumer, H., Storey, P. J., Apr. 1987. Dielectronic recombination
at low temperatures. IV - Recombination coefficients for neon.
Astron. Astrophys., Suppl. Ser. 69, 123-133.

Osterbrock, D. E.; Ferland, G. J., 2006. Astrophysics of gaseous
nebulae and active galactic nuclei.

Pawlik, A. H., Schaye, J., Sep. 2008. TRAPHIC - radiative transfer
for smoothed particle hydrodynamics simulations. Mon. Not. R.
Astron. Soc. 389, 651-677.

Péquignot, D., Ferland, G., Netzer, H., Kallman, T., Ballantyne,
D. R., Dumont, A.-M., Ercolano, B., Harrington, P., Kraemer, S.,
Morisset, C., Nayakshin, S., Rubin, R. H., Sutherland, R., 2001.
Photoionization Model Nebulae. In: Ferland, G., Savin, D. W.
(Eds.), Spectroscopic Challenges of Photoionized Plasmas. Vol.
247 of Astronomical Society of the Pacific Conference Series. p.
533.

Peters, T., Naab, T., Walch, S., Glover, S. C. O., Girichidis, P.,
Pellegrini, E., Klessen, R. S., Wiinsch, R., Gatto, A., Baczynski,
C., Apr. 2017. The SILCC project - IV. Impact of dissociating and
ionizing radiation on the interstellar medium and Ha emission as
a tracer of the star formation rate. Mon. Not. R. Astron. Soc. 466,
3293-3308.

Pradhan, A., 1995. Atomic Data for the Analysis of Emission Lines.
In: Williams, R., Livio, M. (Eds.), The Analysis of Emission Lines:
A Meeting in Honor of the 70th Birthdays of D. E. Osterbrock &
M. J. Seaton. p. 8.

Rosdahl, J., Blaizot, J., Aubert, D., Stranex, T., Teyssier, R., Dec.
2013. RAMSES-RT: radiation hydrodynamics in the cosmological
context. Mon. Not. R. Astron. Soc. 436, 2188-2231.

Saftly, W., Baes, M., Camps, P., Jan. 2014. Hierarchical octree and
k-d tree grids for 3D radiative transfer simulations. Astron. As-
trophys. 561, A77.

Saraph, H. E., Storey, P. J., Jan. 1999. Atomic data from the
IRON Project. XXX. Collision data for the (2) P o_{1\over 2}
- "2P(0{3/) 2} fine-structure lines of P iii, S IV and CL V. As-
tron. Astroph., Suppl. Ser. 134, 369-375.

Saraph, H. E., Tully, J. A., Oct. 1994. Atomic data from the IRON
project. IV. Electron excitation of the “2°P"0°_3/2_-"2"P"0"_1/2_
fine structure transition in fluorine-like ions. Astron. Astrophys.,
Suppl. Ser. 107.

Spitzer, L., 1978. Physical processes in the interstellar medium.

Springel, V., Jan. 2010. E pur si muove: Galilean-invariant cosmo-
logical hydrodynamical simulations on a moving mesh. Mon. Not.
R. Astron. Soc. 401, 791-851.

Steinacker, J., Baes, M., Gordon, K. D., Aug. 2013. Three-
Dimensional Dust Radiative Transfer*. Ann. Rev. Astron. Astro-
phys. 51, 63-104.

Storey, P. J., Hummer, D. G., Jan. 1995. Recombination line inten-
sities for hydrogenic ions-IV. Total recombination coefficients and
machine-readable tables for Z=1 to 8. Mon. Not. R. Astron. Soc.
272, 41-48.

Stromgren, B., May 1939. The Physical State of Interstellar Hydro-



gen. Astrophys. J. 89, 526.

Tayal, S. S., Nov. 2000. Effective Collision Strengths for Electron
Impact Excitation of N I. Atomic Data and Nuclear Data Tables
76, 191-212.

Tayal, S. S., Aug. 2008. Electron impact excitation collision strength
for transitions in C II. Astron. Astrophys. 486, 629-636.

Tayal, S. S., Zatsarinny, O., May 2010. Breit-Pauli Transition Prob-
abilities and Electron Excitation Collision Strengths for Singly
Tonized Sulfur. Astrophys. J., Suppl. Ser. 188, 32-45.

Toro, E. F., 2009. Riemann Solvers and Numerical Methods for Fluid
Dynamics, 3rd Edition. Springer-Verlag, Berlin Heidelberg.

Vandenbroucke, B., De Rijcke, S., Jul. 2016. The moving mesh code
SHADOWFAX. Astron. Comput. 16, 109-130.

Vandenbroucke, B., Verbeke, R., De Rijcke, S., May 2016. Constrain-
ing the subgrid physics in simulations of isolated dwarf galaxies.
Mon. Not. R. Astron. Soc. 458, 912-933.

Vandenbroucke, B., Wood, K., Girichidis, P., Hill, A., Peters, T.,
2018. Radiative transfer calculations of the diffuse ionised gas in
disc galaxies. submitted to Mon. Not. R. Astron. Soc.

Verner, D. A., Ferland, G. J., Apr. 1996. Atomic Data for Astro-
physics. I. Radiative Recombination Rates for H-like, He-like, Li-
like, and Na-like Ions over a Broad Range of Temperature. Astro-
phys. J., Suppl. Ser. 103, 467.

Verner, D. A., Ferland, G. J., Korista, K. T., Yakovlev, D. G., Jul.
1996. Atomic Data for Astrophysics. II. New Analytic FITS for
Photoionization Cross Sections of Atoms and Ions. Astrophys. J.
465, 487.

Wood, K., Mathis, J. S., Ercolano, B., Mar. 2004. A three-
dimensional Monte Carlo photoionization code for modelling dif-
fuse ionized gas. Mon. Not. R. Astron. Soc. 348, 1337-1347.

Zatsarinny, O., Tayal, S. S., Oct. 2003. Electron Collisional Excita-
tion Rates for O I Using the B-Spline R-Matrix Approach. Astro-
phys. J., Suppl. Ser. 148, 575-582.



	The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMacIonize

