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Abstract

Temporal analysis of radiation from Astrophysical sources like Active Galactic Nuclei, X-ray Binaries and Gamma-ray bursts

provide information on the geometry and sizes of the emitting regions. Establishing that two light-curves in different energy bands

are correlated and measuring the phase and time-lag between them is an important and frequently used temporal diagnostic. In this

work, we have presented expressions for estimate of the errors on the cross-correlation, phase and time-lag between two light-curves

and the same have been tested using simulations. Earlier estimates depended upon numerically expensive simulations or on dividing

the light-curves in large number of segments to find the variance. The estimates presented here allow for analysis of light-curves

with relatively small (∼ 1000) number of points, as well as to obtain information on the longest time-scales available. For testing

the analytical expressions light-curves have been simulated from both white and 1/ f stochastic processes with measurement errors.

As a demonstration, we also apply this technique to the XMM-Newton light-curves of the Active Galactic Nucleus, Akn 564.

1. Introduction

Establishing that two light-curves, measured in different en-

ergy bands, are correlated with each other is an important tem-

poral diagnostic for various kinds of Astrophysical sources, es-

pecially for Active Galactic Nuclei (AGN) and X-ray binaries.

The detection and measurement of the level of correlation con-

strains the radiative processes active in the source and can be

used to validate (or rule out) models based on spectral anal-

ysis. Phase and time-lags detected for correlated light-curves

can provide further insight into the geometry and size of the

emitting region. Often in these applications, the light curves

available for analysis are of short duration and have measure-

ment errors. The true temporal behaviour of a source can only

be established if there are robust estimates of the errors on the

cross-correlation, phase and time-lags.

It is important to emphasize that a cross-correlation analy-

sis between two finite length light-curves will not provide an

accurate measure of the correlation between them, even in the

absence of measurement errors. Intrinsic stochastic fluctuations

in the light curves will induce an error on the cross-correlation

measured. An estimate of the significance and error of the

cross-correlation detected, should take into account both, mea-

surement errors as well as statistical fluctuations.

A standard method to estimate the error on the cross-correlation

involves dividing the light curves into several equal segments

and finding the cross-correlation for each. Then the net cross-

correlation is given by the average of the different segments and
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the variance is quoted as an error. For example, this technique

is implemented by the function “crosscor” of the high energy

astrophysics software HEASOFT1. The method is reliable only

if the light curves can be divided into a large number of seg-

ments (>> 10) and each segment is sufficiently long and not

dominated by measurement errors. The temporal behaviour of

many astrophysical systems depends on the time-scales of the

analysis and hence by using this method, one loses information

on the behaviour of the system on time-scales comparable to

the length of the original data. In AGN, the time scale involved

is long comparable to the length of observation in many cases,

hence it is not practical to divide the light curve in segments.

Moreover, there does not seem to be any established way by

which this method can be extended to get an estimate of the

time-lag between the light curves and its error.

These deficiencies can be overcome by using a Monte Carlo

technique where one simulates a large number of pairs of light

curves having the same assumed temporal properties and with

the same measurement errors as the original pair. The results

of the original pair can be compared with the simulated ones

to ascertain the confidence level of the cross-correlation and

time-lag. The simulated light curves should take into account

the stochastic fluctuations of the light curves and not just the

measurements errors. Indeed, when the light curve is sampled

unevenly and with measurement errors changing in time, the

Monte Carlo technique may be the only way to obtain reliable

estimates (for e.g. Peterson et al., 1998). Monte Carlo tech-

nique is numerically expensive and hence are not practical for

analysis of a large sets of data. More importantly, the results de-

pend on the subjectivity of the assumed temporal properties of

1http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/
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the system. For example, to ascertain the errors on an observed

cross-correlation and time-lag value, the simulations are gener-

ally done with the assumption that these are the true intrinsic

values. Similar assumptions have to be made on the shape of

the power spectra of the light curves.

As pointed out and discussed extensively by Welsh (1999),

an analytical estimate of the variance on cross-correlation is

not straight forward. In the literature, there is an analytical

estimate for the cross-correlation known as Bartlett’s equation

Bartlett (1955) which is not often used in Astronomical con-

texts. This method is available in the “crosscorrelation” func-

tion in the IMSL numerical libraries2. The error is accurate

only when the complete knowledge of the cross-correlation and

auto-correlation functions are available. Its effectiveness for

short duration light curves is uncertain. Moreover, this error

estimate does not naturally translate into error estimates for the

phase and time lag between the light curves.

Complete information regarding the temporal relation be-

tween two light curves can be obtained by computing the co-

herence and time-lag as a function of Fourier frequency. A de-

tailed description of the technique as well as physical interpre-

tation is given by Nowak et al. (1999). The two light curves

are divided into many segments and for each segment a Fourier

transform is undertaken and coherence and phase lag as a func-

tion of frequency is estimated. For the different segments, the

coherence and phase lags are averaged and their errors can be

estimated analytically. Such detailed information can only be

obtained for long light curves which can be split into several

segments. In the absence of such rich data, statistically signifi-

cant results can be obtained by averaging over Fourier frequen-

cies. Indeed, from this view point the cross-correlation, is in

some sense, the average of the coherence over all frequencies.

However, computing the error on the cross-correlation using the

error estimates for the coherence is not straight forward. First,

the averaging has to be appropriately weighted by the power in

each frequency bin. Secondly, the error estimate for the coher-

ence is reliable only if the error itself is small, which is the case

when many segments are averaged and not necessarily true for

the coherence at a single frequency bin obtained from a single

segment.

In this work, we present an expression for the cross-correlation

between two evenly sampled light curves. The error estimate is

based on the Fourier transforms of the light curves then averag-

ing over different frequency modes. §2 presents the expression

and the same has been verified by simulations with and without

measurement errors. §3 highlights the difficulties in estimating

a time-lag and its error using the standard method of finding the

peak of the cross-correlation function. The cross-Correlation

phasor is introduced in §4 which leads to an estimate of the

phase lag between the light curves. In the same section, a tech-

nique is introduced by which one can measure the time lag and

its error. In this method the time-lag measured can be even

smaller than the sampling time bin of the light curves. The

complete fully self contained algorithm is presented in §5 for

2http://www.vni.com

easy reference. As an example, in §6, the technique is applied

to the XMM-Newton light curves of the highly variable and well

studied AGN, Akn 564. In §7, the summary and discussion in-

cludes a list of important assumptions on which the technique

is based and provides examples when the assumptions may not

be valid.

2. ANALYTICAL ERROR ESTIMATE OF

CROSS-CORRELATION

2.1. Light curves without measurement errors

We first consider an idealised case of two light curves, X

and Y, without measurement errors. The two light curves are of

length N, which have recorded the count rates in j = 0, 1, 2, ...,N−
1 discrete equally spaced time intervals, ∆t. The mean is sub-

tracted from each of them. Further it is assumed that they are

partially linearly dependent on each other by A, such that we

have,

X = x j (1)

Y = z j + Ax j (2)

where x j and z j are time-series produced by two independent

stochastic processes. Each time series can be conveniently rep-

resented, in frequency domain k by its discrete Fourier trans-

form, X̃k, defined as

X̃k =

N−1
∑

j=0

X j exp (2πi jk/N) (3)

and a power spectrum is estimated as PXk ≡ (2/N)|X̃k|2. Here

the normalisation constant of the power spectrum is used as

suggested by Leachy et al Leahy et al. (1983). For a station-

ary system, the ensemble average (i.e. average of an infinite

number of realisations) of the power, < PXk >, is a character-

istic of the stochastic process. A power derived from a single

time series, PXk is only an estimator of its value. In particu-

lar the real and imaginary parts of X̃k varying independently

can be derived from two independent Gaussian distributions

Timmer and Koenig (1995). The standard deviation of PXk from

< PXk > is roughly equal to < PXk > i.e the power estimate

from a single light curve has nearly 100% sampling variation.

The variance σ2
X
≡
∑

PXk is again an estimate of the ensemble

averaged variance < σ2
X
>=
∑

< PXk > Van der Klis (1989)

where k = −N/2, ....,N/2− 1 and k , 0.

One can define the cross-correlation estimate of the two

time series as

CXY =
cXY
√

σ2
X
σ2

Y

(4)

where

cXY ==
1

N

N−1
∑

j=0

X jY j =
1

N2

N/2−1
∑

k=−N/2

X̃kỸ∗k (5)
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Here X̃k and Ỹk are Discrete Fourier transforms of X j and Y j

respectively and

σ2
X =

1

N

N−1
∑

j=0

X2
j =

1

N2

N/2−1
∑

k=−N/2

|X̃k|2

σ2
Y =

1

N

N−1
∑

j=0

Y2
j =

1

N2

N/2−1
∑

k=−N/2

|Ỹk |2 (6)

Their ensemble averages are < cXY >= A < σ2
x >, < σ2

X
>=<

σ2
x > and < σ2

Y
>=< σ2

z > +A2 < σ2
x >. It is to be noted that

a normalisation factor of 1
N

, due to the DFT process, has been

incorporated in frequency domain term of Eqn (6 ) CXY has the

useful property that its ensemble average

< CXY >=
A < σ2

x >
√

< σ2
x > (< σ2

z > +A2 < σ2
x >)

(7)

is zero if the two light series are uncorrelated (i.e. A = 0)

and ±1 if they are completely correlated (i.e. when < σ2
z >=

0). However, in absence of any a priori information about the

stochastic process, quantities need to be estimated using the

measured values only. Thus, CXY is also an estimate of < CXY >

and its accuracy needs to be quantified.

To ascertain whether there is a detectable correlation be-

tween the two light-curves (i.e. |CXY | > 0) it is first necessary

to show that, at some confidence level, |cXY | > 0. One can de-

fine a null hypothesis sigma level σNH = |CXY |/∆C′
XY

and fix

a criterion (a prudent one being σNH > 3) to ascertain whether

any correlation has been detected. It is important to note that

only if the criterion is satisfied should one proceed to estimate

the degree of cross-correlation CXY otherwise any such attempt

will not only be incorrect but also meaningless.

If cXY is uncorrelated with

√

σ2
X
σ2

Y
, then

∆CXY =
∆cXY
√

σ2
X
σ2

Y

(8)

where the variation in

√

σ2
X
σ2

Y
has been neglected. However,

as discussed extensively by Welsh (1999),

√

σ2
X
σ2

Y
is, in gen-

eral, correlated with cXY . In particular, ∆cXY depends on the

variation of σ2
X

through the term Aσ2
X

.

A possible solution is to define a transformation, P(CXY)

whose terms are not correlated (or at least not so correlated).

Then estimate the expected variation for that function, ∆P and

use that to obtain an estimate for ∆CXY . Below we describe

such a transformation and subsequently test the results obtained

from simulations. The transformation choosen for the analysis

is

P =
c2

XY

σ2
X
σ2

Y
− c2

XY

=
C2

XY

1 −C2
XY

(9)

where the subtraction of c2
XY

in the denominator may make it

nearly independent of the numerator. The average deviation of

P can be estimated to be,

∆P =
2 < cXY > ∆cXY

< σ2
X
σ2

Y
− c2

XY
>

(10)

where the variation of the denominator has been neglected. ∆P

is related to ∆CXY by

∆P ∼< (
dP

dCXY

) > ∆CXY =<
2CXY

(1 −C2
XY

)2
> ∆CXY (11)

giving us

∆CXY =
1− < CXY >

2

√

< σ2
X
>< σ2

Y
>

∆cXY (12)

Naturally, ∆CXY depends on ensemble averaged quantities

which characterise the stochastic processes that have produced

the light curves. Typically, one does not have a priori infor-

mation of the stochastic processes and the ensemble averaged

quantities need to be estimated from the light curves. Thus

the best estimate, ∆C′
XY

, of ∆CXY can be obtained by replac-

ing these ensemble averaged quantities with the measured ones.

Also, we have (∆cXY)2 =< c2
XY
> − < cXY >

2= 1
N4

∑N/2−1

k=−N/2
<

|X̃k|2 >< |Ỹk |2 >
Hence

∆C′XY =
1 −C2

XY

N2

√

σ2
X
σ2

Y

√

√

√

N/2−1
∑

k=−N/2

|X̃k|2|Ỹk |2 (13)

For practical situations ∆C′
XY

can be used as an estimate for the

error on CXY .

2.2. Comparison with results from simulations

We generated 200 independent light-curves using the method

described by Timmer and Koenig (1995). Vaughan et al. (2003a)

discuss the different methods to generate stochastic light curves

and give arguments for favouring the one prescribed by Timmer and Koenig

(1995). The intrinsic power spectrum of the stochastic process

was assumed to be a power-law i.e. P( f ) ∝ f −α. The light-

curves were generated of length 8N and rebinned to a length of

N, to avoid aliasing effects. From these 200 light curves, 19900

pairs of the light curves were generated which obey,

X j = x j (14)

Y j = z j + Ax j (15)

where x j and z j are two different simulated light-curves with

< σ2
x > = < σ

2
z > = 1. The cross-correlation, CXY was com-

puted for each pair. For N = 1024, α = 0 and for three different

values of A = 0, 1 and 5, the histograms of the CXY are plotted

in the top panel of Figure 1. These histograms, H j are nor-

malised such that their summation
∑

H jδ = 1 where δ is the

bin size. They are compared with a normalised Gaussian dis-

tribution with a centroid value equal to the expected averaged

cross-correlation of

< CXY >=
A

√
1 + A2

(16)

and with width σ equal to ∆CXY computed using Eqn (12).

As can be seen, the normalised Gaussian distributions describe

well the simulated results which validates the method and as-

sumptions used to estimate ∆CXY in the previous subsection.

3
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Figure 1: Comparison of simulation with analytical results. 19900 pairs of

light-curves of length N = 1024 were created for X j = x j and Y j = z j + Ax j .

x j and z j are independent time-series generated from a stochastic white noise

process (i.e. power spectrum index α = 0). Top Panel compares the normalised

histogram of CXY with a Gaussian with centroid at the expected < CXY > and

width given by σ = ∆Cxy (Eqn 12). Bottom panel shows the histogram of the

cross-correlation variation (CXY− < CXY >)/∆C′
XY

. If ∆C′
XY

(Eqn 13), which

is estimated from the pair of light-curves, is a true measure of the variation,

then the distribution should be a zero centred Gaussian with σ = 1 (solid line).

However, in practical situations one has to use the approxi-

mation ∆C′
XY

to estimate the variance which in general will

vary for each pair of light curves. In the bottom panel of Fig-

ure 1, we plot histograms of deviation of CXY from the aver-

age < CXY > normalised by the estimated deviation ∆C′
XY

i.e.

(CXY− < CXY >)/∆C′
XY

. If ∆C′
XY

is an accurate measure of the

variation of CXY then the distribution of the normalised varia-

tion should be a zero centred Gaussian with σ = 1. The plot

verifies this prediction by comparing the distribution with such

a Gaussian shape. The distributions agree well with each other

except for large A, where the Gaussian distribution is slightly

broader than the simulation results. This implies that the ∆C′
XY

is a slight overestimation of the true deviation for large values

of A.

Figure 2 shows the same comparison as Figure 1, but for

the case when the power-law index α = 1. Qualitatively the

comparison between the expected and obtained distribution are

similar to the α = 0 case, except for some quantitative differ-

ences. For the same length of the light curves, ∆CXY is larger

for α = 1. Since CXY is by definition constrained to be less

than unity, the distribution differs from the symmetric Gaussian

shape for large A. The bottom panel shows that ∆C′
XY

is a better

representation of the variation than it was for α = 0.

For white noise (i.e. α = 0), the dependence of ∆CXY on

the length of the light-curves is ∝ 1/
√

N, while for α = 1 the

-0.2 0 0.2
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100
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Figure 2: Same as Figure 1, except that x j and z j are independent time-series

generated from a stochastic 1/ f noise process (i.e. power spectrum index α =

1). The width of the distributions are broader than for white noise.

dependence is weaker ∼ 1./logN for large N Chatfield (2016);

Keshner (1982). The original light-curves may be divided into

M parts, and cross-correlations of each may be averaged. For

α = 0 this will not lead to any change in the accuracy with

the final ∆CXY being nearly the same. However, for α = 1,

∆CXY ∝ 1/(
√

Mlog(N/M)) which would give a much better

accuracy than finding the cross-correlation for the whole light-

curve. However, such a cross-correlation will not have infor-

mation about the behaviour of the system on timescales corre-

sponding to duration of the original light curve.

2.3. Light curves with measurement errors

We next consider a more realistic case, where the light-

curves have measurement errors. In particular,

X j = x j + eX j

Y j = z j + Ax j + eY j (17)

where x j and z j are time-series produced by two independent

stochastic processes as before and eX j and eY j are the known

measurement errors for measuring X j and Y j respectively. The

cross-correlation is now defined as

CXY =
cXY

√

(σ2
X
− σ2

XE
)(σ2

Y
− σ2

YE
)

(18)

where cXY is the same as before (Eqn 5) and σXE and σYE are

the rms variation of the measured errors i.e.

σ2
XE =

1

N

N−1
∑

j=0

e2
X j (19)
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and similarly for σ2
YE

.

The expressions for < cXY > and ∆cXY remain the same as

for the measurement error free case discussed previously and

following the same procedure as before, one can estimate

∆CXY =
(1− < CXY >

2)∆cXY
√

(< σ2
X
> − < σ2

XE
>)(< σ2

Y
> − < σ2

YE
>)

(20)

analogous to Eqn (12). To this error estimate we have to add

the fluctuations of σXE and σYE around their ensemble aver-

aged values < σXE > and < σYE >. Note that it is these

ensemble averaged values < σXE > and < σYE > that are

known a priori and not σXE and σYE . If the measurement er-

rors are Gaussian white noise (as is generally the case) then,

∆σ2
X,YE

= (1/
√

N)σ2
X,YE

. Moreover since the fluctuations are

independent of the true signal, they can be added to ∆CXY1 us-

ing standard error propagation techniques. Thus

(
∆CXY

< CXY >
)2 = (

∆CXY1

< CXY >
)2 + (

∆σ2
XE√

2(< σ2
X
> − < σ2

XE
>)

)2

+(
∆σ2

YE√
2(< σ2

Y
> − < σ2

YE
>)

)2

= (
∆CXY1

< CXY >
)2 + (

< σ2
XE
> /
√

2N

< σ2
X
> − < σ2

XE
>

)2

+(
< σ2

YE
> /
√

2N

< σ2
Y
> − < σ2

YE
>

)2

(21)

∆CXY is in terms of ensemble averaged quantities which have

to be estimated using the light curves. Hence

∆C′XY =
(1 − C2

XY
)

N2

√

(σ2
X
− < σ2

XE
>)(σ2

Y
− < σ2

YE
>)

×

√

√

√

N/2−1
∑

k=−N/2

|X̃k|2|Ỹk |2 (22)

and

(
∆C′

XY

CXY

)2 = (
∆C′

XY1

CXY

)2 + (
< σ2

XE
> /
√

2N

σ2
X
− < σ2

XE
>

)2

+(
< σ2

YE
> /
√

2N

σ2
Y
− < σ2

YE
>

)2

(23)

is the estimation of the variation in the presence of measure-

ment errors.

To validate the above results we generated 19900 pairs of

the light-curves which obeyed Eqn (17). The measurement er-

rors were generated from a Gaussian distribution with

< σ2
XE >/< σ

2
x > = < σ

2
YE >/< σ

2
z > = 0.5

. Figures 3 and 4 show the comparison of the distribution with

the expected Gaussian distribution for power spectral index α =

-0.2 0 0.2
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Figure 3: Comparison of simulation with analytical results in the presence of

measurement errors. 19900 pairs of light-curves of length N = 1024 were

created for X j = x j + eX j and Y j = z j + Ax j + eY j . x j and z j are indepen-

dent time-series generated from a stochastic white noise process (i.e. power

spectrum index α = 0) The measurement errors were simulated from a Gaus-

sian distribution such that < σ2
XE
>/< σ2

x > = < σ
2
YE
>/< σ2

z > = 0.5. Top

Panel compares normalised histogram CXY with a Gaussian with centroid at

the expected < CXY > and width given by σ = ∆Cxy (Eqn 21). Bottom panel

shows the histogram of the cross-correlation variation (CXY− < CXY >)/∆C′
XY

.

If ∆C′
XY

(Eqn 22), which is estimated from the pair of light-curves, is a true

measure of the variation, then the distribution should be a zero centred Gaus-

sian with σ = 1 (solid line). Note that in the presence of measurement errors

< CXY > can be greater than one.

0 and 1 respectively. As expected the distribution of CXY is

broader in the presence of measurement errors. Note that in

this case CXY can be greater than unity. The figures illustrate

that the variance estimations reasonably describe the simulated

distributions.

The above results are for the case when the measurement er-

rors are Gaussian distributions. We have verified that even when

the mean counts per time bin is ∼ 10, similar results are ob-

tained when the measurement errors are due to Poisson fluctu-

ations. In order to correctly propagate the error and obtain Eqn

(21), it is implicitly assumed that ∆σ2
X,YE
= (2/

√
N)σ2

X,YE
<<

σ2
X,Y
− σ2

X,YE
. Note that these are also the criteria that any sig-

nificant variability has been detected in each of the two light

curves. In other words if the criterion is not satisfied for one of

the light curves, this implies that there is no significantly excess

variance than expected from the measurement errors and hence

a cross-correlation analysis cannot be undertaken.

3. The cross-correlation function

In general two light-curves may be linearly related to each

other with a time lag τ. To investigate such possibilities, one

5
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Figure 4: Same as Figure 3, except that x j and z j are independent time-series

generated from a stochastic 1/ f noise process (i.e. power spectrum index α =

1).
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Figure 5: Significance and cross-correlation function for two simulated light-

curves with measurement errors. Two pairs of light-curves of length N = 1024

were created for X j = x j + eX j and Y j = z j + Ax j + eY j . x j and z j are inde-

pendent time-series generated from a stochastic 1/ f noise process (i.e. power

spectrum index α = 1). The measurement errors were simulated from a Gaus-

sian distribution such that < σ2
XE
>/< σ2

x > = < σ
2
YE
>/< σ2

z > = 0.5. The

top panel shows the significance σNH = |CXY |/∆C′
XY

as a function of τ. Note

that σNH < 3 for all τ except when |τ| ∼ 0. The bottom panel shows the cross-

correlation function, CXY (τ) (Thick line), CXY (τ) + ∆C′
XY

and CXY (τ) − ∆C′
XY

(Thin lines).

0

2

4

6

Figure 6: The blown up portion of Fig 5 near τ = 0 shown for clarity.

can calculate the cross-correlation function, CXY (τ) between a

light curve X j and the Y j+τ. For light-curves of length N, there

will be only N′(τ) = N − τ overlapping terms. CXY (τ) can

be computed based on these N′(τ) terms and then the defini-

tions, error analysis of the previous sections follow through

without modifications. Such a definition of CXY(τ) has been

called locally defined cross-correlation function (LDCCF) by

Welsh (1999) and is different from the standard one. In the

standard definition the length of the original light-curves N is

preserved either by padding the unknown part of the light with

zeros (for the time domain computation) or by repeating the

series (in the Fourier domain computation). Here we consider

only LDCCF for which the analysis mentioned in the earlier

section holds.

For every time lag, τ, σNH = |CXY |/∆C′
XY

needs to be com-

puted to ascertain whether there is any detectable correlation.

In Fig 5, σNH is plotted against τ for two light curves generated

using 1/ f stochastic process, with measurement errors and with

A = 1. In fact, the two light-curves are the first pair of light-

curves used in the simulation described in Fig 4. Since CXY is

being computed for a large number of time lags τ, (although

they are not independent, see below), it is prudent to keep a

conservative criterion for correlation detection, σNH > 3. It can

be seen from the figure that σNH < 3 for all values of τ except

when τ ∼ 0. As seen in the bottom panel of Fig 5, there are

couple of peaks in CXY (τ) but none of them (except near τ = 0)

are significant.

The CXY(τ) are not in general independent of each other.

This is clearly seen as an example in Fig 6 where the region

near τ = 0 has been expanded for clarity. For |τ| < 3, σNH > 3

and the dispersion of CXY (τ) is much less than what is expected

6



0.4 0.5 0.6 0.7 0.8 0.9
0.1

1

10

0.6 0.8 1 1.2 1.4

-2 0 2
0.01

0.1

1

-2 0 2

Figure 7: Comparison of simulation with analytical results. 19900 pairs of

light-curves of length N = 1024 were created for X j = x j and Y j = z j +

Aei<φ>x j . x j and z j are independent time-series generated from a stochastic 1/ f

noise process (i.e. power spectrum index α = 1). The values of the parameters

used for the simulations are A = 1 and < φ >= 1. Solid lines are the expected

distribution for the error estimates ∆|C̃XY | and ∆φ. ∆|C̃′
XY
| is given by Eqn (23)

except that CXY is replaced by |C̃XY | while ∆φ is given by Eqn (28)

.

from the error bars ∆C′
XY

. This shows that it is unpreferable to

rebin CXY(τ) in τ space. Instead if there is a justification to rebin

in time, then the original light-curves should be rebinned and

not CXY (τ). The data clearly shows a peak of CXY (τ) at τ = 0

indicating a time-lag consistent with zero. However, it is diffi-

cult to justify any error measurement on this time lag. In prac-

tice, one can represent the peak of the function as a Gaussian

and take its width as an representative error for the lag. How-

ever, there are several un-attractive features of this technique.

First, the width of CXY (τ) represents the auto-correlation of the

coherent signal rather than any error on the measured time-lag.

Second, since the errors on CXY (τ) are correlated a formal fit

is not allowed. Finally, the Gaussian fit will in general depend

on the number of points used to represent the “peak” of CXY (τ).

A justifiable technique to compute the error on the time-lag is

required.

4. The cross-Correlation Phasor

The cross-correlation phasor can be defined as

C̃XY =
c̃XY
√

σ2
X
σ2

Y

(24)

where

c̃XY =
2

N2

N/2−1
∑

k=1

X̃kỸ∗k (25)

Here the summation of phasor differs from that of the cross-

correlation by the fact that for the phasor the summation is only

over positive frequencies. They are related as CXY = Re(C̃XY).

For partially correlated light curves with no phase lag, the

ensemble average < Im(C̃XY) >= 0 and the cross-correlation is

given by < Re(C̃XY) >=< CXY >. By definition, the deviation of

Re(c̃XY) is the same as for cXY whereas the deviation of Im(c̃XY),

is only due to the incoherent parts of the light curves and is

given by the equation

∆Im(c̃XY) = ∆cXY

√

1 − |C̃XY |2 (26)

If there is an intrinsic phase difference, < φ > between the

two light curves, then the ensemble average of C̃XY will be a

complex quantity given by < |C̃XY | > ei<φ>. The standard de-

viation of |C̃XY | from < |C̃XY | > can be estimated by Eqn (23)

except that CXY is to be replaced by |C̃XY |. The phase difference

between the two light curves can be estimated as

sinφ =
Im(c̃XY)

|c̃XY |
(27)

whose error, for small values of φ, can be estimated to be

∆φ =
∆cXY

|c̃XY |

√

1 − |C̃XY |2 (28)

To validate the above results we simulated the same set of

light curves used for Figure (4) i.e. using 19900 pairs of light

curves with measurement errors and generated from a stochas-

tic 1/ f noise process. We introduced a phase difference of

φ = 1.0 between the coherent parts of the light curves. The his-

tograms of |C̃XY | and φ (and their deviations) are plotted against

the expected estimates in Figure 7.

If the coherent parts of the light curves have a time-lag,

τ, between them, then the cross-correlation phasor will have

a non-zero phase. One can constrain the time-lag by shifting

one of the light curves in time till the cross-correlation phase,

φ = 0. In other words, by defining a cross-correlation phasor

function,

C̃XY(τ) =
2

N2

√

σ2
X
σ2

Y

N/2−1
∑

k=1

X̃kỸ∗k eikτ/N (29)

one can obtain τ such the phase of C̃XY (τ), φ(τ) = 0. The error

on τ can be estimated by considering the range of τ for which

φ(τ′) ± ∆φ is consistent with zero. Note that τ need not be an

integer and hence time-lags less than the time resolution of the

light curves can be ascertained for good quality data.

The above analysis is valid only when there is a detected

correlation between the two light curves. To ascertain whether

there is a correlation (with phase lag) between the two, one

needs to consider both the real and imaginary parts of c̃XY and

compare with ∆cXY . While one can compute the joint probabil-

ities, a more prudent and simpler approach is to demand that a

7



correlation is detected only if |C̃XY |/∆CXY > 3. If the condition

is not satisfied one can put an upper limit on the correlation as

3∆cXY/

√

σ2
X
σ2

Y
.

5. Algorithm to compute cross-correlation, phase and time

lags

Based on the results of the earlier sections, we present here

a complete self-contained description of the algorithm to com-

pute and estimate errors for cross-correlation, phase and time

lag between two light curves. It is assumed that there are two

time series X j and Y j of length N and for each data there are

associated known measurement errors eX j and eY j.

Step 1: Calculate variances for the light curves. Compute the

Fourier transforms of each light curve using

X̃k =

N−1
∑

j=0

X j exp (2πi jk/N) (30)

and similarly for Ỹk. Compute intrinsic variances,

σ2
XI =

2

N2

N/2−1
∑

k=1

|X̃k|2 − σ2
XE (31)

where σ2
XE
= 1

N

∑N−1
j=0 e2

X j
and similarly for σ2

YI
. If either σ2

XI
<

2∆σ2
XE
= (4/

√
N)σ2

XE
or σ2

YI
< (4/

√
N)σ2

YE
, then no signifi-

cant variation has been detected in one of the light curves and

further analysis is not possible. In such cases, an upper limit

of (4/
√

N)σ2
XE

can be put for any intrinsic variation. If there is

significant variation detected, then the total error (both stochas-

tic and measurement) on the variance is

∆σ2
XI =

√

√

√

2

N4

N/2−1
∑

k=1

(|X̃k|2)2 (32)

of which the measurement uncertainty contributes

∆σ2
XM =

√

√

√

(∆σ2
XT

)2 − 2

N4

N/2−1
∑

k=1

(|X̃k|2 − |X̃M |2)2 (33)

where |X̃M |2 = Nσ2
XE

and is independent of k.

Step 2: Compute the cross-Correlation. The non-normalised

cross-correlation phasor is

c̃XY =
2

N2

N/2−1
∑

k=1

X̃kỸ∗k (34)

and its error is given by

(∆cXY)2 =
1

N4

N/2−1
∑

k=−N/2

|X̃k|2|Ỹk |2 (35)

Check if |c̃XY |/∆cXY > 3. If not then no correlation is detected

between the two light curves and the upper limit on the cross-

correlation is 3∆cxy/

√

σ2
XI
σ2

YI
. If the condition is satisfied (i.e.

the correlation is detected) then the cross-correlation is

|C̃XY | =
|c̃XY |
√

σ2
XI
σ2

YI

(36)

with error

(
∆|C̃XY |
|C̃XY |

)2 = (
∆|C̃XY1|
|C̃XY |

)2+ (
σ2

XE√
2Nσ2

XI

)2+ (
σ2

YE√
2Nσ2

YI

)2(37)

where

∆|C̃XY1| =
(1 −C2

XY
)∆cXY

√

σ2
XI
σ2

YI

(38)

Step 3: Compute the phase. The phase is given by

sinφ =
Im(c̃XY)

|c̃XY |
(39)

whose error can be estimated to be

∆φ =
∆cXY

|c̃XY |

√

1 − |C̃XY |2 (40)

Step 4: Compute the time delay between the light curves. De-

fine

C̃XY(τ′) =
2

N2

√

σ2
XI
σ2

YI

N/2−1
∑

k=1

X̃kỸ∗k eikτ′/N (41)

and solve for φ(τ) = 0 to get an estimate of the time delay τ.

The error on τ, ∆τ is to be estimated by considering the range

of τ′ for which φ(τ′) ± ∆φ(τ′) is consistent with zero. Compute

the significance of the cross-correlation |c̃XY |/∆cXY at the two

limits τ′ = τ ± ∆τ and consider the limits to be bona-fide if the

significance is > 3, otherwise report that the particular limit on

τ cannot be obtained.

Step 5: For multiple light curves or for a lightcurve divided in to

segments find the weighted average of σ2
XI

, σ2
YI

and c̃XY , using

their error estimates as weights. Then if the cross-correlation

is significant, find the phase and time lags as in stjpg 3 and 4

above.

6. Application to AGN light curves

To test and validate the effectiveness of the scheme, we

analyse the lightcurve of a well studied Active Galactic Nu-

cleus, Akn 564. The temporal and spectral properties of the

source was studied using an XMM-Newton observation of the

source by Dewangan et al. (2007). They computed the cross-

correlation function for different energy bands and estimated a

possible time-lag between the hard and soft bands to be ∼ 1768

secs using the peak of the function as a measure. Using Monte

Carlo simulations they estimated an error on the time lag to be
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Figure 8: The variability property of Akn 564. Lightcurves of the source in

different energy bands were used for the analysis. The time-bin for the light

curves is 64 seconds and the number of data points is 1426. The rms, cross-

correlation (|C̃XY |), the phase difference (φ) and the time lag (τ) are plotted

with energy. The reference energy band is 0.2-0.3 keV.
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Figure 9: Same as Figure 8, except that the light curves were divided into ten

segments and the results averaged.
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Figure 10: Checking the stationarity of the X-ray lightcurve of Akn 564. The

complete lightcurve in the 1-2 keV band (shown in the top panel) has been

divide into ten segments. For each segment the r.m.s is shown with errors in

the second panel. The dashed line represents the average value. The cross-

correlations, |C̃XY |), and phase lags, φ between 0.2 − 1. and 1-2 keV bands for

each segment are shown in the bottom two panels. The dashed lines represent

the average values. It can seen that the cross-correlation and the phase lag are

consistent with being a constant showing that the system is stationary in these

time-scales.
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∼ 100 secs due to measurement error. Arévalo et al. (2006) and

McHardy et al. (2007) computed time-lags as function of fre-

quency for ASCA and XMM-Newton observations of the source

and found that there is a sharp drop in time lag for frequencies

greater than 10−4 Hz.

We extracted light curves of the source using the XMM-

Newton observation, in different energy bands. Details of the

extraction process are given in Dewangan et al. (2007). The us-

able continuous time duration for the observation is for ∼ 105

secs. Our motivation here is not to analyse in detail the temporal

properties of the source and their physical interpretation, but in-

stead to show as an example and validate the method described

in this work. Thus, while finer time binning of the data is pos-

sible, we restrict our analysis to 64 sec bins, which resulted in

light curves with length N = 1426. Figure 8 shows the re-

sults of our analysis. Note that the cross-correlation, phase and

time-lag are well constrained as a function of energy. Figure

9 shows the results of the analysis when the light curves were

divided into ten segments and the results averaged as described

in the last section. Note that again the physical quantities are

well constrained and while the phase difference is relatively un-

changed between the two analysis, the time-lag decreases by

nearly an order of magnitude. This is consistent with earlier

results that the time-lag decreases with increasing Fourier fre-

quency Papadakis et al. (2001); Vaughan et al. (2003b).

Splitting the lightcurve into segments and taking the aver-

age assumes that the during the time-scale, the source was sta-

tionary. This can be now explicitly tested using the analytical

error estimates for each segment. This is demonstrated in Fig

10, where for each ten segments, the r.m.s, cross-correlations

and phase-lags (between the energy bands 0.2-1 and 1-2 keV)

are shown. The cross-correlations and phase lags are consistent

with being a constant equal to the averaged value (shown as a

dashed line). Formally the χ2/do f for the data points to be con-

stant are 5.3/9 and 3.3/9 for the cross-correlation and phase lag

respectively. The slightly lower value of χ2 than expected in-

dicates only a slight overestimation of the error bars, especially

for the phase lags. This is probably because for each segment,

the error on the phase lag ∆φ is large and hence the error distri-

bution maybe slightly different than a Gaussian. Nevertheless,

the figure clearly shows that not only can stationarity be tested

but also reconfirms that the error estimates are reliable. Per-

haps, not surprisingly, given the shape of the total light curve,

the r.m.s of the 1-2 keV energy band is formally not consis-

tent with being a constant, with a χ2/do f = 28/10. This is

primarily due to the fifth segment where the r.m.s and its error

is small. Note that the error is computed by assuming that the

power spectrum of the segment is representative of the ensem-

ble average. Perhaps a more prudent approach would be to esti-

mate the error on the r.m.s using the averaged power spectrum

rather than for each individual segment. However, whether such

deviations are a significant indication of departure from station-

arity is arguable and subjective. Hence, we recommend that

only large deviations (for e.g. χ2/do f > 5) should be taken as

serious evidence for non-stationarity.

7. Summary and discussion

In this work an estimate for the significance and error on the

cross-correlation, phase and time lag between two light curves

is presented. The error estimates take into account the stochas-

tic fluctuations of the lightcurve as well as any known measure-

ment errors. The technique has been verified using simulations

of light curves generated from both white and 1/ f stochastic

processes with and without intrinsic correlation between them.

The entire analysis consists of five algorithmic stjpg which are

described in §6. The technique is ideally suited for short light

curves of length N ∼ 1000 and is an improvement over earlier

methods which were based on numerically expensive simula-

tions or by dividing the data into number of segments to find

the variance.

The estimate presented in this work is based on several as-

sumptions and hence is reliable only when they are valid. We

emphasize this point by enumerating some of the main assump-

tions.

•Both the light curves have been generated from stochastic pro-

cesses. Technically, this means that the phase of the different

Fourier components are unrelated to each other i.e. < X̃kX̃l >=

δlk. This assumption will be violated if the generation mecha-

nism is a non-linear one. In general, it is difficult to ascertain

the degree of non-linearity in a short lightcurve and it requires

sensitive analysis like Bi-coherence measure and/or non-linear

time series analysis. Thus, in most cases, the stochastic na-

ture of the light curves have to be assumed. It is prudent to

be aware that this assumption has been made and its validity is

unknown, like for example, for the prompt emission of Gamma-

ray bursts. A simple case where this assumption will be violated

is if the power spectra have dominant harmonic features, where

the power in the harmonics is comparable to that of the primary.

• The measurement errors are uncorrelated and have Gaussian

distributions. The essential assumption is that the power spec-

trum of the measurement errors is independent of frequency

(i.e. a white noise) and their phases are independent of each

other. If the power spectrum has a different shape, then the

appropriate changes have to be made and the basic results of

this work need to be re-derived. For most practical purposes if

the measurement errors are known, they usually are Gaussian

distributions and hence this assumption is valid. If there are un-

known systematic errors in the light curves then of course the

analysis will not be applicable. Poisson distributions have the

white noise property but in general the phases of the different

Fourier components may be related. We have verified that for

counts per time bin ∼ 10, the results of this analysis is valid.

For counts less than that, caution is advised. However, for such

low counts, meaningful results can only be obtained for long

time series and it may better to obtain frequency dependent co-

herence and lag measurements.

• The light curves are evenly sampled without gaps. For un-

evenly sampled data the cross-correlation can be estimated Edelson and Krolik

(1988), but there does not seem to be an analytical way to esti-

mate the significance and error. One needs to use either Monte

Carlo simulations or more practically estimate the error by di-

viding the light curves into several segments and finding their
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variance.

• The light curves are stationary. As shown in the example of

the light curves of Akn 564, this assumption can be tested by

dividing the light curves into segments and checking whether

the r.m.s, cross-correlation and phase lags are consistent to be a

constant for different segments.

While this technique is useful for short duration light curves,

coherence and frequency dependent time lags provide naturally

more information and should be preferentially computed for

long data streams. This technique may not be unique or op-

timal and hence there is a possibility and need for development

of better methods provided they give robust and physically in-

terpretable results. Finally, while cross-correlation, phase and

time lags provide a quantitative measure of the system, their

physical interpretation has to be done in terms of the physical

geometrical and radiative model assumed for the system.

8. Acknowledgement

This work has made use of observational data obtained with

XMM-Newton, an ESA science mission with instruments and

contributions directly funded by ESA Member States and the

USA (NASA). AB would like to thank the Inter-University Cen-

tre for Astronomy and Astrophysics, Pune for associateship pro-

gramme.

References
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