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Abstract: 
Full–disk spectroheliograms have been taken in Coimbra on a daily basis since 1926 in the Ca II K–line 

(K1 and K3). Later, in 1989, with the upgrade of the equipment it was possible to start the observations in 

the H-alpha line. The spectroheliograms of Coimbra constitutes a huge dataset of solar images, which 

requires an efficient automatic tool to detect and analyse solar activity features. This work presents a 

mathematical morphology approach applied to the CaII K3 series. The objective is to create a tool based 

on the segmentation by watershed transform combined with other morphological operators to detect 

automatically and analyse chromospheric plages during the solar cycle 24. The tool is validated by 

comparing its results for cycle 23 with those presented by Dorotovic et al. (2007, 2010). The results 

obtained are in very good agreement with those, including on images obtained in non-ideal 

meteorological conditions (eg. some clouds in sky). The results were also qualitatively compared with the 

results obtained through the application of ASSA model to SDO HMI magnetograms. 
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1. INTRODUCTION 
 The Sun shows its activity in several ways, like active regions, flares, coronal mass ejections, 

etc. The characterization of solar features, traditionally made by hand by an expert user, is of great 

importance to monitor and forecast the solar activity and to obtain results for the Space Weather study 

(Veronig et al., 2001). 
 The success of several solar missions has allowed to obtain a vast group of high resolution 

images. In relation to this available information source, the solar physics community is comparatively 

small, and therefore the resource to the images digital processing has increased, with the aim of getting 

information about the solar activity in a prompt and efficient way (Gill et al., 2010; Falconer et al., 2011). 

Neural networks have been used to detect the solar activity of the solar wind's proton events (Borda et al., 

2002), and automatic tracking of solar flares (Caballero and Aranda, 2014). Threshold techniques, region 

growing, edge detection, segmentation, Hough transform, fractal analysis and fuzzy sets have been 

applied in the detection of sunspots, active regions, plages, filaments and CMEs (Nesme-Ribes et al., 

1996; Benkhalil et al., 2004; Zharkova et al., 2004; Qu et al., 2005; Scholl  , 2008; Aboudarham et al., 

2008; Fonte and Fernandes, 2009; Gafeira et al., 2013). Hybrid methods that include different approaches 

have also been developed (Qahwaji and Colak, 2005; Manish et al., 2014; Dorotovic et al., 2014). The 

mathematical morphology has been applied to sunspots (Curto et al., 2008; Carvalho et al., 2015; Zhao et 

al, 2016), in the filaments’ recognition (Fuller et al., 2005) and plages (Meunier and Delfosse, 2009). A 

good review is made in by Aschwanden (2010). A common aspect between all these works is the need to 

incorporate pre–processing techniques, such as Wavelets (Irbah et al., 1999), to normalize the solar 

images, with regard to dimension, size and intensity, and limb darkening correction (Walton et al., 1998; 

Denker et al., 1999; Walton and Preminger, 1999; Zharkova et al., 2004; Zharkov et al., 2005).  All these 

techniques are tailored to detect features in various types of observations at different heights in the solar 

atmosphere (Verbeeck et al., 2014). Automatic tracking of solar features has been developed for filaments 

(Gill et al., 2010; Goussies et al., 2010; Higgins et al., 2011) active regions (Pérez–Suárez et al., 2011; 

Martens et al., 2012), and solar flares (Higgins et al., 2011), coronal mass ejections (Olmedo et al., 2008) 

https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjw7rOa44XUAhXD5xoKHWnrCz0QFggpMAA&url=https%3A%2F%2Fwww.mat.uc.pt%2F~cmuc%2F&usg=AFQjCNGDlPbnYJsB-aZEBhITDMytt4NZMg&sig2=xThPQ9YSO86w142mfepECA
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which constitute the first steps for the building of an approach that can allow to follow and to characterize 

the solar activity evolution.  
 A comparison between automatic and manual methods was made by Zharkova et al. (2005), 

proving the big efficiency of the automatic methods. Carvalho et al. (2015) compares the results from 

different sunspot detection methods. The robustness of automatic methods to detect sunspots and active 

regions are also made by Verbeeck et al. (2013).  

 Traditionally the solar catalogs were created by hand, but the results of these many applications 

have contributed for the building of solar activity catalogues, being the EGSO (European Grid of Solar 

Observations) a good example of this (Fuller et al., 2004). Another pioneer example is the Solar Monitor, 

which labels active regions using NOAA's (National Oceanic and Atmospheric Association) numbers and 

heliographic positions (Higgins, 2012).  

 Despite having more data from new instruments and space missions, it is yet important to 

maintain older instruments working and to use their data for several important reasons (Hill et al., 2010; 

Ayres et al., 2012). One of them is the long–term observations of, at least, several decades they have been 

performing, crucial to understanding the solar cycle. Besides, ground–based observations allow us to 

preserve and extend consistent data sequences.  

 Solar faculae or plages are bright areas on the solar surface surrounding active regions and 
sunspots (Kostik and Khomenko, 2014). They are magnetic structures constituted of flux tubes where a 

strong magnetic field creates extra heat (about 300 degrees K above surrounding). The interest in facular 

regions is due the fact they may presage sunspot formation. This interest has increased even more with 

the discovery that the total solar irradiance increases when the Sun is more active (Solanki and Fligge, 

1999; Solanki and Unruh, 2013). In addition, the variability of facular areas it is one of the most 

important solar indices required to understand the activity of solar cycle (Göker et al., 2016).  

 This paper intends to contribute towards an automatic detection of facular regions acquired at the 

Geophysical and Astronomical Observatory of the University of Coimbra during cycle 24. The basic 

morphological operators are introduced in next section. The data used in this work and the automatic 

method based on mathematical morphology transforms are described in detail in section 3. Data analysis 

and discussion of the results are performed in section 4. Finally, the conclusions are presented in the 

section 5.  

 

 
2. BASIC CONCEPTS OF MATEMATHICAL MORPHOLOGY   
 Mathematical Morphology is an image analysis theory created in the middle 1960s by George 

Matheron and Jean Serra in the École des Mines de Paris. Its initial purpose was related to an application 

in porous media to describe the geometric features of structures (Matheron, 1967). The further 

developments since then have permitted to construct a solid framework (Matheron, 1975; Serra, 1982) 

and have successfully reached new application areas (good overview in Soille, 2002), including solar 

physics (Aschwanden, 2010).  

  One of the great potentialities of using mathematical morphology is the power to deal with the 

geometry of complex and irregular shapes (Barata et al., 2015). From the visual analysis of solar images, 

facular regions present these characteristics which led to exploring an approach based on morphological 

operators.   
 Initially developed for binary images this theory was generalized for grey–scale images. Any 

operator or morphological transform implies the comparison of the features to analyze with a known 

object, the structuring element. The success of the application of any mathematical transform depends on 

the choice of the structuring element. The mathematical morphology operators can be used directly or 

applied sequentially to obtain more elaborated morphologic transformations, for specific ends. Matheron 

(1975) and Serra (1982) present a detailed description of the mathematical morphology method. In the 

following paragraphs are presented the main ideas (Soille, 2002). 

 

2.1. The basic transforms 

 The first morphological transforms defined by Matheron (1967), are the erosion ()  and dilation 

(). To grey scale images, the erosion ( B (f)) of an image f by a structuring element B of size , is the 

minimum of the translations of f by the vectors –b of B (Soille, 2002): 

 

b
Bb

B ff 


 min)(
                  (1) 
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 The dilation of an image ( B (f)) of an image f by a structuring element B of size , is the 

maximum of the translations of f by the vectors –b of B: 

 

b
Bb

B ff 


 max)(
         (2) 

 

 The final results for both operators are poor in details when compared with the initial image. If it 

is necessary to enhance dark areas in a grey image, the erosion shows good results and the dilation has the 

opposite effect, because white zones in an image are more easily detected. 

 

2.2. The morphological gradient 

 The objective of the morphological gradient is to enhance and extract the contours of the 

homogeneous regions of grey levels in an image. From the two basic operators, erosion and dilation, the 

morphological gradient or Beucher gradient (Beucher, 1990) is defined as the arithmetic difference 

between the maximum and the minimum of the function f, divided by the size or diameter () of the 

structuring element (B): 

 

 B = B – B / 2     (3) 
 

 The objective of the morphological gradient is to enhance and extract the contours of the 

homogeneous regions of grey levels in an image.  

 

2. 3. Opening and closing 

 The erosion and dilation can be combined to perform two important transforms: opening and 

closing. The opening () consists of submitting an image f to an erosion followed by a dilation, both by a 

structuring element B of size . In the final image the opening cuts peaks and removes small object 

protuberances: 

 

 B(f) = (B(f )[B(f )]    (4) 
 

 In the same manner, the closing transform () consists in applying a dilation to an image f 

followed by an erosion. This operation suppresses (or closes) all the valleys smaller than a certain 

dimension given by the size  of the structuring element B: 

 

 B(f) = (B(f) [B B(f)]   (5) 

  

 Although possible, the isolated application of each operator is not a very powerful filter. 

However, the alternate application of these operators is the basis of the majority of morphological filters.  

 

2.4. Top–hat 

 The top–hat transform was introduced by Meyer (1979, 1986) based on combinations of 

openings and closings. The white top–hat (WTH) is defined as: 

 

WTH (f) =  f –  (f)       (6) 

 

and consists in the difference between the original image f and its opening . The white top–hat is used to 

extract peaks (white regions) in an image with respect to the background. The choice of the shape and the 

size of the structuring element for both top–hats, depends on the morphology of the structures to be 

extracted (Soille, 2002).  

 The black or valley top–hat (BTH), the dual transformation of the WHT, and is the difference of 

the closing of the original and the original image:   

 

 

BTH (f) =  (f) – f           (7) 
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 The closing transform suppress all the valleys smaller than a certain dimension. The subtraction 

of the initial image allows to recover these structures by putting them at the same level and by 

simultaneously filtering the ones that were not modified. 

2.5. Geodesic transforms 

 Mathematical transforms can be defined either in Euclidean or Geodesic space. Geodesy was 

introduced in image analysis by Lantuéjoul et Beucher (1980). When applied in geodesic space the 

mathematical transforms are limited to a region or subgroup of the image and only part of the image is 

analysed (called an image mask). Generally, the geodesic transforms are applied iteratively until stability 

and this is called reconstruction. This transform is a powerful tool in mathematical morphology and is 

used to filter images, to find and fill local maxima or minima, to suppress minima and maxima lesser than 

a give size, to remove noise without affecting structures of interest and filling holes.  

 The geodesic transforms involve two images: the mask image and the marker image. The marker 

image is subjected to successive dilations (or erosions) until it fits the mask image (Soille, 2002). The 

reconstruction by dilation (Rg) of a mask image g from a marker image f is defined as the geodesic 

dilation of with respect to g, iterated until stability (Soille, 2002): 

 

)()( fif
g

R  
     (8) 

  

 

 The reconstruction by erosion is the mathematical transform used to eliminate and fill holes in an 

image. In a binary image, a hole is defined as the set of background components which are not connect to 

the image border (Soille, 2002) . In grey images the concept of a hole is different and removes holes 

means eliminate all the minima which are not connected with the image border. To fill holes in a grey 

image is necessary to impose the set of minima which are connected to the border image. The image 

marker used in this transform is the set of maximal values on the original image, except along its border 

where the values of the initial image are kept (Soille, 2002).  

 

 

3. AUTOMATIC DETECTION OF PLAGES OR FACULAR REGIONS  

3.1. The spectroheliograms  

 The Astronomical Observatory of the Coimbra University has a collection of solar observations 

on a daily basis that spans near nine decades until today. Regular observations of the full solar disk in the 

spectral line of CaII K started in 1926 and in 1989 started the observations in the spectral line Hα. The 

spectroheliograms from1926 until 2007 were taken through photographical method in the wavelengths 

393.37nm (CaII K3), 393.23nm (CaII K1) and 655.87nm (Hα) after 1989. Photographic plates and films 

13x18cm were replaced by a 12–bit CCD camera in 2007, making possible to add observations in 656.28 

nm (H–halpha continuum) and, after an upgrade of the data–processing software in 2009, to obtain Hα 

Dopplergrams (Garcia et al., 2010). This extensive collection acquired with the same instrumentation is 

now available entirely in digital format.  
 This study is based on CaII K3 series to detect automatically and analyse the chromospheric 

facular region or plages during the solar cycle 24, from 2008 until 2016.These spectroheliograms are 

digital images of 8 bits, with 1200 x 1000 pixels. Some examples are shown in Fig. 1. The results 

obtained were validated by comparing them with results of the study presented in Dorotovič et al. (2007, 

2010) for the solar cycle 23. Another evaluation was made by comparing the results obtained by the 

Automatic Solar Synoptic Analyzer software (ASSA) in SDO HMI magnetograms. The method was also 

applied in CaII K spectroheliograms of the Astronomical Observatory of Kharkiv State University, with 

the aim to evaluate the performance of the automatic detection. 

 
3.2. Pre–processing the data  
 Facular regions are bright areas in the solar chromosphere, due the activity of magnetic field. An 

example of facular regions can be observed on the CaII K3 spectroheliogram acquired at OGAUC in 

Figure 1. The letters in the corners of the image provide information about the acquisition: data, 

orientation and place. 
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Figure 1 – Example of a CaII K3 spectroheliogram (acquired on the 1st of April 2011). 

 
 

 Prior to the identification of the solar facular regions, it is necessary to define the solar disk 

within the image. Also, it is necessary to remove the letters because they difficult the application of any 

automatic processing algorithm. Only the images acquired in digital format (since 2007) have letters in 

the same position, and the spectroheliograms result from multiple scans of the Sun. Consequently, the 

edge of the solar disk is an indented surface and the background outside the solar disk heterogeneous. 

This implies that the digital levels of the background pixels, outside the solar disk, don’t have the same 

value. There is a possibility to have pixels with the same digital level outside and inside of solar disk, 

which can be a problem to next septs of the automatic detection. Additionally, the solar disk is slightly 

flatted at the poles. Nevertheless, these pixels of difference can be neglected in comparison to the 

hundreds of pixels of the solar disk. So, the solar disk can be treated as perfectly circular.  

 Due to the heterogeneity of the background of the spectroheliograms, a morphological filter is 

applied, starting by an area closing. This closing operation filters structures without altering the shape of 

those structures, whose surface area is greater than a given threshold, in this case 70 pixels. Figure 2 (b) 

shows the result of the application of this transform to the original image of Figure 2 (a). Although the 

background of the image was filtered, being more homogeneous and less nosily, the letters were not 

removed. The application of an opening by a disk of size 10 removes the letters (Figure 2 (c)) but does 

not preserve the original digital levels that corresponds to the solar disk. This can be done by performing 

a reconstruction, using the original image as a marker (Figure 2 (a)) and the mask (Figure 2 (d)) is the 

difference between the opening image (Figure 2 (c)) and the original image (Figure 2 (a)). The result of 

the reconstruction is shown in Figure 2 (e).  The binarization of this image (Figure 2 (f)) allows 

recovering the solar disk and the multiplication of this image by the original, enable to obtain the original 

digital levels. The result of this pre–processing algorithm is shown in Figure 2 (g), with all the digital 

level of the background outside the solar disk are equal to 0 (black). This image is the starting point for 

the automatic recognition of facular regions. 

 It may seem that this algorithm could be replaced by a binarization applied directly to the 

original image. However, the heterogeneity of the spectroheliograms background makes impossible to 

apply an automatic threshold to all images. 

   

   
a) b) c) 
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d) e) f) 

 
g) 

Figure 2 – Identification of solar disk in spectroheliograms: a) original image of a spectroheliogram; b) 

area closing of (a); c) closing of (b); d) difference between (a) and (c); e) reconstruction operation; f) 

binarization of (e); g) final image, obtained by the multiplication of the original image (a) and (f). 

 

 As illustrated in Figure 1 at the edge of the solar disk the brightness decreases sharply (Figure 3 

(a)). For this reason, there are not many pixels with brightness similar to those on the edge. This means 

than on a pixel intensity histogram (Figure 3 (b)) the brightness of transition region falls in a local 

minimum, located with the 80th percentile of the histogram. This value is used to perform the threshold of 

the original image. The resulting binary image is shown in Figure 4(a).  

 

 
 a)                                                   b)  

 

Figure 3 – Digital levels: a) Digital level of the central horizontal line of the image of Figure 1, with the 

minimum level of the histogram (dashed line); b) histogram of the digital levels of the image of Figure 1 

(dashed line represents the minimum digital level within the 80th percentile);  
 

 The binary image (Figure 4 (a)), is used to determine the solar disk center coordinates (Xc, Yc) 

and its radius. Figure 4 shows the solar disk and the respective contour of the spectroheliogram of Figure 

1.  
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a)                                                              b) 

 

Figure 4 –  Solar disk region and respective contour: a) binary image of the spectroheliogram of Figure 1 

and b) spectroheliogram with the superimposed of the solar disk contour.   

 

 The coordinates of the center of the solar disk (Xc, Yc) were computed using the standard 

procedure to compute the centroid of an object: 

 

           𝑋𝑐 =
∑ 𝑗i,j ∗𝑇𝐻𝑖,𝑗

∑ T𝐻i,j𝑖,𝑗
       (9) 

and  

 

𝑌𝑐 =
∑ 𝑖i,j ∗𝑇𝐻𝑖,𝑗

∑ T𝐻i,j𝑖,𝑗
        (10) 

 

Where i and j are, respectively, the number of rows and columns of the image, while THi,j is the digital 

level of the threshold image at the pixel located at the (i,j). The solar disk radius (R) is computed 

assuming that the disk is a perfect circle: 

𝑅 = √
∑ T𝐻i,j𝑖,𝑗

𝜋
       (11) 

 

 A comparison of the solar radius computation for all spectroheliograms of solar cycle 24 (with 

radius around 450 pixels) show a great consistency of the results. Figure 5 shows the average difference 

between the estimated radius and the one to be expected from a sinusoidal fit is about one pixel, with a 

Root Mean Square (RMS) of 6.14 RMS. This radius difference is significantly smaller than the size of the 

solar disk in the images evaluated here.  Notice that for instance a maximum 2 pixels uncertainty on the 

characterization of the solar disk's radius and central position generally results on a determination of the 

area of facular regions with a relative uncertainty around 5%. The determination of the center and the 

radius will be used to identify the facular regions in the hemispheres (north and south).  
 

 
Figure 5 -  Disk radius for 2083 spectroheliograms taken at the Coimbra observatory during solar cycle 

24. 
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3.3. Morphological detection of facular regions   

 The principal aim of the algorithm to detect facular regions is to be completely automatic, i.e. to 

operate without any human intervention. The algorithm starts by applying a white top–hat by a disk of 

size 50 to the clean image, i.e. the image with a homogeneous background and without letters (image of 

Figure 2 (g).  The objective of this operation, as observed in Figure 6 (a), is to have an image with only 

the areas that are brighter than their surroundings. After the top–hat operation, a hole filling was 

performed to connected and filled the areas inside facular regions. The results of this operation can be 

observed in Figure 6 (b). At this point, all facular regions are identified but it is necessary to isolate them, 

since not all bright areas correspond to facular regions; there are small or isolated bright pixels in the 

image that remains. This can be done through the application of a threshold (Figure 6 (c)). To have a 

completely automatic method several threshold values were tested according to the solar activity during a 

solar cycle and were integrated in the algorithm. For the years of maximum activity, the value used is the 

digital level of 30, to include sunspots, characterized by lower digital levels, since they correspond to dark 

pixels on the solar disk. For the years of the minimum solar activity the threshold value used is the digital 

level 50, due the fact that facular regions are less frequent and almost spotless. The digital level of 35 was 

used for the intermediate years of solar activity. The maximum value for all mentioned situations was 

fixed at 180, since the maximum digital level for the spectroheliograms rarely reach this value (see Figure 

3 (a)). 

 The next step of the algorithm is to remove small areas (isolated pixels) that resisted to the 

threshold operation but do not correspond to facular regions. This can be done through the application of 

an erosion of the threshold image by a disk of size 2, followed by a reconstruction. Figure 6 (d) shows the 

result of the erosion operation. Figure 6 (e) shows the reconstruction operation, which preserve the bright 

areas that correspond to facular regions and simultaneously remove small objects. This image will be the 

image that contains the markers of facular regions, (Figure 6 (g)) after multiplying by the image that 

contains the contour of the solar disk (Figure 6 (f)). This ensures that all regions that will be detected by 

the segmentation are contained in the solar disk region. In this algorithm the segmentation used is the 

watershed transform applied to the image.  Figure 6 (h) shows the catchment basins of the watershed 

operation applied to the image the clean image, this is, the image of Figure 2 (g)) e.g. using the image of 

the markers (Figure 6 (g) to impose the image regions to be segmented. Usually, when the watershed 

transform is applied directly to an image produce an "over–segmented" result. This is a well-known 

phenomenon which causes an excessively segmented image, that can be avoid by filtering previously the 

input image or, alternatively, using markers of the structures to be extracted. This last option was used in 

this segmentation algorithm.  The gradient operation applied to the image of the watershed basins, allows 

to obtain the contours of facular regions (Figure 6 (i)). The result of the algorithm of automatic detection 

of facular regions can be observed in the image of Figure 7. This image shows the contours of facular 

region superimposed to the original image. 
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a) White top–hat applied to the image of Figure 2 

(g). 

 

b) Hole fill operation. 

 

c) Threshold image. 
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d) Erosion of the threshold image. 

 

e) Reconstruction. 

 

 

f) Reconstructed image with the contour of solar 

disk. 
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g) Markers of the facular regions. 

 

h) Basins obtained by the watershed operation, 

that corresponds to facular regions. 

 

i) Contours of facular regions. 

 

Figure 6 –  Algorithm of automatic detection of facular regions. 
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                                   Figure 7 – Facular regions superimposed of the original image.   
 

 

 

3.4. Identification of the Solar hemispheres and determination of the area of facular regions 
 After the identification of the facular regions the algorithm continues to determinate the facular 

regions in the northern and southern solar hemisphere, which can be useful to determinate areas and/or to 

determinate north and south asymmetries (Gonçalves et al., 2014). 

 Each pixel within the solar disk can be associated a set of heliocentric Cartesian coordinates x 

(number of pixels to the right of the center of the solar disk) and y (number of pixels above the center of 

the solar disk), as seen in Thompson (2006). These are the pixel’s coordinates in respect to the center of 

the solar disk.  It is possible to add a third coordinate Z perpendicular to the other two, through the 

expression: 

Z2 = X² × Y²       (12) 

 This Cartesian system can be converted to a spherical system of coordinates with latitude (𝜃) 

and longitude (𝜙): 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑍 √𝑋2+𝑌2⁄ )      (13) 

 

∅ = 𝑎𝑟𝑔(𝑋, 𝑌)        (14) 

 

in which the arg(X,Y) function solves the quadrant ambiguity of the tan⁻¹(Y/X) function (Thompson, 

2006). 

 Nowadays Coimbra’s spectroheliograms are rotated so the north/south poles appear at the 

top/bottom of the image. However, before 2002 the Sun was an inclination (P*) of the Sun’s rotation axis 

in respect to the North–South line (North G.). In those cases, the coordinate system needs to be rotated 

along the Z axis to a new cartesian system (x', y' and z'), so at the pole one gets x' = 0. 

 On the other hand, due to the ecliptic's inclination in respect to the solar equator the Earth is 

generally above or below the solar equator. In these cases, the center of the solar disk is not at the equator, 

but at a latitude Bo. This heliographic latitude of the center of the solar disk is a solar ephemeris that can 

be easily computed (e.g Meeus, 1998).  A -Bo rotation along the X axis produces a new cartesian 

coordinate system (x'', y'' and z''), in which y'' = 0 for all points located at the solar equator. This new 

coordinate system was used to identify the solar northern and southern solar hemispheres (selecting the 

pixels for which y'' > 0 or y'' < 0). 

 

 The determination of each image's area of facular regions is done by integrating the image that 

contains the identified regions. Notice however, that towards the solar limb, the area of solar disk covered 

by each pixel increases by a factor proportional to 1/cos (θd ), in which θd is the angular distance between 

the pixel  of coordinates (X,Y) and the center of the solar disk: 
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𝜃𝑑(𝑋, 𝑌) = sin(√(𝑋2+𝑌2) /𝑅)     (15) 
 

 

 
thus, the total area of facular regions is expressed as a fraction of the visible solar surface (i.e. 2πR², in 

which R is the radius of the solar disk). 

 A similar approach can be used to compute the area of facular regions at the northern/southern 

hemispheres. In this case the image containing the facular regions identified should be multiplied by a 

mask containing the northern/southern hemispheres. Figure 8 shows the facular regions of the 

spectroheliogram of Figure 2, in the north and south hemisphere. 

 

  
a)                        b) 

        Figure 8 – Facular regions on 1st April of 2011:  a) North hemisphere and b) South hemisphere. 
 
4. DATA ANALYSIS AND DISCUSSION  

 
 The automatic algorithm to detect facular regions was applied to the Coimbra spectroheliograms 

of the solar cycles 24 and 23. While the application of the algorithm for cycle 24 had the purpose of 

automatic detection of facular regions, for cycle 23 the objective was to obtain results that allow to 

validate the method. These images were compared with the images of cycle 23 already processed by the 

method developed by Dorotovič et al. (2007, 2010). 

 
4.1. Illustration of the results and robustness:  

 Some results of the application of the algorithm for the cycle 24 are shown in the Figure 9. 

 

 

  

a)                        b) 
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c)                        d) 

  

e)                        f) 

Figure 9 – Automatic detection of facular regions applied to spectroheliograms acquired during cycle 24: 

a) 14 November 2008; b) 28 October 2009; c) 15 May of 2012; d) 25 February of 2014; e) 19 July of 

2015 and f) 11 October of 2016. 

 

The application of automatic methods  to ground-based images present some specific difficulties, 

due the Earth's atmosphere and meteorological factors.  The good performance of the algorithm maintains 

when applying to images with strong atmospheric effects, as can be shown in the images of Figure 10. 

  

a)  b) 
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c)  d) 

 

Figure 10 – Automatic identification of facular regions in images with strong atmospheric effects: a) 

original image acquired at 2 May 2016; b) image acquired 16 December 2009; c) image acquired at 13 

April 2012; d) image acquired 4 November 2012.  
 
 For cycle 24 the algorithm was applied approximately to 2083 spectroheliograms, from 2008 to 

2016. The results were evaluated by an experienced astronomer that has estimated an error of bad 

identification of facular regions on about 7% of images. However, given the large amount of 

spectroheliograms that were analysed, it can be considered that the algorithm allows to obtain excellent 

results. Representative examples of wrong facular regions detection can be observed in the images of 

Figure 11.  

  

a)  b) 

  

c)  d) 
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Figure 11 – Erroneous results of automatic identification of facular regions: a) original image acquired at 

16 November 2011; b) image acquired 18 June 2013; c) image acquired at 7 August 2014; d) image 

acquired 14 April 2015. 

 The typical errors are due to false segmentation of facular regions, on the application of the 

watershed transform. The marker image can contain an isolated pixel (not removed in previous steps) 

which lead to an erroneous segmentation. The type of error encountered was always caused by excessive 

segmentation (by identifying regions faculares more than real), and a reduce number of very small facular 

regions not always identified. The analysis of images acquired on consecutive days is a good method to 

evaluate the results. Figure 12 shows the results obtained in the days before and after of the 

spectroheliogram of Figure 11. 

  

a)  b) 

Figure 12 – Results of automatic identification of facular regions: a) original image acquired at 6 August 

2014; b) image acquired 8 August 2014. 

 In respect to the existence of outliers resulting from our approach, an evaluation of facular areas 

computed for this period showed only five clear outliers, as shown in Figure 13. 
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Figure 13 – Daily facular area during Solar cycle 24. 

 One possible interpretation of these outliers is due to problems within the images themselves 

(low signal–to–noise observations) or false segmentation (e.g. Figure 12). Given the total number of 

observations involved, one can consider this amount negligible.  

4.2. Validation on cycle 23 

 Dorotovič et al. (2007, 2010) have developed a software tool to determine automatically the 

North-South Asymmetry Index of the Area of Ca II K Emission FEATures (AKFEAT), of the Area of 

Bright CHromospheric Features (ABCHF), from the OGAUC spectroheliograms. The algorithm is 

limited to determining the area of bright features in the emission line of CaII K3, in both hemispheres 

separately, after defining a threshold value of the relative brightness. The software starts with the 

determination of the quiet–Sun center–to–limb variation (CLV) using a method presented by Brandt and 

Steinegger (1998). The algorithm goes further, calculating the ABCHF as a sum of the area above the 

corresponding local quiet–Sun intensity. Finally, the algorithm also estimates the real area of bright 

chromospheric features, i.e. it transforms the area in fraction of the solar hemisphere (Figure 14). Further 

details on the method can be found in the cited papers. 

 

 
Figure 14 – Interface of the AKFEAT tool developed by Dorotovič et al. (2007). 

 

 The results obtained by our algorithm were compared with those obtained by Dorotovič et. al. 

(2007, 2010). Images taken in January 1997, February 1998, March 1999, April 2000, May 2001 and 

June 2002 (a total of 134 images), were used to make this comparison. Some examples are presented in 

figure 15. It must have pointed out that the images for cycle 23 were acquired in photographic film and 

digitalized latter. This explains the difference in contrast in the images of cycle 23 and 24. 
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a)  
 

                              b) 

Figure 15 – Automatic detection of facular regions applied to spectroheliograms acquired during cycle 

23: a) 7 August 1996 and b) 21 May 1999. 

 

 Figure 16 shows a comparison of the North, South and total areas of facular regions detected by 

both methods. As can be observed, the facular area estimates by the morphological method are well 

correlated with the values computed using the AKFEAT algorithm, with the Pearson's correlation 

coefficients above 0.8 (i.e. more than enough to have negligible false alarm probabilities). A linear 

regression to the area of southern facular regions (AreaS) computed using both methods yields: 

 

0.191.03 mat.morph.AKFEAT AreaS=AreaS       (16) 

with an RMS = 0.61. This RMS is due to the larger dispersion of facular regions areas above 2% of the 

solar visible surface. One possible reason is due the different approach methods, particularly, in what 

concerns the use of thresholds. For the morphological method the thresholds values are fixed, while in the 

AKFEAT method, they vary from image to image. The AKFEAT method determines the reference 

(threshold) quiet-Sun intensity in a central circle of the solar disk, and in a set of concentric rings around 

it using a method of Brandt and Steinegger (1998). This yields different threshold values for each 

individual image. It is the main reason that the total area of facular regions derived using our method is 

slightly higher than the area of facular regions estimated using the AKFEAT method. 

The mathematic morphology approach tended to identify slightly more northern facular regions (AreaN) 

than AKFEAT. Indeed, the best linear fit to both estimates is  

0.030.76 +AreaN=AreaN mat.morph.AKFEAT   (17) 

with an RMS = 0.49. Consequently, the total area of facular regions estimated using our method tends to 

be slightly higher than the one estimated using the AKFEAT software: 

 0,950.020.84 =RMS+AreaN=AreaT mat.morph.AKFEAT    (18) 
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Figure 16 – Comparison between the fraction of the solar surface of facular regions during 6 months of 

solar cycle 23, identified using our method against the estimates of Dorotovič et al. (2007, 2010) software 

(AKFEAT). From left to right: area of the northern faculae, area of the southern faculae and total area of 

facular regions. The dashed lines correspond to the best linear fits to the data. 

Considering that the AKFEAT software was designed to compute the N–S asymmetry of facular 

regions, a comparison between both algorithms was performed (based on the difference facular areas of 

the North and South hemisphere) (Figure 17). Again, there is a significant degree of correlation between 

both estimates (r = 0.83), for which the best linear fit corresponds to: 

 0.600.191.08 .. =RMSAreaS)-(AreaN=AreaS)-(AreaN morphmatAKFEAT 
  (19) 

 

 

Figure 17– Comparison between the North–South asymmetry of facular regions computed using our 

methodology and the AKFEAT algorithm. The dashed line corresponds to the best linear fit to the data. 

 

4.3. Comparison with ASSA method (SDO HMI images) 
 The Automatic Solar Synoptic Analyzer (ASSA) method is a free available software developed 

by the Korean Space Weather Center of the Radio Research Agency. The results obtained by the ASSA 

method were qualitatively compared with the results obtained by the application of the automatic method 

to the HMI SDO images (section 3.4), by an expert observer. This qualitative validation was performed 

for a representative set of images. Figure 2018 shows examples of the comparison of the results obtained 

by both methods. Some examples of application of the algorithm are shown in Figure 18.  
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a) b) c) 

   

d) e) f) 

 

  

g) h) i) 

Figure 18 – HMI SDO images showing the polarity of magnetic field:  a) original image acquired at 3 

September 2011; b) original image acquired 10 August 2012; c) original image acquired at 10 May 2014;  

d) ASSA results of the image (a); e) ASSA results of the image (b); f) ASSA results of the image (c); g) 

automatic detection of facular regions of the image (a);  h) automatic detection of facular regions of the 

image (b);  i) automatic detection of facular regions of the image (c). 

 

 

 

 As can be observed from figure 18, the results obtained using both methods are in conformity in 

what concerns the areas detected. The only difference is that the morphological method does not 

determinate the magnetic polarity of the active regions, due the lack of magnetic information in Coimbra' 

s data.  

 

4.4. Application to Kharkiv spectroheliograms 

 

 The algorithm was applied to spectroheliograms from the Astronomical Observatory of Kharkiv 

State University, available through the database http://www.astron.kharkov.ua/ssm/.  The objective was to 

test the applicability of the method to other images, using the same parameters for morphological 

operators and threshold values. Figure 19 shows an example of the results obtained for the Ca KII 

Kharkiv spectroheliograms. 
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a) b) c) 

Figure 19 – Automatic detection of facular regions applied to the Kharkiv spectroheliogram acquired at 

26 September 2010: a) original image; b) facular regions obtained by the automatic method and c) facular 

regions superimposed to the original image. 

 

 

5. CONCLUSIONS 
 One of the major challenges in the development of automatic methods is their universal 

applicability. In other words, to have procedure that can be applied to different of types images (high 

resolution, low resolution) and from different sources (space missions, ground observations) with the 

same purpose. In this case the method described here was applied to spectroheliograms acquired from 

different observatories and SDO HMI images, promising results. 

 A mathematical morphology algorithm was developed to be applied to the CaII K3 series 

spectroheliograms of OAGUC, with the purpose of creating an automatic method to detect the 

chromospheric plages during the solar cycle 24. The tool was quantitatively compared with the results for 

cycle 23 performed by Dorotovic et al. (2007, 2010), and qualitatively with ASSA model applied to SDO 

HMI magnetograms.  

 In what concerns to ground–based images, the application of automatic methods can present 

some additional difficulties, due the Earth's atmosphere and meteorological factors, occasionally 

providing an additional source of noise to our data or adding artifacts not present in the Sun and the limb 

darkening correction. It is important to highlight that the algorithm developed in this work does not need 

to pre–process the images to remove the atmospheric effects, the intensity and contrast. Additionally, the 

procedure proposed here has the added advantage of being unaffected by the limb darkening effect and 

thus requiring no pre–processing of the data with the sole purpose of removing it. Moreover, the results 

obtained from the morphological transforms agree with the results obtained from other approaches, 

including on images obtained with atmospherics artifacts (e.g. some clouds). 

 The versatility of the automatic methods is high, not only due to its applicability to any type of 

image (from high resolution to spectroheliograms, for example), but also for its extraction power of 

characterizing and quantifying parameters of the solar activity. 

 As future work it is intended to analyze the whole Coimbra’s data series and make the entire data 

set public. It is expected that this analysis will be a valuable contribution to study of the variability of the 

Sun's activity, namely the North-South asymmetry and the correlation between solar and geomagnetic 

activities.  
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