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A CNN and LSTM-Based Approach to Classifying

Transient Radio Frequency Interference

Daniel Czech1, Amit Mishra and Michael Inggs

Abstract—Transient radio frequency interference (RFI) is
detrimental to radio astronomy. It is particularly difficult to
identify the sources of transient RFI, which is broadband
and intermittent. Such RFI is often generated by devices like
mechanical relays, fluorescent lighting or AC machines, which
may be present in the surrounding infrastructure of a radio
telescope array. One mitigating approach is to deploy indepen-
dent RFI monitoring stations at radio telescope arrays. Once
the sources of RFI signals are identified, they may be removed
or replaced where possible. For the first time in the open
literature, we demonstrate an approach to classifying the sources
of transient RFI (in time domain data) that makes use of deep
learning techniques including CNNs and LSTMs. Applied to a
previously obtained dataset of experimentally recorded transient
RFI signals, our proposed approach offers good results. It shows
potential for development into a tool for identifying the sources of
transient RFI signals recorded by independent RFI monitoring
stations.

Index Terms—transient radio frequency interference, convo-
lutional neural networks, bidirectional long short-term memory
(LSTM)

I. INTRODUCTION

RADIO astronomy continues to face the problem of radio

frequency interference (RFI). As instruments become

more sensitive, so the impact of existing RFI sources becomes

more significant. New technologies that make use of the RF

spectrum become more widely adopted over time. To counter

the growing problem of RFI, a variety of approaches have

been developed and refined.

Most commonly, RFI is detected in data directly from

radio telescopes. Such approaches typically distinguish only

between RFI and astronomical signals, making no attempt

to determine the identity of the sources of RFI signals. A

wide variety of algorithms have been developed, mostly for

application with 2D time-frequency data [1], [2].

An additional approach, one being employed at the Square

Kilometer Array (SKA) site in South Africa, is to develop in-

dependent RFI monitoring stations [3], [4], [5]. These stations

will continuously monitor almost the full bandwidth of the

radio telescope, simultaneously and in all directions. They also

have the ability to capture time-domain transient RFI signals.

Such monitoring stations make it easy to detect nearby sources

of RFI, so that they may be removed or replaced.

In the case of intentional transmissions (for example,

telecommunications) it is usually easy to identify their sources

since they adhere to government-allocated frequency bands.
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Transient RFI signals are much harder to identify, however,

since they are intermittent and broadband. Typically, they are

produced as a byproduct of the normal operation of devices

such as mechanical relays, fluorescent lights, AC machines

etc.

There are few prior attempts to identify the sources of

transient RFI in a radio-astronomy context. Unsupervised

clustering via the k-means algorithm was applied to transient

RFI at the Parkes radio telescope [6], but individual sources

were not classified. In other work [7] a variety of supervised

learning techniques were employed to classify sources of RFI

in labelled data recorded at the MeerKAT construction site in

South Africa. Gaussian mixture model and k-nearest neigh-

bours classifiers were applied to the data. High classification

accuracy was achieved, however the number of samples per

class was very small (in some cases less than 10).

In our own prior work, we looked at classifying RFI events

using nonlinear principal components analysis techniques [8]

as well as a dictionary-based approach in conjunction with

hidden Markov models [9]. Signals were recorded from a

number of common sources of transient RFI under controlled

conditions, using a custom capturing system very similar to

those which are installed in RFI monitoring stations at the

MeerKAT/SKA site in South Africa.

Attempts have been made in other fields to classify similar

types of transient RF signal. In one such approach, basic neural

networks were used to classify the makes of different vehicles

based on their transient RF emissions [10].

In this paper, we propose a novel approach to classifying

the sources of transient RFI. Recurrent neural networks, in par-

ticular, long short-term memory (LSTM) networks [11] have

proven highly effective at modeling time-dependent signals in

a variety of applications, for example phoneme classification

in automated speech recognition [12] and acoustic modeling

[13].

While they are known best for their use in visual process-

ing, convolutional neural networks (CNNs) have also shown

success in dealing with temporal sequence data, for example

human speech [14] and wireless interference identification for

coexistence management [15]. A CNN-based approach has

been used to identify sources of interference in WiFi signals

[16], although most of the sources dealt with were intentional

continuous transmitters. Recordings were limited to the WiFi

band and were recorded as time-frequency data. In a radio

astronomy context, CNNs have been used to flag RFI in data

from radio telescope arrays in recent work [17], but not to

classify the flagged RFI by source. In addition, they were

applied to data represented in the 2D time-frequency domain.
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The main novelties of our work consist of the following: As

far as we are aware, this is the first time that either CNNs or

LSTMs have been employed to identify the sources of time-

domain transient RFI. In addition, we believe our approach

combining 1D-CNNs and bidirectional LSTMs has not been

attempted elsewhere for the classification of RFI signals (of

any type) by their sources. This work constitutes one of the

relatively few attempts available in the open literature thus far

to identify the sources of transient RFI signals.

The rest of this paper is organised as follows: The experi-

mental data and associated preprocessing steps are described

in Section II. The models and and their application to the

data are discussed in Section III. In Section IV, results are

presented. Finally, conclusions are drawn in Section V.

II. DATA AND PREPROCESSING

The data used in this analysis are derived from our prior

work [8]. In the original dataset, full RFI recordings consist

of a sequences of individual transients. In other prior work

[9] we presented an algorithm for extracting these individual

transients from full RFI recordings. In this paper, we use

these individual transients, extracted using this algorithm. This

dataset consists of 63130 individual transients from 8 different

sources. An example of a transient RFI signal from each class

is given in Fig. 1. Transients are aligned by their largest peaks,

and padded with zeros where necessary (since their lengths

vary).

This data format, time-domain captures of short transient

RFI signals, is one of which independent RFI monitoring

stations at the SKA site in South Africa will record. The ability

to identify the sources of transient RFI, as recorded by such

monitoring stations, would be highly valuable.

A. Preprocessing

Prior to classification, limited preprocessing steps are car-

ried out. Each transient is limited in length to 5000 raw

samples for two reasons: One, the majority of transients are

shorter than 5000 samples, and two, unnecessary compu-

tational overhead is avoided. The amplitude range of each

individual transient (for all train, test and validation sets)

is scaled to range between -1 and 1: for each transient t,

tscaled = 2 t−min(t)
max(t)−min(t) − 1. This scaling is applied because

ideally, an RFI classification system would be capable of

handling variations in amplitude. For example, in the field, the

amplitudes of RFI signals will vary according to the distance

from their sources. Transients are also standardised across each

feature (time step). For each feature vector xj containing one

value from each sample in a training set, xj(scaled) =
xj−µj

σj
.

This ensures that each feature is no more influential than the

next. The standardisation parameters are determined from the

training data alone; these predetermined parameters are used

when standardising validation and test data.

The data are split into training, validation and testing sets.

The training set consists of 60% of the available data, while

the others account for 20% each. The data is stratified by

class (each set contains an equal proportion of samples from

each class) and shuffled (so the order of the samples in each

set is random). The validation set is used for hyperparameter

tuning, while the test set is kept separate until final evaluation,

where the training set consists of both the original training and

validation sets combined.

B. Class Imbalance

Certain RFI sources (such as the mechanical relay) produced

many more transients in a single event sequence than others.

As a result, the number of individual transients is significantly

imbalanced by class. The number of transients (equivalently,

samples) per class is given in Table I. Due to the class

imbalance, we perform two separate analyses. In the first

approach, we balance the classes by limiting the number of

samples per class to the number of samples in the smallest

class. For the larger classes, a subset of their samples is drawn

at random. In the second approach, rather discarding data,

samples are weighted by class in the cost function. Samples

from rarer classes are weighted higher than samples from

common classes, ensuring that each class has an equivalent

influence on the model during training.

TABLE I: RFI sources

Class Description No. Samples

1 Compact fluorescent lamp 662

2 Power tool 543

3 Step-down transformer 5523

4 Cable 264

5 Mechanical relay (700W resistive load) 16006

6 Mechanical relay (without load) 35932

7 AC motor (approximately 1 kW) 3675

8 Small switching power supply 525

III. MODEL ARCHITECTURE

The architecture we selected is relatively uncomplicated

- consisting of a 1D convolutional layer, followed by a

bidirectional LSTM layer and finally a fully-connected layer,

presenting the output in a 1-hot configuration. Fig. 2 illustrates

the chosen model. The 1-D CNN layer serves both to identify

salient features in the transient signals, and to reduce the

length of the time-dependent input sequence to the LSTM

layer. We chose to use LSTMs since they have proven highly

effective at modeling temporal sequences in a wide variety of

fields. In particular, bidirectional LSTMs have in some cases

proven superior to other architectures in applications such as

automated speech recognition, for example [12], [18].

The hyperparameters for the CNN and LSTM layers were

selected by training different configurations on the training

set, and evaluating them on the validation set. Hyperopt [19],

a Python library, was used to automate the hyperparameter

selection process. Model training was carried out using the

Python library Keras [20] with Tensorflow [21]. Computations

were performed using an Amazon p2.xlarge instance (2.7 GHz

Broadwell CPU; 61 GiB RAM; 12 GiB NVIDIA Kepler K80

GPU).
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Power Tool

Transformer

Cable

Relay (W. Load)

Relay (Without Load)

AC Motor

CFL

Power Supply

Fig. 1: Examples of individual transients from each class as extracted by the automated algorithm given in [9]. The lengths of

the transients differ to an extent.

Filters: 64

Strides: 32

Kernel Size: 192

Batch Size: 128

1D CNN

Hidden Units: 384

LSTM 
(backward)

LSTM 
(forward)

Hidden Units: 384

Fully

Connected

Units: 8

Activation: Softmax

Input RFI signal

(5000, 1)

Output

(151, 64)

Predictions 

(8, 8)

Output

(768, 32)

Fig. 2: The architecture of the chosen model. In the bidirec-

tional LSTM layer, the outputs of each LSTM are concate-

nated. The particular values given here apply for the balanced

subset of the full dataset. Parameters were changed in some

cases when the full unbalanced dataset was used: The CNN’s

pre-training batch size was increased to 256, while the kernel

size was reduced to 160 time-steps.

Model training was accomplished in two stages. Firstly,

the CNN was pre-trained by replacing the LSTM layer with

a temporary fully-connected classification layer. Next, the

weights and filters obtained were kept fixed, and the temporary

fully-connected layer replaced with the LSTM layer and a new,

final fully-connected classification layer. Fig. 3 shows 6 of the

CNN’s 64 filters. Some of the filters, such as those labelled

1, 2 and 4 suggest sinusoids of differing frequency and phase,

1

2

3

4

5

Filter Result

64

1

2

3

4

5

Filter Result

Preprocessed RFI SignalPreprocessed RFI Signal

64

Fig. 3: Several of the CNN’s 64 filters and examples of their

outputs when applied to a single preprocessed transient signal.

while others such as 5 and 64 approximate other structural

features.

As discussed in Section II-B, two approaches were taken

when dealing with the dataset’s class imbalance. In the first

approach, each class was cut down to the same size, selecting

(at random) an equal number of samples for each. This

reduced the total number of samples considerably. In the

second approach, the full dataset was used, balancing classes

by increasing the weighting of samples from rarer classes

accordingly in the cost function. If L is the vector containing

the number of samples Li in each class i then the vector of

class weights C is calculated as follows:
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C =
max(L)

L

To account for these weights using categorical cross-entropy,

the cost function is altered as follows: For a batch size N of

1-hot output vectors of length M :

L(y, ŷ) = −
1

N

N∑

i=1

M∑

j=1

yij log(ŷij)Cj

and since we are using the softmax function, the partial

derivative with respect to the output of the final layer is simply:

∂L

∂oi
= C ⊙ (ŷi − yi)

where ⊙ indicates element-wise multiplication and oi is the

activation output. The gradients of the rarer classes are pro-

moted relative to those of the more common classes due to

the class weighting.

IV. RESULTS

Results are presented for both approaches to the problem

of class imbalance in the dataset. For evaluation, each model

was trained with both the training and validation sets together

(amounting to 80% of the data) and tested on the as-yet unseen

test set. In the first approach, the number of samples per class

is limited to the number of samples in the smallest class.

A confusion matrix is given in Table III and other accuracy

metrics in Table II. Precision and recall are calculated for each

class and the mean of each metric reported. For M classes,

precision = 1
M

∑M

i=1
tpi

tpi+fpi

and recall = 1
M

∑M

i=1
tpi

tpi+fni
where tpi = true positives, fpi = false positives and fni =

false negatives for class i.

In the second approach, no samples are discarded. Rather,

samples are weighted in the training cost function according to

the rarity of their class. A second confusion matrix is provided

in Table IV and accuracy metrics given in Table II. Despite

class imbalance, even the smallest classes are well classified.

For example, the smallest class is correctly classified 96.15%

of the time. The single class with the worst classification

accuracy was still classified correctly 77.14% of the time.

TABLE II: Evaluation of Results

Metric Approach 1 Approach 2

(Limited class size) (Classes weighted in cost-function)

Accuracy 0.8413 0.9636

Precision 0.8475 0.8467

Recall 0.8413 0.9138

V. CONCLUSION

RFI is a significant concern for modern radio astronomy, so

the ability to identify the sources of RFI near radio telescope

arrays is highly desirable. Once identified, RFI sources can be

removed or replaced. Transient RFI as generated unintention-

ally by devices such as mechanical relays or fluorescent lights

TABLE III: Confusion matrix for the unseen test-set when

classes are balanced by discarding data.
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CFL 44 0 2 0 2 0 2 2

power tool 2 38 1 1 0 1 0 9

transformer 3 0 36 1 0 4 1 7

cable 2 0 0 49 0 1 0 0

relay (load) 4 0 0 1 45 1 1 0

relay 1 0 4 0 0 47 0 0

AC motor 1 0 0 1 1 1 48 0

PSU 1 3 3 1 0 1 0 43

TABLE IV: Confusion matrix for the unseen test-set when

classes weighted in the loss function.
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CFL 120 1 7 0 2 0 0 2

power tool 1 88 6 2 2 3 0 6

transformer 9 4 1035 0 1 19 5 31

cable 0 1 1 50 0 0 0 0

relay (load) 43 4 9 2 3117 13 13 0

relay 2 9 166 0 18 6957 22 12

AC motor 1 0 11 0 4 3 716 0

PSU 2 3 16 0 0 3 0 81

is especially difficult to identify, but once identified, potentially

easy to mitigate. In this paper, we have demonstrated a novel

approach to identifying the sources of transient RFI in the

time domain. Our proposed approach is the first to make use

of CNNs and bidirectional LSTMs to classify transient RFI

by source. Applied to an existing dataset of 63130 individual

transient signals recorded from 8 common sources of RFI,

good classification accuracy is achieved.

Our approach is well suited for future use with independent

RFI monitoring stations at radio telescope arrays such as

MeerKAT. In particular, since it only requires short recordings

of individual transients, it is unaffected by limited recording

time, a problem faced by some RFI recording systems [7].

In future work, rather than identifying specific devices,

we aim to classify sources by their physical components to

permit more general source identification. For example, it may

be possible to identify physical features such as mechanical

contacts, brushes and inductive coils, among others. From their

presence, the nature of an unknown device may be inferred.
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comprehensive study of deep bidirectional LSTM RNNs for acoustic
modeling in speech recognition,” in Acoustics, Speech and Signal

Processing (ICASSP), 2017 IEEE International Conference on. IEEE,
2017, pp. 2462–2466.

[19] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in International Conference on Machine Learning,
2013, pp. 115–123.

[20] F. Chollet et al., “Keras,” https://github.com/keras-team/keras, 2015.
[21] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
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