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Abstract

With the upcoming generation of telescopes, cluster scale strong gravitational lenses will act as an increasingly relevant probe of
cosmology and dark matter. The better resolved data produced by current and future facilities requires faster and more efficient lens
modeling software. Consequently, we present Lenstool-HPC, a strong gravitational lens modeling and map generation tool based
on High Performance Computing (HPC) techniques and the renowned Lenstool software. We also showcase the HPC concepts
needed for astronomers to increase computation speed through massively parallel execution on supercomputers. Lenstool-HPC
was developed using lens modelling algorithms with high amounts of parallelism. Each algorithm was implemented as a highly
optimised CPU, GPU and Hybrid CPU-GPU version. The software was deployed and tested on the Piz Daint cluster of the
Swiss National Supercomputing Centre (CSCS). Lenstool-HPC perfectly parallel lens map generation and derivative computation
achieves a factor 30 speed-up using only 1 GPUs compared to Lenstool. Lenstool-HPC hybrid Lens-model fit generation tested at
Hubble Space Telescope precision is scalable up to 200 CPU-GPU nodes and is faster than Lenstool using only 4 CPU-GPU nodes.

Keywords: Gravitational lensing software, High Performance Computing algorithms, Applied computing: Astronomy, galaxies:
clusters:, galaxies:halos, dark matter, Lenstool

1. Introduction

With the advent of high-precision astronomy and big data,
high performance computing (HPC) has reached a critical im-
portance for astrophysicists. Astrophysical codes developed
over 10 years ago are not able to keep up with the amount of
data that new instruments are bringing in. To handle these new
challenges it is now necessary to implement HPC techniques
and alternative thinking to speed up these softwares. One such
example is Lenstool, a mass modelling tool for strong gravita-
tional lenses. These lenses are rare astrophysical phenomena
where a distant light-source is aligned so closely with a fore-
ground galaxy or cluster that its images appears to an Earth
observer multiple times. The images appear distorted and mag-
nified similar to objects seen through an unfocused lens. They
take the shape of distorted arcs, multiple images and Einstein
rings. These distortion are due solely to the gravitational poten-
tial of the foreground galaxies or cluster which acts as a lens.
This allows specialized mass-modelling software like Lenstool1

[18, 20] to create precise mass-models of the lenses by fitting
parametric mass-models[23, 28, 15] using Bayesian MCMC
samplers (see Fig 1 in [14]).

∗Corresponding author
Email address: christophernstrerne.schaefer@epfl.ch

(Christoph Schäfer)
1Publicly available at https://projets.lam.fr/projects/lenstool/wiki

The astrophysical interests are multiple. They are used to
study the dark matter profile of lensing galaxies [15] and calcu-
late the dark-baryonic matter ratio [16, 25, 31]. Lensed Quasars
are used for time-delay studies which constrain the Hubble con-
stant [5, 32] and the magnification effect of gravitational lenses
allows for the study of high-redshift background objects [19,
28, 1].

These precise mass-models are obtained by observers through
an iterative process using Lenstool’s modelling capabilities re-
peatedly, adding new observational constraints. Using Lenstool
however, especially on deep Hubble Space Telescope (HST)
observations, is becoming extremely time-consuming possibly
taking up to one month for one iteration. Beyond slowing down
the release of precise mass-models, it severely limits the capa-
bility of observers to test new theories for the assembly of mass
in galaxy-clusters.

To tackle this problem, we developed Lenstool-HPC, a new
parallelism aware library which uses High Performance Com-
puting (HPC) techniques to increase computation-speed by or-
ders of magnitude through parallelisation. Lenstool-HPC was
developed for CPUs and GPUs using CUDA and C++ in a col-
laboration between HPC experts and astrophysicists. The first
section presents a brief overview of the theory behind gravita-
tional lensing and Lenstool mass modelling algorithm and the
computational challenge it poses. This is followed by a section
summarizing the HPC notions that defined the development of
the library before presenting the library itself. We finish this
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Figure 1: MACSJ0416-2403: The cluster has 68 confirmed multiple lensed
background sources. The isolines trace the distribution of matter in the cluster
which were computed using Lenstool. The highlighted (green) rectangle repre-
sents a zoomframe of the cluster showing the fainter multiple images. Credit.
[14]

paper with detailed benchmark results of the library, studying
in particular the speed-up and scaling of the lensing map gener-
ation and mass modeling fit computation compared to Lenstool
on modern CPU and GPU clusters.

2. Gravitational lens mass-modelling

2.1. Gravitational lens theory overview

A gravitational lens system can to first order be represented
by projecting the lens and the source respectively on an im-
age and source plane. We usually can assume that the size of
a the lens in the line-of-sight direction is negligible compared
to the distance between observer, lens and source, this is the
”thin-lens” approximation. Then the gravitational lensing phe-
nomenum can be summarized by a simple trigonometric equa-
tion called the lens-equation:

~β = ~θ − ~α(~θ) , (1)

where ~β is the angular position of the source in the source-
plane and ~θ the angular position of the image in the lens-plane.
The deflection angle ~α is the gradient of the lensing potential:

ψ(~θ) =
1
π

∫
R2

d2θ′κ(~θ)ln|θ̃ − θ̃′| , (2)

where κ(~θ) is the surface mass density of the lens-plane de-
fined as

κ(~θ) =
Σ(Dd~θ)

Σcrit
with Σcrit =

c2

4πG
Ds

DlDls
, (3)

Figure 2: Schematic of the lensed images formed by three sources due to the
gravitation potential of a non singular isothermal sphere. The red source is out-
side the caustic lines therfore has only lensed image. The green source is inside
a caustic line and is lensed three times. The blue source is almost perfectly
aligned with the center of the lens and is starting to form an Einstein ring.

and Σcrit is the critical surface mass density. Ds, Dl and Dls

are respectively the distance from the observer to the source,
to the lens and between lens and source. The lensing potential
ψ(~θ) is the normalised Newtonian gravitational potential, satis-
fying the relations ~α = ∇ψ and κ = ∇2ψ.

The distortion of the images described by the following Ja-
cobian matrix (the magnification matrix) is derived from the
lens equation:

~A−1(~θ) =
∂~β

∂~θ
= (δi j −

∂2ψ(~θ)
∂θi∂θ j

) =

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
,

(4)
where γ1 and γ2 are the shear components, quantifying the

amount and direction of the gravitational shear.
The magnification value is related to the determinant of the

Jacobian matrix as

µ(~θ0) =
1

det(~A−1)
. (5)

The points where det(~A−1) = 0 form the critical lines where
the magnification is theoretically infinite. In practice the wave-
nature of light leads to finite amplification. Their unlensed
counter-part in the source plane are called caustics. These caus-
tics set the boundaries of areas where the image of a source
is not just distorted but also multiplied. Every source which
moves across will have two more or less lensed images (fig. 2).
More details on lensing theory can be found in [3].

2.2. Mass-modelling

Lenstool [20, 18, 17] creates mass-models for lensing clus-
ter by fitting parametric mass-models to each individual cluster
sub-halos. Depending on the parametric model used, the free
parameters can vary. They include generally the position of
the center of the sub-halo, its dispersion velocity, its ellipticity
and orientation, as well as other free parameters specific to the
model [6] in particular related to the mass profile. In clusters of
galaxies, the main constraints used for fitting are the position of
identified multiple lensed images.

2



Figure 3: Lenstool Mass modelling: Multiply imaged sources (green dots) work
as constraints. Each image position is lensed onto the source-plane (yellow
dots) using the current mass-model. The barycentre of these constraint (red
dot) is taken as the best approximation of the source position and then lensed
back into the lens-plane (red triangles). The difference between the constraints
and lensed back source approximation gives an approximation of the fit of the
mass-model.

Each image is unlensed onto the source-plane using the mass-
model to be tested. In the case of a perfect model all images
should end up at the same point in a source plane. However,
in practice the model is off, so the corresponding sources of
the multiple-images are at slightly different positions. Sending
back the barycentre of these positions to the image plane (see
Fig. 3), we can define a cost-function that Lenstool will try to
minimize:

χ2 =

N∑
i

χ2
i =

N∑
i

Mi∑
j

(ci j − xi j)2

σ2
i j

(6)

where N is the number of lensed sources, Mi the multiplic-
ity of those sources, ci j the multiple-image constraints, xi j the
back and forth lensed constraints and σ2

i j the error-budget. The
exploration of the parameter space and of the optimum solution
is done using an Bayesian Markov Chain Monte Carlo Algo-
rithm (MCMC). More details on the procedure can be found in
[18, 20].

The number of optimized free parameters depends on the
parametric model used but can range up to a thousand for a typ-
ical cluster-lens model (see [14, 15]). In the high dimension-
ality of the problem lies the first computational challenge from
Lenstool. Even using an Bayesian MCMC algorithm, Lenstool
has to try an enormous amount of parameter-combinations to
find solutions that minimize the cost-function.

2.3. Chi2 computation

The second computational challenge is the Chi2 computa-
tion based on the unlensing and relensing of multiple imaged
sources. Unlensing a point into the source-plane is a simple
but non revertible application of the lens-equation (equation 1).
The multiple solutions for the relensing problem can as a con-
sequence not be computed analytically. To compute predicted
multiple images of a source, the ”brute force” approach is to un-
lens a image-plane grid unto the source-plane and check each

Figure 4: Graphical representation of the unlensing of the quadratic triangular
grid from the image-plane unto the source plane. The lines which delimit the
area where the grid folds unto itself (where therefore multiple images can be
found) are the caustic lines.

quadrant for the presence of the source (see Fig.4). Lenstool
avoids this computationally costly approach by using a variant
of the ”image-transport” method [30].

The method works as follows: It defines a triangle around
the constraint that does not contain any other constraint but is
likely to contain the source. The triangle is then subdivided
into 4 smaller triangles. Each triangle is checked for the source.
If a triangle containing the source is not found, the immediate
environment of the triangle is searched. The subdividing pro-
cess is continued recursively until a precision of 10−4 arcsec is
reached. While a lot faster than the brute force approach, this
method is not fully stable. Extremely strong amplification near
the critical lines can degrade the zoom-in process sufficiently to
lose images which can complicate the modelling process.

2.4. Lensing Maps

The third computational challenge we address is the compu-
tation of lensing maps. Lensing maps are used to visualize cru-
cial information of the lens-system. Each map is organized into
a rectangular grid defined on the image-plane, each grid cell
usually being the size of a pixel of image data. Information that
can be visualised are the projected surface mass density κ of the
lenses, the projected shear γ (norm, direction, individual com-
ponents), the amplification µ or its inverse, the lens deflection
field, the lensing potential ϕ, the time delay surface and varia-
tions thereof. More information on these maps can be found at:
https://projets.lam.fr/projects/lenstool/wiki.

Lensing-maps are also used to calculate the statistical error
inherent to the Bayesian process. In order to compute the map
variances, full-resolution lensing maps have to be generated for

3
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each tested parameter-combination which is a time-consuming
task.

The critical part of the lensing map computation is the sec-
ond order derivatives of the gravitational potentials of each clus-
ter member, which allow to compute κ, γ and µ:

κ(x, y) =

Nh∑
i

1
2

(
∂xxφ(x, y) + ∂yyφ(x, y)

)
(7)

γ2(x, y) =

Nh∑
i

1
4

((
∂xxφ(x, y) − ∂yyφ(x, y)

)2
+

(
∂xyφ(x, y)

)2
)
(8)

µ = ((1 − κ)2 + γ2)−1 (9)

with Nh the number of halos, which includes the large scale
components and the sub-halos (attached to each cluster galaxy).
At each grid-point the second-order derivative contribution of
each cluster member is added up to compute the total deriva-
tive. The advantage of Lenstool’s parametric mass-models is
that their single and double derivative can be explicitly calcu-
lated through analytical function rather that through a numerical
calculation. This makes the computation of the various lensing
properties fast, as analytically calculated gradient are faster to
compute and do not suffer the numerical errors introduced by
numerical derivation and interpolation.

Despite this advantage, the computational challenge is im-
pressive. For Abell 2744 [15] error calculation (one of the Hub-
ble Frontier Field Cluster [HFF]), 10014 maps with 6000x6000
pixels had to be generated. With 258 parametric potentials this
corresponds to 109 derivatives per map for a grand total of 1014

derivative computations. The total process adds up to a total of
300 CPU hours using Lenstool just for the map generation.

3. High Performance Computing (HPC)

Due to the impossibility of increasing much further the clock-
frequency of processors [26], hardware development focus has
gone into integrating multiple cores capable of multiple simul-
taneous operations. This was motivated by Little’s Law [2],
which states that the performance of computation can be in-
creased through parallel execution. In other words performance
can be improved by distributing the work on multiple compu-
tation units. Multicore CPUs and GPUs are the consequences
of this design choice. This increasingly parallel execution ori-
entated development does not work well with parallelism un-
aware (often serial) algorithms like Lenstool’s Image transport
method which lack the necessary concurrency for parallel ex-
ecution. This creates large performance gaps called the Ninja
Gap [29].

The following chapter introduces a few essential concepts
of High Performance Computing (HPC) necessary to under-
stand how to remove this gap: 1) how performance for software
is defined and can be improved and 2) how to implement the
different parallelism strategies on CPU and GPUs.

3.1. Software Performance and Parallelism
The performance of a software, better known as its through-

put, is defined as the number of Floating-point operation per
second [flop/s] it is capable of performing. Little’s Law states
that the throughput ([flop/s]) of a computation is equal to the
level of parallel computation instances divided by the latency
([s]). Latency is defined as the time of a single computation
instance to process and store an operation. The amount of par-
allelism that a software can reach is directly related to the level
of concurrency the underlying algorithm possesses where con-
currency refers to the ability of an algorithm to execute parts of
itself out of order without affecting the final outcome.

Throughput =
Parallelism

Latency

The obvious consequence of Little’s Law is that it is pos-
sible for software with high parallelism but also higher latency
to achieve a higher performance than non parallel low latency
software. To achieve optimum computation speed it is there-
fore necessary to choose carefully the underlining algorithms
so as to be ”parallelism aware” meaning balancing a high level
of concurrency with low latency.

Increasing performance can therefore either be done by re-
ducing latency or increasing concurrency to fully use the avail-
able parallel computation capabilities of the hardware. HPC
tends to focus on the latter.

3.2. Hardware
Software computation speed is extremely dependent on the

hardware it runs on. CPUs and GPU rely on different paral-
lelism strategies to achieve an optimum throughput which need
to be taken into account in the development. Multicore CPUs
are mainly designed for single thread performance [7]. Their
lower latencies makes them ideal for less parallelisable appli-
cations that use irregular patterns or data structures. GPUs in
contrast are designed for massively parallel software. Their in-
dividual threads are slow but the much higher number of them
allows to hide their high latency and achieve a high throughput
on problems with a high number of simple and parallelisable
computation.

3.2.1. Parallelism on CPUs
A CPU consists of multiple cores sharing memory, each ca-

pable of executing different independent tasks. Each core can
also execute multiple operations simultaneously for the same
task by generalizing scalar operations to vectors and matrix op-
erations. At a single CPU (node) level, parallelism is typically
divided into three levels: Thread-level parallelism (TLP), Data-
level parallelism (DLP) and Instruction-level parallelism (ILP).

TLP optimizes the concurrent execution of tasks (threads)
between the different cores, handled by libraries such as OpenMP,
Intel’s TBB or POSIX pthreads. It mainly handles the problems
that come from sharing resources like the memory.

DLP handles the vectorisation of scalar operations on a sin-
gle CPU core using Advanced Vector Extension (AVX). AVX2
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Figure 5: Scaling at a node level: This example CPU is AVX capable, meaning
each of his cores is capable computing 4 scalar operations in parallel. This CPU
can compute 16 scalar operations distributed over 4 cores (TLP) in vectors of
size 4 (DLP) simultaneously.

and AVX-512 (Advanced Vectorisation Extension) capable CPUs
can vectorise respectively 4 to 8 scalar operations through the
SIMD (Single Instruction Multiple Data) programming model
[21] (Fig.5). This additional parallelism level comes theoreti-
cally at a low development cost. Most compilers are capable of
doing implicit vectorisation without developer input by iden-
tifying vector operations in the algorithm [11]. Vector opera-
tions however require that the AVX registers are loaded homo-
geneously with the necessary information using Data structures
of type Structure of Array (SOA). Data structures of SOA type
stores data of the same type into one parallel array contrary to
the more conventional Array of structure (AOS) which inter-
leaves the information(see Fig.6) [4, 10].

ILP leverage’s the superscalar capabilities of modern CPUs,
allowing multiple independent instructions to be handled at once.
This is mainly handled by the compiler and fall outside of the
scope of this paper [13].

3.2.2. Parallelism on GPUs
Originally developed for gaming, GPUs are composed of

multiple Streaming Multiprocessors (SM) each consisting of
multiple Streaming Processors (SP). SP are capable of comput-
ing arithmetic operations and are grouped together into warps
which share instruction sets.

The important difference between GPUs and CPUs is that
GPUs are not designed for single thread performance [7]. GPU
threads have much higher latencies than CPUs for floating point
operations and memory transfer. To maximise throughput, GPUs
are designed to be massively multithreaded. Using the SIMT
(Single Instruction, Multiple Threads) programming model, GPUs
have hardware threading support that allows hundreds of threads
to be active simultaneously, each computing operations in par-
allel [24, 27].

The downside of this approach is that if an algorithm has a
low level of concurrency, its GPU throughput will be dominated
by the high latency [33, 22]. If the problem does not propose
enough parallel computation to hide the high latency, computa-
tion speed will be extremely slow. This makes GPUs compared

Figure 6: Preparation for vectorisation with a heterogeneous memory and AOS
structures: The CPU core first loads from the main memory the needed infor-
mation into AVX registers. Those registers have to be shuffled multiple times
to achieve the needed homogeneous layout. Once the computations are done,
they have to be reshuffled back into the AOS structure. Beyond the obvious
time loss, the compiler is not able to vectorise these operations automatically.
If developers still wish to implement AOS structures, SIMD pragmas have to
be used to vectorise the operations manually. Xi, Yi and Zi represent fictional
position information.

to CPUs limited in their choice of problems.
Another important aspect of GPU optimisation is paying at-

tention to the ILP problems like divergent execution paths. CPU
compilers tend to extract ILP more efficiently than GPUs using
modern techniques like Out-Of-Order or speculative execution
[13] without any developer input needed. While DLP is implic-
itly optimised by the SIMT model[21], ILP for GPUs has to be
explicitly coded.

4. Lenstool-HPC

Lenstool is comprised of three crucial computations which
constitute a bottleneck and can be parallelised: the computation
of the deflection potential gradient over a grid, the computation
of the χ2 and the MCMC sampler. Lenstool-HPC has to date
fully optimised the first two of those computations. The gradi-
ent computation over a grid is a trivially parallelisable problem
with no need for communication between the different paral-
lel tasks for which Lenstool-HPC proposes an CPU-OpenMP
and an GPU based solution. It is vectorisable and has enough
parallel computation to hide the GPU latencies. In contrast
the computation of the χ2 is a typical example of a non triv-
ially parallelisable algorithms. It possesses divergent execution
paths controlled by the presence of a source in a triangle, atomic
operations which cannot be parallelised and imposes a certain
amount of communication between the different tasks. For this
Lenstool-HPC proposes a pure-CPU based and a mixed CPU-
GPU implementation of the brute-force approach.

4.1. Gradient Computation

Computing the various lensing maps or the brute force com-
putation of the χ2 necessitates the computation of the deflection
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potential gradient over the whole image. This is done by defin-
ing a rectangular grid over the image. For each point the gradi-
ent can be calculated analytically from the deflection potentials
modeled by multiple parametric potentials. The total gradient
in a certain point is simply the sum of the first order derivative
of all parametric potentials at that specific point:

∇φ(x, y) =

Nh∑
φi(x, y) (10)

where Nh is the number of parametric potentials.
The gradient computation of different points are indepen-

dent of each other. Both the CPU-OpenMP and GPU imple-
mentation can therefore distribute the task of computing the
gradient of a single point to separate computation units. The
CPU version uses the implicit vectorisation capability of the in-
tel compiler to additionally vectorize the gradient computation
of a single point.

4.2. χ2 Computation

In contrast to computing deflection gradients, the image
transport method based χ2 computation is extremely difficult
to parallelise. To be able to efficiently distribute the work over
multiple computation units, Lenstool-HPC therefore uses the
more computationally intensive but less serial brute-force ap-
proach algorithm with GPUs. The algorithm can be subdivided
into four main stage: The gradient computation of a grid, the
source computation based of the constraints, finding images by
delensing and checking the grid, and computing the χ2 based
on the found images.

The distribution of these tasks in Lenstool-HPC Hybrid CPU-
GPU implementation is summarized in Fig. 7. The gradient
computations are divided among the available GPUs. During
that time the CPU computes the positions of the sources in the
source-plane and sends the information to the GPUs. Once
the gradients and the sources are known, the GPUs can start
searching for the images by delensing and checking the grid for
sources, again by subdividing the grid. Each image found is
stored temporarily and at the end of the computation send to
the CPU. This operation possesses a divergent execution path,
based on if an image is found or not. As a consequence the
computation incurs an overhead based on the different amount
of found images in each GPUs operational territory. Once all
images have been found and received, the master CPU assigns
them to their closest constraint and then computes the χ2.

The purely CPU-based implementation distributes the work
similarly to the Hybrid CPU-GPU version with the exception
that all CPU cores calculate the sources positions.

4.3. Implementation

We developed Lenstool-HPC to be similar to Lenstool to as-
sure continuity for Lenstool users. Lenstool-HPC can be com-
piled as a library with the above mentioned functions and as
an executable with the same image-plane mapping capabilities
as Lenstool. All mapping methods have been tested against
the corresponding Lenstool-maps and found correct inside the
boundaries of numerical errors. The χ2 computation is for the

moment only available as a function of the library for future
MCMC development. The executable works in exactly the same
way as Lenstool, with a master parameter file, and separate file
for constraints and mass-modelling potentials as described in
the Lenstool wiki 2. The χ2 computation is also resistant to
missing image problem near caustic lines because of the brute-
force approach used. The software and installation instruc-
tion can be found at https://git-cral.univ-lyon1.fr/
lenstool/LENSTOOL-HPC.

5. Results and benchmarks

This result and benchmark section is organized as follows:
First an analysis of the effects of CPU vectorisation and GPUs
on the gradient computation. Second a study on the scaling of
the CPU and GPU implementation of the χ2 computation. The
scaling studied here is the strong scaling, meaning the same
amount of operations distributed over more Nodes.

The Benchmark configurations were taken from an exam-
ple strong lensing model of MACS J1149.5+2223 from here on
named M1149. It is made of 217 different potentials, modelling
the cluster. To constrain the model 80 sources have been gener-
ated, adding to a total of 227 multiple images. The grid spans
over 150 by 150 arcseconds and has 5000 by 5000 pixels for a
typical Hubble sampling of 0.03 arcseconds (resolution of ∼0.1
arcsec or better). The Benchmarks were run on five different
clusters summarized in table 1. We have chosen to concentrate
on the Helvetios CPU cluster and the Piz Daint hybrid CPU-
GPU cluster. Both are comprised of the most modern CPU and
GPUs on the market we had access to at the writing of this pa-
per. This will allow us to compare the peak performance of the
CPU and GPU version of Lenstool-HPC. To enable a fair com-
parison of the single-map generation algorithm, we upgraded
Lenstool’s algorithm to support multicore parallelism, distribut-
ing the computational operation in the same way as Lenstool-
HPC’s CPU version over the multiple cores. Lenstool has al-
ready OpenMP parrallelisation in its native code but it is only
implemented in its multi-map generation algorithm.

5.1. Core Scaling analysis

First we studied the scaling at a single processor level, mean-
ing how well it scaled on multiple cores. The benchmark task
was to compute one full 5000x5000 gradient map for the M1149
model. Compared were Lenstool, Lenstool-HPC using AOS
structures, Lenstool-HPC using SOA structures and no vectori-
sation and Lenstool-HPC using SOA structures with vectorisa-
tion. The results are summarized in Fig. 8 and are detailed in
table A.2 and A.3 . They were run ten times each on Helve-
tios with AVX 512 capable machines and on Fidis with AVX2
capable machines and no significant standard deviation was ob-
served. An additional Benchmark was run on Helvetios with
the amount of zmm-registers limited to AVX2 levels.

2https://projets.lam.fr/projects/lenstool/wiki
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Figure 7: Each GPU is assigned a part of the grid where it computes the gradient. During that time the CPU computes the positions of the sources in the source-plane
and sends the information to the GPUs. Once the gradients and the sources are known, the GPUs can start searching for the images by delensing and checking
the grid for sources, again by subdividing the grid. Each image found is stored temporarily and at the end of the computation send to the CPU. This operation
possesses a divergent execution path, based on if an image is found or not. As a consequence the computation incurs an overhead based on the different amount
of found images in each GPUs operational territory. Once all images have been found and received, the master CPU assigns them to their closest constraint and
then computes the χ2. The purely CPU-based implementation distributes the work similarly to the Hybrid CPU-GPU version with the exception that all CPU cores
calculate the same sources positions.

Table 1: Characteristics and sustained performance of Computing Cluster used for the Lenstool-HPC benchmarks. (*DDR4/MCDRAM)

name Piz Daint CPU Piz Daint GPU Tave Helvetios Fidis
CPU type E5-2695 v4 E5-2690 v3 Xeon Phi 7230 Xeon Gold 6140 E5-2690 v4

Microarchitecture Broadwell Haswell Knight’s Landing Skylake Broadwell
Number of cores 36 12 64 36 24
Frequency (Ghz) 2.1 2.6 1.3 2.3 2.6

Memory size (GB) 64 64 112/16* 192 128
FP Peak (Gflops/s) 1200 488 1785 2136 1068

stream copy (GB/s) 116 59.7 87/465* 164 120
GPU type P100

Frequency (Ghz) 1.126
Memory size (GB) 16
FP Peak (Gflops/s) 4546

stream copy (GB/s) 489
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(a) Core Scaling analysis results on AVX512 capable Helvetios cluster. (b) Core Scaling analysis results on AVX2 capable Fidis cluster.

Figure 8: Core Scaling analysis results: In histograms are compared Lenstool, Lenstool-HPC with SOA layout without vectorisation (novec) and with vectorisation
(SIMD). We observe a speedup of factor 4 for AVX512 machines and factor 2 for AVX2 machines compared to Lenstool. Without vectorisation Lenstool-HPC with
SOA layout is slightly slower then Lenstool, indicating that for gradient computation AOS layouts allow for faster memory access then the SOA layout. Lenstool-
HPC AVX scaling diminishing in function of cores (orange and green line) on Helvetios also indicates that memory overheads are getting significant and that we
are hitting hardware limits.

It is immediately obvious that on Helvetios, Lenstool-HPC
with vectorisation is indeed faster than Lenstool by approxi-
mately a factor 4. This does not correspond to our theoretical
expectations for AVX 512 capable machines which use vectors
of size 8 for double-precision floating point operations. This
almost twice slower behaviour seems to be due to Intel limiting
the frequency of the cores depending on the workload. Accord-
ing to [12, 13], the AVX512 and AVX2 top frequency is limited
at a lower rate then the non AVX one because of the differing
thermal and electrical requirements. The results on the slower
AVX-2 capable Fidis machine and the AVX2-limited Helvetios
run seem to confirm this. They show the same tendencies as
on Helvetios with a speed-up gained by vectorisation around
1.77 for Fidis and 2.22 for AVX2 limited Helvetios which cor-
responds roughly to half the theoretically expected factor 4.

It is interesting that, when deactivating vectorisation with
the compiler flag no-vec, Lenstool actually performs better then
the Lenstool-HPC SOA version. For comparison purposes, we
created a Lenstool-HPC AOS version with the results shown in
table A.2 and table A.3 which improves on the Lenstool results.
The speed-up due to vectorisation is however still significant
enough to beat our own AOS version. This lower performance
by the non vectorised SOA version could suggest that the mem-
ory access using SOA layout is not optimised for the gradient
computation but more in detailed tests would be neccesary to
be certain.

In the Helvetios results, we also observe a decrease in paral-
lelism efficiency the more cores are used. This is probably due
to bandwidth saturation [9] because of the increased amount of
information used by AVX operations. AVX512 operations use
8 times more information than non vectorised operations and
2 times more then AVX2. The decrease in efficiency over 18
cores is not too important but it does show that we are starting
to approach the hardware limits of actual CPUs. FIDIS does
not show the same trend because even with a 4 times increase

in speed due to AVX2, bandwith saturation will not be signifi-
cant compared to the total operation time.

5.2. Distributed Scaling

The Chi2 benchmarks time the full Chi2 computation and
its four main stages: The gradient computation of a grid, the
source computation based of the constraints, finding images by
delensing and checking the grid and computing the Chi2 based
on the found images. The benchmark was distributed and scaled
over 128 nodes which was our maximum available number of
test nodes. In contrast to the core scaling analysis, due to time-
constraint on the allotted server time we could not rerun them
multiple times to study the standard deviation. The results are
summarized in Fig. 9 and more details can be found in the ap-
pendix. The two main stages to pay attention to are the gradient
computation and the delensing stage.

5.2.1. Gradient Computation
The computation of a 5000x5000 lensing map on one Piz-

daint P100 GPU takes only 0.93 seconds. At a single node level,
compared to a Helvetios node with 36 cores, the single GPU
version outperforms Lenstool-HPCs CPU version by a factor
5 and Lenstool by a factor 10. Since we upgraded Lenstools
single map generation to be distributable at a node level, for
the common user the P100 version actually outperforms it by a
factor 360.

Fig. 8a and Fig. 9b show the scaling of the gradient com-
putation for CPUs and GPUs up 128 Nodes. Up to 32 nodes
the software scales well with a parallelism efficiency of 0.75 .
Around 64, for both GPU and CPUs, the scaling worsens with
a parallelism efficiency of around 0.5. This is mainly because
the shrinking amount of work per node is starting to be insuffi-
cient to hide the latencies of the computation. The parallelism
efficiency should rise the more complex the problem, but the
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inverse is also true. The gradient computation could still be dis-
tributed over more then 128 nodes for slight gain but we were
limited here by the available hardware.

At 128 nodes, Lenstool-HPC is 55.3 times faster then it sin-
gle node GPU version, meaning approximately 500 times faster
then Lenstool’s single map gradient computation. The paral-
lelised CPU version is roughly 4 times slower then its paral-
lelised GPU counter part. It remains competitive enough that
even users who do not have access to GPU cluster can generate
lensing map efficiently. For cost-conscious users who wish a
reasonably high efficiency, with 32 P100 GPUs at one map ev-
ery 0.04 seconds we can do the Abell 2744 error computation
[15] with 10014 in 166 minutes, a bit less then 3 hours. This
is 25 times faster then the Lenstool version especially tuned for
the Benchmarks.

5.2.2. Delensing and searching for images
As stated above, this task is not trivially parallelisable. While

the work can distributed over the different GPUs, the divergent
execution path that appears when an image is found, impacts
the parallelism efficiency quickly. Already at 4 GPU nodes (see
Fig. 9c), we are at an efficiency of 0.73 and seem to saturate
around 8 nodes. At a single node level this does not impact
us much (see Fig. 9e). The task takes only 11% of the to-
tal runtime, with the rest going to the gradient computation.
However, since the gradient is scaling well, already on 16 cores
the delensing task takes 27% of the total runtime with notica-
ble effects. The parallelism efficiency of the total χ2 computa-
tion starts to drop around 8 nodes by the delensing task before
it saturates completely around 32 nodes. This final saturation
is not only due to worsening of the gradient computation effi-
ciency. The computation time of the gradients over 32 to 128
GPUs simply has reached the same level as the computing of
the sources on the CPUs around 0.04 to 0.02 seconds. Since the
delensing task is depended on both gradient computation and
source computation, it cannot start without both having finished
running, creating the observed saturation.

The CPU version in contrast shows a lot less degradation to
its parallelism efficiency, at least up to 64 nodes. This corre-
sponds to our expectation since CPUs have less but faster com-
putation units then GPUs. The amount of work per core never
reaches a stage when it is insufficient to hide the latencies of
the divergent execution paths. CPUs compilers have also been
already heavily optimized to handle these complex operations.

With this in mind, the Lenstool-HPC’s brute force GPU ver-
sion manages to beat Lenstool fully recurrent image transport
with only 4 GPUs (see Fig. 9e) and can still scale up 32 for
a total speedup of 5.9. Lenstool-HPC brute force CPUs ver-
sion is less successful, managing to beat Lenstool only with 64
nodes for a speed-up of 1.7 but also demonstrates more paral-
lel effiency. Depending on the hardware developments of the
future, they could become a extremely credible option.

6. Conclusions

We have shown that it is possible to use modern HPC based
programming to greatly speed up conventional gravitational lens

mass modeling software. On P100 GPUs et SLK CPUs the
new Lenstool-HPC GPU based library has shown to be 360
times faster than Lenstool on single map computation and 10
times faster on multi-map computation with only a single GPU.
The necessary gradient computation have shown to scale ex-
tremely well up to 64 nodes with a Hubble Frontier Fields’ size
problem, generating an additional corresponding speed-up. The
brute force implementation proposed for the mass-model χ2

computation beats Lenstool recursive but tricky to use image-
tranport implementation with only 4 GPUs and scales reason-
ably well up to 32 nodes. Additionally Lenstool-HPC non re-
cursive HPC implementation of lens-modelling tools will scale
with future hardware developments, ensuring future speed-ups
that recursive options will not have. Future development will go
towards the full integration of the library into Lenstool and opti-
misation of the last bottle necks, in particular the (MCMC) opti-
misation process. This will be combined with a thorough com-
parison to other GPU and non GPU based Lens-modelling tools
to assess and further improve Lenstool-HPCs Lens-modeling
process.

The achieved speed-up are key to continue using Lenstool
for clusters with many constraints, and to allow a fast evalua-
tion (through the lensing maps) of the quality and properties of
the lensing mass models computed. As an example, having a
fast lensing maps computation allows quick evaluation of the
lensing model and the identification of where the fit is good or
bad, allowing us to focus on the modeling. Ultimately, a fast
code will allow to address the ”bad RMS” of models (typically
larger than 10× the Hubble image resolution) and understand
its origin.

The C++ and CUDA based library is publicly available on
Github https://git-cral.univ-lyon1.fr/lenstool/LENSTOOL-HPC
.
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Tu, H., Sommer-Larsen, J., Egami, E., Michałowski, M.J., Cabanac, R.,
Stark, D.P., 2008. Strong lensing in Abell 1703: constraints on the slope
of the inner dark matter distribution. A&A 489, 23–35. doi:10.1051/
0004-6361:200809646, arXiv:0802.4292.

[24] Lindholm, E., Nickolls, J., Oberman, S., Montrym, J., 2008. Nvidia tesla:
A unified graphics and computing architecture. IEEE Micro 28, 39–55.
doi:10.1109/MM.2008.31.

[25] More, S., van den Bosch, F.C., Cacciato, M., Skibba, R., Mo, H.J., Yang,
X., 2011. Satellite kinematics - III. Halo masses of central galaxies in
SDSS. MNRAS 410, 210–226. doi:10.1111/j.1365-2966.2010.
17436.x, arXiv:1003.3203.

[26] Mudge, T., 2001. Power: A first-class architectural design constraint.
Computer 34, 52–58. URL: https://doi.org/10.1109/2.917539,
doi:10.1109/2.917539.

[27] Nvidia, 2012. Version 4.2 NVIDIA CUDA¢ NVIDIA CUDA C Program-
ming Guide. Technical Report. URL: http://developer.nvidia.
com/cuda-gpus.

[28] Richard, J., Jones, T., Ellis, R., Stark, D.P., Livermore, R., Swinbank, M.,
2011. The emission line properties of gravitationally lensed 1.5 ¡ z ¡ 5
galaxies. MNRAS 413, 643–658. doi:10.1111/j.1365-2966.2010.
18161.x, arXiv:1011.6413.

[29] Satish, N., Kim, C., Chhugani, J., Saito, H., Krishnaiyer, R., Smelyanskiy,
M., Girkar, M., Dubey, P., 2012. Can traditional programming bridge the
ninja performance gap for parallel computing applications? SIGARCH
Comput. Archit. News 40, 440–451. URL: http://doi.acm.org/10.
1145/2366231.2337210, doi:10.1145/2366231.2337210.

[30] Schneider, P., Ehlers, J., Falco, E.E., 1992. Gravitational Lenses. doi:10.
1007/978-3-662-03758-4.

[31] Sonnenfeld, A., Treu, T., Marshall, P.J., Suyu, S.H., Gavazzi, R., Auger,
M.W., Nipoti, C., 2015. The SL2S Galaxy-scale Lens Sample. V.
Dark Matter Halos and Stellar IMF of Massive Early-type Galaxies Out
to Redshift 0.8. ApJ 800, 94. doi:10.1088/0004-637X/800/2/94,
arXiv:1410.1881.

[32] Suyu, S.H., Bonvin, V., Courbin, F., Fassnacht, C.D., Rusu, C.E., Sluse,
D., Treu, T., Wong, K.C., Auger, M.W., Ding, X., Hilbert, S., Marshall,
P.J., Rumbaugh, N., Sonnenfeld, A., Tewes, M., Tihhonova, O., Agnello,
A., Blandford, R.D., Chen, G.C.F., Collett, T., Koopmans, L.V.E., Liao,
K., Meylan, G., Spiniello, C., 2017. H0LiCOW - I. H0 Lenses in COS-
MOGRAIL’s Wellspring: program overview. MNRAS 468, 2590–2604.
doi:10.1093/mnras/stx483, arXiv:1607.00017.

[33] Valkov, V., 2010. Better performance at low occupancy.

10

http://dx.doi.org/10.1088/0004-637X/800/1/18
http://arxiv.org/abs/1409.0512
http://www.tera.com/arpa95/architecture.html.
http://www.tera.com/arpa95/architecture.html.
https://arxiv.org/pdf/astro-ph/9912508.pdf http://adsabs.harvard.edu/cgi-bin/nph-data{_}query?bibcode=2001PhR...340..291B{&}link{_}type=ABSTRACT{%}5Cnpapers://dcc533b5-8613-47b7-b88c-2b0c0d39c33f/Paper/p5672
https://arxiv.org/pdf/astro-ph/9912508.pdf http://adsabs.harvard.edu/cgi-bin/nph-data{_}query?bibcode=2001PhR...340..291B{&}link{_}type=ABSTRACT{%}5Cnpapers://dcc533b5-8613-47b7-b88c-2b0c0d39c33f/Paper/p5672
https://arxiv.org/pdf/astro-ph/9912508.pdf http://adsabs.harvard.edu/cgi-bin/nph-data{_}query?bibcode=2001PhR...340..291B{&}link{_}type=ABSTRACT{%}5Cnpapers://dcc533b5-8613-47b7-b88c-2b0c0d39c33f/Paper/p5672
https://arxiv.org/pdf/astro-ph/9912508.pdf http://adsabs.harvard.edu/cgi-bin/nph-data{_}query?bibcode=2001PhR...340..291B{&}link{_}type=ABSTRACT{%}5Cnpapers://dcc533b5-8613-47b7-b88c-2b0c0d39c33f/Paper/p5672
https://arxiv.org/pdf/astro-ph/9912508.pdf http://adsabs.harvard.edu/cgi-bin/nph-data{_}query?bibcode=2001PhR...340..291B{&}link{_}type=ABSTRACT{%}5Cnpapers://dcc533b5-8613-47b7-b88c-2b0c0d39c33f/Paper/p5672
http://dx.doi.org/10.1016/S0370-1573(00)00082-X;
http://arxiv.org/abs/0509252
http://dx.doi.org/10.1051/0004-6361/201526704
http://arxiv.org/abs/1506.07524
http://arxiv.org/abs/0710.5636
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36448.pdf
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36448.pdf
http://dx.doi.org/10.1109/MCSE.2007.55
https://software.intel.com/en-us/articles/detecting-memory-bandwidth-saturation-in-threaded-applications
https://software.intel.com/en-us/articles/detecting-memory-bandwidth-saturation-in-threaded-applications
https://software.intel.com/en-us/articles/memory-layout-transformations
https://software.intel.com/en-us/articles/memory-layout-transformations
https://software.intel.com/en-us/node/540482
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
http://dx.doi.org/10.1093/mnras/stu1355
http://dx.doi.org/10.1093/mnras/stu1355
http://arxiv.org/abs/1405.3582
http://dx.doi.org/10.1093/mnras/stv1402
http://dx.doi.org/10.1093/mnras/stv1402
http://arxiv.org/abs/1409.8663
http://dx.doi.org/10.1086/522580
http://dx.doi.org/10.1086/522580
http://arxiv.org/abs/0705.3647
http://dx.doi.org/10.1111/j.1365-2966.2009.14654.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14654.x
http://arxiv.org/abs/0901.3792
http://dx.doi.org/10.1088/1367-2630/9/12/447
http://dx.doi.org/10.1088/1367-2630/9/12/447
http://arxiv.org/abs/0706.0048
http://dx.doi.org/10.1086/386281
http://arxiv.org/abs/astro-ph/0402319
http://dx.doi.org/10.1086/177995
http://arxiv.org/abs/astro-ph/9511015
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
http://dx.doi.org/10.1016/j.jpdc.2013.06.001
http://dx.doi.org/10.1016/j.jpdc.2013.06.001
http://dx.doi.org/10.1016/j.jpdc.2013.06.001
http://dx.doi.org/10.1051/0004-6361:200809646
http://dx.doi.org/10.1051/0004-6361:200809646
http://arxiv.org/abs/0802.4292
http://dx.doi.org/10.1109/MM.2008.31
http://dx.doi.org/10.1111/j.1365-2966.2010.17436.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17436.x
http://arxiv.org/abs/1003.3203
https://doi.org/10.1109/2.917539
http://dx.doi.org/10.1109/2.917539
http://developer.nvidia.com/cuda-gpus.
http://developer.nvidia.com/cuda-gpus.
http://dx.doi.org/10.1111/j.1365-2966.2010.18161.x
http://dx.doi.org/10.1111/j.1365-2966.2010.18161.x
http://arxiv.org/abs/1011.6413
http://doi.acm.org/10.1145/2366231.2337210
http://doi.acm.org/10.1145/2366231.2337210
http://dx.doi.org/10.1145/2366231.2337210
http://dx.doi.org/10.1007/978-3-662-03758-4
http://dx.doi.org/10.1007/978-3-662-03758-4
http://dx.doi.org/10.1088/0004-637X/800/2/94
http://arxiv.org/abs/1410.1881
http://dx.doi.org/10.1093/mnras/stx483
http://arxiv.org/abs/1607.00017


(a) Benchmark results for the deflection gradient computation using the
hybrid GPU-CPU version.

(b) Benchmark results for the deflection gradient computation using the
CPU version.

(c) Benchmark results for the constraint delensing operation using the
hybrid GPU-CPU version.

(d) Benchmark results for the constraint delensing operation using the
CPU version.

(e) Benchmark results for the total computation time using the hybrid
GPU-CPU version.

(f) Benchmark results for the total computation time using the CPU ver-
sion.

Figure 9: Benchmark and Scaling results of Lenstool-HPC on Pizdaint GPU (CSCS) and Helvetios(EPFL): the blue histogram shows the time results in function
of the number of computation units (nodes) used. The yellow and red line indicate respectively the ideal and actual scaling of Lenstol-HPC computation time in
function of nodes used. The horizontal green line shows Lenstool’s best computation time. When the blue histogram is below the green line is the the point when
Lenstool-HPC brute force approach to lensing beats Lenstool’s image transport method.
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Appendix A. Benchmark results

The following tables and figures contain all information of the Benchmarks we did for Lenstool-HPC run on the clusters
summarized in table 1.

Table A.2: Core scaling analysis results on Helvetios on AVX512 capable machines. The results shown are the mean of 10 runs

Core Scaling results Helvetios AVX512
Lenstool Lenstool-HPC

Cores Lenstool [s] Scaling AOS [s] Scaling SOA novec [s] Scaling SOA AVX2 [s] Scaling SOA AVX512 [s] Scaling
1 281.92 ± 0.051 1.0 235.47 ± 0.040 1.0 307.80 ± 0.069 1.0 107.04 ± 0.067 1.0 65.09 ± 0.068 1.0
2 146.79 ± 0.428 1.9 122.71 ± 0.539 1.9 160.21 ± 0.504 1.9 55.90 ± 0.091 1.9 34.07 ± 0.051 1.9
3 99.68 ± 0.155 2.8 83.43 ± 0.178 2.8 108.74 ± 0.085 2.8 38.20 ± 0.027 2.8 23.35 ± 0.246 2.8
4 76.04 ± 0.103 3.7 63.88 ± 0.097 3.7 83.25 ± 0.055 3.7 29.23 ± 0.059 3.7 19.10 ± 0.262 3.4
5 62.07 ± 0.002 4.5 51.32 ± 0.001 4.6 66.85 ± 0.001 4.6 23.54 ± 0.003 4.6 16.21 ± 0.020 4.0
6 51.16 ± 0.003 5.5 43.16 ± 0.002 5.5 55.79 ± 0.002 5.5 19.66 ± 0.004 5.4 13.56 ± 0.005 4.8
7 43.86 ± 0.001 6.4 36.72 ± 0.003 6.4 47.88 ± 0.002 6.4 17.03 ± 0.045 6.3 11.68 ± 0.048 5.6
8 38.31 ± 0.002 7.4 32.37 ± 0.002 7.3 41.83 ± 0.002 7.4 15.90 ± 0.127 6.7 11.21 ± 0.059 5.8
9 34.12 ± 0.006 8.3 28.60 ± 0.002 8.2 37.23 ± 0.003 8.3 14.44 ± 0.001 7.4 10.48 ± 0.037 6.2
10 30.81 ± 0.030 9.1 25.75 ± 0.016 9.1 33.48 ± 0.010 9.2 13.76 ± 0.009 7.8 9.44 ± 0.008 6.9
11 28.32 ± 0.019 10.0 23.57 ± 0.032 10.0 30.62 ± 0.032 10.1 11.84 ± 0.032 9.0 8.65 ± 0.019 7.5
12 27.23 ± 0.153 10.4 22.50 ± 0.146 10.5 29.36 ± 0.147 10.5 11.42 ± 0.072 9.4 8.59 ± 0.057 7.6
13 26.13 ± 0.001 10.8 21.71 ± 0.001 10.8 28.27 ± 0.001 10.9 11.13 ± 0.001 9.6 8.62 ± 0.001 7.5
14 24.31 ± 0.002 11.6 20.20 ± 0.005 11.7 26.40 ± 0.002 11.7 10.33 ± 0.001 10.4 7.85 ± 0.002 8.3
15 22.71 ± 0.004 12.4 18.88 ± 0.004 12.5 24.57 ± 0.009 12.5 9.66 ± 0.004 11.1 7.20 ± 0.001 9.0
16 21.64 ± 0.057 13.0 17.97 ± 0.035 13.1 23.46 ± 0.028 13.1 9.18 ± 0.020 11.7 6.74 ± 0.001 9.7
17 20.69 ± 0.003 13.6 17.19 ± 0.000 13.7 22.46 ± 0.007 13.7 8.79 ± 0.001 12.2 6.50 ± 0.002 10.0
18 19.64 ± 0.012 14.4 16.25 ± 0.021 14.5 21.19 ± 0.025 14.5 8.44 ± 0.001 12.7 6.15 ± 0.002 10.6

Table A.3: Core scaling analysis results on FIDIS on AVX2 capable machines. The results shown are the mean of 10 runs

Core Scaling results FIDIS AVX2
Lenstool Lenstool-HPC

Cores Lenstool [s] Scaling AOS [s] Scaling SOA novec [s] Scaling SOA AVX2 [s] Scaling
1 406.87 ± 0.003 1.0 374.36 ± 0.005 1.0 515.32 ± 0.003 1.0 228.90 ± 0.001 1.0
2 203.61 ± 0.010 2.0 187.25 ± 0.002 2.0 257.95 ± 0.011 2.0 115.46 ± 0.001 2.0
3 135.92 ± 0.002 3.0 124.80 ± 0.005 3.0 172.01 ± 0.012 3.0 76.38 ± 0.001 3.0
4 101.83 ± 0.008 4.0 93.58 ± 0.001 4.0 129.87 ± 0.007 4.0 57.51 ± 0.000 4.0
5 81.47 ± 0.001 5.0 74.85 ± 0.002 5.0 103.23 ± 0.005 5.0 45.90 ± 0.001 5.0
6 67.96 ± 0.001 6.0 62.46 ± 0.002 6.0 86.08 ± 0.003 6.0 38.36 ± 0.000 6.0
7 58.29 ± 0.001 7.0 53.57 ± 0.001 7.0 73.84 ± 0.001 7.0 32.92 ± 0.001 7.0
8 51.40 ± 0.002 7.9 46.80 ± 0.001 8.0 64.98 ± 0.002 7.9 29.09 ± 0.001 7.9
9 45.34 ± 0.002 9.0 41.68 ± 0.001 9.0 57.37 ± 0.001 9.0 25.81 ± 0.000 8.9
10 40.94 ± 0.001 9.9 37.47 ± 0.001 10.0 51.62 ± 0.001 10.0 23.09 ± 0.000 9.9
11 37.23 ± 0.002 10.9 34.11 ± 0.001 11.0 47.24 ± 0.002 10.9 21.02 ± 0.000 10.9
12 34.16 ± 0.000 11.9 31.28 ± 0.001 12.0 43.05 ± 0.001 12.0 19.26 ± 0.000 11.9
13 31.72± 0.001 12.8 28.87 ± 0.001 13.0 39.74 ± 0.001 13.0 17.79 ± 0.000 12.9
14 29.29 ± 0.002 13.9 26.87 ± 0.001 13.9 36.97 ± 0.001 13.9 16.54 ± 0.000 13.8
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Table A.4: Distributed scaling analysis results. The benchmarks were run on the CSCS pizdaint CPU and GPU machines and the EPFL Helvetios and Grand Tave
CPU clusters. All results shown are in seconds.

Piz Daint@CSCS - GPU
Nodes Gradient Source Delense Comm χ2 Total Strong Scaling Lenstool 7.0
1 0.93 0.0025 0.1210 1.40 × 10−5 2.1 × 10−5 1.05 1.00 0.35
2 0.47 0.0155 0.0643 7.92 × 10−3 2.3 × 10−5 0.54 1.93 0.35
4 0.24 0.0205 0.0412 7.87 × 10−3 2.5 × 10−5 0.29 3.56 0.35
8 0.12 0.0195 0.0230 8.51 × 10−3 2.8 × 10−5 0.17 6.31 0.35
16 0.06 0.0282 0.0279 8.13 × 10−3 3.2 × 10−5 0.10 10.19 0.35
32 0.04 0.0279 0.0155 8.64 × 10−3 3.2 × 10−5 0.06 16.54 0.35
64 0.03 0.0310 0.0215 9.08 × 10−3 3.3 × 10−5 0.07 15.97 0.35
128 0.02 0.0148 0.0079 9.29 × 10−3 3.6 × 10−5 0.04 28.52 0.35

Piz Daint@CSCS - CPU
Nodes Gradient Source Delense Comm χ2 Total Strong Scaling Lenstool 7.0
1 5.99 0.0022 0.7999 2.70 × 10−5 2.1 × 10−5 6.82 1.00 0.301
2 3.04 0.0022 0.4247 2.06 × 10−4 2.3 × 10−5 3.48 1.96 0.301
4 1.51 0.0030 0.2069 3.01 × 10−4 2.5 × 10−5 1.75 3.90 0.301
8 0.80 0.0030 0.1101 1.46 × 10−3 2.8 × 10−5 0.91 7.47 0.301
16 0.44 0.0030 0.0616 2.14 × 10−3 3.2 × 10−5 0.51 13.42 0.301
32 0.28 0.0030 0.0421 4.85 × 10−3 3.2 × 10−5 0.33 20.67 0.301
64 0.25 0.0031 0.0268 8.18 × 10−3 3.3 × 10−5 0.28 24.33 0.301
128 0.17 0.0030 0.0320 8.55 × 10−3 3.6 × 10−5 0.23 29.96 0.301

Helvetios@EPFL
Nodes Gradient Source Delense Comm χ2 Total Strong Scaling Lenstool 7.0
1 4.63 0.0011 0.5894 1.50 × 10−5 1.2 × 10−5 5.25 1.00 0.230
2 2.34 0.0017 0.2989 3.53 × 10−4 1.3 × 10−5 2.65 1.98 0.230
4 1.18 0.0013 0.1534 4.50 × 10−4 1.1 × 10−5 1.34 3.92 0.230
8 0.62 0.0015 0.0787 2.47 × 10−4 9.0 × 10−6 0.71 7.44 0.230
16 0.35 0.0015 0.0405 2.95 × 10−4 9.0 × 10−6 0.39 13.42 0.230
32 0.20 0.0015 0.0219 8.25 × 10−4 9.0 × 10−6 0.24 22.33 0.230
64 0.13 0.0015 0.0135 1.28 × 10−3 1.0 × 10−5 0.14 37.15 0.230
128 0.11 0.0015 0.0217 1.68 × 10−3 1.0 × 10−5 0.13 39.15 0.230

Tave@CSCS
Nodes Gradient Source Delense Comm χ2 Total Strong Scaling Lenstool 7.0
1 2.45 0.0054 1.1759 1.0 × 10−4 1.73 × 10−4 3.78 1.0 2.8
2 1.23 0.0060 0.5921 2.1 × 10−4 1.05 × 10−4 1.90 2.0 2.8
4 0.62 0.0061 0.3013 3.1 × 10−4 1.06 × 10−4 0.96 3.9 2.8
8 0.38 0.0061 0.1828 1.12 × 10−3 1.08 × 10−4 0.57 6.6 2.8
16 0.25 0.0061 0.1219 6.33 × 10−3 1.10 × 10−4 0.40 9.6 2.8
32 0.13 0.0062 0.0642 1.13 × 10−2 1.14 × 10−4 0.22 17.5 2.8
64 0.14 0.0062 0.0633 2.29 × 10−2 1.14 × 10−4 0.23 16.5 2.8
128 0.14 0.0062 0.0632 4.67 × 10−2 1.13 × 10−4 0.25 15.0 2.8
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(a) Benchmark results for the deflection gradient computation using the
CPU version on the Grand Tave cluster.

(b) Benchmark results for the deflection gradient computation using the
CPU version on the Pizdaint cluster.

(c) Benchmark results for the constraint delensing operation using the
CPU version on the Grand Tave cluster.

(d) Benchmark results for the constraint delensing operation using the
CPU version on the Pizdaint cluster.

(e) Benchmark results for the total computation time using the hybrid
GPU-CPU version on the Grand Tave cluster.

(f) Benchmark results for the total computation time using the hybrid
GPU-CPU version on the Pizdaint cluster.

Figure A.10: Benchmark and Scaling results of Lenstool-HPC on Pizdaint CPU (CSCS) and Grand Tave (CSCS): the blue histogram shows the time results in
function of the number of computation units (nodes) used. The yellow and red line indicate respectively the ideal and actual scaling of Lenstol-HPC computation
time in function of nodes used. The horizontal green line shows Lenstool’s best computation time. When the blue histogram is below the green line is the the point
when Lenstool-HPC brute force approach to lensing beats Lenstool’s image transport method.
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