
Easy asteroid phase curve fitting for the Python ecosystem: Pyedra

Milagros R. Colazoa,b, Juan B. Cabralc,a, Martı́n Chalelaa,1, Bruno O. Sánchezd

a Instituto de Astronomı́a Teórica y Experimental - Observatorio Astronómico de Córdoba (IATE, UNC–CONICET), Córdoba, Argentina.
b Facultad de Matemática, Astronomı́a y Fı́sica, Universidad Nacional de Córdoba (FaMAF–UNC) Bvd. Medina Allende s/n, Ciudad Universitaria, X5000HUA,

Córdoba, Argentina
c Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS, CONICET–UNR), Ocampo y Esmeralda, S2000EZP, Rosario,

Argentina.
dDepartment of Physics, Duke University, 120 Science Drive, Durham, NC, 27708, USA

Abstract

A trending astronomical phenomenon to study is the the variation in brightness of asteroids, caused by its rotation on its own axis,
non-spherical shapes, changes of albedo along its surface and its position relative to the sun. The latter behavior can be visualized
on a “Phase Curve” (phase angle vs. reduced magnitude). To enable the comparison between several models proposed for this
curve we present a Python package called Pyedra. Pyedra implements three phase-curve-models, and also providing capabilities
for visualization as well as integration with external datasets. The package is fully documented and tested following a strict quality-
assurance workflow, whit a user-friendly programmatic interface. In future versions, we will include more models, and additional
estimation of quantities derived from parameters like diameter, and types of albedo; as well as enabling correlation of information
of physical and orbital parameters.

Keywords: minor planets, asteroids: general ; planets and satellites: fundamental parameters ; Python Package

1. Introduction

The brightness variation of asteroids is a fascinating astro-
nomical phenomenon to study. One cause of the object’s vary-
ing magnitude is its rotation about its own axis. This is be-
cause asteroids have non-spherical shapes and albedo differ-
ences along their surface. On the other hand, the brightness of
an asteroid will also vary just by moving in its orbit around the
Sun. When the object is close to opposition, i.e. at angles close
to 0◦, sunlight hitting the asteroid and light reflected from the
object’s surface will come from the same direction, causing the
object to have a maximum in apparent brightness. As it moves
in its orbit and its phase angle increases, the Sun’s light will be-
gin to cast shadows on the asteroid’s surface causing a decrease
in its brightness. In summary, the magnitude of an asteroid
drops as it approaches the opposition and as it moves away the
magnitude will begin to grow again. This behavior can be visu-
alized on a phase angle (α) vs. reduced magnitude V diagram,
known as ”Phase Curve”. Although several models have been
proposed to describe this curve, there is no comprehensive tool
available that provides with the necessary fitting procedures and
enables a reliable comparison between these models.

In 1989, Bowell et al. proposed the G model (also known
as H,G model), a semi-empirical model derived from the basic
principles of radiative transfer theory with some assumptions
(Waszczak et al. 2015). Shevchenko (1996) proposed an empir-
ical tri-parametric phase function model valid for phase angles
in the range of 0◦ − 40◦. There is a third model for the phase
function proposed by Muinonen et al. in 2010. It is a model
similar to Bowell’s but replaces the G parameter with two pa-

rameters G1 and G2, making it also a tri-parametric model. Ac-
cording to Muinonen et al., the G model is a good approxima-
tion in the region of 10◦∼60◦, while the G1 and G2 model works
well also for angles close to the opposition (∼0◦).

Many large sky surveys are currently in operation. Thou-
sands of asteroids are observed by these telescopes, providing a
unique opportunity to study them. Some of these large sky sur-
veys are Gaia (Gaia Collaboration et al. 2018), TESS (Ricker
et al. 2015), in the near future the Vera Rubin’s Legacy Survey
of Space and Time (LSST, Schwamb et al. 2019). This poses
the opportunity to characterize the phase curve of a large num-
bers of asteroids. We must be prepared to take full advantage of
this information. One of the main analysis with these datasets
would be the calculation of the absolute magnitude H of hun-
dreds or thousands of these objects, enabling also the estimation
of their diameters. The parameters G, G1, G2, b can provide a
good estimate of the albedo of the asteroids and, even more, can
help in the taxonomic classification (Shevchenko 1996; Bel-
skaya & Shevchenko 2000; Carbognani et al. 2019).

In this context of ”big data for asteroids” we developed Pye-
dra . Pyedra enables the analysis of large amounts of data, it
provides the parameters of the selected phase function model
that best fits the observations. Thus, it can quickly create pa-
rameter catalogs for large databases as well as providing the
possibility of working with non-survey data, i.e. personal ob-
servations.

This paper is organized as follows: in Section 2 we provide
a brief description of the algorithm. In Section 3 we introduce
technical details about the Pyedra package. In Section 4 we
present the conclusions and future perspectives.

Preprint submitted to astronomy & computing March 12, 2021

ar
X

iv
:2

10
3.

06
85

6v
1

 [
as

tr
o-

ph
.E

P]
 1

1
M

ar
 2

02
1

2. The Algorithm

In this section, we present the three phase function models
implemented in Pyedra and for each one of them, we provide
details on the method used for parameter estimation. In general
we adopt the procedure proposed by Muinonen et al. (2010),
hereafter M10.

2.1. H, G model

The H,G phase function model for asteroids can be described
analytically through the following equation (Muinonen et al.
2010):

V(α) = H − 2.5 log10[(1 −G)Φ1(α) + GΦ2(α)], (1)

where H and G are the two free parameters of the model, α is
the phase angle, V(α) is the reduced V magnitude (brightness
on Johnson’s filter V normalized at 1 AU from the Sun and the
observer), Φ1(α) and Φ2(α) are two basis function normalized
at unity for α = 0◦. The base functions can be accurately ap-
proximated by:

Φ1(α) = exp
(
−3.33 tan0.63 1

2
α

)
,

Φ2(α) = exp
(
−1.87 tan1.22 1

2
α

)
.

(2)

To obtain the value of H and G, M10 proposes to write to the
reduced magnitude as:

10−0.4V(α) = a1Φ1(α) + a2Φ2(α), (3)

then we can write the absolute magnitude H and the coefficient
G as:

H = −2.5 log10(a1 + a2),

G =
a2

a1 + a2
.

(4)

The coefficients a1 and a2 are estimated from the observations
using the standard method of least squares.

2.2. H, G1, G2 model

This three parameter magnitude phase function can be de-
scribed as in M10:

V(α) = H − 2.5 log10[G1Φ1(α) + G2Φ2(α)
+ (1 −G1 −G2)Φ3(α)],

(5)

where Φ1(0°)=Φ2(0°)=Φ3(0°)=1. H, G1 and G2 are the param-
eters of the model, α is the phase angle, V(α) is the reduced
magnitude and Φ1, Φ2, Φ3 are basis functions.

These basis are defined piecewise using linear terms as well
as cubic splines (Penttilä et al. 2016) along the orbit.

In this case we write the reduced magnitude as:

10−0.4V(α) = a1Φ1(α) + a2Φ2(α) + a3Φ3(α). (6)

For this calculation we use the tabulated values for the base
functions presented in Penttilä et al. (2016). The model free
parameters can be obtained from:

H = −2.5 log10(a1 + a2 + a3),

G1 =
a1

a1 + a2 + a3
,

G2 =
a2

a1 + a2 + a3
.

(7)

The coefficients a1, a2 and a3 are estimated from observations
using the method of least squares.

2.3. Shevchenko model

This model is described in the following equation
(Shevchenko 1996):

V(1, α) = V(1, 0) −
a

1 + α
+ b · α, (8)

where a characterizes the amplitude of the so-called “opposi-
tion effect”, b is a parameter describing the linear term of the
phase-magnitude relationship, α is the phase angle and V(1, 0)
is the absolute magnitude.

Although M10 does not present this model in its work, we
have extended the use of least squares for this case as well given
that Shevchenko’s formula is already written in the form of a
linear equation.

3. Technical details about the Pyedra package

3.1. User functionalities and application example

The Pyedra package consists of 3 main functions to perform
the fitting of observations. Each of these functions corresponds
to one of the models mentioned in Section 2. These functions
are:

• HG fit(): fits the 2.1 model to the observations.

• HG1G2 fit(): fists the 2.2 model to the observations.

• Shev fit(): fits the 2.3 model to the observations.

All these functions return an object that we call
PyedraFitDataFrame, containing the parameters ob-
tained after the fit with a format that is analogous to a pandas
Dataframe. The plot() method of this object returns:

• a graph of our observations in the plane (α, V) together
with the fitted model.

• any of the graphics that pandas allows to create.

Pyedra also offers the possibility to add Gaia observations to
the user’s sample. This is done by using:

1. .load gaia() to read the files containing Gaia observa-
tions.

2. .merge obs() to merge the user and Gaia tables.

2

3. One can apply any of the above functions to this new
dataframe.

This is a very interesting feature because, in general, obser-
vations from the ground correspond to small phase angles. In
contrast, Gaia can only observe for phase angles α > 10° (Gaia
Collaboration et al. 2018). Both sets of data are complemen-
tary, thus achieving a more complete coverage of the phase an-
gle space. This also leads to a better determination of the phase
function parameters.

As a simple usage application we show how to calculate the
parameters of the H,G model and how to plot the observa-
tions with the fit obtained using the dataset of Carbognani et al.
(2019). The respective plots are shown in Figs. 1 & 2. This
dataset is provided with Pyedra for the user to test the function-
alities.

>>> import p ye d r a
>>> import pandas as pd
>>> import m a t p l o t l i b . p y p l o t a s p l t

load t h e da ta
>>> df = p ye d r a . d a t a s e t s . l o a d c a r b o g n a n i 2 0 1 9 ()

f i t t h e da ta
>>> HG = p ye d r a . H G f i t (d f)

id H e r r o r H G e r r o r G
R

0 85 7 .492423 0 .070257 0 .043400 0 .035114
0 .991422

1 208 9 .153433 0 .217270 0 .219822 0 .097057
0 .899388

2 236 8 .059719 0 .202373 0 .104392 0 .094382
0 .914150

3 306 8 .816185 0 .122374 0 .306459 0 .048506
0 .970628

4 313 8 .860208 0 .098102 0 .170928 0 .044624
0 .982924

5 338 8 .465495 0 .087252 −0.121937 0 .048183
0 .992949

6 522 8 .992164 0 .063690 0 .120200 0 .028878
0 .991757

P y e d r a F i t D a t a F r a m e − 7 rows x 6 columns

t a k e t h e mean v a l u e o f H
>>> HG.H. mean ()
>>> 8.54851801238607

p l o t t h e da ta and t h e f i t
>>> HG. p l o t (d f=df , ax=None)
>>> p l t . show ()
<AxesSubp lo t : t i t l e ={ ’ c e n t e r ’ : ’ Phase c u r v e s ’ } ,
x l a b e l = ’ Phase a n g l e ’ , y l a b e l = ’V’>

s c a t t e r p l o t o f G vs H
>>> HG. p l o t (x= ’G’ , y= ’H’ , k ind= ’ s c a t t e r ’)
>>> p l t . show ()
<AxesSubp lo t : x l a b e l = ’G’ , y l a b e l = ’H’>

3.2. Quality assurance
Software quality assurance refers to the set of standards and

procedures that must be used in order to verify that the soft-
ware meets certain subjective quality criteria. The most com-
mon procedures to carry out this task are unit-testing and code-
coverage.

0 5 10 15 20 25
Phase angle

7.5

8.0

8.5

9.0

9.5

10.0

V

HG - Phase curves
Data #208
Data #236
Data #306
Data #313
Data #338
Data #522
Data #85

Fit #208
Fit #236
Fit #306
Fit #313
Fit #338
Fit #522
Fit #85

Figure 1: Example of the figure obtained for the model H,G. The points corre-
spond to the observations and the dotted lines to the best fit. Points of the same
color correspond to the same object.

0.1 0.0 0.1 0.2 0.3
G

7.50

7.75

8.00

8.25

8.50

8.75

9.00

H

Figure 2: Example of the ’scatter’ graphic of pandas dataframe, also available
for PyedraDataFrame.

The purpose of unit-testing is to check that each of the indi-
vidual components of the software works as expected (Jazayeri
2007). That is, we isolate a function from our code and verify
that it works correctly. On the other hand, code-coverage is a
measure of how much of our software has been tested (Miller &
Maloney 1963). In this way, we can identify parts of the code
that we have not verified. In the Pyedra package we provide five
suites of unit-tests that evaluate different sections of the code,
reaching 99% of code-coverage. The testing suites are tested
for Python versions 3.7, 3.8 and 3.9. We are also interested in
the maintainability of Pyedra, therefore we have adopted PEP
8 – Style Guide for Python Code (Van Rossum et al. 2001) in
such a way that our project meets current code standard and
readability. For this purpose, we use the flake81 tool hat au-
tomatically detects any case where we are not respecting the
style imposed by PEP 8 as well as programming errors, such
as: ”library imported but unused”.

Finally, the entire source code is MIT-licensed and available
in a public repository2. All changes and new versions of the
package committed to this repository are automatically tested

1https://flake8.pycqa.org/en/latest/
2https://github.com/milicolazo/Pyedra

3

https://flake8.pycqa.org/en/latest/
https://github.com/milicolazo/Pyedra

with continuous-integration services 3, 4. Documentation is au-
tomatically generated from Pyedra docstrings and made public
in the read-the-docs service5.

Finally, Pyedra is available for installation on the
PythonPackage-Index (PyPI)6; and is currently going through
registration process to appear in the Astrophysics Source Code
Library (ASCL.net, Grosbol & Tody 2010)

3.3. Integration with the Python scientific–stack
Python has become an important programming language

within the astronomical community (Stansby et al. 2020). This
is mainly because it is a simple to use, free and versatile lan-
guage for manipulating and visualizing data (Faes 2012).

Pyedra is built on top of the Python scientific stack: Pandas
(McKinney et al. 2010) since the main object on which Pyedra
operates is a dataframe; Scipy (Virtanen et al. 2020) for function
interpolation and fit of least squares optimization; Numpy (Walt
et al. 2011) to manipulate arrays; Matplotlib (Hunter 2007) for
the data visualization; and attrs7 to facilitate the implementation
of classes.

3.3.1. Short comparison with other similar packages
Pyedra’s main objective is to calculate the parameters of dif-

ferent phase function models for large and small volumes of
data. The sbpy8 (Mommert et al. 2019) package offers the pos-
sibility to model phase curves. In this subsection, we will make
a brief contrast between both projects.

Regarding the available models, sbpy and Pyedra share the
HG and HG1G2 model. In the case of sbpy, the models HG12
(Revised H, G12 model by Penttilä et al.) and a linear model are
also available. Although these models were not considered in
Pyedra (but will be implemented in the next release), we have
included Shevchenko’s model which is not present in sbpy.

On the other hand, sbpy does not provide the functionality
to estimate the best fit model parameters (as Pyedra does) but
returns other quantities derived from these parameters. In ad-
dition, Pyedra has an error estimate for each calculated value,
something that is not present in sbpy.

Finally, Pyedra ’s main strength against sbpy is its simplicity
of use. With sbpy we have not found a quick way to get phase
function parameter catalogs for databases with large numbers of
entries. With Pyedra , the user can accomplish this task by just
writing one line of code. The same is true for graphic capabili-
ties: since plotting phase functions is one of Pyedra ’s features,
one single method call allows to obtain a visualization of the
phase function. It is also worth noticing that with Pyedra not
only phase curve plots can be easily obtained, all pandas visual-
ization tools are also available enabling a more comprehensive
analysis of the resulting catalog. Moreover, as it is based on
pandas’ dataframe manipulation, the output catalog is simple to
visualize, modify and to carry out different calculations from it.

3https://travis-ci.com/milicolazo/Pyedra
4https://github.com/milicolazo/Pyedra/actions
5https://pyedra.readthedocs.io/en/latest/?badge=latest
6https://pypi.org/project/Pyedra/
7https://www.attrs.org
8https://sbpy.org/

4. Conclusions

In this paper, we present Pyedra, a python implementation
for asteroid phase curve fitting. This package allows the user to
fit three different models of phase functions to observations of
asteroid phase angle and photometry.

Pyedra is suitable for analysis of private datasets, of one or
more asteroids, as well as large volumes of information from
any public survey data release such as TESS, Gaia, K2, among
others. SiConsequently Pyedra is a tool that will enable the
creation of phase curve model parameter catalogs for hundreds
of thousands of asteroids.

Pyedra also offers the possibility of producing numerous vi-
sualization plots. Not only it can produce a graph of the phase
functions but it makes available all the graphs natively offered
for pandas dataframes. In this way, we provide the possibility
of a complete analysis of the results obtained.

As we have already mentioned, we are living in an era of big
surveys. We must be able to have tools capable of processing
the vast amount of data that these surveys constantly provide to
the scientific community.

4.1. Future Work

Pyedra is still in development process, so there are still topics
to be improved.

The first thing to consider would be to have more phase func-
tion models added to those already offered by the package. In
addition, it would be convenient to be able to estimate certain
quantities derived from the parameters obtained, such as the
diameter, the integral function, the different types of albedo,
etc. It would be interesting to have a tool that (in the case of
a database containing several asteroids) allows combining in-
formation on physical parameters with orbital parameters. For
example, the possibility of studying which G values the aster-
oids have for different semi-axes a.

Finally, we intend to add more large survey data for the user
to combine with their observations, such as TESS, SDSS, etc.

5. Acknowledgments

The authors would like to thank their families and friends, as
well as the IATE astronomers for useful comments and sugges-
tions.

This work was partially supported by the Consejo Na-
cional de Investigaciones Cientı́ficas y Técnicas (CONICET,
Argentina). M.R.C., J.B.C and M.Ch. were supported by a
fellowship from CONICET.

This research employed the http://adsabs.harvard.edu/, Cor-
nell University xxx.arxiv.org repository, the Python program-
ming language, the Numpy and Scipy libraries, and the other
packages utilized can be found at the GitHub webpage for Pye-
dra.

References

Belskaya, I. N. & Shevchenko, V. G. 2000, Icarus, 147, 94

4

https://travis-ci.com/milicolazo/Pyedra
https://github.com/milicolazo/Pyedra/actions
https://pyedra.readthedocs.io/en/latest/?badge=latest
https://pypi.org/project/Pyedra/
https://www.attrs.org
https://sbpy.org/
http://adsabs.harvard.edu/

Bowell, E., Hapke, B., Domingue, D., et al. 1989, in Asteroids II, ed. R. P.
Binzel, T. Gehrels, & M. S. Matthews, 524–556

Carbognani, A., Cellino, A., & Caminiti, S. 2019, Plan. Space Sci., 169, 15
Faes, D. 2012, Journal of Colloid and Interface Science, 3, E1
Gaia Collaboration, Spoto, F., Tanga, P., et al. 2018, A&A, 616, A13
Grosbol, P. & Tody, D. 2010, arXiv preprint arXiv:1004.4430
Hunter, J. D. 2007, Computing in science & engineering, 9, 90
Jazayeri, M. 2007, in Future of Software Engineering (FOSE’07), IEEE, 199–

213
McKinney, W. et al. 2010, in Proceedings of the 9th Python in Science Confer-

ence, Vol. 445, Austin, TX, 51–56
Miller, J. C. & Maloney, C. J. 1963, Communications of the ACM, 6, 58
Mommert, M., Kelley, M. S., Val-Borro, M., et al. 2019, Journal of open source

software
Muinonen, K., Belskaya, I. N., Cellino, A., et al. 2010, Icarus, 209, 542
Penttilä, A., Shevchenko, V. G., Wilkman, O., & Muinonen, K. 2016, Plan.

Space Sci., 123, 117
Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, Journal of Astronomical

Telescopes, Instruments, and Systems, 1, 014003
Schwamb, M. E., Hsieh, H., Bannister, M. T., et al. 2019, Research Notes of

the AAS, 3, 51
Shevchenko, V. G. 1996, in Lunar and Planetary Science Conference, Vol. 27,

Lunar and Planetary Science Conference, 1193
Stansby, D., Yeates, A., & Badman, S. 2020, The Journal of Open Source Soft-

ware, 5, 2732
Van Rossum, G., Warsaw, B., & Coghlan, N. 2001, Python. org, 1565
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17,

261
Walt, S. v. d., Colbert, S. C., & Varoquaux, G. 2011, Computing in science &

engineering, 13, 22
Waszczak, A., Chang, C.-K., Ofek, E. O., et al. 2015, AJ, 150, 75

5

	1 Introduction
	2 The Algorithm
	2.1 H, G model
	2.2 model
	2.3 Shevchenko model

	3 Technical details about the Pyedra package
	3.1 User functionalities and application example
	3.2 Quality assurance
	3.3 Integration with the Python scientific–stack
	3.3.1 Short comparison with other similar packages

	4 Conclusions
	4.1 Future Work

	5 Acknowledgments

