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Abstract

Artificial neural networks are finding increasing use in astronomy, but understanding the limitations of these models can be difficult.
We utilize a statistical method, a sensitivity probe, designed to complement established methods for interpreting neural network
behavior by quantifying the sensitivity of a model’s performance to various properties of the inputs. We apply this method to neural
networks trained to classify images of galaxy-galaxy strong lenses in the Dark Energy Survey. We find that the networks are highly
sensitive to color, the simulated PSF used in training, and occlusion of light from a lensed source, but are insensitive to Einstein
radius, and performance degrades smoothly with source and lens magnitudes. From this we identify weaknesses in the training sets
used to constrain the networks, particularly the over-sensitivity to PSF, and constrain the selection function of the lens-finder as a
function of galaxy photometric magnitudes, with accuracy decreasing significantly where the g-band magnitude of the lens source
is greater than 21.5 and the r-band magnitude of the lens is less than 19.
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1. Introduction

Machine learning, the name we give to algorithms designed
to learn from data and make predictions without being explic-
itly programmed to do so, is playing an ever-increasing role in
modern astronomy (for an overview, see Fluke & Jacobs, 2020).
As the volume of “Big Data” available for analysis increases
rapidly (Zhang & Zhao, 2015; Kremer et al., 2017), more ef-
ficient means of extracting scientifically relevant conclusions
from this data have become increasingly urgent. One machine
learning algorithm in particular—the artificial neural network
(ANN; Rosenblatt, 1957; Fukushima, 1980)—has proven to be
successful in many applications within and without our sci-
ence. The power of ANNs lies in their ability to extract task-
oriented feature sets at different granularities, mapping from in-
put to output domains in a highly non-linear fashion and learn-
ing the optimal functional form automatically from supplied
data. They can be scaled to almost arbitrary size and complex-
ity. The now ubiquitous term deep learning (LeCun et al., 2015;
Schmidhuber, 2015) refers to deep neural networks (DNNs),
ANNs with many layers, and thus many trainable parameters.
Due to the advent of GPU computing and the availability of
large data sets, DNNs with up to billions of trainable param-
eters are now routinely applied in domains such as computer
vision and natural language processing (Devlin et al., 2019).

One variant of DNN, the convolutional neural network (Le-
Cun et al., 1989), which is optimized to exploit the relationships
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between neighbouring pixels in image data, is extremely pow-
erful in extracting meaning from images and has revolutionized
the field of computer vision (LeCun et al., 2010; Krizhevsky
et al., 2012; Voulodimos et al., 2018).

The application of deep learning to astronomy continues to
accelerate. Just a few examples include such disparate applica-
tions as cosmological parameter estimation (Ntampaka et al.,
2020; Wang et al., 2020); gravitational wave identification
(George & Huerta, 2018); galaxy morphology classification
(Dieleman et al., 2015; Zhu et al., 2019; Walmsley et al., 2020);
stellar classification (Sharma et al., 2019) star-galaxy separation
(Kim & Brunner, 2016); and photometric redshift estimation
(Hoyle, 2016; Eriksen et al., 2020). ANNs are even being used,
albeit tentatively, to directly infer physical laws, for instance by
Iten et al. (2020) to ‘rediscover’ the heliocentric configuration
of the solar system.

One area of astronomy where DNNs have had particular suc-
cess is in the discovery of strong gravitational lenses. The study
of strongly lensed galaxies is key in many areas of contem-
porary astrophysics, including but not limited to cosmography
(Bonvin et al., 2016; Birrer et al., 2019; Collett et al., 2019),
dark matter studies (Oguri et al., 2014; Li et al., 2016; Birrer
et al., 2017), the mass-assembly of lensing galaxies (Sonnen-
feld et al., 2013), and the astrophysics of the lensed sources
themselves (Jones et al., 2018; Spilker, 2019). However, at
galaxy scale strong lenses are relatively rare, < 1 in 1000 galax-
ies (Treu, 2010), and are difficult to distinguish from the galaxy
population at large, displaying no large bias in color or lumi-
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nosity that enable them to be reliably singled out from catalogs.
Lenses can only be definitively identified using a combination
of color, morphology—such as Einstein rings/arcs, multiple im-
ages of the background source—and spectroscopy. Automating
lens finding therefore requires either a significant investment of
expert human time, such as recruiting citizen scientists to ex-
amine images (Marshall et al., 2016; Sonnenfeld et al., 2020),
or a technique that can make full use of the morphological in-
formation present in multi-band survey imaging. Previous at-
tempts at automating lens-finding in surveys involved the care-
ful construction of algorithms to detect rings and arcs (Seidel
& Bartelmann, 2007; Gavazzi et al., 2014; Brault & Gavazzi,
2015); model sources as prospective lenses (Marshall et al.,
2009; Chan et al., 2015); or a combination of these (Sonnen-
feld et al., 2018). These methods resulted in some dozens
of new discoveries. However, the extraordinary success of of
CNNs in computer vision generally (LeCun et al., 2010) makes
them a logical choice for the next generation of lens finders.
CNNs have now been successfully employed to discover new
lenses in surveys such as the Canada-France-Hawaii Legacy
Survey (Jacobs et al., 2017), Dark Energy Survey (Jacobs et al.,
2019a,b), Hyper Suprime-Cam Subaru Strategic Program (Son-
nenfeld et al., 2018) and Kilo-Degree Survey (Petrillo et al.,
2019). A few thousand new confirmed lenses or high-quality
lens candidates have resulted from these searches.

The scientific imperative for lens discovery is accelerating;
rare lenses, such as double or triple source plane configu-
rations (Collett & Smith, 2020) can, even individually, pro-
vide strong contraints on cosmological parameters, but are
extremely rare—of order one in 106-109 sources. Future
pipelines, such as the upcoming Legacy Survey for Space and
Time (LSST; Ivezić et al., 2019) will benefit from real-time as-
sessments of the presence of strong lensing. When a transient
candidate is identified, ideally a system will be in place to in-
stantly and reliably assess whether the host galaxy may be mul-
tiply imaged by a foreground source and thus flagged for imme-
diate follow-up. In order for deep learning-based lens finding
to drive this next wave of scientific discovery, we will need to
properly understand the inefficiencies, biases and errors of our
lens finders. For instance, the selection function is not clear;
is there a bias in the colors, magnitudes, and other features of
discovered lenses? How is the search affected by the depth of
the images or the seeing?

Answering questions such as these is not straight forward.
Despite their successes in this and other fields, deep neural net-
works have a significant drawback, namely their lack of inter-
pretability. The mapping of inputs to outputs that occurs in a
deep neural network involves many non-linear transformations
parameterized by of order millions of weights, making under-
standing the contribution of any feature or subset of features of
the input to the final determination very challenging. In par-
ticular, the behaviour of a DNN when applied to an example
that lies outside the distribution used for training is undefined
and unpredictable. In computer vision, some attempts to inter-
pret DNN functioning have relied on salicency maps, a family
of techniques that determine the most important (i.e. salient)
regions of the input in making the final class determination.

However, the utility of these methods is limited, especially in a
scientific/astronomical context, since it is focused on producing
a spatial saliency map without probing other physical parame-
ters that may be of interest to physicists. We further discuss the
difficulties with these techniques in section 2 below.

In this work we examine two DNNs used to find strong grav-
itational lenses in Dark Energy Survey (DES; Dark Energy Sur-
vey Collaboration et al., 2016) imaging and attempt to answer
some of these questions. These networks enabled the discov-
ery over over 500 high-quality strong lens candidates (Jacobs
et al., 2019a), and 84 at redshifts ∼ 0.8 and above (Jacobs et al.,
2019b). The networks were able to produce samples for hu-
man inspection of considerable purity—up to one in five of the
most highly-scored galaxies were rated as probable or definite
lenses. However, the completeness of the search could only be
estimated, as the selection function of the DNNs could not be
known.

Here we develop and employ a technique designed to probe
the sensitivity of a deep neural network to various properties of
the inputs. The method collects summaries of network perfor-
mance across test sets, and compares these performance sum-
maries as a function of various input parameters. We apply
the method systematically to neural networks trained to find
galaxy-galaxy strong lenses in survey imaging, and test the sen-
sitivity of the networks to color, PSF, noise, the occlusion of
regions of the image, and the magnitudes of lens and lensed
source.

The paper is structured as follows. In section 2, we provide
some more detail on the challenges of interpreting neural net-
work outputs. In section 3, we summarize the methodology
used to probe the sensitivity of our trained networks to vari-
ous physical parameters. In section 4 we detail the results and
discuss the implications of the insights learned for future appli-
cations. Finally we offer concluding remarks in section 5.

2. Interpreting neural networks

Despite their success in many domains, not the least in as-
tronomy, DNNs suffer from serious interpretability problems.
Describing what features a neural network is learning is not
straight forward, and it is in general not possible to anticipate its
failure modes, nor biases in its learned features. In scientific ap-
plications quantifying these problems is of increasing urgency.

Understanding the decisions of deep networks is a field of ac-
tive research. A distinction is often made between interpretable
and explainable machine learning. An interpretable model is
one which allows insight into how it performs under certain cir-
cumstances, including potential failure modes. An explainable
model allows for a more detailed understanding of the model in-
ternals, specifically the detailed reasons behind a particular de-
cision. Gilpin et al. (2018) elaborate on the distinction in more
detail. Here we are focused on an aid to ANN interpretability.

Several approaches exist to interpret DNN behaviour. The
most direct approach involves visual inspection of the feature
maps - the features the network has been trained to recognise
in a given input. At the initial layer these features tend to be
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too simple to provide much explanatory power; in the case of
image data, for instance, vertical edges or patches of color. At
later layers the features are too abstract to be interpretable vi-
sually, despite being rich in semantic meaning. Figure 1 shows
an example from the computer vision domain, for a neural net-
work trained to recognise everyday objects. At this early layer,
we see the network has detected features such as edges, but
at a later layers spatial information has been lost and the fea-
ture map is not interpretable. Figure 2 shows the same for net-
works trained on simulated gravitational lenses, for both lens
and non-lens images, with example feature maps at several lay-
ers throughout the network. These feature maps contain little
or no quantitative information.

With networks trained for computer vision, some of the most
widely adopted alternative approaches have focused on saliency
mapping—determining and displaying those parts of the in-
put most crucial (salient) in determining a given output. Early
approaches tried calculating the signficance of individual in-
puts (pixels) to a class score (“Image-Specific Class Saliency
Visualisation”— Simonyan et al., 2013). As the contribution
of any individual pixel to the final score is small, the outputs
from this method were noisy and suffered from a lack of “dy-
namic range” in explanatory power; at best, they indicate a
rather fuzzy, general area where there is a positive gradient with
regard to the correct class score (see Simonyan et al., 2013).

Another variation on the theme is Gradient-weighted Class
Activation Mapping (Grad-CAM; Selvaraju et al., 2017), which
examines the feature maps at the last convolutional layer in a
network, the point in the network immediately before the out-
put is flattened and all spatial information is discarded. The al-
gorithm weights these feature maps by their contribution to the
final score, then maps them back spatially to the input image
to produce a saliency map. Since CNNs usually discard spatial
information in favour of more feature maps at later layers, the
saliency map produced suffers from correspondingly lower res-
olution. Other techniques develop these general ideas (Smilkov
et al., 2017; Zeiler & Fergus, 2014; Springenberg et al., 2015;
Binder et al., 2016; Kindermans et al., 2017), but the central
concept is the same; highlighting regions of interest in an input
image.

Are saliency maps useful in a scientific context? They are
confined to the exploration of spatial features, and typically lack
granularity even then. Figure 3 depicts, firstly, a Grad-CAM
saliency map generated on a neural network trained for visual
classification of photographs, applied to an image of a tiger (as
per Selvaraju et al., 2017). We can see that the tiger’s face is
highly salient in determining the class depicted in the image, an
intuitive result. On the right, we show some saliency maps ap-
plied to images of a strong gravitational lens, activated for the
“is a lens” class; it is equally intuitive that the central galaxy
and Einstein ring are salient in the determination, but does not
provide quantitative insight into the biases and weaknesses of
the methodology. The resolution of the saliency map is low,
however it’s not clear that an improvement would allow signif-
icant new insights, as it is still limited to the spatial dimension
of the input only.

For the rest of this paper, we contrast saliency mapping tech-

niques with a sensitivity probe, eschewing spatial information
for patterns derived from other known properties of the in-
put, and demonstrate how this approach may be more useful
in quantifying the biases and strengths of a neural network ap-
plied to the astrophysical problem of strong gravitational lens
detection. The sensitivity probe is designed to be complemen-
tary to saliency maps, particularly as an aid to the exploration
of performance with regard to known physical properties.

3. Methodology

3.1. Data sets used

3.1.1. Dark Energy Survey
The networks analysed in this work were trained to detect

strong gravitational lenses in Dark Energy Survey (DES; Dark
Energy Survey Collaboration et al., 2016) imaging. DES is an
optical and near-infrared survey of 5000 square degrees of sky
in five bands (g, r, i, z and y). In previous works (Jacobs et al.,
2019b, Jacobs et al. (2019a)) we searched the DES Year 3 coadd
imaging (Sevilla-Noarbe et al., 2021), and it is these images
that simulated lenses are designed to emulate. This imaging
has a depth of 24.33 in g (for a signal-to-noise of 10) and a
pixel scale of 0.263 arcsec per pixel, with median PSFs of 1.12
arcsec FWHM in g, 0.96 in r and 0.88 in i.

3.1.2. Lens models and test set
In the DES lens search we employed convolutional neural

networks trained using different training sets. The first, which
we call “Network A”, was trained on simulated strong lenses
generated using the LensPop software (Collett, 2015), com-
posed of real images of large elliptical galaxies chosen from
a catalog, combined with a synthetic lensed source (hence-
forth, “simulated lenses”). The negative examples comprise the
images of the elliptical galaxies only with no lensed source.
The second, “Network B”, was trained on the same simulated
lenses, with the negative examples comprising randomly cho-
sen non-lens sources taken from the field, including elliptical
and spiral galaxies, mergers, and stars. The networks/training
sets are summarized in Table 1. For Network A, the presence of
the lensed source is the key feature that indicates lensing, since
the training set includes large elliptical galaxies in both posi-
tive and negative examples. For network B, the presence of a
large elliptical (the most likely deflector in a strong lensing sys-
tem) is discriminative, but the network learns about spiral arms
and other potentially confusing features that are not features of
lensing. Here we contrast the sensitivity of these two training
approaches to several input properties.

We use a sensitivity probe on Networks “A” and “B” as de-
scribed above in section 3.2. The models each have 10 convo-
lutional layers and two fully connected layers of 256 neurons
each. Each model has over 12 million trainable parameters.
The training sets used consisted of ∼ 150, 000 simulated lenses
and a similar number of non-lens galaxies. The output distin-
guishes between the lens and non-lens classes, i.e. produces a
probability that a tested image contains a gravitational lens. A
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Figure 1: Examples of feature maps from a convolutional neural network. Left: An image supplied to a network (VGG— Simonyan & Zisserman, 2014) trained on
images of everyday objects. Right: Nine feature maps, the result of convolving the input image with nine different convolutional kernels from the first layer of the
network, showing that the network has learned to detect simple features at this level. Although these outputs are interpretable, in that we can see how features such
as edges are detected by the network, it is difficult to draw a detailed understanding of the network from such examples.

Table 1: Summary of the training sets used to train the two networks (A and B), and the methodology used for positive and negative examples.
Lenses Non-lenses

Training set A Elliptical galaxies with simulated
lensed source added Elliptical galaxies only

Training set B Elliptical galaxies with simulated
lensed source added Random sources from field

4



Figure 2: Examples of feature maps from a convolutional neural networks trained to detect strong gravitational lenses. Top: Three non-lens input images, convolved
with convolutional kernels from different layers of the network as indicated. Bottom: Three simulated lenses and the resulting feature maps. Although the edges
and colors detected by the network are visible, a quantitative understanding of network biases is difficult to extract from such maps.
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Figure 3: Examples of saliency maps generated using the Grad-CAM algorithm (Selvaraju et al., 2017). Left: An image of a tiger, passed to a network pre-trained
on the ImageNet dataset (Russakovsky et al., 2015) with the salient region depicted—the tiger’s face. Right: Saliency maps for simulated lensing and non-lensing
galaxies. Top: Four non-lensing galaxies. The saliency is distributed throughout the image. Bottom: Four lensing galaxies; the salient region is the central source.
The colors depict the most salient regions, from blue (lowest positive saliency) to red (highest saliency).

further test set, which also includes simulated elliptical galax-
ies, is used in the test of PSF (section 4.2).

Except as where noted, the test set we use consists of 5000
simulated lenses, 5000 elliptical galaxies, 5000 real sources of
all types, and 500 known lenses or high-quality lens candidates
(human verified, and with a high spectroscopic confirmation
rate) from Jacobs et al. (2019a). In all cases, we test images
of dimensions 100x100 pixels, corresponding to 26.3 arcsec-
onds on a side, in four bands (griz). These images were not
used during the training process.

The purpose of the analysis is to better understand what the
model learned and identify weaknesses in the training set that
could assist in future searches. To that end, we apply the sensi-
tivity probe, examining the models’ sensitivity to the following
properties of the images (as described in detail in 4):

1. PSF: We generate simulations with a PSF distribution that
varies from that used in the simulations used to train the
network, and also degrade the image with a Gaussian blur.

2. Einstein radius: The Einstein radius of the simulated
lens.

3. Galaxy magnitudes: The g-band source magnitude and
r-band lens magnitude.

We also apply perturbations to the test set, to test the sensi-
tivity to the following parameters:

1. Noise, by the addition of Gaussian noise;
2. Color, by artificially varying the colors of the images;

3. Occlusion, by zeroing out pixels in certain regions of the
image

3.2. Sensitivity probe
The technique used to examine the neural networks in this

paper we refer to as a sensitivity probe.1 The key metric for
the performance of a neural network classification model is
whether it puts the input in the correct class. The output of a
neural network trained for a classification task is a vector of di-
mension n, where n is the number of possible classes, and the
value si, i ∈ [1...n] is interpreted as a confidence that the input
belongs to class i. In general the final layer includes a soft-
max activation such that

∑
i si = 1, so we can interpret si as a

(pseudo-)probability. In the optimal case, the output of the net-
work will be sk = 1 where k is the index of the correct (ground
truth) class, and si = 0 where i , k.

We use this correct-class score, sk, as the test for the sen-
sitivity probe. It is easily interpretable, as it represents the
model’s confidence (in the range 0-1) that it has classified the
input object in the correct class category. Other metrics would
be equally valid, such as the categorical cross-entropy which is
used as the loss metric to minimise during the training process.
This value is directly correlated with the model accuracy, but
is less easily interpreted as it is unbounded as the correct-class
score approaches zero.

1Not to be confused with parameter sensitivity analysis, which tests the sen-
sitivity to the weights of the network itself.
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We test how the correct-class score value varies across differ-
ent test sets, or as the parameters of a given test set are varied
in some way. If this value decreases for any given input or set
of inputs, the performance of the network can be said to de-
grade, and vice versa. If we can track this degradation against
some baseline, as the inputs are varied by some parameter, then
we can obtain a quantitive understanding of how sensitive the
performance of the network is to this parameter.

In summary, the algorithm employed is as follows. We di-
vide our test set into subsets of approximately a few hundred
objects, binned by the property to be investigated. Then, the
score in the range (0, 1) for the correct class, lens or non-lens,
is predicted by the model for each object. We calculate the
mean score value µ per bin as well as the standard deviation σ
in each bin. If the model performed perfectly µ and σ would be
1 and 0 respectively; in practice, µ is less than 1 and there is sig-
nifiant scatter in the predictions, representing both diversity in
the test set and the inherent strength or weakness in the model
when examining objects in a particular bin. If the performance
of a model degrades by bin, this will be reflected in a lower µ
(less confidence in the correct class) and higher σ (more varia-
tion in score across the test set). The sensitivity probe tests how
these two quality metrics change across test sets in order to in-
spect how the score quality changes as a function of the binning
parameter. This is a purely empirical result, summarising the
performance of the network; further statistical analysis, such as
performing Bayesian regression analysis of the relationship be-
tween score quality and input parameter against some prior, is
possible. Here we focus on the conclusions that can be drawn
from the score quality data only.

The sensitivity probe also allows investigation using a “per-
turber” function instead of binning by some known parameter
of the object. The perturber function transforms each object in
some way, for instance, by adding noise. This allows one to test
the sensitivity of the model to some property that is not repre-
sented in catalog values to hand; in other words, we create a
new distribution of input objects that differs from the existing
distribution in some way and lets us see whether the model’s
score quality is sensitive to this shift.

The detailed algorithm for these two use cases, binning by
parameter or by peturbation, is described below.

For this analysis we use the Sensie software package (Jacobs,
2020) 2. Sensie, which is agnostic to the problem domain and
architecture of the trained model, automates the process of cal-
culating and plotting the accuracy of a neural network classifier
controlled for an input variable or perturber function.

3.2.1. Sensitivity to class properties
The sensitivity probe determines the sensitivity of a (trained)

model to some scalar parameter, p. This parameter may be
some property of the inputs; for example, the g-band luminosity
of a galaxy, or even the class index itself. In this case, we:

• Assemble a test set, T , of objects with a known ground
truth (correct class label).

2https://github.com/coljac/sensie

• Obtain the score given by the network for the correct
(ground truth) class, sk ∈ (0, 1) for each example in T ,
by feeding it through the network.
• Bin the results by values of p; for each bin p calculate the

mean score across the N examples in the bin:

〈sk
p〉 =

1
N

N∑
i=0

sk
i

as well as the corresponding standard deviation in sk
p.

3.2.2. Sensitivity to perturbation of the input data
The sensitivity probe can test the sensitivity to a perturbation

of the data, an arbitrary transformation applied to each example
in T, parameterized by a scalar p, such that T ′ = f (T, p) for a
supplied perturbation function f . For example, we may wish to
consider the sensitivity of the network to the rotation of input
images; this could be parameterized by the rotation angle. In
this case, the algorithm is as follows:

• Choose set of discrete values of P for testing over some
range, P.
• For each value in P, p, obtain T ′ = f (T, p).
• Calculate the score given by the network for the correct

(ground truth) class k, sk
i ∈ (0, 1) for each example i in T ′.

• Bin the results for each value of p and calculate the mean
score 〈sk

p〉 by bin, as well as the corresponding standard
deviation of sk

p.

In each case we have a set of discrete values or bins of some
parameter p, and a measure of the performance of the network
corresponding to data represented by this value, µp and σp. We
may then investigate how the performance of the network varies
as a function of p. This can be done through visual inspection of
the results, however we can also perform linear regression on p
versus µp to test whether the effect is significant—e.g. whether
a zero gradient is consistent with the data. For an example, see
section 4.3.

4. Results and discussion

4.1. Color
4.1.1. Test performed

We vary the colors of the images by applying a random “jit-
ter” or scaling factor independently to the three bands (g, r, and
i) consumed by the network. The data in each band is scaled
by a value drawn from a normal distribution with a mean of 1
and a standard deviation σ between 0 and 1. For each value of
σ, in increments of 0.05, we draw a scale factor for each band
in image in the test set and apply the scaling (we multiply all
pixels in the band by this factor), before testing the image to
determine network accuracy. We thus test the sensitivity of the
model to the amount of variation in the relative scaling of the
three bands parameterized by σ, i.e. the fidelity of color of the
image to the original simulation or observation.

The addition of this color jitter does not represent an astro-
physically meaningful variation in the colours of the galaxies,
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which would be best accomplished by testing with a wide array
of templates, stellar populations and/or star formation histories.
The purpose of this test is simply to see whether the machine
learning method is highly sensitive to the distribution of col-
ors provided during training. A high sensitivity to the ‘correct’
colours would indicate that the model would benefit from see-
ing a wider, and physically motivated, distribution of galaxy
colors in the training step.

4.1.2. Results
The network was sensitive to the fidelity to the original colors

of the input images. Figure 4 (left) shows the sensitivity of the
two networks to color, when tested on test sets consisting either
of simulated lenses, non-lensing galaxies, or a mixture of both.
The plots depict the mean score given by the network for the
correct class (lens/non-lens), with error bars showing one stan-
dard deviation. On the left, we see the effect on the scores of
simulated lenses for network A, trained on simulated lenses and
elliptical galaxies, and network B, trained on simulated lenses
and a diverse selection of real galaxies. The performance is sim-
ilar, although network B appears slightly more robust at small
values of the jitter factor. In both cases, the networks remain
more than 90% confident in the lens images until the jitter fac-
tor exceeds 20%, at which point the accuracy decreases quickly.
At a jitter factor higher than .2 in the case of network B and .4 in
network A, the threshold of 0.5 is less than one standard devia-
tion away from the mean score—the network is very unreliable
at this point.

On non-lensing galaxies, the performance degrades similarly.
The middle panel of Figure 4 shows the performance of the net-
work A on non-lens elliptical galaxies and network B on other
real field galaxies. A score of 1 in this case indicates certainty
that the object is not a lens. The degradation in performance is
similar to the lenses. Thus, when it comes to color information,
deviating from the simulated colors used in the training set, or
from the colors of real field galaxies, leads to confusion in the
networks - both lenses and non-lenses become increasingly un-
certain.

Figure 4 (right) shows the accuracy of the networks on a test
set consisting of 50% simulated lenses and 50% non-lensing
galaxies, i.e. combining the effects of the two separate test sets.
The performance degrades linearly until the jitter reaches a fac-
tor of approximately 0.5, at which point the accuracy of the
network has decreased from ∼ 100% to ∼ 75%.

From the above we conclude that the network has learned
that the colors of the objects in the image are determinative of
lensing. Performance may be improved by introducing a wider
range of colors into the simulations used for training, in case
the network becomes overly sensitive to the choices made here.
For instance, the colors of lensed sources in the simulations
were drawn from star-forming galaxies in the COSMOS catalog
(Ilbert et al., 2009), and when using simulated elliptical galaxies
in some experiments, we relied on a single template for a 10-
gigayear-old passive galaxy. Re-training with a wider family of
galaxies (both lenses and source) may reduce the effect of this
sensitivity to color and enable the discovery of more lenses with
atypical colors, for instance red-red lenses.

4.2. PSF
4.2.1. Test performed

Our simulated strong lenses take an image of a real ellipti-
cal galaxy, estimate a realistic lensing mass, and simulate an
image of a background source at higher redshift. This image
is convolved with a PSF drawn from a distribution designed to
match the survey properties and then added to the real image
of the simulated galaxy. The simulations on which our model
was trained use a PSF modeled as a Gaussian with a FWHM
drawn from a distribution with means of 1.27, 1.08 and 0.98
arcseconds in gri respectively, consistent with the DES Science
Verification imaging. To test the sensitivity to this parameter,
that is, to determine if the trained model is more or less likely
to recognize a gravitational lens when the PSF of the image
matches the initial training set, we create further simulations,
with synthetic lens and source galaxies, using PSFs drawn from
a distribution with a mean of between ∼ 0.7 and 3.3 arcsec, i.e.
∼ 0.6 to 3 times that used in the training set.

For this test, we created two test sets composed of new sim-
ulations with this property, one containing simulations of the
sort used to train the networks, with real galaxies as lenses and
simulated sources (section 3.2); the other using both simulated
sources and simulated elliptical galaxies in order to provide an
additional test. This was done to create realistic images that
have slightly different properties to the training set, as would
occur when evaluating real galaxies with the model that have
parameters not fully captured in training. The simulations were
once again generated with LensPop.

Since the PSF only effects the simulated aspects of the
images—the lensed source, and in the case of the test set de-
scribed above, also a synthetic elliptical lensing galaxy—we
also probe the effect of convolving the image with a 2D Gaus-
sian kernel with a standard deviation, degrading the entire im-
age including all foreground and background sources. We em-
ploy a Gaussian with standard deviation, σ, between 0 and 3
pixels (0-0.8 arcsec). We test how the performance of the net-
work degrades as a function of this parameter σ. With this test,
we hope to get an indication of the scale of the significant fea-
tures used to determine whether a source is a strong lens or not.

Figure 12 depicts an example test set image that has been
perturbed as described above with the blur, noise and occlusion
perturbers.

4.2.2. Results
As expected, we find that the Gaussian blurring of the images

degrades performance of the network. However, the response
to the blurring is not entirely consistent across the networks.
Figure 5 (left) shows the response of the networks when tested
on simulated strong lenses with blur applied; this can be con-
trasted with the middle panel, which shows the response of the
networks to simulated and real non-lenses. For both networks,
increasing blur decreases the certainty of lensing, and this effect
continues beyond the 50% threshold (the point at which the net-
work would be guessing randomly between the two classes);
i.e. the blurrier the image, the lower the probability of lens-
ing assigned to the networks. The rate of this decline is differ-
ent, however both networks show robust performance until the
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Figure 4: The effects of adding color ‘jitter’ to lens images, i.e. arbitrarily changing the scaling between bands in an image. Here the magnitude of the effect
is parameterized by p, where p corresponds to the mean size of the effect, from 0 to 100% random variation. Left: Effect on the two networks when applied to
simulated strong lenses. Middle: Effect on non-lens elliptical galaxes (Network A) and other non-lens real galaxies (Network B). Right: Combined effect on a test
set containing 50% lenses and 50% non-lens images.

Figure 5: The effects of blurring test images by convolving with a Gaussian kernel. Here the magnitude of the effect is parameterized by p, where p corresponds to
the RMS of the kernel in pixels. The mean PSF size (1.0 arcsec) is indicated on the plot for reference. Left: Effect on the two networks when applied to simulated
strong lenses. Middle: Effect on non-lens images for Networks A and B. Right: Combined effect on a test set containing 50% lenses and 50% non-lens images.
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width of the kernel reaches ∼ 5 pixels, corresponding to an an-
gular scale of 1.3 arcsec. This, presumably not coincidentally,
is the approximate Einstein radius at which lensing becomes
detectable in DES imaging.

In the case of the non-lenses in Figure 5 (middle panel),
network B degrades to approximately 50% and remains there,
however network A declines below the 50% threshold. In ei-
ther case, the performance on a balanced test set containing a
50/50 split (rightmost panel of Figure 5) degrades smoothly to
the expected 50% threshold.

Although the results are not surprising—applying a blur re-
moves information from the image, and so the accuracy must
necessarily decrease–one conclusion we can draw from this
is that the networks have incorporated the features of the two
training sets in different ways. Network A, trained only on
simple simulated non-lenses as negative examples, thinks that
non-lenses are more likely to be lenses the worse the resolu-
tion becomes. From this we can infer that it is quite sensitive
to the properties of the simulated early-type galaxies that we
used, such as the surface brightness profile, as well as the reso-
lution of the simulated DES images. Once it is shown examples
that deviate from this—even if no lensed source is introduced—
it becomes increasingly confident the example is a lens. By
contrast, its confidence in a blurred lens degrades more slowly.
Network B, perhaps more intuitively, loses confidence in lenses
as they become more distorted, but for non lenses it dips only
slightly below the 0.5 “random guess” threshold.

With regards to the PSF, the results are more instructive. Fig-
ure 6 shows the response of the networks to simulated strong
lenses with different PSFs and two different simulation method-
ologies. The first type of simulations are the same as those used
to train the networks (simulated lensed sources and catalog el-
liptical galaxies, see Table 1); the second, labelled ‘sim2’ in the
figure, use simulated elliptical galaxies. The x-axis represents a
scale factor relative to the fiducial PSF used to create the simu-
lations on which the networks were trained, a mean of approx-
imately 1 arcsec. As the PSF gets wider, so the performance
of the network degrades for both test sets, an expected result,
although the effect is much larger for Network B. However, in
the cases of both networks, a PSF better than the training set
value also leads to decreased performance. One interpretation
of this result is that the network is ‘smart’ enough to eschew
lenses with unphysically sharp features. However, this also in-
dicates a strong sensitivity to the simulated values. In the case
of the lens search conducted in Jacobs et al. (2019a), the simu-
lations used a simulated PSF designed to match that reported in
the DES Science Verification data (∼ 1 arcsec), but the search
was conducted on Year 3 coadd images, which had a better PSF
(∼ 0.8 arcsec). From this experiment we conclude that sev-
eral lenses may well have been missed due to this effect. This
suggests a serious weakness in the training set that could be
remedied firstly by better matching the PSF to the target imag-
ing, but also by introducing a wider distribution of PSFs into
the training set, forcing the network to adapt to a wider range
of conditions.

4.3. Einstein Radius

4.3.1. Test performed
The Einstein radius, which is a function of the geometry of

the lensing system and the lens mass, is calculated when the
lenses are simulated. This data is available for simulated lenses
only; for genuine lenses and lens candidates the Einstein ra-
dius is not precisely known (nor easily calculated) without high-
resolution imaging. Although we can only test simulations this
way, we can still obtain insights into how well the lensfinder
works for less obvious lenses (smaller Einstein radius), and for
those that are less represented in the training set.

We create a test set of 10000 simulated lenses with an Ein-
stein radius 1.0 < Er < 2.7, a typical range for likely, detectable
lenses in Dark Energy Survey DECam imaging. We bin the
sims by Einstein radius, using 30 bins of 0.052 arcsec wide (ap-
proximately 300 per bin) and assign each bin’s midpoint to the
simulations in that bin. These bin values are passed to the sen-
sitivity probe.

4.3.2. Results
For this test we pass the networks 10,723 simulated lenses

with known Einstein radii RE . Figure 7 depicts the sensitivity
of the networks to Einstein radius. On the left, network A and
on the right, network B. In the first case, there appears to be a
slight decrease in lens certainty as RE increases; in the second,
a slight increase up to 1.75 arcsec, then a decrease. The magni-
tude of the effect is low; in the case of network B, assuming the
standard deviation as errors in the outputs, the data is consistent
with a zero gradient inside a 95% credible interval. In the case
of network S, the gradient, ∂〈sk〉/∂RE is significant but small,
with mean accuracy increasing at 1.2% per arsecond across the
tested interval.

Understanding the different response between the two net-
works may require further experimentation. Network A was
only trained with images of elliptical galaxies, and so barring
a few coincidental aligments in the training set—the simulated
galaxies were placed in DES tiles so that interlopers, stars and
artifacts were present—the presence of any arc is likely to be
indicative of lensing. In the case of Network B, this is not
the case, as the training set contained many thousands of spi-
ral galaxies. Smaller Einstein radii were over-represented in
the training set, whereas spiral arms could reach arbitrary size
in the DES imaging. Thus, at larger radii the network becomes
less certain, as the risk of confusion with a spiral arm or tidal
tail is larger. In any case, this test does not reveal a deficiency
or over-sensitivity in the training set for either network.

We note results from real (human inspected) lens candidates
are not included here as the Einstein radius is not known and is
difficult to constrain with ground-based imaging.

4.4. Lens and source magnitudes

4.4.1. Test performed
For simulated lenses, we know the (observed) magnitudes of

the lens and the source. Here, we test the sensitivity of the lens-
finder to the r-band magnitude of the lensing galaxy and the g-
band magnitude of the lensed source. To test the sensitivity to
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Figure 6: The effects of the PSF in simulated images on the network accuracy, Here the magnitude of the effect is parameterized by p, where p corresponds to the
ratio of the test set PSF mean to the mean PSF used to train the networks originally. Left: Effect on the Network B, trained on simulated strong lenses and real field
galaxies. Right: Effect on network A, trained on simulated lenses and elliptical galaxies. In both cases, the performance of the networks decreases when the PSF is
better than the fiducial value used for training.

Figure 7: The effects of the simulated lens Einstein radius on network accuracy. Here we compare the mean score given by the networks to simulated lenses binned
up by Einstein radius, with bins 0.052 arcsec wide/ Left: Effect on the Network A, trained on simulated lenses and elliptical galaxies. Right: Effect on network B,
trained on simulated lenses and real field galaxies. Both networks display a strong insensitivity to this parameter. The 95% credible interval for a the gradient of a
linear fit to the data is shown; it is consistent with zero or nearly zero in both cases.
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these parameters, we collect 4000 simulated lenses where 19 <
r < 21 and 4000 simulated lenses where 20 < glensed < 22.
We create 20 bins 0.1 magnitudes wide across each magnitude
domain, with each containing ∼ 200 sources respectively. The
midpoint of the magnitude bin is passed to the sensitivity probe
as the parameter to test.

4.4.2. Results
By examining the sensitivity to the magnitudes of source and

lens, we hope to gain a better understanding of the selection
function of the lens-finder. Figure 8 depicts the response of the
two networks to simulated lenses as a function of lens r-band
and source g-band magnitude. The magnitude ranges explored
reflect the parameters of detectable lenses used to train the net-
works.

The response of the two networks are somewhat dissimilar;
network B is less sensitive across most of the range. Net-
work A degrades in performance as the source gets fainter,
with significant effects from a g-band magnitude of 21.5. Net-
work B becomes less accurate at a similar range, although the
trend is less clear. With the lens r-mag, Network A shows a
significant degradation in performance where the lens is very
bright, r < 19; this is not evident for network B. Network A
also showed a degradation in performance for very faint lenses,
where r > 22.5. Network B displays no sensitivity to bright
lenses but fainter than 21 in r performance degrades quickly.

In the Jacobs et al. (2019a) search, we conducted the search
by examining candidates above a certain score threshold (for
instance, 0.99—very certain candidates) and then lowering the
threshold in increments until the rate of discovery makes fur-
ther examinations no longer worthwhile. From the sensitivity
probe, we can map these thresholds to a selection function: At
threshold .9, network A is unlikely to find many lenses with
a g-band magnitude greater than 22. The scatter in the scores
makes it difficult to establish a firm cutoff, but for a given score
threshold we can establish a point where ∼ 50% of lenses are
unlikely to be found for any given magnitude value.

This experiment was repeated using simulations developed
with a different methodology, as per section 4.2. Results of
this test are presented in Figure 9. Although these simulations
are less realistic than those described above, this may serve to
highlight further weaknesses of the network by showing them
examples dissimilar to those used in training, and thus less sus-
ceptible to over-fitting to features of the simulations. This anal-
ysis provides some evidence that of the limitations of a network
trained only on one type of galaxy (bright ellipticals). The
high accuracy for network A even for faint objects indicates
that without having to account for the variety of morphologies
and colors found in galaxies in general, the network can likely
make some assumptions that will not survive contact with di-
verse (and lower signal-to-noise) sources from the field. In Ja-
cobs et al. (2019a), we used network B specifically to account
for weaknesses in the simulations: a network trained with the
same elliptical galaxies in both the positive and negative train-
ing sets could not learn that some feature of these galaxies alone
was discriminative. However, the use of network B, which was
exposed to the full range of non-lens galaxy morphologies in

training, was essential to balance the unrealistic simplicity of
the all-simulation training set.

4.5. Occlusion
4.5.1. Test performed

Occlusion—that is, masking out parts of an image to deter-
mine the effect on the score—has been used as a simple form of
saliency mapping (see section 2). In theory, one could zero out
each pixel of an image one by one and calculate the effect on
the network’s score, and thereby create a map of ∂ŷ/∂pi j over
the image for each pixel pi j. In practice, the effect of a single
pixel on the classification is negligible, so the masking of larger
regions is required to produce an interpretable map.

Here, we employ two strategies to test occlusion sensitiv-
ity. Firstly, we create annular masks with a width of 5 pixels
and a radius varying between 0 and 50 pixels. An annulus is
chosen since the sources, particularly strong lens systems, vary
systematically with distance from the centre of the lens (lens
light decreases, and lensed images appear around the Einstein
radius of the system). Within the masks, the input pixels are
set to zero. We therefore test the sensitivity to information in
the image as a function of radius from the centre of the (real or
potential) lensing galaxy.

We also test the sensitivity to occlusion by a disk of a radius
between 0 and 35 pixels. As the disk grows in size and more
information is removed from the images, we are able to test
the sensitivity to the complete removal of information within
a certain radius r. From this we can quantify the amount of
lensing information present outside r; that is, we can test how
sensitive the network is to information inside r being present.
We can compare this directly to the Grad-CAM saliency maps
from Figure 3.

4.5.2. Results
The experiment with ring occlusion provides a quantitative

measure of some of the morphological features learned by the
network. In Figure 10 (right panel), we see that for both net-
works the effect of occlusion (at any radius) does not affect the
ability to pick a non-lens galaxy. However, it has an impact
on the scores of lenses: at a radius of 1.3 arcsec (so, informa-
tion between 1.3 and 2.1 arcsec is missing) this fact is most
pronounced, with accuracy dropping to ∼ 75%. This corre-
sponds with the Einstein radii of the typical, and most common,
lenses simulated and discovered in the survey. Accuracy is de-
creased by more than 10% across the range 0.5-1.7 arcsec. This
confirms the networks have learned that the presence of lensed
source flux at these radii is a key indicator of a strong lens, as
expected. The lack of any uncertainty introduced into the non-
lens scores when information is subtracted confirms this intu-
ition. The fact that the effect is maximum in the expected range
indicates that there is no concerning bias in the training set.

In Figure 11, left, we see how the certainty that Networks
A and B have in identifying a lens drops as a function of disk
occlusion radius. For network A, the mean score for lenses has
dropped to .85 by a radius of .9 arcsec and .12 by 2 arcsec. If
we take this information as an approximation of the lensing in-
formation content as a function of r, we see that ∼ 85% of the
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Figure 8: The accuracy of the networks in detecting simulated lenses, as a function of galaxy magnitude. Top left: Network A, trained on simulated lenses and
elliptical galaxies, as a function of the integrated g-band magnitude of the lensed source. Top right: Network B, trained on simulated lenses and real field galaxies.
Bottom left: Network A, accuracy as a function of the lens r-band magnitude. Bottom right: Network B, Accuracy as a function of the lens r-band magnitude.
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Figure 9: The accuracy of the networks in detecting simulated lenses, as a function of galaxy magnitude, for simulations containing synthetic elliptical galaxies.
Top left: Network A, trained on simulated strong lenses, as a function of the integrated g-band magnitude of the lensed source. Top right: Network B, trained on
simulated lenses and real field galaxies. Bottom: Accuracy as a function of the lens r-band magnitude. Left: Network A, Right: Network B.

Figure 10: Effect on the network scores of the occlusion of an annulus of pixels with the given radius in arcsec (1 pixel = .263 arcsec). Left: Effect on the score of
simulated lenses, showing the greatest effect at ∼ 1.3 − 2.1arcsec, consistent with a typical detectable strong lens. Right: Effect on the scores of non-lenses. The
networks are not sensitive to lack of radial information at any radius for a non-lens.
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information used by Network A lies within a radius of 1 arcsec
(over the supplied test set). We can compare this to the Grad-
CAM test from Figure 3. On the right of the figure we contrast
the Grad-CAM results for two lenses with this sensitivity map
result. The Grad-CAM map corresponds to the individual input,
while the sensitivity map result is statistical; we can neverthe-
less see that the information content is more tightly constrained
to the central regions than the Grad-CAM maps may indicate.

For both networks, the accuracy on non-lenses is not affected
by disk occlusion; removing central flux never results in a de-
creased certainty that an object is a non-lens.

4.6. Noise

4.6.1. Test performed
The addition of Gaussian noise enables us to probe the sen-

sitivity of the model to signal-to-noise; what is the threshold
beyond which the network can no longer reliably distinguish
a lens, and how does this compare to a human expert? We
interrogate this through the addition of increasing amounts of
Gaussian noise to the images. The test set images are normal-
ized such that the flux in each band to a mean of zero and a
standard deviation of one, i.e. X′ = (X − µ)/σ, and then apply
Gaussian noise, parameterized by a standard deviation between
0 and 30 to each pixel in an image. This corresponds to to a
typical change in mean signal-to-noise ratio per pixel from 20
down to to ∼ 0.5 across the test set. We test the sensitivity to
the magnitude of this Gaussian noise.

4.6.2. Results
The addition of noise to the test set decreased the accuracy

of the network as expected. However, the two networks be-
haved differently, shedding some light on the different features
learned from the two training sets. For network A, the addition
of noise leads to confusion - both simulated lenses and non lens
galaxies are scored as uncertain (0.5) as the images get noiser
(Figure 13, left). However, network B scores simulated lenses
as more likely to be non-lenses as the noise increases and the
real non-lens galaxies becomes more certain as noise increases.
For network A, if it cannot discern lens morphology, it becomes
uncertain; for network B, it becomes certain that the object is
not a strong lens. For a balanced test set, the overall accuracy
will be the same in both cases, but in practice the network B
strategy is likely to lead to fewer false positives, albeit at the
cost of completeness, in lower signal-to-noise regimes. The
fact that strong lenses are very rare also points to the Network
B strategy being more robust; in the absence of clear lensing
features, the candidate would ideally be rejected, rather than
given an uncertain score.

4.7. Effects on real images of gravitational lenses

Several of our perturber-based sensitivity tests were applied
to a small test set containing images of real strong lenses. Fig-
ure 14 shows the results of applying the noise, blur and color
jitter tests as described previously. The noise and blur tests are
similar to the tests performed on simulations, with the interest-
ing feature of an increase in blurred accuracy for Network A

up to a point, then the expected decrease. This does not imply
that blurring the inputs would improve performance in reality,
since we see that for non-lenses the blurring decreases the cor-
rect score—the false positive rate would increase dramatically
in this case. Color jitter can also be seen to have a substan-
tial impact on the networks’ accuracy; the scatter evident in the
figure is a function of the small size of the test set.

4.8. Limitations of the method

The sensitivity probe is a relatively simple method and has
several limitations. As presented here in the lens-finding case,
the properties to be tested must be known a priori; the method
does not, in an unsupervised way, segregate the test set in a way
that allows discovery of hidden biases, for instance by automat-
ically segregating the test set into groups of over- and under-
performing objects. However, in astronomy we often do have
a catalog of properties associated with the objects of interest:
photometric magnitudes, flux errors, photometric and spectro-
scopic redshifts, colors, etc. In these cases the method is both
useful and readily applied. Errors in these catalog properties
will affect the sensitivity probe analysis, however due to its sta-
tistical nature it can still provide interpretable results even with
noisily-labelled data. Even dividing the test set into as few as
two or three bins would enable strong biases to be visualised.

Correlations between biases are also not analyzed. Since
the model produces a single score for each object, the correla-
tions in score quality for the lensing application simply reflect
the correlations between galaxy and observational properties.
However, segregating the test set into bins in two or more di-
mensions (i.e. by two or more properties) would be possible
and for some applications such a ‘performance surface’ may
offer useful insights.

4.9. Results summary

We tested the sensitivity of two trained neural networks to
the g-band source magnitude, r-band lens magnitude, Einstein
radius and PSF of simulated strong lenses, and also to the addi-
tion of noise, a Gaussian blur, and random rescaling of different
bands in the images (color jitter). The networks were highly
sensitive to the color jitter and PSF, showed some sensitivity to
the galaxy magnitudes, and were insensitive to the simulated
Einstein radius. The addition of noise and blur, which removed
information from the images also caused a smooth decrease in
network performance. From this we conclude in particular that
the PSF is likely to be a significant weakness in the training
set design, that the networks may benefit from a wider range of
colors in the training sets, and that the networks are probably
unreliable where the source is too faint (g > 21.5) or the lens
too bright (r < 19). These results are summarized in Table 2.

The networks tested in this work were successful in facilitat-
ing the discovery of ∼500 high-quality strong lens candidates
in DES imaging. The completeness of that search is difficult to
ascertain; it can be estimated using simulations (as per Collett
et al., 2019) or perhaps more certainly when other techniques
(such as mining spectroscopic data) are employed exhaustively
to a significant subset of the survey area in future. We cannot
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Figure 11: Effect on the network scores for simulated strong lenses of the occlusion of a disk of pixels with the given radius in arcsec. Left: For Network A, by
radius 1.5 arcsec the majority of lenses are classified as non lenses. For Network B, the decline is faster, at just over 1 arcsec. Right: A comparison between the
saliency maps produced using the Grad-CAM algorithm (right panel) and the importance of radial information from the disk occlusion sensitivity analysis (left
panel). The color scale represents both the Grad-CAM salience and the information content by radius for Network A. Grad-CAM indicates information within
several arcsec is highly salient for these two lenses; our analysis indicates that 90% of the relevant information lies within 2 arcsec for our test set.

Figure 12: An example simulated lens from the test set before and after perturbation with one of the perturber functions. In order from top: Convolution with
2D-Gaussian (blur), with Gaussian width 0 to 3 pixels; addition of Gaussian noise, degrading S/N from 14 to ∼ 2; occlusion of an annulus 5 pixels wide with radius
shown (pixels). Images are 100 pixels across (∼ 26 arcsec in DES).
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Figure 13: The effects of added noise. Here, the parameter p corresponds to the magnitude of Gaussian noise, corresponding to a typical decrease in signal-to-noise
to ∼ 0.5 when p = 30. Left: The effect of noise on the scores of simulated lenses. Two different strategies are evident. While Network A becomes more uncertain
as noise is added, Network B becomes more certain the example is not a lens. Right: The same pattern is evident for the non-lenses. Network A becomes more
uncertain (mean of 0.5, high scatter), whereas Network B becomes certain the examples are not lenses.

Figure 14: Effects of several sensitivity tests on the two networks using a test set consisting of 116 images of strong lens candidates from DES. Left: The effect of
adding noise. Middle: The effect of convolution with a Gaussian blur. Right: The effect of color jitter. For the blur and noise addition, the results are consistent
with what we see on the simulations, with Network A’s apparent increase in performance for small blurs explained by a corresponding jump in false positives under
this transformation. The effect of color jitter is strong, but due to the small size of the test set and the large amount of scatter, it is difficut to quantify beyond noting
the drastic impact on accuracy.
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easily quantify the properties of the sources missed or falsely
rejected, nor can we easily understand in many cases why false
positives are scored highly. The use of a sensitivity probe has
allowed us to probe regions of parameter space where the per-
formance of the networks degrades, putting some constraints
on a selection function in terms of signal-to-noise, galaxy mag-
nitudes, and PSF/seeing. This will enable the refinement of
some estimates of the number of discoverable lenses in future
surveys, and also provide a benchmark to which the next gen-
eration of lens-finders can be compared.

5. Conclusion

The use of deep neural networks in astronomy is growing
exponentially, playing an increasing role in many subject ar-
eas. Understanding the biases and weaknesses of deep learn-
ing models is important to properly place the results in context
and use them in downstream scientific analysis. In this article
we use a sensitivity probe—which tests how the accuracy of a
neural network varies as a function of a specified property of
the input data—to probe two neural networks trained to recog-
nise images of gravitational lenses in the Dark Energy Survey.
We test the sensitivity of the networks to seeing (a Gaussian
blur); a simulated point spread function; color; noise; occlu-
sion of an annulus of pixels; the lens r-band magnitude; the
lensed source’s g-band magnitude; and the Einstein radius of
(simulated) strong lenses. We find that the networks are highly
sensitive to color, indicating that they have learned that the col-
ors of a typical strong lens (a red elliptical lens with a blue
star-forming lensed source) are significant; this may indicate
that an atypical lens, such as one with a red source, would
be scored low. The network is also sensitive to the simulated
PSF, with performance degrading smoothly as the PSF broad-
ens from the fiducial value used to train the network, but also
degrades rapidly as the PSF improves, indicating that the net-
work is overly sensitive to the simulated PSF and should ideally
be trained with a broader range of simulations to address this
weakness. Response to noise, blur, and the lens and source
magnitudes degrades smoothly as expected, however at a g-
band magnitude of ∼ 21.5 the performance is observed to de-
grade significantly, allowing us to constrain the selection func-
tion of the lens-finder. The network is not sensitive to the Ein-
stein radius of an input lens image, reporting similar accuracy
across a range from 1.0 to 2.7 arcsec. We tested the networks’
sensitivity to the occlusion (zeroing-out) of a ring three pixels
wide; the network was most sensitive to this effect when the ra-
dius of the occlusion ring was at 5 pixels, equivalent to 1.3 arc-
sec. This is typical of a strong lens detected in the DES imag-
ing and confirms that the network has learned this is a highly
significant region of the image. These insights highlight poten-
tial utility of a sensitivity probe in finding weaknesses in deep
learning-based algorithms and their training sets.

Future work could assist the next generation of lens-finders
by quantifying the significance of assumptions underlying the
simulations which for now compose the only feasible training
set. The Sersic index of the simulated source, the presence of
multiple lensed sources, clumpiness in the sources, and more

complicated mass distributions in the lens plane could all be
tested.

Although the sensitivity probe method relies only on the col-
lection of performance statistics calculated from the outputs
of the networks, and is therefore simple to implement, it has
not been systematically applied before in lens-finding or other
DNN-driven astronomical applications. A sensitivity probe
such as that presented here could prove useful more generally
in future deep-learning based experiments by informing exper-
imental design and identifying weaknesses in training sets that
could be remedied before scientific application. The sensitivity
probe also has the potential to help us understand the features
a network has learned are the most salient in a particular con-
text, from which we may potentially be able to ascribe astro-
physical significance. Combined with new techniques for esti-
mating the uncertainties in ANN outputs such as Bayesian neu-
ral networks, the chief weakness of deep learning approaches
to science—the lack of interpretability—may be significantly
ameliorated.
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